Unit Testing of Flash Memory
Device Driver through a SAT-based
Model Checker

Moonzoo Kim and Yunho Kim
Provable Software Lab, CS Dept, KAIST KAIST

Hotae Kim

. 3
Samsung Electronics, South Korea w

Summary of the Talk

File) Unified
System Paging Storage
Platform

ector .
. ranslatio

Layer 0S
ocC dapt—
tion
odule

ow Leve

57 D,

x0-Picture Card

256 mp I

OneNAND — Flash Memory Devices

In 2007, Samsung requested to'debug the device driver for the OneNAND™
flash memory

We reviewed the requirement specifications, the design documents, and C
code to identify code-level properties to check.

Then, we applied CBMC (C Bounded Model Checker) to check the properties
— Found several bugs

— Provided high confidence in multi-sector read operation through exhaustive exploration

Unit Testing of Flash Memory Device Driver through Moonzoo Kim et al. Kn
2/20 a SAT-based Model Checker Provable SW Lab IST

Overview

Background

— Overview of the Unified Storage Platform (USP)

— SAT-based model checking technique

|dentification of properties to check

— High-level requirements

— Code-level properties

Unit analysis result through CBMC

— Prioritized read operation (PRO)@ Demand Paging Manager (DPM)
— Semaphore matching (SM)@ Block Management Layer (BML)

— Semaphore exception handling (SEH)@ STL~BML

— Multi-sector read operation (MSR) @ Sector Translation Layer (STL)

Lessons learned and conclusion

KAIST

Overview of the OneNAND” Flash Memory

Characteristics of OneNAND® flash

Each memory cell can be written
limited number of times only
* Logical-to-physical sector mapping
e Bad block management
* Wear-leveling

XIP by emulating NOR interface

Source:
A j Software Center
pp3 . of Samsung
Electronics ‘06

Unified
Storage
Platform

through demand-paging scherl '08 Spin
e Multiple processes access th

Workshop 7

concurrently

e Urgent read operation should have a
higher priority

* Synchronization among processes is
crucial

Performance enhancement
e Multi-sector read/write
e Asynchronous operations
e Deferred operation result check

0S
Adapt-
ation
Module
Low Level (LLD
D)

OneNAND Flash Memory Devices \

Unit Testing of Flash Memory Device Driver through Moonzoo Kim et al. KAIST
4/20 a SAT-based Model Checker Provable SW Lab

USP Code Statistics

File DPM
(28606)
System 30 (18,
12)

Page Cache Manager

|(1183) 19 (14, 5)

DPM Interface Page Fault
DPM Interf Handler
_Interrace.c
(1072) 11 (4, 7) —»| DPM_PageFault
Core.s

DPM_PageCache.c (245) 2(2,0)
DPM_PageCacheCore.c (172) 3 (0, 3)
e Clock - (199) 4 (3,1)

e Mach25- (169) 3(3,0)

* NAClock - (201) 4(3,1)

* NAMach25- (177) 3(3,0)

\

STL(9933) 105 (43, 62)

BML(12051) 97 (36, 61)

GarbageQueue.c (360) 7 (7, 0)
OpQueue.c (309) 5(5,0)
ReadyQueue.c (255) 5 (5, 0)
SamBufMgr.c (639) 10 (6, 4)
SectorMap.c (3074) 33 (7, 26)
STLInterface.c (2878) 20 (11, 11)
VirtualNand.c (2418) 23 (2, 21)

BadBIkMgr.c (4544) 47 (9, 38)
BMLInterface.c (6744) 44 (21, 23)
BMLInterfaceTCM.c (160) 2 (2, 0)
SWECC.c (603) 4 (4, 0)

OS
Adaptation
Module

|

Platform

RTSR (27536)
240 (99, 141)

LLD (5552) 38 (20, 18)

Adaptation

ONLDAtomicr.c (1874) 16 (9, 7)
ONLDNonAtomic.c (2676) 16 (9, 7)
ONLDTCM.c (1002) 6 (2, 4)

Module

OneNAND

Unit Testing of Flash Memory Device Driver through
a SAT-based Model Checker

Moonzoo Kim et al. KAIST

Provable SW Lab

Overview of SAT-based Bounded Model Checking

C Program Requirement
1 Properties in C Program
C assertion P
Requirement Abstract ¢

Propertles I\/Iodel \ /
Translation to the
SAT formula

-¢ N P

Model
Checker

/ \ G AP SAT Solver G AP
Unsatisfied Satisfiable
Okay Counter

M E example
¢ P Okay Counter
PE® example
Unit Testing of Flash Memory Device Driver through Moonzoo Kim et al. Kn
6/20 a SAT-based Model Checker Provable SW Lab IST

C Program to SAT Translation (1/2)

° Unwinding a |Oop e From C code to SAT formula
Convert to static single

Original code Unwinding the loop Original code assignment (SSA)
x=0; x=0;
i < if (x <2 X=Xty ; X1=X0"Yo>
hile G M St it (iz1) | i Ogl=1)
X++; X++;} X=2: X,=2;
} if (x <2){ else else
Y=Y+X] X++; X3=X;+1;
x++:} assert(x<=3);| |Xs=(X 1=1)?X;:X5;
//unwinding assertion assert(x,<=3);
assert (1(x < 2))

e Generate constraints
P =X,=XgtYo A X,=2 A X=X+ A((X,1=1 A X,=X%5) v (X=1 A X,=X3))
O=%X,<=3

Check if P A —¢ is satisfiable, if it is then the assertion is violated

Unit Testing of Flash Memory Device Driver through Moonzoo Kim et al. KAIST
7/20 a SAT-based Model Checker Provable SW Lab

C Program to SAT Translation (2/2)

eExample of arithmetic encoding into pure propositional formula

Assume that x,y,z are three bits positive integers represented by
propositions X,X;X,, YoY1Y2s ZoZ1Z5
C=z=x+y = (25 XeBYe)B((X1AY) V ((X1BY)AKXAY)))
N (Z1 (X BY)BXAYS))
A (2,4 (X,BY5))

S Cin 1-
} C Cout

Full adder circuit diagram
Inputs: {A, B, Carryin} — Outputs: {Sum, CarryOut}

oo

Half adder circuit diagram

Unit Testing of Flash Memory Device Driver through Moonzoo Kim et al. KAIST
8/20 a SAT-based Model Checker Provable SW Lab

C Bounded Model Checker (CBMC)

 Handles function calls using inlining
 Unwinds the loops a fixed number of times (bounded MC)

— A user has to know a upper bound of each loop

* Loops often have clear upper bounds
* We can still get debugging result without upper bounds

e Specifies constraints to describe an environment of the
target program, which can model non-deterministic user

inouts. or multiple scenarios
) A4 | |||M|L|rl|\.- ST 11Ul IV I

IIVULJ

— Ex. _ CPROVER assume(0<=nDev && nDev<=7)

— Ex.__CPROVER_assume(SHDC.nPhySctsPerUnit ==
SHPC.nBlksPerUnit * SHVC.nPgsPerBlk * SHVC.nSctsPerPg)

 Checks properties by assertions

Unit Testing of Flash Memory Device Driver through Moonzoo Kim et al. KAIST
9/20 a SAT-based Model Checker Provable SW Lab

Project Overview

 The goal of the project

— To check whether USP conforms to the given high-
level requirements

 we needed to identify the code-level properties to check
from the given high-level requirements

e Atop-down approach to identify the code level
properties from high-level requirements

— USP has a set of elaborated design documents
e Software requirement specification (SRS)
e Architecture design specification (ADS)

e Detailed design specification (DDS)
— DPM, STL, BML, and LLD

KAIST

Three High-level Requirements in SRS

e SRS specifies 13 functional requirements, 3 of which
have “very high” priorities
— Support prioritized read operation

 To minimize the fault latency, USP should serve a read request from
DPM prior to generic requests from a file system.

e This prioritized read request can preempt a generic |/O operation
and the preempted operation can be resumed later.

— Concurrency handling

e BML and LLD should avoid a race condition or deadlock through
synchronization mechanisms such as semaphores and locks.

— Manage sectors

e STL provides logical-to-physical mapping, i.e. multiple logical

sectors written over the distributed physical sectors should be read
back correctly.

KAIST

Top-down Approach to Identify Code-level Property

SRS

ADS

Multi-sector
read

Prioritized
read

Concurrency
handling

DDS

Code

Page fault
handling while a
device is being
read

Page fault handling
while a device is
being programmed

> . Y
/ : “ ‘>\
L’ ~ Check “Step 14. heck “Step
wait until the 18. Store”the
device is ready ” . statu\s\
e Is the status RREEY
. really stored?
_ 54 y ;)
e $ <
At line 494 of PriRead() in LLD.c
L assert(bNeedToSave->saved))

Legend

Spec. in the
design docs

User defined
property to check

Total 43 code-level properties
are identified

Unit Testing of Flash Memory Device Driver through a
SAT-based Model Checker

12/20

R X

Page Fault Page Cache

MMU Handler Management BML LLD]: OneNAND
- = — Devige
[issue page fault pkception ”
|: 2} request a free frame in[page cache
-
If there is a free frame,__ 3: fipfl a free frame
go to Stepb6.
4: find a victim page

5: ppge out the victim

—

6: return the free ff{gm

Jdge

/. find a location Where the page is storefl in OneNAND deyide

|

8: request fead operation
4 % fequest read operation
i 10: Set the|Areempted flag
P—

11: request] the ready/busyistatus

12: return the ready/busy $tatus
In case of busy status Clamity ’
becausg of program ~he 13 check iff the device is r¢gdy
operation Po— i

14: wait until the device is I[eady

i

b NeedToSave Iflag
— i

1
he operation status

15: check t|

16: request

17: return theéoperation stafus

I 18: store tHd status I

A sequence diagram of page fault handling
while a device is being programmed in LLD DDS

Moonzoo Kim et al. KAIST

Provable SW Lab

Results of Unit Testings

e Prioritized read operation

— Detected a bug of not saving the status of suspended
erase operation

e Concurrency handling
— Confirmed that the BML semaphore was used correctly
— Detected a bug of ignoring BML semaphore exceptions
e Multi-sector read operation (MSR)

— Provided high assurance on the correctness of MSR, since
no violation was detected even after exhaustive analysis
(at least with a small number of physical units(~10))

KAIST

A Bug in PriRead()

374: VOID PriRead(Read(UINT32 nDev, UINT32 nPbn, UINT32 nPgOffset) {

416; if (bEraseCmd==FALSE32) && (pstInfo->bNeedToSave==TRUE32)) {

417: pstinfo->nSavedStatus = GET_ONLD_CTRL_STAT(pstReg, ALL_STATE);
418: pstinfo->bNeedToSave = FALSE32;
4109: saved=1; // added for verification purpose }

424: assert(!(pstinfo->bNeedToSave) || saved);

 We added a flag saved to 0l:..

n whether th f th 02:State 14 file LLD.c line 408 function PriRead thread 0
denote ethert _e St_atus of the 03: LLD::PriRead::1::bEraseCmd=1
preempted operation is saved 04:State 15 file LLD.c line 412 function PriRead thread 0
. 05: LLD::PriRead::1::1::2:nWaitingTimeOut=...
* CBMC_deteCted_the given 06:State 17 file LLD.c line 412 function PriRead thread 0
assertion was violated when an 07: LLD::PriRead::1::1::2:nWaitingTimeQut=...

erase operation was preempted 08:'".
P P P 09:Violated property:
— It takes 8 seconds and 325 Mb on 10: file LLD.c line 424 function PriRead
the 3Ghz Xeon machine 11: assertion !(_Bool)pstIinfo->bNeedToSave || (_Bool)saved
— CBMC 2.6 with MiniSAT 1.1.4 12:VERIFICATION FAILED
14/20 Unit Testing of Flash Memory Device Driver through Moonzoo Kim et al. KAIST

a SAT-based Model Checker Provable SW Lab

BML Semaphore Usage

e The standard requirements for a binary semaphore
— Semaphore acquire should be followed by a semaphore release

— Every function should return with a semaphore released
* unless the semaphore operation creates an exception error.

 There exist 14 BML functions that use the BML semaphore.

— We inserted an smp to indicate the status of the semaphore

— and simple codes to decrease/increase smp at the
corresponding semaphore operation.

e CBMC concluded that all 14 BML functions satisfied the
above two properties.

— Consumes 10 seconds and 300 megabytes of memory on
average to analyze each BML function

KAIST

BML Semaphore Exception Handling (1/2)

Topmost STL
functions
AT OpeN— SM_Activate f—
T |
\ = Bug '.
STLRead [N ey \A_\;H/_{__:_M_amtamWearLevel h _ etected [BML_GetVolinfo l,l'ul
— — H
[STLwite |-} A — [BMLRead ||
1 SM_WriteSectors ¥ KeepBoundsOfDept _PartialMerge == _Constructsam _Loadsam HY _GetSInfo >'/ | et
STLAWrte 4~ ‘| T\1 - e /H J________.---g = }_ / { BML_ReplaceBIk | OAM AcquireSM_ |
N L /
- - BML_StorePIExt [
ST Delete] Compacion T [Woeae | [BML_StorePiExt J)
/| Delete H SM_MarkDeletion |—— BML_IOCH! ||
|
|

e The BML semaphore operation might cause an exception depending
on the hardware status.

e Once such BML semaphore exception occurs, that exception should
be propagated to the topmost STL functions to reset the file system

— We checked this property by the following assert statement inserted before the
return statement of the topmost STL functions:

— assert(!(SMerr==1)| | nErr==STL CRITICAL ERR)

Unit Testing of Flash Memory Device Driver through Moonzoo Kim et al. KAIST

16/20 a SAT-based Model Checker Provable SW Lab

BML Semaphore Exception Handling (2/2)

Topmost STL
functions

£ OpeN— L SMActvale |
— \
|

\ e Bug .
STLRead [\ sy Feadsecions \l\;ﬁi_:}ﬂ_alrita|nWearLevel L . detocted [BML_GetVolinfo L'I,
STL Write |- A T\ [BMCRead |
- — - / \ - _ - \
— | == f e et
— 1 = -| SM_WriteSectors] _KeepBoundsOfDept v _F’arnei_l':{e_rge = _ConstructSam | _LoadSam (_GetSinfo)1 BV ReplacoBlk 1 OAVLAcquiasi |
STL_AWTrite Pz i J.’ it S
N\ S BML_StorePIExt |
STL Delete |, [_Compaction | [VN Greate | [BuL_StorePiEXt i
/| Delete H SM_MarkDelstion |—— BML_IOCH I,I'
|

e CBMC analyzed a call graph of each of the topmost STL functions and
detected that BML semaphore exception might not propagate due to
bug at GetSInfo()

* The bug was detected when loop bound was set 2 with ignoring loop
unwinding assertion.

— Memory overflow occurred with the loop bound 3

e For STL_Write(), this verification task consumed 616 megabytes of
memory in 97 seconds

— Each call sequence is around 1000 lines long on average.

Unit Testing of Flash Memory Device Driver through Moonzoo Kim et al. KAIST

17/20 a SAT-based Model Checker Provable SW Lab

Multi-sector Read Operation (MSR) (1/2)

SAMO~SAM4 PUO~PU4

Sector 0
Sector 1
Sector 2
Sector 3

SAMO~SAM4 PUO~PU4

"ABCDEF"

"ABCDEF"

1 0 E 3 3| B
1 1| AB F| O D
2 C 3 =
3 D 1 AC| E
a) A distribution of b) Another distribution of

MSR reads adjacent multiple physical sectors once in order to
improve read speed

— MSRis 157 lines long, but highly complex due to its 4 level loops
We built a small test environment for MSR

— The test environment contains only upto 10 physical units

— The test environment should follow constraints, which are described by

_CPROVER_assume(Boolean exp) statement
 SAM tables and PUs should correspond each other
* For each logical sector, at least one physical sector that has the same value exists

KAIST

Multi-sector Read Operation (MSR) (2/2)

10000.0 -
¢ Alength
] \ of data
10000 - —7
£ : _lA/ s
c
o
9 | 6
wv
100.0 - -7
8
10.0
5 6 7 8 9 10
A number of physical units

We checked MSR for data that was 5~8 sectors long and distributed over 5~10 PUs.
— CBMC analyzed all possible scenarios/distributions in this environment
CBMC detected no violation of the property (read buffer should contain correct
data) in this series of experiments with small flash memory.
— Each of the experiments consumed 200 to 700 megabytes of memory
More details of this verification task, see “Formal Verification of a Flash Memory

Device Driver -an Experience Report” published at Spin 08

Unit Testing of Flash Memory Device Driver through Moonzoo Kim et al. Kﬁ
19/20 a SAT-based Model Checker Provable SW Lab IST

Conclusion

e We successfully applied CBMC to detect hidden bugs in
the device driver for Samsung’s OneNAND flash memory

— Also, we established confidence in the correctness of the
complex MSR

e Lessons learned

— Software model checker as an effective unit testing tool
e CBMC took modest amount of memory and time to detect bugs in USP
e Exhaustive analysis can detect hidden bugs
— Advantages of a SAT-based model checker
e Analysis capability of whole ANSI-C
* No abstract model required

 We believe that a SAT-based model checker can be utilized
effectively as a unit testing tool to complement
conventional testing

KAIST

