
Mutation-Based Fault Localization for Real-World
Multilingual Programs

Shin Hong∗, Byeongcheol Lee†, Taehoon Kwak∗, Yiru Jeon∗, Bongsuk Ko†, Yunho Kim∗, Moonzoo Kim∗
∗KAIST, South Korea

{hongshin, thkwak, podray, kimyunho}@kaist.ac.kr, moonzoo@cs.kaist.ac.kr
†GIST, South Korea

{byeong, bsk}@gist.ac.kr

Abstract—Programmers maintain and evolve their software in
a variety of programming languages to take advantage of various
control/data abstractions and legacy libraries. The programming
language ecosystem has diversified over the last few decades, and
non-trivial programs are likely to be written in more than a single
language. Unfortunately, language interfaces such as Java Native
Interface and Python/C are difficult to use correctly and the scope
of fault localization goes beyond language boundaries, which
makes debugging multilingual bugs challenging. To overcome
the aforementioned limitations, we propose a mutation-based
fault localization technique for real-world multilingual programs.
To improve the accuracy of locating multilingual bugs, we
have developed and applied new mutation operators as well as
conventional mutation operators. The results of the empirical
evaluation for six non-trivial real-world multilingual bugs are
promising in that the proposed technique identifies the buggy
statements as the most suspicious statements for all six bugs.

I. INTRODUCTION

Many software systems today are written in multiple pro-
gramming languages to reuse legacy code and leverage the
languages best suited to the developers’ needs. Over the last
few decades language designers have made a variety of choices
in designing the syntax and semantics of their languages. The
result is a robust ecosystem where a few languages cover
the most use in part due to open source libraries and legacy
code while many languages exist for niche uses [33]. This
ecosystem is likely to make developers write a multilingual
program which is a non-trivial program written in more than a
single language. High-level languages such as Java, Python,
and OCaml provide standard libraries, which typically call
legacy code written in low-level languages (e.g., C) to interface
with the operating system. A number of projects for the
legacy libraries that have evolved for decades provide language
bindings for each language. A large scale software project
employs a number of libraries written in multiple languages.

Correct multilingual programs are difficult to write in
general in part due to the complex language interfaces such
as Java Native Interface (JNI) and Python/C, which require
the programs to respect a set of thousands of interface safety
rules over hundreds of application interface functions [26],
[30]. Moreover, once a bug occurs at interactions of code
written in different languages, programmers are required to
understand the cause-effect chains across language bound-
aries. Despite the advances of automated testing techniques
for complex real-world programs [14], [19], [20], [21], [39],
debugging multilingual bugs in real-world programs is still

challenging and requires significant human effort. For instance,
Bug 322222 in the Eclipse bug repository crashes JVMs with a
segmentation fault in C as an effect when the program throws
an exception in Java as the cause (Section VI). Locating and
fixing this bug took a heroic debugging effort of more than
a year from 2009 to 2010 with hundreds of comments from
dozens of programmers before the patch went into Eclipse
3.6.1 in September 2010.

The existing error detectors targeting multilingual program
errors [23], [26], [27], [29], [28], [41], [42], [43], [45] are not
effective in debugging this case, because they can only report
certain kinds of safety rule violations; they cannot indicate
the root cause of the bug, especially when the bug does not
explicitly involve any known safety rule violations. Moreover,
these bug detectors do not scale well to a large number of
languages and various kinds of program errors since they have
to deeply analyze the semantics of each language for each kind
of bug.

This paper presents a mutation-based fault localization
(MBFL) technique for multilingual programs. The technique
takes multilingual source code of a target program and a set
of test cases including at least one failing test case as input;
it then and generates a list of statements ordered by their
relevance to the error (i.e., suspiciousness score). To calculate
the suspiciousness score of a statement, a MBFL technique first
generates diverse variants of target programs by systematically
changing each statement (i.e., mutants), and then observes how
testing results change if a certain statement is mutated. In
addition, to improve the accuracy of localizing multilingual
bugs (e.g., bugs whose causes and effects are located in code
segments written in different languages), we have developed
new mutation operators focusing on localizing multilingual
bugs 1.

The proposed MBFL technique for real-world multilingual
programs is effective (i.e., it identifies the locations of bugs
precisely) and language agnostic (i.e., extensible for com-
bination of various programming languages). Our empirical
evaluation of six real-world Java/C bugs demonstrates that the
proposed technique locates the bugs in non-trivial real-world
multilingual programs far more precisely (i.e., the technique
identifies the buggy statements as the most suspicious state-
ments for all six bugs) than do the state-of-the-art spectrum
based fault localization (SBFL) techniques (Section IV). For

1The proposed technique is an extension for multilingual bugs based on
MUSE which targets to localize C bugs [34].

2015 30th IEEE/ACM International Conference on Automated Software Engineering

978-1-5090-0025-8/15 $31.00 © 2015 IEEE

DOI 10.1109/ASE.2015.14

464



example, for Bug 322222 in the Eclipse bug repository, the
technique indicates the statement at which the developer made
a fix as the most suspicious statement among a total of
3482 candidates (Section VI). In summary, this paper’s major
contributions are:

1) New mutation operators targeting multilingual pro-
gram errors which are highly effective at locating
multilingual bugs (Section III-C)

2) Empirical demonstration of the high accuracy of the
mutation-based fault localization technique for the six
real-world multilingual bugs (Section IV)

3) Detailed report on two case studies to determine
why and how the proposed technique can precisely
localize real-world multilingual bugs (Sections V and
VI).

The rest of the paper is organized as follows. Section II
describes the background on multilingual debugging and fault
localization techniques. Section III explains our MBFL tech-
nique. Section IV provides an overview of the empirical study
on the six real-world multilingual bugs. Sections V and VI
describe two case studies on real-world multilingual bugs in
detail. Section VII discusses observations made through the
experiment. Section VIII concludes this paper with future
work.

II. BACKGROUND AND RELATED WORK

A. Multilingual Bugs

A multilingual program is composed of several pieces of
code in different languages that execute each others through
language interfaces (e.g., JNI [30] and Python/C). These lan-
guage interfaces require the multilingual programs to follow
safety rules across language boundaries. Lee et al. [26] classi-
fies safety rules in Java/C programs into three classes: (1) state
constraints, (2) type constraints, and (3) resource constraints:

• State constraints ensure that the runtime system of one
language is in a consistent state before transiting to/from a
system of another language. For instance, JNI requires the
program to not propagate a Java exception before executing
a JNI function from a native method in C.

• Type constraints ensure that the programs in different
languages exchange valid arguments and return values of
expected types at a language boundary. For instance, the
NewStringUTF function in JNI expects its arguments not
to be NULL in C.

• Resource constraints ensure that the program manages re-
sources correctly. These resource constraints are comparable
to the contracts of calling the free function for dynamically
allocated memory in C. For example, a local reference l to
an Java object obtained in a native method m1 should not be
reused in another native method m2 since l becomes invalid
when m1 terminates [30] (see Section V as an example of
a multilingual bug that violates this resource constraint).

A multilingual bug is caused by violating safety rules at
language interface (i.e., foreign function interface (FFI) bugs),
and/or by unintended interactions of code across language
boundaries. When a program breaks an interface safety rule,
the program crashes or generates undefined behaviors. Mul-
tilingual programs respecting all interface safety rules still

can have multilingual errors when the cause-effect chain goes
through languages interfaces. For instance, a program would
leak a C object referenced by a Java object that is garbage
collected at some point. The cause of the memory leak is in
Java at the last reference to this Java object while the effect
is in C because Java code is expected to free the C object
(Section III-A).

B. Debugging Multilingual Bugs

Debugging a program bug consists of the following three
steps: (1) detecting an error, (2) locating the root cause of the
error (i.e., buggy statements), and (3) creating a fix on the
buggy statements. These three steps are more challenging for
multilingual programs than for monolingual programs because
interactions among different languages should be considered,
which increases the complexity of debugging.

For the first step (i.e., detecting a multilingual error), there
exist dozens of static and dynamic analysis techniques [23],
[26], [27], [28], [29], [43], [45]. Some of these techniques
provide bug-checkers that detect/predict interface safety rule
violations (for example, CheckJNI which is a built-in dynamic
JNI checkers in JVMs such as HotSpot and J9). The other
techniques [13], [18], [48] detect an error in one programming
language while the root cause would be in other languages.

Unfortunately, few techniques support the second step
(i.e., fault localization of multilingual bugs). Although the
aforementioned static and dynamic analysis techniques can
detect/predict multilingual errors, locating the buggy state-
ments that cause the multilingual errors is still challenging
because the root cause of multilingual errors is often non-
trivial and located far from the error sites (for examples, see
Sections V–VI). Although multilingual debuggers may support
programmers in locating the causes of the bugs manually [25],
it still takes a considerable amount of time to localize a
complex multilingual bug (e.g., Bug 322222 of the Eclipse
bug repository).

C. Mutation-Based Fault Localization

Fault localization techniques [31], [46] aim to locate the
root cause of an error in the target program (i.e., the second
step of debugging) by observing test runs. Fault localization
has been extensively studied for monolingual programs both
empirically [17], [34], [40] and theoretically [47], [50].

Spectrum-based fault localization (SBFL) techniques infer
that a code entity is suspicious for an error if the code
entity is likely executed when the error occurs. Note that
SBFL techniques are language agnostic because they calculate
the suspiciousness scores of target code entities by using
information on the testing results (i.e., fail/pass) of test cases
and the code coverage of these test cases without complex
semantic analyses. However, the accuracy of SBFL techniques
is often too low to localize faults in large real-world programs.

To improve the accuracy of fault localization, mutation-
based fault localization techniques (MBFL) have been pro-
posed recently; these techniques can analyze diverse program
behaviors using mutants (i.e., target program versions that are
generated by applying simple syntactic code changes such as
replacing if(x>10) with if(x<10)). MBFL techniques are

465



also language agnostic since they utilize only information on
the testing results (i.e., fail/pass) of test cases on the original
target program and its mutants. Moon et al. [34] demonstrate
that their MBFL technique (calling it MUSE) is 6.5 times
more precise than state-of-the-art SBFL techniques such as
Ochiai and Op2 on the 15 versions of the SIR subjects. The
key idea of MUSE is as follows. Consider a faulty program
P whose execution with some test cases results in error. Let
mf be a mutant of P that mutates the faulty statement, and
mc be one that mutates a correct statement. MUSE assesses
the suspiciousness of a statement based on the following two
observations:

Observation 1 : a failing test case for P is more likely to pass
on mf than on mc. Mutating a faulty statement is more
likely to cause the tests that failed on P to pass on mf than
on mc because a faulty program might be partially fixed
by modifying (i.e., mutating) a faulty statement, but not by
mutating a correct one. Therefore, the number of test cases
whose results change from fail to pass will be larger for mf

than for mc.

Observation 2 : a passing test case for P is more likely to
fail on mc than on mf . A program is more easily broken
by mutating a correct statement than by mutating a faulty
statement. Thus, the number of the test cases whose results
change from pass to fail will be greater for mc than for mf .

There exist a few other MBFL approaches. To localize
faults precisely, Zhang et al. [51] measure fault-inducing
changes in regression testing and Papadakis et al. [37], [38]
measure mutant similarities. In contrast, MUSE utilizes the
differences introduced by mutants for fault localization.

III. MUTATION-BASED FAULT LOCALIZATION FOR

REAL-WORLD MULTILINGUAL PROGRAMS

To alleviate the difficulty of debugging multilingual pro-
grams, we have developed a MUtation-baSEd fault localization
technique for real-world mUltilingual prograMs (MUSEUM).
MUSEUM is language-independent because it generates syn-
tactic mutants and statistical reasoning with testing results
on a target program and its mutants. MUSEUM does not
require special build/runtime environments but only a mutation
tool and a coverage measurement tool for target programming
languages. This is a great advantage over other debugging
techniques which require specific infrastructure such as virtual
machines or compilers.

MUSEUM targets both monolingual and multilingual bugs.
To localize multilingual bugs precisely, MUSEUM utilizes
conventional mutation operators and new mutation operators
designed for directly mutating interactions between language
interfaces. These new mutation operators (Section III-C) im-
prove the accuracy of MBFL by generating mutants whose
testing results are informative to locate multilingual bugs
(Section V).

A. Motivating Example

1) Target program: Figure 1 presents a target Java/C pro-
gram with a memory leak bug failing the assertion at Line 71 2.

2This example is a simplified version of a real-world bug found in Azureus
3.0.4.2 (Bug1 in Table II).

1 : /* CPtr.java */
2 : public class CPtr {
3 : static {System.loadLibrary("CPtr");}
4 : private final long peer;
5 : private native long nAlloc();
6 : private native void nFree(long pointer);
7 : private native int nGet(long pointer);
8 : private native void nPut(long pointer, int x);
9 : public CPtr(){peer = nAlloc();}
10: public int get(){return nGet(peer);}
11: public void put(int x){nPut(peer, x);}
12: public void dispose(){nFree(peer);} }
13:
14: /* CPtr.c */
15: #include <jni.h>
16: #include <stdlib.h>
17: jlong Java_CPtr_nAlloc(JNIEnv *env,jobject o){
18: jint *p;
19: p =(jint *)malloc(sizeof (jint)); /*Mutant m1*/
20: return (jlong)p;
21: }
22: void Java_CPtr_nFree(JNIEnv *env,jobject o,jlong p){
23: free((void *)p);
24: }
25: jint Java_CPtr_nGet(JNIEnv *env,jobject o,jlong p){
26: return *(jint *)p;
27: }
28: void Java_CPtr_nPut(JNIEnv *env,jobject o,jlong p,
29 jint x){
30: *((jint *)p) = x;
31: }
32:
33: /* Client.java*/
34: public class Client {
35: CPtr m = null;
36: void add(int x){
37: m = new CPtr(); /*Mutant m2*/
38: m.put(x);
39: }
40: int remove(){
41: int x = m.get();
42: m.dispose();
43: m = null;
44: return x; /*Mutant m3*/
45: } }
46:
47: /* ClientTest.java */
48: import java.util.*;
49: public class ClientTest {
50: static final List pinnedObj=new LinkedList();
51: public static Object pinObject(Object o){
52: pinnedObj.add(o);
53: return o;
54: }
55: void passingTest(){ // passing test case
56: try {
57: Client d = new Client() ;
58: d.add(1) ;
59: assert d.remove() == 1;
60: } catch(VirtualMachineError e) {
61: assert false; /*potential memory leak in C*/
62: }
63: }
64: void failingTest(){ // failing test case
65: try {
66: Client d = new Client() ;
67: d.add(1) ;
68: d.add(2) ;
69: assert d.remove() == 2;
70: } catch (VirtualMachineError e) {
71: assert false; /*potential memory leak in C*/
72: }
73: } }

Fig. 1: A Java/C program leaking memory in C after garbage
collection in Java

466



The program is composed of source files in C and Java defining
three Java classes: CPtr, Client, and ClientTest.

CPtr (Lines 2–31) characterizes the peer class idiom [30,
p. 123] of wrapping native data structures, which is widely
used in language bindings for legacy C libraries. The peer
field (Line 4) is an opaque pointer from Java to C to point
to a dynamically allocated integer object in C. The CPtr
constructor (Line 9) executes the nAlloc native method
(Lines 17–21) to allocate an integer object in C and stores
the address of the integer object in peer. While JVMs
automatically reclaim a CPtr object once the object becomes
unreachable in the Java heap, the clients of CPtr are required
to dispose manually the integer object by executing dispose
(Line 12) on the CPtr object. If the client does not dispose an
CPtr object before it becomes unreachable, the peer integer
object becomes a unreachable memory leak in C.

Client (Lines 34–45) is a client Java class of using
CPtr. The m field (Line 35) holds a reference to a CPtr ob-
ject. add (Lines 36–39) and remove (Lines 40–45) write/read
a value to/from the CPtr object respectively. add instantiates
a CPtr object, assigns the reference of the new object to m,
and then writes a value to the object. remove reads the value
of the CPtr object pointed by m, disposes the CPtr object,
deletes the reference to the object, and returns the value of the
CPtr object.

ClientTest (Lines 48–73) is a Java class of driving
test cases directly for Client and indirectly for CPtr. It
contains one passing test passingTest (Lines 55–63) and
one failing test failingTest (Lines 64–73). The testing
oracle validates a program execution by using (1) the assertion
statements (Lines 59 and 69) and (2) the exception handler
statements (Lines 61 and 71). The assertion statements at
Line 59 and Line 69 validate the program state after executing
a sequence of add and remove by checking if remove
correctly returns the last value given by add. On the other
hand, the exception handler statements at Line 60 and Line 70
detect failures at arbitrary locations. For instance, runtime
monitors such as QVM [10] and Jinn [26] would throw an
asynchronous Java exception either at GC safe points or at
language transitions.

2) Passing test: passingTest executes successfully. It
satisfies the assertion statement at Line 59 because both the
CPtr object and the peer integer object in Java and C are
reachable, and remove at Line 59 returns 1 stored at Line 58.
The runtime monitor does not throw any Java exception
indicating a memory leak in C because the native integer object
is released in the call to remove.

3) Failing test: failingTest fails at Line 71 because
the runtime monitor throws an exception due to a memory
leak in C. The test case creates one Client object (Line 66)
and two CPtr objects (Lines 67–68), and two native integer
objects. The first native peer integer object is a leak in C
heap while all the other objects are reclaimed automatically
by garbage collectors and manually by C memory deallocator
(i.e., dispose). The first CPtr object and its peer integer
object are created in a call to add at Line 67. Both become
unreachable after the second call to add at Line 68. The CPtr
object would be garbage collected while the program does
not manually execute dispose on the unreachable native

integer peer object. The runtime monitor would perform a
garbage collection and find out the native integer peer object
is a unreachable memory leak. This memory leak bug appears
because add does not call dispose if m already points
to a CPtr object. Thus, we indicate Line 37 as the buggy
statement.

4) Our approach: MUSEUM generates mutants each of
which is obtained by mutating one statement of the target
code. Then, MUSEUM checks the testing results of the mu-
tants to localize buggy statements. For example, suppose that
MUSEUM generates the following three mutants m1, m2, and
m3 by mutating each of Lines 19, 37, and 44.

m1, a mutant obtained by removing Line 19
This mutation resolves the memory leak as the mutant
will not allocate any native memory. However, both test
cases fail with the mutant because an access to p raises
an invalid memory access (at nGet/nPut of CPtr).

m2, a mutant obtained by inserting a statement of pinning
the Java reference before Line 37 3

This mutation inserts a statement of pinning the ob-
ject: ClientTest.pinObject(m); before Line 37,
where pinObject stores the Java reference m into a
global data structure pinnedObj. This mutation intends
to prolong the lifetime of the Java object referenced by m
to the end of the program run. This mutation resolves the
memory leak in failingTest because the first CPtr
object will not be reclaimed and, thus, will not leak its
peer native integer object. The two test cases pass with
the mutant because the mutation does not introduce any
new bug.

m3, a mutant obtained by replacing the return value with 0
in Line 44
This mutation replaces the variable x with an integer
constant 0 at Line 44. This mutation fails the assertion
at Lines 59 and 69 since the return value of remove is
always 0.

From these testing results, MUSEUM concludes that Line 37 is
more suspicious than Line 19 and Line 44 because the failing
test case passes only with m2 and the passing test case fails
with m1 and m3 (see Step 4 of Section III-B).

Locating the root cause of this memory leak poses chal-
lenges in runtime monitoring and fault localization techniques.
Memory leak detectors [18], [49] locate memory leaks and
their allocation sites not the cause of the leaks in general.
While some leak chasers [10], [11], [48] locate the cause of
memory leak, they do not scale well across language bound-
aries since they do not track opaque pointers and their staleness
values across languages. SBFL techniques cannot localize
the bug because both passingTest and failingTest
cover the same branches/statements in their executions. Con-
sequently, SBFL techniques cannot indicate any code element
that is more correlated with the failure than the others.

B. Fault Localization Process of MUSEUM

Figure 2 describes how MUSEUM localizes faults. MU-
SEUM takes the target source code and the test cases of the
target program as input, and returns the suspiciousness scores

3See Pin-Java-Object mutation operator in Table I

467



Mutant
generator

Cov.�measure
Target
program�

P

Testing

Language�interface�
rule�checker

(e.g.�CheckJNI,�JINN)

Test�
suite�

T

Selected
test�cases

TS

Target�
stmts.

St

Mutant�
generation

C�module

Java�module

Program
mutants

m���m����mK

Selected�
test�cases

TS

Mutant�
testing�

Susp.�score�
& ranking�

computation

Test�
results�of�
TS  on�the�
mutants

Susp.
score,
ranking

C�module

Java�module

Other�languages

Other�language
Test�results�
of�TS on�P

Fig. 2: Fault localization process of MUSEUM

of the target code lines as output. MUSEUM has the following
basic assumptions on a target program P and test suite T :

1. Existence of test oracles
A target program has explicit or implicit test oracle
mechanism (i.e., user-specified assert, runtime failure
such as null-pointer dereference, and/or runtime monitor
such as Jinn [26]) which can detect errors clearly.

2. Existence of a failing test case
A target program has test cases, at least one of which
violates a test oracle.

MUSEUM operates in the following four steps:

Step 1: MUSEUM receives P and T and selects target
statements St and test cases Ts. St is the set of the statements
of P that are executed by at least one failing test case in T .
MUSEUM selects St as target statements for bug candidates.
Also, MUSEUM selects and utilizes a set of test cases Ts, each
of which covers at least one target statement because the other
test cases may not be as informative as test cases in Ts for fault
localization. To select St and Ts, MUSEUM first runs P with
T while storing the test results and the test coverage for each
test case. Testing results are obtained from the user given assert
statements, runtime failures, and multilingual bug checkers
such as CheckJNI, Jinn [26], and QVM [10] (Section II-A).

Step 2: MUSEUM generates mutant versions of P (i.e.,
m1,m2, ...mk) each of which is generated by mutating each
of the target statements. MUSEUM may generate multiple
mutants from a single statement since one statement may
contain multiple mutation points [9]. 4

Step 3: MUSEUM tests all generated mutants with TS and
records the testing results. Since a mutation may induce an
infinite loop, we consider a test fails if the testing time exceeds
a given time limit.

Step 4: MUSEUM compares the test results of TS on P with
the test results of TS on all mutants. Based on these results,
MUSEUM calculates the suspiciousness scores of the target
statements of P as follows.

For a statement s of P , let f(s) be the set of tests that
covers s and fails on P , and p(s) the set of tests that covers

4MUSEUM can localize a bug spanning on multiple statements (not limited
for locating a single-line bug). This is because mutating a part of a bug (i.e.,
one statement among multiple statements that constitute a bug) can still change
a failing test case into passing one, which will increase the suspiciousness of
the statement constituting the bug [34].

s and passes on P . Let mut(s) = {m1, . . .mk} be the set of
all mutants of P that mutates s.

For each mutant mi ∈ mut(s), let fmi
and pmi

be the
set of failing and passing tests on mi respectively. And let
f2p and p2f be the numbers of changed test result from fail
to pass and vice versa between P and all mutants of P . The
suspiciousness metric of MUSEUM is defined as follows:

Susp(s) = 1
|mut(s)|

∑
mi∈mut(s)(

|f(s)∩pmi
|

f2p − |p(s)∩fmi
|

p2f )

The first term,
|f(s)∩pmi

|
f2p , reflects the first observation: it is

the proportion of the number of tests that failed on P but now
pass on a mutant mi that mutates s over the total number of all
failing tests that pass on a some mutant (the suspiciousness of s
increases if mutating s causes failing tests to pass). Similarly,

the second term,
|p(s)∩fmi

|
p2f , reflects the second observation,

being the proportion of the number of tests that passed on
P but now fail on a mutant mi that mutates s over the total
number of all passing tests that fail on a some mutant (the
suspiciousness of s decreases if mutating s causes passing tests
to fail). After dividing the sum of the first term and the second
term by |mut(s)|, Susp(s) indicates the probability of s to be
a faulty statement based on the changes of test results on P
and mut(s). 5

C. New Mutation Operators for Multilingual Bugs

In addition to the conventional mutation operators, MU-
SEUM utilizes new mutation operators to effectively local-
ize multilingual bugs because these mutation operators can
directly mutate interactions between language interfaces. We
have made 11 new mutation operators, which change semantics
of a target program regarding the JNI constraints based on the
previous JNI bug studies [6], [12], [26], [30], [44]. Table I
shows the list of the new mutation operators. The description
of the new mutation operators are as follows:

1. Clear-pending-exceptions clears a pending excep-
tion by inserting

(*env)->ExceptionClear(env);
immediately after every JNI function invocation in C
(i.e., (*env)-><JNIFunction>(...);).
This mutation operator is created based on a best practice
in JNI programming [12].

5If a target statement has no mutant (i.e., |mut(s)|=0), Susp(s) is defined
as 0. MUSEUM defines the first term as 0 if f2p is 0. Similarly, the second
term is defined as 0 if p2f is 0. For a concrete example of how to calculate
the suspiciousness score of MBFL, see Section II.C of Moon et al. [34].

468



2. Propagate-pending-exceptions propagates an ex-
ception immediately by inserting

if((*env)->ExceptionOccurred(env)) return;

after every JNI function invocation in C.
3. Type-cast-to-jboolean explicitly converts an inte-

ger expression to JNI_TRUE or JNI_FALSE when the
expression is assigned to a jboolean variable. 6 In other
words, Type-cast-to-jboolean changes an assign-
ment jbool_var = int_expr; with

jbool_var=int_expr?JNI_TRUE:JNI_FALSE;
This mutation operation is motivated by the common pitfall
of JNI programming [30, pp.132–133].

4. Type-cast-to-superclass changes a JNI call to
get the reference of a class with the JNI call to get the
reference of its superclass by mutating jclass cls =
(*env)->GetObjectClass(env,obj); with

jclass cls = (*env)->GetSuperclass(env,
((*env)->GetObjectClass(env,obj)));

This mutation operator is motivated by a report of a real-
world bug found in Eclipse 3.4 [26].

5–10. These mutation operators increase or decrease the life
time of a reference to a Java object (and probably the
life time of the referenced Java objects too). For example,
Make-global-reference increases the life time of a
local reference l by making the reference as a global one.
In other words, Make-global-reference inserts the
following statement after an assignment statement to a local
reference l (i.e., l = expr):

l = (*env)->NewGlobalRef(env,l);
In contrast, Remove-global-reference decreases the
life time of a global reference g (and probably the referenced
Java object too) by inserting the following statement for a
global reference g:

(*env)->DeleteGlobalRef(env,g);
We have developed four other mutation operators for local
references and weak global references. These mutation
operators are related to a bug fix pattern regarding reference
errors in native code [6].

11. Pin-Java-object prevents garbage collectors from
reclaiming a Java object by placing a Java reference to the
object into a class variable in Java before a reference to
the object is removed by an assignment statement. Before
an assignment statement x = obj;, the mutation operator
inserts a statement:

Test.pinnedObjects.add(x) ;
where Test.pinnedObjects is a Java class variable
of a list container type. The Java object pointed by x
is transitively reachable from the class variable, and Java
garbage collectors cannot reclaim the object. This mutation
operator intends to extend the lifetime of Java objects in a
target program and influence interactions of Java and native
memory managements. This mutation operator is inspired
by a safe memory management scheme of SafeJNI [44].

6jboolean is an 8 bit integer type. If a 32 bit integer value is assigned to
a jboolean variable, the variable can have an unintended Boolean value due
to the truncation (e.g., jboolean_var = 256 will make jboolean_var
as false).

TABLE I: New mutation operators of MUSEUM

No. Mutation operator
Corresponding language
interface rule (Section II-A)

1 Clear-pending-exceptions
JVM state constraints

2 Propagate-pending-exceptions

3 Type-cast-to-jboolean
Type constraints

4 Type-cast-to-superclass

5 Make-global-reference

Resource constraints

6 Remove-global-reference
7 Make-weak-global-reference
8 Remove-weak-global-reference
9 Make-local-reference

10 Remove-local-reference
11 Pin-Java-object

D. Implementation

We have implemented MUSEUM targeting programs writ-
ten in Java and C (support for other languages will be added
later). MUSEUM is composed of the existing mutation testing
tools for C and Java, together with the fault localization mod-
ule that analyzes testing results and computes suspiciousness
scores. MUSEUM consists of 1,500 lines of C/C++ code and
1,802 lines of Java code.

MUSEUM uses gcov and PIT [1] to obtain the coverage in-
formation on C code and Java code of a target program, respec-
tively. MUSEUM uses existing mutation tools Proteum[32]
and PIT, together with the 11 new mutation operators for
multilingual bugs (Section III-C). Proteum implements 107
mutation operators defined in Agrawal et al. [9] which mutate
C code in source level. Among the 107 mutation operators,
MUSEUM uses 75 mutation operators that change only one
statement. To reduce the runtime cost of the experiments,
MUSEUM generates only one mutant for every applicable
operator at each mutation point 7. MUSEUM generates Java
mutants by using PIT which mutates Java bytecode. MUSEUM
uses all 14 mutation operators of PIT. Among the 11 new
mutation operators, 10 new mutation operators for C code are
implemented with Clang, and the one new mutation operator
for Java (i.e., Pin-Java-object) is built with the ASM
bytecode engineering tool.

IV. EMPIRICAL EVALUATION

This section evaluates MUSEUM on the six bugs in four
real-world multilingual programs to demonstrate its effec-
tiveness. Section IV-A describes the experiment setup, and
Section IV-B presents the fault localization results. 8

A. Experiment Setup

1) Real-world multilingual program bugs: Table II presents
the six multilingual bugs in four real-world programs with

7For example, if(x+2>y+1) has one mutation point (>) for ORRN
(mutation operator on relational operator) and two points (2 and 1) for
CCCR (mutation operator for constant to constant replacement) [9]. MUSEUM
generates only one mutant like if(x+2<y+1) using ORRN and only
if(x+0>y+1) and if(x+2>y+0) using CCCR. The selection of a mutant
to generate using a mutation operator depends on the Proteum implementation.
Note that MUSEUM generates multiple mutants for a code location when
multiple mutation operators are applied to the code location .

8The full experiment data and the target program code are available at
http://swtv.kaist.ac.kr/data/museum.zip.

469



TABLE II: Target multilingual Java/C bugs, sizes of the target code, the number of test cases used, and references

Size of target program # of
Bug Target program Symptom Java NativeC TC Bug report or bug-fixing revision

Files LOC Files LOC used

Bug1 Azureus 3.0.4.2 Memory leak in C 2,705 340.6K N/A N/A 8 CVS revision 1.64 of ListView.java [2]
Bug2 sqlite-jdbc 3.7.8 Assertion violation in Java 20 4.6K 3 1.8K 150 Issue 16 [7]
Bug3 sqlite-jdbc 3.7.15 Assertion violation in Java 19 4.2K 2 1.7K 159 Issue 36 [8]
Bug4 java-gnome 4.0.10 Invalid JNI reference in C 1,097 64.2K 496 65.6K 170 Bug 576111 in Bugzilla database [3]
Bug5 java-gnome r-658 Double free in C 1,134 67.1K 514 69.2K 184 Subversion revision 659 [4]
Bug6 SWT 3.7.0.3 Segmentation fault in C 582 118.7K 29 20.7K 50 Bug 322222 in the Eclipse bug repo. [5]

their programs, symptoms, line of code (LOC) in Java and
C, the number of the test cases used to localize the fault,
and bug reports or bug-fixing revisions of the target pro-
grams. As described in the assumption 1 for fault localization
(Section III-B), the bug reports and commit logs in the last
column describe the symptoms of the target bugs so that our
test oracle detects test failures. A corresponding bug report
indicates both buggy version and its fixed version. We have
applied MUSEUM to Java code and native C code of the
target program, not library code nor external system code. All
target programs are written in Java and C except for Azureus.
While Azureus is a pure Java program, it triggers a memory
leak in C when it misuses the application program interface
of the Eclipse SWT library written in Java and C.

2) Test Cases: Regarding test cases, we have used the test
cases maintained by the developers of the target programs. We
utilize the test cases of the fixed version, at least one of which
reveals the target bug in the buggy version (see the assumption
2 in Section III-B). If the fixed version does not have a test case
that fails on the buggy version (e.g., Azureus memory leak
bug), we create a failing test case based on the bug report. In
addition, to localize a fault precisely, we focus to localize one
bug at a time by building a new test suite out of the original
test suite. The new test suite consists of one failing test case
and all passing test cases that cover at least one statement
executed by the failing test case.

3) System Platform: The experiments were performed on
the 30 machines equipped with Intel i5 3.4 GHz with 8 GB
main memory (we performed experiment on one core per
machine). All machines run Ubuntu 8.10 32-bits, gcc 4.3.2,
and OpenJDK 1.6.0. MUSEUM distributes tasks of testing
each mutant to the 30 machines. 9

B. Experiment Results

Table III reports the experiment data on the six bugs.
The second row counts the number of the source target lines
which are executed by the failing test case (see Step 1 of
Section III-B). The third row shows the total number of the
mutants generated by MUSEUM, and the forth row describes
the total number of the target lines on which at least one mutant
is generated. The fifth and sixth rows show the number of the
mutants on which testing results have changed. The last row
describes the runtime cost. For example, to localize the fault
in Bug4 (an invalid JNI reference in C), we built a test suite
containing one failing test case and 169 passing test cases out
of the original test suite (see the eighth column of the fifth row

9We set the time limit (10 seconds) at each test run on a mutant to avoid
the infinite loop problem caused by mutation. Time taken to execute a test
run was less than one second on the six subjects on average.

TABLE III: Overview of the experiment data

Bug1 Bug2 Bug3 Bug4 Bug5 Bug6

# of the target lines
(executed by the 1,939 299 443 186 186 3,482
failing test case)

# of mutants 2,861 676 942 701 364 8,553

# of lines which
1,575 219 327 130 103 2,468

have a mutant

# of mutants that
make a passing test 305 462 681 364 311 3,044
case fails (breaking)

# of mutants that

1 3 7 2 51 32
make a failing test
case passes
(partial fix)

Time cost (min) 12 64 52 95 60 246

at Table II). For Bug4, MUSEUM generated 701 mutants with
at least one mutant for 70% of the target lines (=130/186).
Among the 701 mutants, there are two mutants on which the
failing test case passes (see the sixth row of Table III). 10 We
call such mutants as “partial fix” because the failing test case
passes on the mutant (but passing test cases may fail on these
mutants). The table shows that only 0.14% of the mutants
are partial fixes (=2/701). However, these mutants contribute
significantly to localize a fault precisely because a partial fix
increases the first term of the suspiciousness metric formula
much (see the metric formula in the Step 4 of Section III-B).

Regarding time cost, although MUSEUM consumes large
amount of computing resources to test a large number of
mutants, the overall elapsed time can be modest. This is
because tasks of testing mutants can be distributed to a large
number of machines (e.g., Amazon EC2) as these tasks are
independent to each other. For example, it takes around 90
minutes (=(12+64+52+95+60+246)/6) to localize each bug of
the six multilingual bugs on average by utilizing 30 machines.

Table IV compares the fault localization results of MU-
SEUM and the cutting-edge SBFL techniques including Jac-
card [16], Ochiai [36], and Op2 [35]. Each entry reports the
suspiciousness score ranking which is the maximum number
of statements to examine until finding a faulty statement de-
scribed in the bug report. The percentage number in the paren-
theses indicates the normalized rank of the faulty statement out
of the total target statements (i.e., rank

# of the target statements ).
The second row of the table clearly shows that MUSEUM
precisely identifies the buggy statement. MUSEUM ranks the
buggy statements in Bug1, Bug3, and Bug4 as the most

10The number of mutants that make the failing test case pass is equal to
f2p since the test suite contains only one failing test case in our experiments.

470



TABLE IV: The ranks of the buggy line identified by MU-
SEUM and other SBFL techniques

Bug1 Bug2 Bug3 Bug4 Bug5 Bug6

MUSEUM
1 2 1 1 8 3

(0.1%) (0.7%) (0.2%) (0.1%) (4.3%) (0.2%)

Jaccard
80 4 5 83 61 3,482

(4.1%) (1.3%) (1.1%) (44.6%) (32.8%) (100.0%)

Ochiai
80 4 5 83 61 3,482

(4.1%) (1.3%) (1.1%) (44.6%) (32.8%) (100.0%)

Op2
80 4 5 83 61 3,482

(4.1%) (1.3%) (1.1%) (44.6%) (32.8%) (100.0%)

suspicious statements (i.e., the first rank). Even for Bug2 and
Bug5, MUSEUM identifies the buggy statement as the most
suspicious statement with the other one and seven statements
together (e.g., for Bug5, the suspiciousness scores of the eight
statements including the buggy statement are equal). Thus,
from these experiments, we conclude that MUSEUM localizes
a multilingual bug precisely.

In contrast, SBFL techniques fail to localize multilingual
bugs precisely. For Bug6, Op2 ranks the buggy statement as
the 3,482nd among the 3,482 target statements (see the fifth
row of Table III), which means that a developer has to examine
all target statements (i.e., 100%) to identify the bug. One main
deficiency of traditional SBFL techniques is the low resolution
in fault localization (i.e., all statements in the same branch
have same suspiciousness scores because the statements in the
same branch are covered by the same test cases). This is one
reason why those SBFL techniques assign the same suspicious
ranks to the buggy statements in the experiments. In contrast,
MUSEUM mutates each statement in multiple different ways
and can assign different suspiciousness scores to the statements
in the same branch.

V. CASE STUDY 1: LOCATING THE CAUSE OF

INVALID USE OF JNI REFERENCES (BUG4)

This case study illustrates how MUSEUM localizes the
cause of dangling JNI references (Bug4) accurately by using
the new mutation operators (Table I).

A. Bug Overview

Dynamic error detectors [26] detect Bug4 and report the
calling context at the fault location of using the dangling
JNI reference as an argument to a JNI function. However,
they cannot report the cause location where the JNI reference
was stored into a callback object in C heap, which occurs at
Line 524 of binding_java_signal.c as indicated as the
buggy statement in the bug report:

387: GClosure* bindings(JNIEnv *env,
jobject handler, jclass receiver, ... ) {

...
524: bjc->rec = receiver;
... }

When bindings at Line 387 is invoked, the receiver
parameter is assigned with a local JNI reference. Line 524
stores the local reference in a data structure in the C heap
pointed by bjc. However, once bindings returns back to
Java, the local reference stored in bjc->rec is not valid
anymore (i.e., becoming a dangling reference, see Resource
constraints in Section II-A). Later, when the application calls

TABLE V: The nine mutants generated by mutating the buggy
statement of Bug4

No.
Mutant generated by mutating Line 524 of |f(s) |p(s)
bindings_java_signal.c ∩pm| ∩fm|

m1
bjc->rec=receiver;

1 0
bjc->rec=(*env)->NewWeakGlobalRef(env,bjc->rec);

m2
bjc->rec=receiver;

0 0
bjc->rec=(*env)->NewLocalRef(env,bjc->rec);

m3 return; // return back to the caller. 0 0

m4
bjc->rec=receiver;

1 0
bjc->rec=(*env)->NewGlobalRef(env,bjc->rec);

m5 ; // remove a statement at Line 524 0 2

m6
bjc->rec=receiver;

0 2
(*env)->DeleteGlobalRef(env, bjc->rec);

m7 kill(getpid(), 9); //terminate the process 0 2

m8
bjc->rec=receiver;

0 2
(*env)->DeleteLocalRef(env, bjc->rec);

m9
bjc->rec=receiver;

0 2
(*env)->DeleteWeakGlobalRef(env,bjc->rec);

a JNI function with an argument containing the dangling
reference, the application crashes with a JNI invalid argument
error.

B. Detailed Experiment Result

MUSEUM localizes the fault exactly by ranking Line 524
as the most suspicious statement (i.e., the first rank without
a tie). Table V describes nine mutants (m1 to m9) that are
generated by mutating Line 524. The second column shows
the changed statement of each mutant. The third and the forth
columns report the number of tests that failed on the original
program but pass on the mutant (i.e., |f(s) ∩ pm|), and the
number of tests that passed on the original program but fail
on the mutant (i.e., |p(s) ∩ fm|), respectively (Section III-B).
m1, m2, m4, m6, m8, and m9 are generated by applying our
new multilingual mutation operators in Table I. These mutants
are generated by inserting the statements of changing the life
time of JNI references right after the target statement. m3, m5
and m7 from Proteum terminate the control flow at the level
of procedure, statement, and whole program.

In the testing runs, our new mutation operators prevent
mutated programs m1 and m4 from crashing in the fail-
ing test case (i.e., Make-weak-global-reference and
Make-global-reference in Table I, respectively). m1
and m4 turn the failing test case into a passing one (the third
column) because they keep bjc->rec to store a weak global
reference and a global reference respectively and eliminate
the dead reference problem caused by the short-lived local
reference. On the other hand, the conventional mutation oper-
ators (i.e., m3, m5, and m7) do not affect the test results. m1
and m4 make the first term of the MUSEUM suspiciousness
metric large and increase the suspiciousness score of Line 524
significantly because the denominator of the first term is small
(i.e.,f2p=2) (Section III-B). In contrast, each of the mutants
m5 to m9 make two passing test cases fail (the fourth column),
which increases the second term but in only limited degree due
to the large denominator (i.e., p2f=6053).

Among the 186 target statements, only Line 524 has
mutants that fix Bug4 with regard to the given test cases and

471



the given test oracle (i.e., making the failing test case pass).
Consequently, Line 524 has the highest suspiciousness score
due to the new mutation operators which generate partial fixes.
Thus, through the case study for Bug4, we confirm that the new
mutation operators such as Make-global-reference can
increase the accuracy of MUSEUM (Section VII-B).

In contrast, the SBFL techniques rank the buggy statement
as the 83rd suspicious one among the 186 target statements.
Such poor result is due to the two coincidentally correct test
cases (CCTs) that execute Line 524 but pass because the
target program does not use bjc->rec as an argument to
a JNI function call later with these test cases. Thus, the SBFL
techniques considers Line 524 has low correlation with the
failure and assign low suspiciousness score to Line 524.

Note that these CCTs do not make adverse effect to
MUSEUM. This is because the mutants (i.e., m1 to m9)
obtained by mutating the buggy statement (i.e., Line 524)
do not make these two CCTs fail as the target program and
the mutants do not use bjc->rec as an argument to a JNI
function call later with these CCTs (i.e., the mutation on the
buggy statement is inactive with CCTs because the buggy
statement is dormant with CCTs). Thus, these CCTs do not
increase the second term of the MUSEUM suspiciousness
metric (Section III-B) and do not lower the suspiciousness
score of the buggy statement.

VI. CASE STUDY 2: LOCATING THE CAUSE OF A

SEGMENTATION FAULT IN ECLIPSE SWT (BUG6)

This case study in this section demonstrates how MU-
SEUM accurately localizes a complex multilingual bug whose
cause-effect chain is long and complicated, which is often the
case for multilingual bugs and makes debugging multilingual
bugs very difficult.

A. Bug Overview

Bug 322222 (Bug6) in the Eclipse bug repository for
Standard Widget Toolkit (SWT), a standard open-source GUI
development library for Java programs crashes JVMs with a
fatal segmentation fault by dereferencing NULL at Line 271 of
pango-layout.c:

262: PangoLayout *
263: pango_layout_new (PangoContext *context)
264: {
...
271: layout->context = context;
...
275: }

The origin of NULL is the native C function (callback)
that acts as a gateway from C to Java in the SWT library.
callback returns NULL when a Java exception is pending
in the current thread. While the detection of this bug is trivial,
locating the root cause took a heroic debugging effort for
more than a year with hundreds of comments from dozens
of programmers. This bug was difficult for experts to debug
since the cause-effect chain goes through Java exception prop-
agation and language transitions. Although the multilingual
debuggers [24] aid programmers to locate the origin of NULL,
they do not locate the root cause of the bug.

The root cause is turned out to be an immature implementa-
tion of a callback handler at Line 2602 of Display.java. 11

// Simplified patch for Bug6
2595 :if(OS.GTK_VERSION>= OS.VERSION(2,4,0)) {
...
2601--: OS.G_OBJ_CONSTRUCTOR(PLClass);
2602--: OS.G_OBJ_SET_CONSTRUCTOR(PLClass,

newProc);

2601++: p = OS.G_OBJ_CONSTRUCTOR(PLClass);
2602++: OS.G_OBJ_SET_CONSTRUCTOR(PLClass,

new NewProcCB(p));

This patch replaces the newProc that calls callback at
Line 2602 with a new NewProcCB(p) object that calls
another callback function that never returns NULL at the
presence of a pending exception. Although the location of the
failure in C at the segmentation fault is fairly far away from the
callback handler in Java, MUSEUM locates the root cause of
the failure as most suspicious (i.e., the suspiciousness rank of
Line 2602 is 3 as Line 2602 is tied with other two statements).

B. Detailed Experiment Result
We utilize a test suite consisting of one failing test case and

49 passing test cases. We selected these 49 passing test cases
that cover the display module of SWT because all error traces
in the bug report contain a method in the display module.

Table VI presents the top four suspicious statements and
their mutants, which increase the suspiciousness scores. 12

MUSEUM ranks the first three statements in a tie as rank
3 that include the location of the root cause of the failure:
Display.java:2602. The mutants for the top three state-
ments change the failing test case into passing one without
affecting passing test cases (see the third and the fourth
columns).

These mutants disable the immature callback handler that
transitively calls callback. The first mutant eliminates
Line 2602 of Display.java that registers the immature
callback handler. The second and the third mutants change
the return value with zero, which in turn reverses the control
flow decision at Line 2595 of Display.java, deactivates
transitively Line 2602 of registering the immature callback
handler, and avoids the segmentation fault. The fourth mutant
disables the immature callback handler at the cost of turning
one passing test case into a failing one, which decreases the
suspiciousness of Line 2392 and lowers its rank to 4.

VII. DISCUSSIONS

A. Advantages of Mutation-based Fault Localization for Real-
world Multilingual Programs

One of the issues that make debugging real-world programs
difficult is the poor quality of a test suite because fault
localization can be more accurate if a test suite covers more
diverse execution paths. For large real-world programs, how-
ever, it is challenging to build test cases that exercise diverse
execution paths because it is non-trivial to understand and

11The bug report on Bug6 does not describe the root cause of the crash but
only its symptom, which is often the case for real-world applications. Thus,
we had to identify the buggy statement by analyzing the bug patch.

12All of the top four statements have only one mutant due to the limitation
of PIT which supports only small number of mutation operators for Java code
compared to Proteum for C code.

472



TABLE VI: The top four statements of the SWT target code

whose suspiciousness scores are high

Rank
Susp. |f(s) |p(s)

Statement Mutant
score ∩pm| ∩fm|

/*Display.java:2602*/ ; /* the function
3 0.0313 1 0 OS.G_OBJ_SET_CONSTRUCTOR call is removed */

(PLClass,NewProc);

3
0.0313

1 0
/*OS.java:8115*/ return 0;
return _major_version;

3
0.0313

1 0
/*OS.java:8125*/ return 0;
return _minor_version;

4
0.0306

1 1
/*Display.java:2392*/ ; /* the function
initializeSubclasses(); call is removed */

TABLE VII: Statistics on the mutation operators that generate
mutants in the experiments

Bug1 Bug2 Bug3 Bug4 Bug5 Bug6

# of tests where the failing TC
1 3 7 2 51 32

passes on the mutants

# of mutation operators
that generate a mutant on 1 3 6 2 12 14
which a failing TC passes

# of tests where the failing TC
passes on the mutants generated 1 0 0 2 2 0
by the new mutation operators

# of the new mutation operators
that generate a mutant on 1 0 0 2 1 0
which a failing TC passes

control a target program. In addition, generating diverse test
cases for multilingual programs has additional burden to learn
and satisfy constraints for foreign function interface such as
JNI constraints. Therefore, it is often the case that multilingual
programs are developed with a set of similar test cases. As
a result, as shown in Table IV, the SBFL techniques fail to
precisely localize the six real-world multilingual programs.

For example, the statement coverages of the test suites
used for Bug2 and Bug3 are around 85% and 86% and the
SBFL techniques localize these bugs somehow precisely (i.e.,
the suspiciousness rank of Bug2 and Bug3 are 4 and 5,
respectively). However, the statement coverages of the test
suites used for Bug1, Bug4, Bug5, and Bug6 are around 1%,
22%, 24%, and 19% and the accuracy of the SBFL techniques
for these bugs are very low (Table IV). In contrast, MUSEUM
can overcome this limitation by achieving the effect of diverse
test cases through the diverse mutants with limited test cases.
Thus, MUSEUM can be a promising technique for debugging
complex real-world multilingual programs.

B. Effectiveness of New Mutation Operators for Localizing
Multilingual Bugs

Table VII presents the information on the mutation op-
erators that generate mutants on which the failing test case
passes (i.e., partially-fixing mutants). The second row shows
the number of tests where the failing test case on the target
program passes on a mutant. The third row represents the
number of mutation operators that generate a mutant on which
the failing test case changes to pass. The fourth and the fifth
rows show the similar information to the second and the
third rows but on the mutants generated by the new mutation
operators for multilingual programs (Section III-C).

Table VII shows that only the new mutation operators
generate partially fixing mutants for Bugs 1 and 4 (i.e., since
the numbers in the third row and the fifth row are the same).
For Bug1, only the Pin-Java-Object mutation operator
generates a mutant on which the failing test case passes,

which indicates that the target statement of the mutant is
closely related to the bug (i.e., memory leak in this case).
Similarly, for Bug4, only Make-global-reference and
Make-weak-global-reference generate the mutants
that make the failing test case pass.

The table shows that the new mutation operators are ef-
fective to mutate multilingual program behaviors and discover
critical code points related to the JNI constraints. To assess the
impact of the new mutation operators on fault localization, we
ran MUSEUM for Bugs 1, 4 and 5 without the new mutation
operators. For Bugs 1 and 4, the suspiciousness ranks of the
faulty lines become 1737 for Bug1 (89.6%) and 117 (62.9%)
for Bug4. For Bug5, the rank of the faulty line changes from
8 to 9 (the faulty line no longer has the highest suspiciousness
score). This result implies that language-interface specific
mutation operators can effectively supplement the existing
mutation operators for finding multilingual bugs.

For the other four bugs, the existing mutation operators
generate more partially fixing mutants than the new ones.
Among the 89 (=75 mutation operators for C + 14 mutation
operators for Java) existing mutation operators, the top-3 op-
erators that generate a large number of partially fixing mutants
are ‘remove a function call’, ‘remove a statement’, and ‘change
the return value at a return statement’. These three mutation
operators generate mutants on which 46 failing tests pass out of
total 96 failing tests that pass on mutants (see the second row of
the table). We found that these three operators generate mutants
that change function call/return behaviors. We conjecture that
mutating function call/return effectively changes multilingual
behaviors of a target program as the interaction between
different languages are made through function calls.

VIII. CONCLUSION AND FUTURE WORK

We have presented MUSEUM which localizes bugs in
complex real-world multilingual programs in a language ag-
nostic manner through mutation analyses. The experiments on
the six real-world multilingual programs show that MUSEUM
precisely locates the faulty statement for all non-trivial Java/C
bugs. In addition, we show that the accuracy of fault local-
ization for multilingual programs can be increased by adding
new mutation operators relevant with FFI constraints.

As future work, we will add more mutation operators
targeting features in multilingual programs and modify existing
mutation operators to reduce equivalent mutants. Also, we
will apply MUSEUM to an interactive debugger such as
Blink [24] and/or advanced automated testing techniques [15],
[22] to maximize the debugging effectiveness. Finally, we will
investigate effective methods to utilize MUSEUM to improve
automated program repair and/or search-based program anal-
ysis for multilingual programs.

ACKNOWLEDGEMENT

This work is supported by the NRF Mid-career Research Program

by the MSIP (NRF-2012R1A2A2A01046172); the ITRC support

program (IITP-2015-H8501-15-1012) and the ICT R&D program

(13-912-06-003) by the MSIP and the IITP; the IITP grant pro-

grams funded by the MSIP (Research and Development of Dual

Operating System Architecture with High-Reliable RTOS and High-

Performance OS [No. R0101-15-0081]; High Performance Big Data

Analytics Platform Performance Acceleration Technologies Develop-

ment [No. R0190-15-2012]).

473



REFERENCES

[1] PIT - mutation testing tool for Java. http://pitest.org.

[2] Azureus-commitlog: Listview.java. http://sourceforge.net/p/azureus/
mailman/message/18318135/, 2008.

[3] GNOME Bug 576111 - Unit test failed on SUN Hotspot and IBM J9
with -Xcheck:jni. https://bugzilla.gnome.org/show bug.cgi?id=576111,
2009.

[4] Java-GNOME Avoid segfault lurking in GtkSpell library. https://
openhub.net/p/java-gnome-gstreamer/commits/167384488, 2009.

[5] Eclipse SWT Segfault in pango layout new when closing a dialog.
http://bugs.eclipse.org/bugs/show bug.cgi?id=322222, 2010.

[6] JNI Local Reference Changes in ICS. Android Devel-
opers Blog. http://android-developers.blogspot.com/2011/11/
jni-local-reference-changes-in-ics.html, 2011.

[7] Xerial SQLite-JDBC, Issue 16: DDL statements return result other than
0. https://bitbucket.org/xerial/sqlite-jdbc/issue/16, 2012.

[8] Xerial SQLite-JDBC, Issue 36: Calling PreparedState-
ment.clearParameters() after a ResultSet is opened, causes
subsequent calls to the ResultSet to return null. https:
//bitbucket.org/xerial/sqlite-jdbc/issue/36, 2013.

[9] H. Agrawal, R. A. DeMillo, B. Hathaway, W. Hsu, W. Hsu, E. W.
Krauser, R. J. Martin, A. P. Mathur, and E. Spafford. Design of mutant
operators for the C programming language. Technical Report SERC-
TR-120-P, Purdue University, 1989.

[10] M. Arnold, M. Vechev, and E. Yahav. QVM: An efficient runtime for
detecting defects in deployed systems. ACM Transactions on Software
Engineering and Methodology (TOSEM), 21(1):2:1–2:35, 2011.

[11] J. Clause and A. Orso. LEAKPOINT: Pinpointing the causes of memory
leaks. In International Conference on Software Engineering (ICSE),
2010.

[12] M. Dawson, G. Johnson, and A. Low. Best practices for using the Java
Native Interface. IBM developerWorks, 2009.

[13] J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic. Hard-
bound: Architectural support for spatial safety of the c programming
language. In International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2008.

[14] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated
random testing. In ACM Conference on Program Language Design
and Implementation (PLDI), 2005.

[15] S. Hong, J. Ahn, S. Park, M. Kim, and M. J. Harrold. Testing concurrent
programs to achieve high synchronization coverage. In International
Symposium on Software Testing and Analysis (ISSTA), 2012.

[16] P. Jaccard. Étude comparative de la distribution florale dans une portion
des Alpes et des Jura. Bull. Soc. vaud. Sci. nat, 37:547–579, 1901.

[17] J. A. Jones and M. J. Harrold. Empirical evaluation of the Tarantula
automatic fault-localization technique. In IEEE/ACM International
Conference on. Automated Software Engineering (ASE), 2005.

[18] C. Jung, S. Lee, E. Raman, and S. Pande. Automated memory leak
detection for production use. In International Conference on Software
Engineering (ICSE), 2014.

[19] M. Kim, Y. Kim, and Y. Choi. Concolic testing of the multi-sector
read operation for flash storage platform software. Formal Aspects of
Computing (FAC), 24(2), 2012.

[20] M. Kim, Y. Kim, and Y. Kim. Industrial application of concolic testing
approach: A case study on libexif by using CREST-BV and KLEE.
In International Conference on Software Engineering (ICSE) Software
Engineering In Practice Track, 2012.

[21] Y. Kim, Y. Kim, T. Kim, G. Lee, Y. Jang, and M. Kim. Automated unit
testing of large industrial embedded software using concolic testing. In
IEEE/ACM Automated Software Engineering (ASE) Experience track,
2013.

[22] Y. Kim, Z. Xu, M. Kim, M. Cohen, and G. Rothermel. Hybrid directed
test suite augmentation: An interleaving framework. In IEEE Inter-
national Conference on Software Testing, Verification and Validation
(ICST), 2014.

[23] G. Kondoh and T. Onodera. Finding bugs in Java Native Interface
programs. In International Symposium on Software Testing and Analysis
(ISSTA), 2008.

[24] B. Lee, M. Hirzel, R. Grimm, and K. S. McKindley. Debugging mixed-
environment programs with blink. Software: Practice and Experience,
2014. DOI 10.1002/spe.2276.

[25] B. Lee, M. Hirzel, R. Grimm, and K. S. McKinley. Debug all your code:
Portable mixed-environment debugging. In ACM SIGPLAN Conference
on Object Oriented Programming Systems Languages and Applications
(OOPSLA), 2009.

[26] B. Lee, B. Wiedermann, M. Hirzel, R. Grimm, and K. McKinley. Jinn:
Synthesizing dynamic bug detectors for foreign language interfaces. In
ACM Conference on Program Language Design and Implementation
(PLDI), 2000.

[27] S. Li and G. Tan. Finding bugs in exceptional situations of JNI
programs. In ACM Conference on Computer and Communications
Security (CCS), 2009.

[28] S. Li and G. Tan. JET: exception checking in the java native interface. In
ACM SIGPLAN Conference on Object-Oriented Programming Systems
Languages and Applications (OOPSLA), 2011.

[29] S. Li and G. Tan. Finding reference-counting errors in Python/C
programs with affine analysis. In European Conference on Object-
Oriented Programming (ECOOP), 2014.

[30] S. Liang. The Java Native Interface: Programmer’s Guide and Speci-
fication. Addison-Wesley, 1999.

[31] M.A.Alipour. Automated fault localization techniques: a survey. Tech-
nical report, Oregon State University, 2012.

[32] J. C. Maldonado, M. E. Delamaro, S. C. Fabbri, A. da Silva Simão,
T. Sugeta, A. M. R. Vincenzi, and P. C. Masiero. Proteum: A family of
tools to support specification and program testing based on mutation.
In Mutation Testing for the New Century. 2001.

[33] L. A. Meyerovich and A. S. Rabkin. Empirical analysis of programming
language adoption. In ACM SIGPLAN Conference on Object Oriented
Programming Systems Languages and Applications (OOPSLA), 2013.

[34] S. Moon, Y. Kim, M. Kim, and S. Yoo. Ask the mutants: Mutating faulty
programs for fault localization. In IEEE International Conference on
Software Testing, Verification and Validation (ICST), 2014.

[35] L. Naish, H. J. Lee, and K. Ramamohanarao. A model for spectra-
based software diagnosis. ACM Transactions on Software Engineering
and Methodology (TOSEM), 20(3):11:1–11:32, August 2011.

[36] A. Ochiai. Zoogeographic studies on the soleoid fishes found in Japan
and its neighbouring regions. Bull. Jpn. Soc. Sci. Fish., 22(9):526–530,
1957.

[37] M. Papadakis and Y. Le-Traon. Using mutants to locate “unknown”
faults. In IEEE International Conference on Software Testing, Verifica-
tion and Validation (ICST), Mutation Workshop, 2012.

[38] M. Papadakis and Y. Le-Traon. Metallaxis-FL: mutation-based fault
localization. Software Testing, Verification and Reliability (STVR), To
be published.

[39] Y. Park, S. Hong, M. Kim, D. Lee, J. Cho, M. Kim, Y. Kim, and Y. Kim.
Systematic testing of reactive software with non-deterministic events:
A case study on LG electric oven. In International Conference on
Software Engineering (ICSE) Software Engineering In Practice Track,
2015.

[40] R.Abreu, P.Zoeteweij, and A. Gemund. An evaluation of similarity
coefficients for software fault localization. In Pacific Rim International
Symposium on Dependable Computing (PRDC), 2006.

[41] T. Ravitch, S. Jackson, E. Aderhold, and B. Liblit. Automatic generation
of library bindings using static analysis. In ACM Conference on
Programming Language Design and Implementation (PLDI), 2009.

[42] T. Ravitch and B. Liblit. Analyzing memory ownership patterns in C
libraries. In International Symposium on Memory Management (ISMM),
pages 97–108, 2013.

[43] J. Siefers, G. Tan, and G. Morrisett. Robusta: taming the native beast
of the JVM. In ACM Conference on Computer and Communications
Security (CCS), 2010.

[44] G. Tan, A. Appel, S. Chakradhar, A. Raghunathan, S. Ravi, and
D. Wang. Safe Java Native Interface. In IEEE International Symposium
on Secure Software Engineering (ISSSE), 2006.

[45] G. Tan and G. Morrisett. Ilea: inter-language analysis across Java and
C. In ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), 2007.

474



[46] E. Wong and V. Debroy. A survey of software fault localization.
Technical Report UTDCS-45-09, University of Texas at Dallas, 2009.

[47] X. Xie, T. Y. Chen, F.-C. Kuo, and B. Xu. A theoretical analysis of the
risk evaluation formulas for spectrum-based fault localization. ACM
Transactions on Software Engineering and Methodology (TOSEM),
22(4):31, 2013.

[48] G. Xu, M. D. Bond, F. Qin, and A. Rountev. LeakChaser: Helping pro-
grammers narrow down causes of memory leaks. In ACM Conference
on Program Language Design and Implementation (PLDI), 2011.

[49] G. Xu and A. Rountev. Precise memory leak detection for Java software

using container profiling. In International Conference on Software
Engineering (ICSE), 2008.

[50] S. Yoo, X. Xie, F.-C. Kuo, T. Y. Chen, and M. Harman. No pot of
gold at the end of program spectrum rainbow: Greatest risk evaluation
formula does not exist. RN/14/14, Department of Computer Science,
University College London, 2014.

[51] L. Zhang, L. Zhang, and S. Khurshid. Injecting mechanical faults to
localize developer faults for evolving software. In ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2013.

475


