End-to-End Deployment of Formal

Methodology
- a Case Study on Multiple Reader/Writer
Program

Moonjoo Kim, Inhye Kang
SECUi.COM R&D center
Seoul, Korea
{moonjoo,inhye}@secui.com

Abstract

The rapid increase in the significance of software
systems has made software assurance a critical re-
quirement in the information age. Formal verifica-
tion of system design and testing system implemen-
tation with a variety of inputs have been used for
this purpose. Each of these methodology, however,
has its own weaknesses. First drawback of formal
method is difficulty of writing formal specification
correctly. Furthermore, verifying a system design
does not guarantee the correctness of an implemen-
tation. Thus, testing of system implementation is
unavoidable. Traditional testing, however, does not
provide formal treatment on correct execution be-
cause testing criteria is informally described in many
cases.

In order to build correct systems, it is required
to deploy formal methodology end-to-end on entire
software life cycles, not only on design verification
stage. We demonstarte end-to-end deployment of
formal methodology through the case study of mul-
tiple reader/writer system.

1 Introduction

In the past two decades, much research has concen-
trated on the methods for analysis and validation of
software systems used in safety critical areas includ-
ing avionics and automobiles. Many successful in-
dustrial case studies have been conducted in the area
of formal verification [3]. Complete formal verifica-
tion, however, has not yet become a prevalent anal-
ysis method. Reasons for this are as follows. First,
complete verification of real-life systems remains in-
feasible. The growth of software size and complexity
seems to exceed advances in verification technology.
Second, formal verification assumes that given for-
mal requirement specification is correct. However,
building up formal requirement specification from
informal specification is error-prone process without

systematic guideline. Third, verification results ap-
ply not to system implementations, but to formal
models of these systems. That is, even if a design
has been formally verified, it still does not ensure
the correctness of a particular implementation of the
design. This is because an implementation often is
much more detailed, and also may not strictly fol-
low the formal design. So, there are possibilities for
introduction of errors into an implementation of the
design that has been verified. One way that peo-
ple have traditionally tried to overcome this gap be-
tween design and implementation has been to test
an implementation on a pre-determined set of input
sequences. This approach, however, fails to provide
accurate result about the correctness of the imple-
mentation because test coverage is not complete and
test criteria is often ad-hoc.

Therefore, in order to build correct systems, it
is necessary to deploy formal methodology end-to-
end in entire software life cycles, not only on design
stage. We concentrate on the following three stages
of software life cycles in this paper - requirement
specification, design verification, and implementa-
tion testing. At the requirement specification stage,
which is the first stage in software development pro-
cesses, a user describes his/her requirements on sys-
tems. Requirements are described in natural lan-
guage with diagrams initially. A human user is re-
sponsible for building correct formal requirement spec-
ification from this informal requirement specifica-
tion [6]. In spite of the importance of requirement
engineering, this stage is often neglected by engi-
neers and produces poor and incorrect requirement
specifications, which affects the rest of software de-
velopment steps and increases the software devel-
opment cost severely. Therefore, formal require-
ment specification should be built through system-
atic and rigorous procedure. Given formal require-
ment specificaiton, a user describes the design of
system in formal language. More detailed system
design a user describes, more information a user can
obtain through formal verification. System model,
however, should be simple enough to be handled by
formal verification tools. Thus, a user has to create
a system design at the right abstract level depend-
ing on requirement specification. Lastly, after the
implementation stage, a user needs to test imple-
mentation of system. Although ad-hoc test criteria
are prevailing, formal requirement specification can
be used as a test oracle to check the correctness of
implementation [10, 7, 2].

In this paper, we demonstrate these processes
concretely using the well-known example of multiple

reader/writer system. Section 2 describes reader/
writer (RW) system and requirement. Section 3
shows the process of building up formal requirement
specification of RW system. Section 4 describes for-
mal model of RW system and verification result.
Section 5 shows the Java implementation of RW ex-
cerpted from [9] and testting of the implementation
using the formal requirement specification built in
Section 3. Finally, Section 6 concludes the paper
and suggests future work.

2 Multiple Reader/Writer Sys-
tem

Multiple reader/writer (RW) system is an exam-
plary system of handling concurrency and mutual
exclusion. Figure 1 shows the RW system. There
are one common data area, multiple readers, and
multiple writers. Readers read date from the com-
mon data area, to which writers write data.

/ \ N 7 \

N\ Reader 1 |
\)

/ \
i N A

{ Writer1 Z e\
\ .

Common |-
Data Area |

N

S \(‘
{ Wiiter2)~
N Ve

\ /
N

Figure 1: Multiple reader/writer problem

Following rules are given to operate the RW sys-
tem efficiently and consistently.

1. concurrency
multiple readers can read data from the com-
mon data area at the same time.

2. exclusive writing

e readers cannot read data from the com-
mon data area while a writer is writing
into the area.

e no more than one writer can write data
into the common data area at the same
time.

3. high priority of writer
a waiting writer blocks readers from starting
of read operations.

Concurrency is a rule for maximizing throughput of
readers. Exclusive writing is to keep the RW system
consistent. High priority of writer is for readers to
read “fresh” data instead of old one.

For a reader to collaborate with other readers/writers

for keeping these rules, a reader sends three signals.
A reader sends a signal when it accesses to the area.
Also, when a reader begins/ends reading, it sends a
signal indicating beginning/ending of reading. Simi-
larly, a writer sends signals for accessing to the area,
beginning of writing, and ending of writing.

3 Formal Requirement Specifi-
cation

In this section, we formulate the requirements de-
scribed in Section 2. We assume that there are two
readers and one writer for the sake of simplicity. The
formulation demonstrated in this section, however,
can be easily extended to general n readers and m
writers system. There are 3 properties the RW sys-
tem must satisfy.

1. Concurrency(CON)
2. Exclusive Writing(EW)
3. High Priority of a Writer (HPW)

We build a formal requirement specification for these
three properties.

We consider the following 9 events of the RW
system to express CON, EW, and HPW.

Y = {irl,rsl,rel,ir2,rs2,re2, ww, ws, we}

where irl stands for incoming readerl which ac-
cesses to the common data area, but not yet starts
read operation, rsl for readerl’s starting of reading,
rel for readerl’s ending of reading. ww stands for
waiting writer which accesses to the common data
area, but not yet starts write operation. ws and we
are beginning/ending of write operation. In addition
to CON, EW, and HPW, the system has to satisfy
correct event ordering (CEO), i.e V i.ith occurrence
of 471 must precede the ith occurrence of rsl1 and rsl
must precede rel. Note that CON is described auto-
matically without any dedicated specification when
we allow any combination of the 9 events unless the
combination violates other requirements.

We first define a valid execution path which does
not violate any of CON, EW, HPW, and CEO. Then,
we transform a set of valid execution paths into a fi-
nite state machine by merging states in the pathes.

Defn 1 (An execution path) An ezecution tree is
a labeled transition system (S,Tx) where S is a set
of states and Ty, : S x ¥ x S is a set of transition
over S with a set of label . A state s consists of
the following 6 integer variables

def
s = (nirl s Mps1y Mir2, Nps2, Nww, nws)

An execution path o = sgs1....8, S a sequence of
states in an execution tree. o4, denotes the i th state
of 0.

Defn 2 (Definition of a state) #irl(cs,) oy,

#irl(os,) o number of event irl in an event
trace p = lg...l;_1 such that o, l# 0,4, wherei > 0.
Similarly defined are #rsl, #rel, #ir2, #rs2, #re2,
H#Hww, #ws, and #we.

State o5 of an execution path o consists of the
following 6 variables

Nijr1 (Us) déf #irl(as) - #7'51(0'3)
Nys1(0s de) #rsl(os) — #rel(os)
Nira(0s def #ir2(os) — #rs2(os)

Hww(os) — #ws(os)
Nws(0s) = #ws(os) — #Fwe(oy)
Initial state o5, < (0,0,0,0,0,0)

nir1(0s) indicates whether there is “active” irl in
an execution path sg...s. We can think that ith oc-
curence of rsl “cancels” the ith occurence of irl.
nir1(0s) = 1 means that ir1 occurs ¢ times and rsl
occurs (¢ — 1) times upto state oy, which means that
irl is “active”.

Defn 3 (Valid execution path) An execution path
0 = $0S1..-Sp, 15 valid if either

e o =irl orir2 or ww

e Fori=n-—1,sg...5; is valid and o, , satisfies
the following conditions

1. correct event ordering (CEQO)

(ni”(gsiﬂ) =0or 1A nT‘Sl(USi-I-l) =
0or H)A

(niTQ(USiJrl) =0or 1A nrs2(0's,-+1) =
0or H)A

(nww(USiJrl) =0orlA nws(o-si+1) =
Oorl)

2. exclusive writing (EW)
”wS(Usz'H) =1-= (nrsl(USiH) =0A

Nrs2 (03i+1) = 0)

3. high priority of writer (HPW)
(nww(a'si) = lAnrsl(Usi) = OAanQ(Usi) =
0) —»
(nrs1 (Usi+1) =0A nT’52(USi+1) =0)

We can generate a valid execution tree starting
from s¢ consisting of only valid executions because
the next states of a state s can be totally determined
according to the 6 variables of s. According to CEO
requirement of Definition 3, a variable in a state s
can be 0 or 1. Thus, there exist at most 26 = 64
states in the RW system. It means that many states
containing the same 6 values in a valid execution
tree can collapse into a single state. By repeating
collapsing of states, we obtain a finite state machine
representing valid execution tree. Figure 2 shows the
finite state machine representing requirement CON,
EW, HPW, and CEO.

€32 bi2

l:l reference to state

Figure 2: A FSM for CON, EW, HPW, and CEO

4 Formal Verification

In this section, we model the RW system using pro-
cess algebra CCS [11]. We verify the RW system de-
sign againt the requirement specification using Con-
current Workbench of New Century (CWNC) [4, 1].

4.1 Modeling of RW system

We model a RW system and requirement specifi-
cations in a process algebra CCS because CCS de-

proc S = (RITR2TWIAROTWWOTAWOTLOCKTSLEEPO) \

{ dec_WW, inc_WW, dec_AW,inc_AW, dec_AR, inc_AR,
zero_WW, zero_AW, zero_AR, non_zero_WW,non_zero_AW,
non_zero_AR, lock, unlock,
zero_sleep, one_sleep, two_sleep, dec_sleep, inc_sleep,
wake_up}

Figure 3: Top-level structure of the RW system

scription of a system provides concurrency and syn-
chronization cleanly. A RW system consists of 8
processes as Figure 3. R1,R2, and W correspond to
two readers and one writer. The other processes are
for correct synchronization satisfying EW and HPW
among two readers and writer. LOCK works as a
lock ensuring mutual exclusion on the common data
area among a writer and two readers. If a reader
or a writer cannot proceed, it should sleep. SLEEPO
works for this purpose and shows a state that there
is no sleeping writer or reader. ARO, WWO and AWO
stand for states where a number of active reader is 0,
a number of waiting writer is 0, and a number of ac-
tive writer is 0. These processes move to AR1, WW1l
and AW1 as a number of active reader, waiting writer,
and active writer increases. All processes communi-
cate with each other using synchronization events
such as dec WW and inc WW. Appendix A shows a
complete RW system design usable with CWNC ver-
sion 1.1.

4.2 Verification Results

There are various equivalence/ preorder relations to
define the relationship between a system and a re-
quirement specification [5]. Most famous and well
adopted equivalence/ preorder is language equiva-
lence/ preorder for its intuitive meaning and sim-
plicity. A correctness criteria using language equiv-
alence/ preorder is that the set of traces generated
from a system design must be a subset of a set of
traces generated from a requirement specification.

We verify our design S with a requirement speci-
fication SO using CWNC version 1.1. Figure 4 shows
the verification result. le -S may S SO at line 1 of
Figure 4 tests whether a set of traces process S gen-
erates is a subset of a set of traces SO generates or
not. le -S may SO S tests the other way.

Left column of Figure 4 shows the result of veri-
fying £(S) C £(80). Right column of Figure 4 shows
the result of verifying £(S0) C £(S). Line 12 shows
that £(S) C £(80) is TRUE but £(S0) C L(8) is
FALSE. Therefore, we verify that the system design
S satisfies the requirement specification SO.

0I:cwb-nc> Te -S may S SO
02:Building automaton...
03:States: 620
04:Transitions: 1016
05:Done building automaton.
06:Building automaton...
07:States: 34
08:Transitions: 75

09:Done building automaton.
10:Transforming automaton...
11:Done transforming automaton

cwb-nc> Te -5 may SO S
Building automaton...
States: 34

Transitions: 75

Done building automaton.
Building automaton...
States: 620

Transitions: 1016

Done building automaton.
Transforming automaton...
Done transforming automaton.

12:TRUE FALSE. ..
13:cwb-nc> SO has trace:

14: irl ww ws
15: S does not.

16: cwb-nc>

Figure 4: Verification of £(S) C £(S0) and £(S0) C
L(s)

5 Testing using Formal Require-
ment Specification

We use a Java code of the RW system in the book
“Concurrent Programming in Java” [9]. The Java
code in the book has the same requirements as we
have described in Section 3. Figure 5 shows the
skeleton of the Java code. A reader performs three
actions in its turn - beforeRead() at line 8 which
tests whether a reader can start read operation or

not, read_() at line 9 which reads data, and afterRead ()

which cleans up. beforeRead() and afterRead()
at line 10 are defined as synchronized. Thus, we
can assume that they are atomic operations. Similar
for beforeWrite(), write_(), and afterWrite().
We instrument the Java code so that the be-
ginning of beforeRead() generates ir, and begin-
ning/ending of read_() generates rs and re events.
Similarly we instrumented beforeWrite(),write_().
Generated events are fed into the CWNC through
the customized filter interface. Using the step by
step simulation facility of CWNC as a test oracle, we
can test event traces generated from the RW system
with regard to the formal requirement specification.
We test the RW implementation 100 times. RW im-
plementation generates an event trace of length 100
in each experiment. The implementation does not
violate the requirement specification in the test.

6 Conclusion

We have demonstrate deployment of formal method-
ology on not only design phase, but also require-
ment specification phase and implementation testing
phase through the case study of multiple reader/writer
system. As we have seen in Section 3, building a cor-
rect formal requirement specification is not a naive

01:public abstract class RW {

02: protected int activeReaders_ = 0;
03: protected int activeWriters_= 0;
04: protected int waitingReaders_= 0;
05: protected int waitingWriters_ = 0;
06:

07: public void read(String id) {

08: beforeRead(); // ir

09: read_(id); // rs, re
10: afterRead();

11: }

12:

13: public void write(String id) {
14: beforeWrite(); // ww

15: write_(id); // ws, we
16: afterWrite();

17: }

18:

19:%

Figure 5: A skeleton Java code for the RW system
(excerpted and modified from [9])

job, but requires thorough understanding of require-
ment as well as systematic description. Through the
verification using language preorder, we prove that
our design of the RW system satisfies all require-
ments of CON, EW, HPW, and CEO. We can use
the same requirement specification to test the Java
implementation of the RW system. The testing pro-
cedure is not quite satisfactory due to the complex
user interface of CWNC and need of customized fil-
ter, we demonstrate a method of using formal re-
quirement specification as a testing oracle.

Our study, however, does not cover the whole
software life cycle. A big process missed in this
paper is implementation stage. There has been re-
search for generating a code from formal design spec-
ification [12]. However, so far, the quality of imple-
mentation in terms of performance and readiness of
integeration with other components is not yet us-
able. Another process we did not cover in this paper
is run-time monitoring. The system in real-field is
hard to be error-free in spite of best developement
efforts. One complementary solution is to monitor
the execution of target program continuously at run-
time. A monitor can detect a fault of system execu-
tion before the fault causes system crash and help
users to correct the system [8]. We believe that ap-
plication of formal methodology to whole software
life cycles can eventually reduce the development
cost and increases the assurance of correct execu-

tion of critical systems.

References

[1] Concurrency workbench of the new century,
2002. http://www.cs.sunysb.edu/ cwb/.

[2] K. Bhargavan, C. Gunter, M. Kim,
I. Lee, D. Obradovic, O. Sokolsky, and
M. Viswanathan. Verisim: Formal analysis of
network simulations. IEEE Transaction on
Software Engineering, 2001.

[3] E. M. Clarke and J. M. Wing. Formal methods:
State of the art and future directions. ACM
Computing Surveys, 28(4):626-643, December
1996.

[4] R. Cleaveland, J. Parrow, and B. Steffen. The
Concurrency Workbench: A semantics-based
tool for the verification of concurrent systems.

TOPLAS, 15:36-72, 1993.

[5] R.J.van Glabbeek. The linear time-branching
time spectrum. CONCUR, pages 278-297,
1990.

[6] C. A. Gunter, E. I. Gunter, M. Jackson, and
P. Zave. A reference model for specifications
and requirements. IEEFE Software, 2000.

[7] L. J. Jagadeesan, A. Proter, C. Puchol, J.C.
Ramming, and L.G. Votta. Specification-based
testing of reactive software: Tools and exper-
iments. Proceedings of the International Con-
ference on Software Engineering, May 1997.

[8] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and
M. Viswanathan. Java-Mac: a run-time assur-
ance tool for java programs. First Workshop on
Runtime Verification, July 2001.

[9] Doug Lea. Concurrent Programming in
Java(TM): Design Principles and Pattern 2nd
Ed. Addison-Wesley, 1999.

[10] L.K.Dillon and Y.S.Ramakrishna. Generating
oracles from your favorite temporal logic speci-
fications. Proceedings of the Fourth ACM SIG-
SOFT Symposium on the Foundations of Soft-
ware Engineering (SIGSOFT’96), Software En-

gineering Notes, pages 106-117, 1996.

[11] R. Milner. Communication and Concurrency.

Prentice-Hall, 1989.

[12] Benjamin C. Pierce and David N. Turner. Pict:
A programming language based on the pi-
calculus. Technical Report CSCI 476, 1997.

A CCS Description of the RW
System S and the Require-
ment Specificaiono S0

* RW system description of 2 Readers and 1 Writer x

proc S = (R1|R2|W|ARO|WWO|AWO|LOCK|SLEEPO)\
{dec_WW, inc_WW, dec_AW,inc_AW, dec_AR, inc_AR,
zero_WW, zero_AW, zero_AR, non_zero_WW,non_zero_AW,
non_zero_AR, lock, unlock,
zero_sleep,one_sleep,two_sleep,dec_sleep,inc_sleep,
wake_up}

proc WWO = zero_WW.WWO + inc_WW.WW1
proc WWl = dec_WW.WWO + non_zero_WW.WW1

proc AWO = zero_AW.AWO + inc_AW.AW1
proc AWl = dec_AW.AWO + non_zero_AW.AW1

proc ARO = zero_AR.ARO + inc_AR.AR1
proc AR1 = dec_AR.ARO + inc_AR.AR2
+ non_zero_AR.AR1

proc AR2 dec_AR.AR1 + non_zero_AR.AR2

proc SLEEPO
proc SLEEP1

zero_sleep.SLEEPO+ inc_sleep.SLEEP1
one_sleep.SLEEP1 + inc_sleep.SLEEP2
dec_sleep.SLEEPO

two_sleep.SLEEP2 + dec_sleep.SLEEP1

n+n

proc SLEEP2

proc Rl = ’lock.irl.
(’zero_WW.
(’zero_AW.’inc_AR.’unlock.READ1
+ ’non_zero_AW.’inc_sleep.’unlock.R1’)
+ ’non_zero_WW.’inc_sleep.’unlock.R1’)
proc R1’ = wake_up.’lock.
(>zero_WW.
(’zero_AW.’inc_AR.’unlock.READ1
+ ’non_zero_AW.’inc_sleep.’unlock.R1’)
+ ’non_zero_WW.’inc_sleep.’unlock.R1’)

proc R2 = ’lock.ir2.
(>zero_WW.
(’zero_AW.’inc_AR.’unlock.READ2
+ ’non_zero_AW.’inc_sleep.’unlock.R2’)
+ ’non_zero_WW.’inc_sleep.’unlock.R2’)
proc R2’ = wake_up.’lock.
(’zero_WW.
(’zero_AW.’inc_AR.’unlock.READ2
+ ’non_zero_AW.’inc_sleep.’unlock.R2’)
+ ’non_zero_WW.’inc_sleep.’unlock.R2’)

proc W = ’>lock.ww.’inc_WW.
(’zero_AR.
(’zero_AW.’dec_WW.’inc_AW.’unlock.WRITE
+’non_zero_AW.’inc_sleep.’unlock.w’)
+ ’non_zero_AR.’inc_sleep.’unlock.w’)
proc W’ = wake_up.’lock.
(’zero_AR.
(’zero_AW.’dec_WW.’inc_AW.’unlock.WRITE
+’non_zero_AW.’inc_sleep.’unlock.w’)
+ ’non_zero_AR.’inc_sleep.’unlock.w’)

proc READ1 = rsl.rel.’lock.’dec_AR.
(’zero_sleep.’unlock.R1 +
’one_sleep.’wake_up.’dec_sleep.’unlock.R1l +
’two_sleep.’wake_up.’dec_sleep.’wake_up.
’dec_sleep.’unlock.R1)
proc READ2 = rs2.re2.’lock.’dec_AR.
(’zero_sleep.’unlock.R2+

’one_sleep. ’wake_up.’dec_sleep.’unlock.R2+
’two_sleep.’wake_up.’dec_sleep.’wake_up.
’dec_sleep.’unlock.R2)
proc WRITE = ws.we.’lock.’dec_AW.

(’zero_sleep.’unlock.W +
’one_sleep.’wake_up.’dec_sleep.’unlock.W +
’two_sleep.’wake_up.’dec_sleep.’wake_up.
’dec_sleep. ’unlock.W)

proc LOCK = lock.unlock.LOCK

* Requirement Specification *

proc SO = irl.B + ww.S2 + ir2.C

proc S2 = ir1.521 + ws.S522 + ir2.S523
proc 521 = ws.S5212 + ir2.8213

proc 522 = irl.S212 + we.SO0+ ir2.S232
proc 523 = ir1.S213 + ws.S5232

proc S212 = we.B + ir2.52123

proc S213 = ws.S52123

proc 5232 = ir1.S2123 + we.C

proc 52123 = we.A

proc A = rs1.A1 + ww.A2 + rs2.A3

proc Al = rel.C + ww.A12 + rs2.A13
proc A2 = rs1.A12 + ws.we.A + rs2.A32
proc A3 = rs1.A13 + ww.A32 + re2.B
proc A12 = rel.C2 + rs2.A123

proc A13 = rel.C3 + ww.A123 + re2.B1
proc A32 = rs1.A123 + re2.B2

proc A123 = rel.C32 + re2.B12

proc B = rs1.B1 + ww.B2 + ir2.A

proc Bl = rel.S0 + ww.B12 + ir2.A1
proc B2 = rs1.B12 + ws.B22 + ir2.B23
proc B12 = rel.S2 + ir2.B123

proc B22 = we.B + ir2.B223

proc B23 = ws.B223 + rs1.B123

proc B123 = rel.S23

proc B223 = we.A

proc C = irl.A + ww.C2 + rs2.C3
proc C2 = ir1.C21 + ws.C22 +rs2.C32
proc C3 = irl.A3 + ww.C32 + re2.S0
proc C21 = ws.C221 + rs2.C321

proc €22 = ir1.C221 + we.C

proc C32 = ir1.C321 + re2.S2

proc €221 = we.A

proc C321 = re2.8521

