
COBET - Incorrect usage of atomic operations

bug pattern and Waiting for an already finished

thread bug pattern

Shin Hong and Moonzoo Kim

Computer Science Department

KAIST, South Korea

hongshin@kaist.ac.kr, moonzoo@cs.kaist.ac.kr

1 Incorrect usage of atomic operations

Most computer architectures provide special instruction sets for synchronization
operations called atomic instructions. ‘test-and-set’ and ‘compare-and-swap’
are popular forms of these instructions. The distinguishable feature of atomic
instructions is that computer architectures guarantee the atomic execution of
read and consequent update on operands. These instructions are utilized for
implementing higher synchronization mechanisms such as lock or semaphore, or
used directly by programmers for light-weight synchronizations.

Linux kernel provides special variable type atomic t and the library func-
tions for atomic instructions (e.g., atomic read, atomic set). These are used
for lock free synchronization on shared variables for simple and frequent up-
dates. frequent and simple updates. Many counter variables on shared data
structures are implemented by atomic t and its associated operations.

Atomic instructions synchronize two threads by executing read and update
operations atomically. For this reason, the programmers should use proper
combined atomic instructiosn for two related read and write operations. How-
ever, programmers mistakenly use two separate atomic operations instead of
one combined instruction, and it may lead to data race bugs.

We characterize this incorrect atomic instruction usages as a bug pattern
shown in Figure 1. pattern 1 represents two consecutive atomic instructions
whose executions are intended to be atomic. pattern 2 expresses another
thread which can be scheduled between two atomic instructions inf pattern

1 and interfere their executions.
The semantic condition checking examines the following conditions:

1. A lockset at 3lmust be disjoint with the set of held locks at 3m. Otherwise,
pattern 1 and pattern 2 do not interfere with each other.

2. $a1 and $a3 should be shared variables and may alias to each other.

3. $a2 should contain a variable which is equal to or aliased to $a1.

1

1l:pattern 1 { 1m:pattern 2 {

2l: fun $f1 { 2m: fun $f2 {

3l: call $atomic1 $a1 ; 3m: call $atomic2 $a3 ;

4l: if ($a2) { } 4m: }}

5l: }}

Figure 1: Incorrect usage of atomic operations pattern

4. $atomic1 is an atomic instruction which updates $a1 (e.g., atomic inc,
atomic set, etc). And $atomic2 is an atomic instruction which updates
$a3.

5. $a2 should contains a function call to an atomic instruction which reads
$a1 (e.g, atomic read(), etc).

We refine the bug pattern detector code manually to supplement expression
level conditions. The bug pattern detector refers the type of the associated
variables to check whether or not related variables are atomic t variables. We
provide the function names of library functions for atomic instructions and the
bug pattern detector utilizes these information at checking the fourth and the
fifth semantic conditions.

Using the bug pattern detector, we found undiscovered bugs in Linux kernel,
one of them is shown in Figure 2. This code updates &cp->in pkts at line 5 and
then examines its value at line 10 and these might not be executed atomically.
We repored this issue according to the result from the bug pattern detector,
and the maintainers immediately patch the code that the two separate atomic
instructions are replaced to a proper combined atomic instruction.

COBET found a new bug of this pattern (see Figure 2) in the netfilter

network module (see Linux ChangeLog 2.6.32.).

2 Waiting for an Already Finished Thread

A Linux kernel can create and execute a child thread by calling kthread run()

and terminate the child thread by calling kthread stop(). kthread stop()

sends a special message to a child thread and waits until the child thread is
terminated. A child thread should regularly call kthread should stop() which
returns true if the message is received and terminates respondingly. Otherwise,
the parent thread waits indefinitely at kthread stop() as no other thread can
make the handshaking with the parent thread.

One programming pattern of a child thread is a function with a loop con-
ditioned by kthread should stop(). The child thread processes task until
kthread should stop() returns true. In this situation, the child thread should
not terminate although the task is finished or the task may not proceed for
errors, because the parent thread may invoke kthread stop() after the child
thread terminates and it results in indefinite waiting of the parent thread.

2

1n: unsigned int ip_vs_in(unsigned int hooknum,

2n: sk_buff *skb, net_device *in, net_vice *out,

3n: int(*okfn)(sk_buff *)) {

4n: ...

5n: atomic_inc(&cp->in_pkts);

6n: if (af == AF_INET &&

7n: (ip_vs_sync_state & IP_VS_STATE_MASTER)

8n: && (((cp->protocol != IPPROTO_TCP ||

9n: && cp->state == IP_VS_TCP_S_ESTABLISHED)

10n: (atomic_read(&cp->in_pkts) %

11n: sysctl_ip_vs_sync_threshold[1]

12n: == sysctl_ip_vs_sync_threshold[0])) ||

13n: ((cp->protocol == IPPROTO_TCP) &&

14n: (cp->old_state != cp->state) &&

15n: ((cp->state == IP_VS_TCP_S_FIN_WAIT) ||

16n: (cp->state == IP_VS_TCP_S_CLOSE_WAIT) ||

17n: (cp->state == IP_VS_TCP_S_TIME_WAIT)))))

18n: ip_vs_sync_conn(cp);

19n: cp->old_state = cp->state ;

20n: ...

Figure 2: Incorrect usage of atomic operations bug detected at
net/netfilter/ipvs/ip vs core.c, Linux 2.6.30.4

3

1p:pattern 1 { 1q:pattern 2 {

2p: fun $f1 { 2q: fun $f2 {

3p: call "kthread_run" $a1 ; 3q: loop $c1 {

4p: call "kthread_stop" $a2 ; 4q: if $c2 {

5p: }} 5q: break ; }

6q: }}}

Figure 3: Waiting for an Already Finished Threads

1r: static int cleaner_kthread(void *arg) {

2r: btrfs_root *root = arg;

3r: do {

4r: smp_mb() ;

5r: if (root->fs_info->closing)

6r: break ;

7r: ...

8r: } while(!kthread_should_stop()) ;

9r: return 0; }

Figure 4: Waiting for an already finished thread bug detected at
fs/btrfs/async-thread.c Linux 2.6.30.4

However, if a child thread has a path which escape the loop regardless of
kthread should stop(), the child thread can terminate earlier than the parent
thread’s kthread stop() and result in the deadlock situation. We observe an
actual bug of this type reported at Linux Change Log 2.6.28, where the loop is
escaped by break statement for an error condition.

We specify this bug into a PDL pattern as shown in Figure 3. pattern 1 rep-
resents a parent thread which creates a child thread and invokes kthread stop()

for the child thread. pattern 2 specifies the function for child thread which has
a loop with kthread should stop(). Lines 5r-6r represent the branch which
escape the loop illegally. We manually supplemented the detailed conditions
related to expressions. For this pattern, the semantics condition checking does
not have any additional condition.

In Linux 2.6.30.4, we found the undiscovered bugs from btrfs file system
code, one of them shown in Figure 4. The child thread unintentionally termi-
nated when the error handling branch is taken (line 5r-6r). The btrfs developer
confirmed these bugs. And after Linux 2.6.32, the Linux kernel developers mod-
ified the semantics of kthread stop() not to wait if the child thread is already
finished, so that the bug of this categories may not induce error.

4

