SOFTWARE TESTING, VERIFICATION AND RELIABILITY
Softw. Test. Verif. Reliab. (2014)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/stvr.1539

Are concurrency coverage metrics effective for testing: a
comprehensive empirical investigation

Shin Hong!, Matt Staats?, Jaemin Ahn?, Moonzoo Kim!*' and Gregg Rothermel*

epartment of Computer Science, . Daejeon, South Korea
D "C Sci KAIST, Daej South K
28nT Centre, University of Luxembourg, Luxembourg
3Agency for Defense Development, Daejeon, South Korea
epartment of Computer Science, University of Neovraska-Lincoln, Lincoln,
4Dep. Computer Sci University of Nebraska-Lincoln, Lincoln, USA

SUMMARY

Testing multithreaded programs is inherently challenging, as programs can exhibit numerous thread inter-
actions. To help engineers test these programs cost-effectively, researchers have proposed concurrency
coverage metrics. These metrics are intended to be used as predictors for testing effectiveness and provide
targets for test generation. The effectiveness of these metrics, however, remains largely unexamined. In this
work, we explore the impact of concurrency coverage metrics on testing effectiveness and examine the rela-
tionship between coverage, fault detection, and test suite size. We study eight existing concurrency coverage
metrics and six new metrics formed by combining complementary metrics. Our results indicate that the
metrics are moderate to strong predictors of testing effectiveness and effective at providing test generation
targets. Nevertheless, metric effectiveness varies across programs, and even combinations of complementary
metrics do not consistently provide effective testing. These results highlight the need for additional work on
concurrency coverage metrics. Copyright © 2014 John Wiley & Sons, Ltd.

Received 24 July 2013; Revised 21 April 2014; Accepted 30 April 2014

KEY WORDS: software testing; test coverage metric; concurrent program

1. INTRODUCTION

Testing multithreaded programs is challenging, because in most applications, a large number of
thread interactions are possible and exploring all potential interactions is infeasible. While several
techniques for detecting concurrency faults (e.g., [1-3]) have been developed as alternatives, these
techniques have limited accuracy, and thus, more systematic concurrent program testing approaches
are desirable.

To address this problem, researchers have developed concurrency coverage metrics for mul-
tithreaded programs [4-7]. These metrics, like structural coverage metrics such as branch and
statement coverage, define a set of test requirements to be satisfied. In the case of concur-
rency coverage metrics, the test requirements typically enumerate a set of possible interleavings
of synchronization operations or shared variable accesses. Just as structural coverage metrics
offer a rough estimate of how well testing has covered a program’s structure, concurrency cov-
erage metrics allow engineers to estimate how well they have exercised concurrent program
behaviours.

*Correspondence to: Moonzoo Kim, Department of Computer Science, KAIST, Daejeon, South Korea.
TE-mail: moonzoo@cs kaist.ac.kr

Copyright © 2014 John Wiley & Sons, Ltd.

S. HONG ET AL.

The intuition behind all test coverage metrics is that as more requirements relative to the metric
are satisfied, the testing process is more likely to detect faults and thus is more effective. Accordingly,
to maximize the effectiveness of testing processes, researchers create test adequacy criteria based
on these metrics and develop techniques to satisfy them. The development of such techniques has
long been an active area of research in the context of structural coverage metrics for non-concurrent
programs [8—11], and as multithreaded programs have become more common, the development
of techniques centered around concurrency coverage metrics has also become an active area of
research [12-15].

Unfortunately, the intuition behind concurrency coverage metrics remains largely unexplored
prior to our own recent study [16]. While a large body of evidence exists exploring the impact of
structural coverage metrics on testing effectiveness (e.g., [17-19]), we are aware of no study rigor-
ously examining the impact of concurrency coverage metrics. We expect that increasing coverage
relative to these metrics will improve testing effectiveness, but we also expect that it will increase
test suite size. Thus, we must ask: does improving concurrency coverage directly lead to a more
effective testing process, or is it merely a by-product of increasing test suite size? Further, if improv-
ing coverage does lead to increased testing effectiveness, what practical gains in testing effectiveness
can we expect? Finally, based on the effectiveness of the current state-of-the-art concurrency cov-
erage metrics, what steps should be taken with respect to continuing the development of test case
generation techniques for concurrency coverage metrics?

To explore these questions, we studied the application of eight concurrency coverage metrics in
testing 12 concurrent programs [16]. For each program and metric pair, we used a randomized test
case generation process to generate 90 000 test suites with varying levels of size and coverage, and
we measured the relationships between the percentage of test requirements satisfied, the number
of test executions, and the fault detection ability of test suites via correlation and linear regression.
Additionally, we compared test suites generated to achieve high coverage against random test suites
of equal size. Finally, we examined the value of combining complimentary concurrency coverage
metrics, and the impact of difficult-to-cover requirements on the testing process. We measured fault
detection ability using both mutation analysis (systematically seeding concurrency faults) and real-
world faults.

Our results show that each coverage metric explored has value in predicting concurrency testing
effectiveness and as a target for test case generation. In sharp contrast to work on sequential cover-
age metrics [18] and the intent of the concurrency metrics, however, the metrics’ results vary across
programs. In particular, we found that the correlation between concurrency coverage and fault detec-
tion, while often moderate to strong (i.e., 0.4 to 0.8) and stronger than the relationship between test
suite size and fault detection, is occasionally low to non-existent.

We also found that while large increases in fault detection effectiveness (up to 25 times) can
be found when using concurrency coverage metrics as targets for test case generation relative to
random test suites of equal size, in some cases, the results were no better than random testing.
Further analysis indicated that it may be possible to develop test case generation approaches that
improve fault detection by specifically targeting difficult-to-cover test requirements.

Finally, we found that while combining proposed coverage metrics can alleviate issues involving
inconsistency across objects, and test suites reduced with respect to the combined metrics outper-
form the original metrics in most cases, there still appear to be other factors unaccounted for by
the metrics (e.g., configurations of test case generation techniques such as random noise injection
probability and length).

Given these results, we believe that while existing concurrency coverage metrics have value, and
efforts to develop techniques based on these metrics are justified, additional work on such metrics is
required. In particular, the variability in metric effectiveness across programs highlights the need for
guidelines to help engineers select from among the many metrics already proposed. Additionally, the
impact of the parameters used in random testing, which in some cases are much stronger predictors
of testing effectiveness, indicates that the metrics can be improved to better capture the factors that
constitute effective concurrency testing.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

ARE CONCURRENCY COVERAGE METRICS EFFECTIVE FOR TESTING

2. BACKGROUND AND RELATED WORK

2.1. Concurrency coverage metrics

Structural coverage metrics for concurrent programs, like their sequential counterparts such as
branch and statement coverage metrics, are used to derive a set of test requirements from the code
elements of a program under test. These test requirements typically enumerate a set of thread inter-
leaving cases. Unlike sequential metrics, satisfying a test requirement for a concurrent program
requires engineers not only to execute specific code elements (generally synchronization and/or
shared data access operations) but also to satisfy constraints on thread interactions. For example,
the Blocked metric requires every synchronization block/method in a program to be blocked (due to
lock contention) at least once during testing [12].

Figure 1 provides an example of how concurrency coverage metrics define test requirements and
of ways in which test requirements are covered. The program in Figure 1(a) consists of two threads
that execute two synchronized blocks guarded by the same lock m. In the example execution shown
in Figure 1(b), Thread 1 holds lock m first (line 12), defines variable x (line 13), and then releases
the lock (line 14). While Thread 1 holds lock m, Thread 2 attempts to acquire the lock on m (line
22), which blocks Thread 2 until Thread 1 releases the lock. After acquiring the lock on m, Thread
2 reads variable x (line 23) whose value has been defined by Thread 1, assigns the value read to
variable y, and then releases the lock on m.

The concurrency coverage metric Follows defines a pair of test requirements that are cov-
ered by an execution when two synchronized blocks are executed by two different threads,
and these hold the same lock consecutively. In the example, the execution covers Follows
test requirement (12,22) because the lock m is first held at line 12 by Thread 1 and then
held at line 22 by Thread 2. The second Follows test requirement (22, 12) is not covered in
the execution.

Another metric, Blocked, defines one test requirement per synchronized block that is covered by
an execution when one thread becomes blocked from acquiring the lock for the synchronized block.
In the example, there are two Blocked test requirements, 12 and 22; 22 is covered in the execution
scenario because Thread 2 is blocked by Thread 1 at line 22.

The coverage metric PSet generates test requirements for def-use relations over different threads.
In the example, a PSet test requirement (13, 23) is covered as Thread 2 reads the variable x at line
23, whose last update is by Thread 1 at line 13.

2.2. Assessing the effectiveness of concurrency coverage metrics

In work on concurrency coverage metrics, the effectiveness of achieving high coverage has been
argued for primarily through analytical comparisons between coverage definitions and concurrency
fault pattern, such as those involving data races and atomicity violations [5, 6, 14].

Trainin et al. [6] note that concurrency faults are related to certain test requirements for the
Blocked-Pair and Follows concurrency coverage metrics, which suggests that achieving high levels
of coverage should correlate with testing effectiveness. Wang et al. [14] highlight how data races

11 £10 { Thread 1: £1 () Thread 2: £2 ()
12 synchronized (m) {

- . 12 lock(m)
13 x=0; blocked by
14 } . Threadl
15 } 13 write(x)

I
I
|
|
|
14 unlock (m) |
I
I
I
|
I

21 520 ¢ 22 Tockm
22 synchronized (m) { 23 read(x) lock m
23 Yy =X 23 write(y)
24} 24 unlock (m)
25 }
(a) Code (b) Execution
Figure 1. Concurrent execution example.
Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)

DOI: 10.1002/stvr

S. HONG ET AL.

or atomicity violations may be triggered by satisfying HaPSet test requirements. Neither analysis
empirically demonstrates the benefits of achieving higher coverage.

The study most similar to the one we present in this paper is by Tasiran et al. [20], who evaluate
the location-pair metric empirically, and compare it to two other coverage metrics (method-pair and
def-use) with respect to the correlation between coverage and fault detection. The study uses two
case examples and generates faulty versions via concurrency mutation operators and manual fault
seeding. The scope of our study is more comprehensive, encompassing 12 case examples and eight
concurrency coverage metrics, and we apply a broader set of analyses.

The work presented in this paper is an extension of work previously published [16]. This work
differs in three key ways. First, this work explores additional research questions related to the value
of combining complementary concurrency coverage metrics and the impact of difficult-to-cover test
requirements. These questions are based on hypothesis presented, but not explored in the previous
work [16]. These questions seek to address what directions future work in concurrency coverage test
generation should take. Second, we have added three more study objects to the study to broaden our
base. Finally, we have conducted our analyses for systems using concurrency mutation operators at
a per mutant level, rather than averaging behaviour across all mutants. This allows for a more fine
grained analysis and highlights how effectiveness can vary within the same system depending on
the specific fault present.

3. STUDY DESIGN

The purpose of this study is to rigorously investigate the concurrency coverage metrics presented
in previous work and to either provide evidence of each metric’s usefulness or demonstrate that the
metric is of little value. The usefulness of a coverage metric, concurrency or otherwise, invariably
relates to many factors, such as the testing budget available, the characteristics of the program under
test, and the goals of the testing process. Nevertheless, to show that any coverage metric can be
considered useful, it is necessary at minimum demonstrate two things:

1. Increased levels of coverage correspond to increased fault detection effectiveness;
2. These increases are due in part to increasing coverage levels, not merely larger test suite sizes.

Further, to aid practitioners in selecting a coverage metric for use, we should attempt to quantify
the relationship between coverage, size, and fault detection effectiveness. In particular, we are inter-
ested in the predictive value of each metric and the expected improvements over random testing in
terms of fault detection.

Finally, we are interested in how, given the concurrency coverage metrics proposed, we can best
approach test case generation for concurrent systems. Specifically, we wish to know whether poten-
tial issues with these metrics, already identified in our previous work [16], can be overcome by
a combined use of coverage metrics. We also wish to know whether the current state-of-the-art,
coverage-guided test generation techniques for concurrent program testing could be improved by
the development of techniques targeting difficult-to-cover test requirements. Such techniques would
be analogous to existing methods for improving coverage when using sequential coverage metrics,
for example, symbolic execution-based and genetic algorithm-based approaches [9, 21].

Our study is thus designed to address four core questions.

e Research question 1 (RQ1): For each concurrency coverage metric studied, does the cov-
erage achieved positively impact the effectiveness of the testing process for reasons other
than increases in test suite size? In other words, we would like to provide evidence that
given two test suites of equal size, the test suite with higher coverage will generally be
more effective.

e Research question 2 (RQ2): For each concurrency coverage metric studied, how does the fault
detection effectiveness of test suites achieving maximum coverage compare with that of random
test suites of equal size? While coverage levels may relate to effectiveness, the practical impact
of achieving high coverage for some metric over random test suites may be insignificant.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

ARE CONCURRENCY COVERAGE METRICS EFFECTIVE FOR TESTING

e Research question 3 (RQ3): For the concurrency coverage metrics studied, do combinations
of coverage metrics outperform the original coverage metrics? The effectiveness of coverage
metrics can vary, with the most effective metric varying from case example to case example.
By combining metrics, we can potentially overcome these inconsistencies.

e Research question 4 (RQ4): For each concurrency coverage metric studied, does covering
difficult-to-cover test requirements result in above average fault detection relative to other
coverage requirements? For a given case example, some coverage metrics contain test require-
ments that are hard to cover; that is, a small percentage of possible test cases satisfy the
requirement, and thus, achieving maximum coverage in such scenarios can require significant
effort. We would like to determine whether such effort is potentially justified.

The objects for this study have been drawn from existing work on concurrent software analy-
sis [22-24] and include objects without faults and objects with faults detected in previous studies.
Each object is a multithreaded Java program.

We list the objects with the lines of code, numbers of threads, the type of test oracle for the
program, and mutants used in Table I. The LOC column represents the size of the original source
code for each subject. The number of threads column shows how many threads are created during
test execution, as determined by the test case given for each object. The test oracle column describes
the test oracle used for the program. ‘AS’ means that the fault is detected by an assertion that
checks application-specific requirement properties, and the number in the parentheses represents the
number of assertion statements in the program. ‘TO’ means that the fault is detected by a timeout
(i.e., deadlock). The incorrect versions column represents, for the mutation testing objects, the
number of generated mutants and the number of mutants used in parentheses (the reason for the
differences in these numbers is explained in Section 3.2.1).

3.1. Variables and measures

3.1.1. Independent variables. In this study, we manipulate two independent variables: the concur-
rency coverage metric and the method of test suite construction.

3.1.1.1. Concurrency coverage metrics. Numerous concurrency coverage metrics have been pro-
posed, each based on some intuition about how to capture different aspects of concurrent executions.
We view these metrics as having two key properties: the number of code elements the test require-
ments consider (either a single element or a pair of elements), and the the code construct the metric is
defined over (either synchronization operations or data access operations). For example, the Block-
ing and Blocked coverage metrics define test requirements based on individual synchronized
blocks/methods in a Java program [12] and are thus singular concurrency coverage metrics, while

Table I. Study objects.

Number of Test Incorrect Number of test
Type Program LOC threads oracle versions executions
Mutation Arraylist 5866 29 AS(6), TO 42 (10) 2000
esting Boundedbuffer 1437 31 AS(6), TO 34 (6) 2000
Vector 709 51 AS(15), TO 88(35) 2000
Accountsubtype 193 12 AS(1) 1 1000
Alarmclock 125 4 AS(1) 1 1000
Clean 51 3 TO 1 1000
Single-fault ~ Groovy 433 3 TO 1 1000
program Piper 71 9 TO 1 1000
Producerconsumer 87 5 AS(1) 1 1000
Stringbuffer 416 3 AS(19) 1 1000
Twostage 52 3 AS(1) 1 1000
Wronglock 118 22 TO 1 1000
Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)

DOI: 10.1002/stvr

S. HONG ET AL.

the Blocked-Pair metric is defined over pairs of blocks and is thus a pairwise metric. All of these
metrics are defined over synchronized blocks, and thus, they are all synchronization metrics [6].

We selected eight coverage metrics for use in our study, focusing on well-known metrics
while also ensuring that we considered every possible combination of our two key properties. We
list the metrics selected in Table II. We concentrated on metrics that generate modest numbers of
test requirements, as this makes achieving high levels of coverage feasible in a reasonable time.
Thus, coverage metrics that produce very large numbers of test requirements are not included in
this study. These include metrics defined over memory addresses or exhaustive sets of interleav-
ings (e.g., all-du-path [7], ALL, SVAR [5]) and the series of extended coverage metrics proposed by
Sherman et al. [25]. Access-pair [25] and location-pair [20] are omitted as they are almost equiva-
lent to the PSet metric. We interpret the LR-Def metric as generating two test requirements for read
accesses: one for the use of memory defined by a local thread and the other for the use of memory
defined by any remote thread.

In addition to these metrics, we considered six coverage metrics that are combinations of
these metrics to investigate the benefits of combining existing metrics (to address RQ3). Each
combined metric was created by combining the test requirements of one pairwise synchronization-
based coverage metric (i.e., Blocked-Pair, Follows, and Sync-Pair) and the test requirements of
one pairwise data access-based coverage metric (i.e., Def-Use and PSet). Hereafter, we refer to the
non-combined metrics as original coverage metrics, and the six new coverage metrics as combined
coverage metrics.

We chose these combinations for three reasons: (i) synchronization-based coverage metrics and
data access-based coverage metrics represent different paradigms for measuring concurrency cov-
erage and thus seem likely to be complementary; (ii) metrics within a paradigm tend to achieve
similar coverage and fault detection effectiveness rates; and (iii) pairwise metrics generally outper-
form singular metrics (at least as test case generation targets) and thus make a better starting point
when attempting to improve concurrency coverage metrics.

3.1.1.2. Test suite construction. We used two methods of test suite construction: random selec-
tion and greedy test suite reduction. In random selection, test suites are constructed by randomly
selecting test executions to construct test suites of specified sizes. In greedy selection, test suites
are constructed to achieve maximum achievable coverage using a small number of test executions.
These test suite construction methods are used to address RQ1 and RQ2, respectively.

3.1.2. Dependent variables. We measure three dependent variables computed over generated test
suites: coverage achieved, test suite size, and fault detection effectiveness. Additionally, we measure
two dependent variables computed over test requirements: difficulty of covering test requirements,
and the fault detection effectiveness achieved when covering test requirements.

3.1.2.1. Achieved concurrency coverage of test suites. For a given metric M, each test suite S’s
coverage is computed as the ratio of M ’s test requirements that are satisfied by ' to the total number

of test requirements satisfied across all executions for a given program version. We construct test

Table II. Concurrency coverage metrics used in the study.

Synchronization operation ~ Data access operation

Blocking [12],

Singular Blocked [12] LR-Def [5]
Pairwise Blocked-Pair [6], PSet [26],
Follows [6], Sync-Pair [15] Def-Use [20]

Blocked-Pair + Def-Use, Blocked-Pair + PSet
Combined Follows + Def-Use, Follows + PSet
Sync-Pair + Def-Use, Sync-Pair + PSet

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

ARE CONCURRENCY COVERAGE METRICS EFFECTIVE FOR TESTING

executions while holding random test case generation parameters constant (see Section 3.2); because
different parameters can result in covering different requirements, the coverage of M ’s requirements
is often less than 100%, and our measurements reflect this. However, for the purpose of greedy test
suite construction, we define maximum achievable coverage as the number of requirements that can
be covered for a specific set of test case generation parameters.

3.1.2.2. Test suite size. Test suite size is the number of test cases in the test suite and estimates
testing cost.

3.1.2.3. Fault detection effectiveness of generated test suites. The fault detection effectiveness of
a test suite is ‘success’ when the fault is detected by at least one execution of a test case in the
test suite, or ‘failure’ when the fault is not detected by any test case execution. During analysis, we
typically compute the average fault detection effectiveness across many test suites, with results that
range from 0.0 to 1.0.

3.1.2.4. Difficulty of satisfying test requirements. The difficulty of satisfying each test requirement
is computed as the ratio of the number of test executions satisfying the requirement to the total
number of test executions.

3.1.2.5. Fault detection effectiveness of test requirements. The fault detection effectiveness of a test
requirement is the ratio of the number of test executions detecting a fault while covering the test
requirement to the number of test executions that cover the test requirement.

3.2. Experiment setup

Conducting our experiment requires us to

1. generate mutants for programs without faults;

2. conduct a large number of random test executions;

3. for each execution, record the requirements covered for all metrics and whether a fault is
detected;

4. compute the difficulty and fault detection rate for each requirement generated;

5. perform resampling over executions to construct test suites; and

6. measure the resulting coverage and fault detection effectiveness of each test suite.

3.2.1. Mutant generation. We wished to study fault detection in the presence of many diverse
fault types, which is not possible when using single-fault programs. Thus, for several of our object
programs, we corrected known faults [23] and applied mutation analysis. To choose mutation
operators for our study, we drew on concurrency mutation operators used in a recent survey on
concurrency mutation testing [27]. These operators are similar to traditional syntactic mutation oper-
ators commonly used in other studies [17, 28] but focus on manipulating synchronization constructs,
for example, adding and removing synchronization primitives. Table III describes the operators. We
applied these operators to generate mutants. We then discarded any mutants that (i) did not fail for
any generated test execution, (ii) were malformed, for example, resulted in code that could not be
executed, or (iii) were killed by every test execution.

We list the number of mutants generated together with the final number of mutants used within
parentheses in Table I. Note that we also use objects containing real faults, thus mitigating the
risk present when using concurrency mutation operators, whose usage is less established and stud-
ied than structural mutation operators for sequential programs [17]. Hereafter, when referring to
‘objects’, we are referring to individual faulty programs; for example, ‘all objects’ refers to all
single-fault programs and all mutants.

3.2.2. Test generation and execution. We used a randomized test case generation approach to avoid
bias that might result from using a directed test generation approach such as those proposed in

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

S. HONG ET AL.

Table III. Mutation operators.

Category Description

Change Exchange synchronized block parameter
synchronization Remove wait ()

operations Replace notifyAall () withnotify ()

Expand synchronized Block

Modify Remove synchronized block
synchronized Remove synchronized keyword from method
block Shift synchronized block

Shrink synchronized block
Split synchronized block

[12, 29]. Our approach selects an arbitrary test input and generates a large number of test executions
by executing a target program on the test input with varying random delays (i.e., calls to sleep ())
inserted at shared resource accesses and synchronization operations.

We control two parameters of this approach: the probability that a delay will be inserted at each
shared resource access or synchronization operation (0.1, 0.2, 0.3, and 0.4), and the maximum length
of the delay to be inserted (5, 10, and 15 ms). We used these controls because prior work indicates
that they can impact the effectiveness of the testing process [13]. The specific values used were
selected based on our previous experience in this domain [15] and pilot studies, both of which
indicated that larger or finer grained delays and probabilities did not yield significantly different
results. In addition to the 12 random scheduling techniques, we ran test executions without inserting
any delay noise.

We began by estimating the number of test executions E required to achieve maximum coverage
for all eight coverage metrics used, and each of the six combined metrics considered. This was
performed by executing the original object for several hours and recording the rate of coverage
increase for each metric. For each object, we required either 1000 or 2000 test executions. Following
this, for each parameter setting (13(= 4 x 3 + 1) in total), we conducted E executions for each
mutant (for objects with mutants) or each object program (for objects without mutants). During
each execution, we recorded (i) the test requirements covered for each coverage metric studied and
(i) whether a fault was detected.

We recorded an execution as detecting a fault if (i) an application-specific assertion statement is
not satisfied (i.e., invariant violations), (iii) a crash occurs that throws an uncaught exception (e.g.,
null pointer dereference, array index out-of-bound, and invalid memory access), or (iii) the program
deadlocks, determined by checking whether execution time is exceptionally long.

3.2.3. Data collection. After each test execution, we know (i) which test requirements are covered
for each coverage metric and (ii) whether the program failed. Based on this information, we can
obtain the data for each test requirement — how frequently the test requirement is covered, and how
frequently executions that cover the test requirement detect a fault. These data are used for analysis
related to RQ4.

Using the test execution information, we can, via random resampling, construct test suites of
varying sizes and levels of coverage. Ideally, we would like to construct test suites encompassing all
possible combinations of size and coverage. Unfortunately, as coverage and size tend to be highly
correlated, this is impossible; small test suites with high coverage (or vice-versa) are extremely rare
in practice. We instead generated, for each combination of object and coverage metric, 90 000 test
suites ranging in size (i.e., number of test executions) from 1 to the maximum size via random
sampling of executions. This results in a set of test suites with increasing size and, within each level
of size, varying coverage. These test suites are used to help address RQ1, RQ2, and RQO3.

We also generated 100 test suites achieving maximum achievable coverage for each coverage
metric. We generated these using a mostly greedy test suite reduction approach: from the set of
executions, repeatedly select either (i) the test execution satisfying the most unsatisfied requirements
(80% chance) or (ii) a random test execution (20% chance) until all requirements are satisfied. This

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

ARE CONCURRENCY COVERAGE METRICS EFFECTIVE FOR TESTING

results in a test suite that achieves maximum coverage using fewer test executions that are required
by simple random test suite construction. The randomization adds noise, ensuring some variation in
the generated suites. These test suites are used to address RQ2. To investigate RQ3, we apply the
same test construction for the six combined coverage metrics as well.

To select a test suite for a single-fault program or mutant, we have one set of executions over the
object, and we resample from this set to construct test suites. Each test suite becomes a data point for
analysis, having an associated level of coverage, size, and fault detection result (killed/not killed).
When constructing each test suite, we held probability and delay constant. This was performed to
facilitate later analysis considering the impact of these factors.

Note that the generation process for the original eight metrics and the six combined metrics is the
same. We treat a combined metric (e.g., Follows + PSet) as a single metric, with its own separate
set of coverage requirements, a separate sets of greedy test suites, and so on. This allows for a fair
comparison of the original and combined metrics in Section 4.

3.3. Threats to validity

3.3.1. External. We conducted our study using only Java programs with standard synchronization
operations. These programs are relatively small but have been chosen from existing work in this
area, and thus, we believe that our results are at least generalizable to the class of programs that
concurrent program testing research focuses on.

For concurrency coverage metrics, it is difficult to accurately determine satisfiable test require-
ments. For all coverage metrics, however, we appear to have reached saturation during test case
generation (see Section 4.1) [25], and thus, a larger number of executions is unlikely to significantly
alter our results.

The randomized test generation technique we use was implemented in-house, but we have
attempted to match the behaviour of other random testing techniques by constructing a general
technique and varying the parameters of probability and delay.

We follow the current practice of concurrency testing research that focuses on analyzing diverse
thread interleavings effectively and efficiently by restricting other factors such as test inputs. Thus,
our study utilizes various thread schedulings with single test input values, which may not consider
the impact of various test input values on concurrent program testing.

3.3.2. Internal. Our randomized test case generation technique is implemented on top of Java’s
internal thread scheduler. When using other algorithmic thread schedulers, such as Probabilistic
Concurrency Testing (PCT) [30, 31] or CTrigger [32], results may vary. Additionally, while we
have extensively tested our experimentation tools, it is possible that faults in our tools could lead to
incorrect conclusions.

3.3.3. Construct. Our method of detecting faults may miss faults, for example, errors not captured
by an assertion violation or not leading to an exception. In practice, however, much of concurrent
testing focuses on detecting faults via imperfect test oracles, and thus, our study uses a realistic
approach to fault detection.

We measured the maximum coverage for a metric by tracking all coverage requirements
covered in any execution during test generation. This value is likely lower than the actual maximum
achievable coverage because there likely exist coverage requirements that are achievable but not
covered by any generated execution. Nonetheless, because we generate a large number of executions
with different random testing techniques, we expect that missed coverage requirements are few.
Furthermore, even if the maximum coverage values are incorrect, only RQ3 depends on this value,
and thus, other conclusions drawn would not change. We did not use a predictive analysis tech-
nique for the study because the existing predictive analysis techniques are known to produce false
positives (i.e., infeasible test requirements are estimated as feasible).

We used mutation analysis to measure testing effectiveness for some objects. Our seeded faults
are designed to mimic actual concurrency faults and, of course, are indeed faults, but the relationship
between faults generated by concurrency mutation operators and real concurrency faults has not

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

S. HONG ET AL.

been thoroughly investigated. Nevertheless, the results for mutation-based objects and objects with
real faults are similar.

3.3.4. Conclusion. For each object, we constructed from 1 to 88 faults and 100 000 test suites per
coverage metric. While more mutants, faults, and test suites could in theory alter our conclusions,
in practice, our conclusions remain the same for both single-fault programs, mutation testing-driven
programs, and larger numbers of test suites.

4. RESULT AND ANALYSIS

Our analyses are designed to study how each coverage metric impacts fault detection effectiveness.

Towards RQ1, we visualized the pairwise relationship between variables, measured the correla-
tion between coverage, size, and fault detection effectiveness, and performed linear regression to
better understand how both coverage and size contribute to fault detection effectiveness.

Towards RQ2, we compared the fault detection effectiveness of test suites satisfying maximum
achievable coverage and random test suites of equal size. Towards RQ3, we performed the anal-
ysis discussed earlier over combinations of pairwise metrics and compared the results with the
single-metric versions. Finally, towards RQ4, we examined the correlation between the difficulty of
covering a test requirement and the average fault detection for test executions covering a test require-
ment, and we compared the average fault detection for difficult-to-cover with the fault detection for
easy-to-cover test requirements.

Ideally, we would like a coverage metric that (i) is highly correlated with fault detection (over
0.7 coverage); (ii) along with size, results in regression models with high fit for fault detection
(higher than 0.8); and (iii) allows us to select test suites with significantly higher fault detection than
randomly selected test suites of equal size (improvements in fault detection of at least 20%). Any
metric fitting such criteria would be useful both as a predictor of fault detection effectiveness and as
a test generation target.

4.1. Visualization

To understand the relationship between test suite size, coverage, and fault detection effective-
ness, we began by plotting the relationship between each pair of variables. In Figure 2, we show
the relationship between size and coverage for each coverage metric, for four single-fault objects
(Figure A.1 for all single-fault objects). In Figure 3, we show the same relationship for objects using
mutation testing. In Figure 4, we show the relationship between coverage and fault detection for
four single-fault objects (Figure A.2 for all single-fault objects). In Figure 5, we show the same rela-
tionship for objects using mutation testing. Finally, in Figure 6, we show the relationship between
size and fault detection for all objects. Note that expanded versions of Figures 2 and 4 are found in
Section 6. To ease readability, we have elected to show only specifically referenced objects here.

Recall from Section 3.2.2 that for each combination of probability and delay (two variables con-
trolled during test generation), 1000 test executions were generated for each single-fault program.
Each figure is an average across these traces of the test executions. Additionally, rather than plot
a separate figure for each of the dozens of mutants for the Arraylist, Boundedbuffer, and Vector
objects, figures for these objects are averages across all mutants. Note that this averaging results in
figures that do not necessarily reflect the underlying trends within each mutant, as we discuss later
in this section.

In all of the figures, there is typically a fair amount of variation along the y-axis as coverage and
size increase. To improve the readability of the figures, we have used two forms of smoothing. In the
case of plots of size versus coverage and size versus fault detection, we have used Local regression
(LOESS) smoothing with a factor of 0.1. The relationships here are clearly visible with raw plots;
the use of mild smoothing allows us to distinguish coverage metrics and objects after plotting. How-
ever, plots of coverage versus fault detection are very noisy, as indicated by the correlations shown
in Section 4.2. LOESS smoothing is of limited help here, and so to further improve readability,

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

ARE CONCURRENCY COVERAGE METRICS EFFECTIVE FOR TESTING

— Blocked — DefUse PSet — Blocked - DefUse PSet
— BlockedPair Follows — - SyncPair - BlockedPair Follows — - SyncPair
— Blocking - LRDef — Blocking - LRDef
S S
T 100 FEF—""= — < 100 B
1 9ow/= 48 2]
= s 80 .
% 80 |- 4 ¢ 70 .
o - .
S f 15 SfF]
;20 60 L I ! I ! 1 °>D 40 ! I ! I =
< 0 200 400 600 800 1000 < 0 200 400 600 800 1000
Test Suite Size Test Suite Size
(a) Accountsubtype (b) Alarmclock
;\SIOOVL—AZZ — *:‘::AA&Q10()*9/,1——-'77Lf':'::'«
Y % Z — 3 9F /7 -
= B / 1 s 80F/ Vs 1
g L 4 £ 70} 8
% 80 / o
2 70 z 9F i
S 1S of/ i
o 60 1 a0 30k i
2 50 ket 1 I I 1 1 E 20 L I] 1] =
0 200 400 600 800 1000 0 200 400 600 800 1000
Test Suite Size Test Suite Size
(c) Clean (d) Groovy
Figure 2. Size versus coverage, four single-fault objects.
— Blocked - DefUse PSet — Blocked - DefUse PSet
- BlockedPair Follows — - SyncPair - BlockedPair Follows — - SyncPair
—— Blocking - LRDef —— Blocking - LRDef
§100»L_—___J—=___‘_i—___=_;l-_=:A§]OO*I,__._-l-———l————t———la
% s0fl/---—~-——~—~~~ "~ 18 sof i
5 // 5 60 |- B
° ol 15 2 I é' 1
20 20 I I I 12 I I I I I
< 0 500 1000 1500 2000 < 0 500 1000 1500 2000
Test Suite Size Test Suite Size
(a) Arraylist (b) Boundedbuffer
§ 100 FT T T T T
o, 80 C—:—:—:—:——————*‘*— -
5 6o 7~ .
2 /)
o L/ .
o 40 /
L;h 20 B
< I I I I I
0 500 1000 1500 2000
Test Suite Size
(c) Vector

Figure 3. Size versus coverage, mutation objects.

before plotting, we have averaged the fault detection rates for all coverage levels within five percent-
age points; that is, we have averaged the fault detection rate for test suites achieving 12.5-17.5%
coverage, 17.5-22.5% coverage, and so on.

This averaging across mutants and test generation parameters results in graphs that must be
carefully interpreted: individual points on the lines can reflect the average of many test suites —
particularly for coverage levels above 50% — or few test suites, as very low coverage levels are
infrequently achieved in practice. This is unfortunate, but necessary, as the alternative is to plot each
combination of coverage metric and object separately, which would require hundreds of figures, or
as very dense scatterplots, resulting in unintelligible figures. However, the goal of visualization is
just to spot broad trends; rigorous analysis follows in the remaining sections.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)

DOI: 10.1002/stvr

S. HONG ET AL.

—e Blocked B- B DefUse PSet
&~ A BlockedPair *—* Follows ¢~ ¢ SyncPair
¥—¥ Blocking +— + LRDef
=
= 15 =
g 5
g 1.OFT T T = § .
2 o8} 41 o
Q A A
2 06} 1 =
"3‘ 0.4 m E A
= 02f 1 .02+ ,/(- - i
. (~ o0 —_—
%0 0.0k S E E] BT ! !
< 0 20 40 20 40 60 80 100
Coverage(%) Coverage(%)
(a) Alarmclock (b) Groovy
= =
2 1.0FT = F 4 2 10 ™
2 TEEF] <
3 osf a4 2osf .
L / Q
A 06 AW, P A o6} -
E 04} IRL! T E 04| .
T 021 _ A / 1 T 021 1
o - 0 ! %\/ oi)
E 0.0 b4 I I Y GRS S E 0.0 £2 -
0 20 40 60 80 100 0 5 10 15 20 25
Coverage (%) Coverage (%)
(c) Stringbuffer (d) Twostage
Figure 4. Coverage versus fault detection effectiveness, four single-fault objects.
e—o Blocked B- B DefUse PSet e—o Blocked B B DefUse PSet
4— A BlockedPair *—* Follows ¢~ ¢ SyncPair 4— A BlockedPair *—* Follows ¢~ ¢ SyncPair
¥—¥ Blocking += + LRDef ¥—¥ Blocking += + LRDef
= =
'g T T T T 'g 1.0F T = e T T
3 08 . 8 09} g Lo]
2 06} ‘//ﬁ 13 osf S by
2 s =4 2 07ha v G
= 04 4t 4 1= o6
= Ny - | & 051 a 7
w02 P 2 £ 041 .
gb 0.0 H‘ﬁ‘%—r“"» I ;°>° 03[, ! L
< 20 40 60 80 100 < 0 20 40 60 80 100
Coverage (%) Coverage (%)
() Arraylist (b) Boundedbuffer
=
2 1.0 .
8 08 A8
J93 | |
a 06 1
3 04 .
<
= 02 e
}C” 0.0 L
100
Coverage (%)
(c) Vector
Figure 5. Coverage versus fault detection effectiveness, mutation objects.
o T — ==L — — — T ! =
= Z — accountsubtype
S osh i — - alarmclock
g — arraylist
] — buffer
QQ) 0.6 T clean
= - groovy
2 04} 1 piper
H': - producerconsumer
0 02} . stringbuffer
< — ° twostage
— vector
00 | I I I L] — wronglock
0 500 1000 1500 2000
Size

Figure 6. Size versus fault detection effectiveness, all objects.

Copyright © 2014 John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. (2014)

DOI: 10.1002/stvr

ARE CONCURRENCY COVERAGE METRICS EFFECTIVE FOR TESTING

Note that in several cases, coverage achieved is less than 100%. This occurs because each test
suite is specific to a single combination of test generation parameters, but the set of test requirements
(and thus, the mark for 100% achievable coverage) is computed across all test suites. Thus, it is
possible that no single test suite achieves 100% maximum achievable coverage. Similar behaviour
is shown in Figure 6, as several test suites of maximum size fail to detect the fault.

We begin by examining the relationship between size and coverage/fault detection, as shown in
Figures 2, 3, and 6. We can see that the concurrency coverage metrics often — but clearly not always
— exhibit behaviour similar to what we expect from sequential coverage metrics and testing: broadly
logarithmic behaviour, with a rapid increase in both fault detection and coverage for small test suite
sizes, and smaller increases as test suite size increases. Here, we see small differences in coverage
metrics: some coverage metrics begin with very high levels of coverage for even small test suites and
thus quickly achieve close to maximum coverage, while others grow in coverage more slowly. For
example, LR-Def is an extreme case, achieving maximum coverage almost immediately for many
programs. In contrast, Follows, a more complex metric, often achieves maximum coverage only
with larger test suites sizes, that is, those greater than 300. Here, differences are related primarily
to the number of ‘easy’ requirements to satisfy — those metrics that are easier to satisfy have
high coverage even for very small test suites, for example, Blocking, Blocked, and LR-Def. Similar
variations are also visible in the relationship between size and fault detection (see Figure 6). On the
whole, however, the relationship between size and coverage/fault detection is clearly positive.

Less easily inferred from the figures is the relationship between coverage and fault detection
(Figures 4 and 5). Clearly, in many cases, the relationship is positive; for example, this is true for
all metrics when applied to the Twostage and Arraylist objects. In other cases, the relationship is
noisy, but nevertheless, high coverage appears to result in high fault detection, for example, on the
Alarmclock object. In some cases, however, the relationship is quite unclear. Boundedbuffer, for
example, exhibits no clear pattern for any coverage criteria (except when testing one specific mutant,
as we discuss later), whereas Blocked-Pair coverage varies from seeming clearly related to fault
detection (e.g., for the Groovy and Vector objects) to seeming marginally related to fault detection
(e.g., for the Alarmclock and Stringbuffer objects).

This clear positive relationship between size and fault detection, coupled with the inconsistent, but
nevertheless positive relationship between coverage and fault detection, provides informal evidence
that both size and coverage impact fault detection effectiveness. We quantify the impact of both
factors in the following subsections.

4.2. Correlation between variables

The foregoing visualizations indicate that both test suite size and coverage appear to be positively
correlated with fault detection effectiveness and that size is positively correlated with coverage.
To measure the strength of these relationships, for each object and coverage metric, we measured
the correlation between each variable using Pearson’s r.¥ We selected Pearson’s r for two reasons.
First, we are interested in the application of concurrency coverage metrics as predictors, and thus,
measuring the strength of the linear relationship between variables is desirable. Fault detection is
guaranteed to increase monotonically with size and coverage, and thus, establishing this using rank
correlation (e.g., Spearman or Kendall’s tau) yields less new information [33]. Second, single-fault
programs can only fail or pass for each test suite; computing correlation over such data is a special
case known as point-biserial correlation, for which rank correlation (due to the many ties present) is
unsuitable. For every non-zero correlation computed, the p-value was (far) less than 0.05 and thus
statistically significant at « = 0.05.

The computed correlations for single-fault programs are presented in Table IV. For example,
for Accountsubtype, the correlation between Blocked coverage and fault detection/test suite size is
0.39 and 0.11, respectively, while the correlation between size and fault detection (S-FF) is 0.22,
indicating that coverage is more highly correlated with fault detection than test suite size.

*For small samples, conclusions based on Pearson’s can be unsound for non-normal data; in our case, the use of very
large number of samples, 30 000-90 000 per correlation computed, mitigates this risk.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

S. HONG ET AL.

Table IV. Correlations over coverage metrics.

Blocked Blocked-Pair Blocking Def-Use S-FF

Accountsubtype 0.39,0.11 0.39,0.11 0.35,0.10 0.60,0.28 0.22

Alarmclock 0.77,0.25 0.52,0.24 0.27,0.23 0.56,0.22 0.05
Clean 0.16,0.16 0.73,0.23 0.19,0.40 0.96,0.29 0.30
Groovy 0.46, 0.36 0.50,0.37 0.45,0.37 0.45,0.16 0.17
Piper 0.0, 0.0 0.62,0.45 0.48,0.25 0.07,0.03 0.38
Producerconsumer 0.14, 0.03 0.17,0.21 0.14,0.16 0.57,0.15 0.12
Stringbuffer 0.58,0.18 0.67,0.23 0.59,0.31 0.43,0.12 0.13
Twostage 0.88,0.23 0.94,0.13 0.88,0.23 0.92,0.13 0.10
Wronglock 0.12,0.01 0.12,0.01 0.12,0.01 0.53,0.13 0.11

Follows LR-Def PSet Sync-Pair S-FF
Accountsubtype 0.28, 0.09 0.30,0.12 0.57,0.42 0.28,0.09 0.22
Alarmclock 0.66, 0.29 0.59, 0.30 0.59,0.35 0.19,0.26 0.05
Clean 0.17,0.42 0.91, 0.30 0.83,0.28 0.09,0.05 0.30
Groovy 0.52,0.24 0.30, 0.09 0.48,0.18 0.52,024 0.17
Piper 0.59, 0.49 0.66, 0.27 0.67,0.27 0.62,045 0.38
Producerconsumer 0.21, 0.43 0.46, 0.26 0.30,0.26 0.11,0.20 0.12
Stringbuffer 0.44,0.35 0.74,0.14 0.87,0.15 0.66,0.23 0.13
Twostage 0.88,0.23 0.95,0.13 0.96,0.13 0.96,0.13 0.10
Wronglock 0.0, 0.0 0.50, 0.15 0.58,0.21 0.0,0.0 0.11

Each cell contains coverage and fault detection effectiveness correlation, and size and
coverage correlation. S-FF denotes size and fault detection effectiveness correlation.

The correlations for objects with multiple faulty versions are shown as boxplots in Figure 7.% The
column labeled X-FF represents the correlation between the coverage X and fault detection, and
the column with X-SZ represents the correlation between the coverage X and the test suite size. The
last column labeled S-FF is the correlation between test suite size and fault detection.

For example, we can see for Arraylist that the correlation between size and fault detection (column
labeled ‘S-FF’) ranges from 0.4 to slightly less than 0.2, with a median slightly under 0.2 and a
mean of 0.2. In contrast, the correlation between each coverage metric and fault detection tends to be
higher, with means and medians ranging from roughly 0.3 for Blocking coverage to roughly 0.7 for
Blocked coverage. Additionally, several outliers, both above and below the mean, can be seen; for
example, in the near perfect correlation of Blocked coverage and fault detection for one mutant, and
the very low (and sometimes even negative) correlations exhibited for a handful of combinations of
coverage and mutant scenarios.

For each metric, there exists at least one single-fault object for which the correlation with fault
detection is at or above 0.88. Further, even when coverage weakly correlates with fault detection, this
correlation is often higher than the correlation of fault detection and size (S-FF). These results pro-
vide evidence that each metric is a useful predictor of concurrency testing effectiveness, depending
on program.

The best metric, however, varies across programs, and no single metric is a consistent
predictor of effectiveness, although PSet is often quite strong. For the single-fault programs, PSet
shows the highest correlation for four programs among nine single-fault programs in total, and
PSet always shows high or moderate correlations except in the case of Boundedbuffer. Although
PSet has a low average/median of 0.2 (Boundedbuffer), PSet has a better correlation than other
coverage metrics.

The reason for this variation is unclear, but we believe that this occurs because the metric’s
intuition does not always capture the single fault present. This is supported by the results shown
in Figure 7, where we see a wide variation even within program depending on the mutant used.
For example, for the Vector program, the relationship between coverage and fault detection varies

$For each boxplot, the mean is shown as a star, the boxplot whiskers represent data within the 1.5 times the interquartile
range, and the outliers are shown as red ‘+’ marks. This convention is maintained for boxplots shown in future sections.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

ARE CONCURRENCY COVERAGE METRICS EFFECTIVE FOR TESTING

:lok‘L T T T T T T T T T T T T T T |-
dii= ﬂ s |
=00 - & B o @ B =]
04} == i
%02» (55 @ ‘: + # T ﬁ T+ [call
UOO*l I T I I I T I I T I L

& & & & % & & & & & &
¥ T TS S \o & Q & & & e
~ & 6&6 && Q,\QQ <b\°c F P Q°\ QQ\ \3’ %ﬁ\\c %ﬁ&
&
(a) Arraylist
T T + T T T T 4, T T T 4, T]

5 00 T T
Zoif E@ & . o] - I
203F = & + == & .
3oL hig ¥ e &]
S 0.1 »% =5 Es .
C ook L + P ! L T ! ! ! T ! + I %A
& &b P& P& g A = P S, PR3
& Qi"g{ o %@“%Q @“%%@) @‘f \04@«“ \O‘Xf&f@éﬁ = Q%Q\% & q‘»\"%e&g

$ ¥ > NS

Q,\e Q)\e . a'&b g N Q)\ec ‘b\oo X KX & & F9 Gﬁ& %ﬁ"‘o
SR
(b) Boundedbuffer
0.8 FT T T T T : | —
Bool é. < <= -« |
Z 04}]
ss87:e078 B:878 o
S 0.0} - L L T]
O + L 1 I T I I T I I 1 I T I L
SIS R @” P S
& o ¢ e ®@ & ¢ ¢ Q~Q & & ¢ e
¥ > N \
¥ 05&6 & & ‘b\ee F vy & &
SR
(c) Vector

Figure 7. Correlations across mutants, mutation objects. FF = fault detection, SZ = test suite size.

strongly for several metrics, for example, Def-Use, which varies from exhibiting a negligible rela-
tionship to a moderately strong relationship depending on the mutant used. This contrasts strongly
with the very consistent relationships between coverage and size for most metrics when applied to
all of Vector’s mutants.

In any case, the variation in the best metric for a given object indicates that selecting an effec-
tive metric may be challenging. Additionally, the occasional low and often moderate correlation
between coverage and fault detection (and somewhat surprisingly, size and fault detection) hints that
factors other than those captured by the concurrency coverage metrics may relate to fault detection
effectiveness. We discuss this further in Section 5.2.

4.3. Models of effectiveness

Based on the previous two analyses, we can see that for every metric, coverage levels do correspond
(somewhat) to testing effectiveness. However, we also see that test suite size and coverage are often
similarly correlated, and thus, the relationship between size, coverage, and fault detection is unclear.
It is possible that, in fact, coverage and size are not very independent of each other in terms of their
effect on fault detection; for example, depending on the case example, either coverage or size alone
may be a sufficient exploratory variable for fault detection.

Does coverage predict fault detection effectiveness or merely reflect test suite size? And to what
extent (if any) does considering coverage improvement increase the ability to predict fault detection?
To address these questions, we used linear regression to attempt to model how test suite size and
coverage jointly influence the effectiveness of the testing process, with the goal of determining
whether coverage has an independent explanatory ability with respect to fault detection.

In linear regression, we model the data as a linear equation y = B1x1 + Baxz + ... + Bpxp +
&; where variables x; correspond to explanatory factors and variable y denotes the dependent
variable. After modelling the data, the coefficient of determination R? is produced. R? indicates how
well the data fit the model, and can be interpreted as the proportion of variability explained by the

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

S. HONG ET AL.

% % FF=SZ+1log(CV) e o FF=1log(SZ) A A FF=CV +log(SZ)
+ + FF=CV+SZ X X FF=SZ Q O FF =log(CV) + log(SZ)
N N
~ 08F A A A + A .
= +
=] -
3 0.6 g A i
wn
2 o4l 2 i
=
02} E
0.0 =
B\Oc\@d Q.\Oc\@d?a“ Blocki® pefUse Follows LRDeE pSet sy“c?a'xr

Figure 8. Adjusted R? for every best fit model, all combinations of objects and coverage metrics. FF = fault
detection, SZ = test suite size, CV = percent coverage.

model; for example, a fit of 0.6, which indicates about 60% of the variation, can be explained by the
explanatory variables. In many cases, the goal of linear regression is model selection: from a set of
candidate models, select the model that offers the highest goodness of fit, while omitting unneeded
explanatory variables.

In our work, we will focus largely upon the adjusted R?. Adjusted R? is a measure of fitness that
adjusts for the number of explanatory variables. When comparing two models, a model with more
explanatory variables will have a higher adjusted R? only when additional variables significantly
contribute.! Strictly speaking, adjusted R? cannot be used to indicate the proportion of variance
captured, but as adjusted R? is always less than or equal to R?, we can infer that the proportion of
variance captured by a model is equal to or greater than that given by adjusted R?. Thus, if for some
model an adjusted R? of 0.6 is produced, this indicates that the model explains at least 60% of the
variation in fault detection.

In this case, we would like to model fault detection effectiveness for each object and coverage
metric using test suite size (SZ) and/or coverage level (CV) as explanatory variables. If the best
models always employ coverage levels as an explanatory factor, this indicates that coverage has
an independent ability to predict fault detection effectiveness. Accordingly, for every combination
of object and coverage metric where coverage varies, we fit all possible linear models employing
combinations of SZ, log(SZ), CV, and log(CV) as explanatory variables (with fault detection (FF)
as the dependent variable). Note that the use of log does not necessarily indicate that a factor is
less important (in terms of fit) than a factor linearly related, but it indicates that the relationship
is logarithmic.

Our fitting process results in over 10 000 regression models, and thus, listing regression mod-
els with computed coefficients is infeasible; additionally, we are interested in exploring how well
size and coverage levels model fault detection effectiveness, not the specific models. To sum-
marize our data, we began by selecting the best fitting model for each object/coverage metric
pair. We plot the associated adjusted R? in Figure 8 for each coverage metric, across all objects,
indicating which set of explanatory variables had the highest fit. For example, we see that for
the Def-Use metric, for two objects, adjusted R? was greater than 0.8, indicating high fit with
model FF = a x CV + B x log(SZ), while on all other objects, fit was under 0.4, sug-
gesting a low to moderate fit. Here, we can clearly see the variation in metric effectiveness,
with fits ranging from less than 0.2 to over 0.8, indicating a wide variation in predictive power.
However, for all coverage metrics, for at least one object, an adjusted R? of 0.8 or above was
observed, indicating high fit, and for many objects, fits above 0.4 were observed, indicating
moderate fit.

Following this, we wished to measure the degree to which coverage improves the model fit;
that is, how much does adding coverage as a dependent variable improve the fit as compared with

IWe also used Mallow’s C p to determine goodness of fit [34]. The results when using Mallow’s led to the same
conclusions, and we have presented the results using adjusted R2 as we believe that this metric is easier to interpret.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

ARE CONCURRENCY COVERAGE METRICS EFFECTIVE FOR TESTING

models using size alone? To answer this question, we computed minimum and maximum relative
improvement in adjusted R? when using models with two dependent variables over models using
size alone as a dependent variable. We list the results in Table V for single-fault objects and plot
the results in Figure 9 for mutation objects. In the plots, the columns MN and MX represent the
minimum and the maximum relative increase in adjusted R? when using two dependent variables
for the corresponding object. An NA denotes that the improvement cannot be computed, as the linear
regression’s adjusted R? is 0.0 (resulting in infinite improvement).

As shown in Table V, in many cases, adjusted R? greatly improved with the addition of coverage
to the regression models. In several instances, for example, when applying nearly every coverage
metric to the Stringbuffer object, we see improvements over 100%, indicating a more than double
increase in adjusted RZ2. In the case of mutation objects, we see less consistency, with Arraylist
exhibiting small improvements (less than 10% increases), and Vector exhibiting a mix of small to
moderates increases ranging from under 5% up to 30% (see Figure 9).

In some cases, however, the improvement found in using coverage as part of the regression
model is small, indicating that test suite size is the main component of effective testing. For exam-
ple, Blocked coverage applied to the Clean object yields a maximum improvement of only 0.4%,
and for the Boundedbuffer object (Figure 9), we see several instances where the relative change in
adjusted R? is negative, indicating that the addition of coverage to the model provides no statistically
significant improvement to the predictive power of the model.

Based on these analyses, we can see that while no single set of explanatory variables is best,
much of the time models based on both coverage and size are preferable to models using only one
explanatory variable. Indeed, in several cases, the addition of coverage to the model improves the
model fit many times over. This provides evidence that coverage metrics have a predictive ability
separate from test suite size. Nevertheless, the adjusted R? is generally less than 0.8, indicating that
while our models do have reasonable predictive power, a significant proportion of variability is not
accounted for by the models. Furthermore, in some cases, coverage provides little or no predictive
power, leaving test suite size as the sole (and often also weak, per Section 4.2) predictor of testing
effectiveness. We discuss this further in Section 5.2.

Table V. Minimum and maximum relative increase in adjusted R? when using two dependent variables.

Blocked Blocked-Pair Blocking Def-Use
Accountsubtype 0.0%, 45.8% 0.0%, 44.7% 0.0%, 34.0% 121.9%, 134.3%
Alarmclock 3293.5%, 3858.0% 1591.1%, 1767.3% 351.2%, 483.0% 1847.4%, 2008.1%
Clean 0.0%, 0.4% 67.0%, 122.9% 0.0%, 0.5% 244.6%, 253.7%
Groovy 198.5%, 313.9% 241.8%, 355.4% 182.8%, 280.5% 131.5%, 209.3%
Piper NA 16.5%, 30.1% 0.0%, 13.0% NA
Producerconsumer 0.0%, 10.4% 0.0%, 6.9% 0.0%, 6.5% NA
Stringbuffer 369.1%, 562.9% 518.9%, 542.0% 386.1%, 540.3% NA
Twostage 1384.0%, 1497.6% 1624.1%, 1703.9% 1384.0%, 1497.6% 1511.5%, 1609.3%
Wronglock 0.0%, 14.3% 0.0%, 14.3% 0.0%, 14.3% 223.5%, 245.1%

Follows LR-Def PSet Sync-Pair
Accountsubtype 0.0%, 20.2% NA 104.4%, 116.5% 0.0%, 20.2%
Alarmclock 2576.8%,2791.3% 2170.2%,2446.5% 2211.9%, 2621.7% 138.1%, 179.3%
Clean 0.0%, 1.0% 199.8%, 216.5% 142.0%, 164.7% 0.0%, 0.1%
Groovy 257.7%, 279.2% 27.0%, 85.7% 169.2%, 228.0% 257.7%, 279.2%
Piper 6.3%, 20.5% NA 43.6%, 55.3% 16.5%, 31.1%
Producerconsumer 0.0%, 5.2% NA 0.0%, 32.5% 0.0%, 1.6%
Stringbuffer 166.2%, 296.9% 624.7%, 653.9% 927.4%, 948.7% 514.3%, 619.2%
Twostage 1384.0%, 1497.6% 1688.0%, 1740.2% 1724.8%, 1774.8% 1627.3%, 1764.8%
Wronglock NA NA 289.3%, 294.2% NA

Copyright © 2014 John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. (2014)

DOI: 10.1002/stvr

S. HONG ET AL.

SO T T T T T T T T T T T T T T T

40 -
301 -
201 -
10 -

EE e T oo e S o

S FFFFFssFssFssFsFs s
Blocked BlockedPair Blocking DefUse Follows LRDef PSet SyncPair
(a) Arraylist

Relative Adj.
R? Imp (%)

(=)

+—F «

e = 2 2 L +2® s b D, o

I 1

Relative Adj.
R? Imp (%)
[\ I e e

T

+
+
+

S T P T F T s FfsFesdFads e
Blocked BlockedPair Blocking DefUse Follows LRDef PSet SyncPair
(b) Boundedbuffer

30 T * T T T T T T T T T T T T T T
251]
00+ a
10+ + T

PETE R R P P
FFIFIFIFIFIFFssFsses s
Blocked BlockedPair Blocking DefUse Follows LRDef PSet SyncPair

(¢) Vector

Relative Adj.
R? Imp (%)
o

S W

Figure 9. Minimum and maximum relative increase in adjusted R? when using two dependent variables,
mutation objects. MN = minimum, MX = maximum.

4.4. Effectiveness of maximum coverage

Our first three analyses have characterized the relationship between test suite size, coverage,
and fault detection effectiveness and statistically established that for each metric, coverage level
has a predictive ability for fault detection apart from that of test suite size. From these results,
we can see that while not every coverage metric is highly effective for all programs, all coverage
metrics do appear to have value. Thus, it is worthwhile to use concurrency coverage metrics (in
addition to test suite size) as methods for estimating the concurrency fault detection effectiveness of
a testing process.

Per RQ2, however, we also would like to quantify the ability of test suites to quickly achieve
high levels of concurrency coverage. To do this, for each program and coverage metric, we com-
pared test suites of maximum achievable coverage, generated using a greedy algorithm described in
Section 3.2.3, against random test suites of equal size. Our expectation is that if a metric is a rea-
sonable target for test case generation, holding the method of test case generation constant while
reducing generated test executions to construct small, high coverage test suites should result in more
effective test suites than pure random test case generation.

We began by formulating hypothesis H: test suites satisfying maximum achievable coverage will
outperform random test suites of equal size in terms of fault detection. We evaluated H for each
combination of program and coverage metric using a two-tailed bootstrapped paired permutation
test, a non-parametric statistical test that calculates the probability p that two paired sets of data
come from the same population [33]. The null hypothesis Hj is that test suites achieving maximum
achievable coverage are equally as effective as random test suites of equal size.

For each combination of coverage metric and object (per mutant for mutation objects), there
are 100 test suites generated to achieve maximum achievable coverage (hereafter referred to as

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

ARE CONCURRENCY COVERAGE METRICS EFFECTIVE FOR TESTING

maximum coverage) (see Section 3.2.3). Each test suite was paired with a randomly selected test
suite of equal size. Following this, the permutation test was applied using 250 000 permutations
for each p-value [33]. Following the test, we computed the average fault detection when using test
suites reduced to achieve maximum coverage, the average relative improvement in coverage over
random test suites, and the average fault detection for the random test suites.

Table VI lists the results of this analysis for objects with only a single fault. (Note that fault
detection is the ratio of test suites detecting the fault to the total number of test suites.) Figure 10
plots the fault detection for greedily reduced test suites and random test suites of equal size across
mutants as a boxplot. The column MFF represents the fault detection for the reduced test suites for
each object and coverage metric studied, and the column RFF represents fault detection for random
test suites of equal size. Figure 11 plots the relative increase in coverage when using greedy reduced
tests suites over randomly generated test suites of equal size.

Our analysis results imply that achieving high coverage generally yields not only statistically
significant but also practically significant increases in fault detection: large, often twofold or more

Table VI. Maximum achievable coverage test suite statistics.

Blocked Blocked-Pair Blocking

MFF RFF Cv Sz MFF RFF Cv Sz MFF RFF Cv Sz

Accountsubtype 0.19 0.06 31.9% 2.06 0.14 0.04 350% 2.16 0.09% 0.05% 29.5% 2.00

Alarmclock 0.92 0.34 54.0% 199 0.92 0.32 13.3% 220 0.29* 0.20* 81.4% 2.06
Clean 0.0 0.07 347% 193 0.0 0.10 0.0% 271 0.0 0.08 46.9% 2.3
Groovy 0.67* 0.64* 151.0% 3.72 0.63* 0.59* 182.4% 3.86 0.63 051 2065% 3.4
Piper 0.00* 0.02* 0.0%* 1.0 0.39 0.03 13.9% 2.07 0.25 0.02 30.0% 1.96
Producerconsumer 0.21%* 0.23* 54% 1.17 0.63 0.50 0.0%* 431 0.52 0.29 38.0% 2.13
Stringbuffer 0.78 0.53 1684% 236 1.0 0.87 6.1% 6.50 0.97 0.62 209.5% 3.06
Twostage 092 0.16 4319% 3.14 092 0.1 153% 32 092 0.1 405.0% 3.1
Wronglock 0.24%* 0.26* 74% 1.0 021 0.35 3.1%* 1.0 0.26* 0.33* 2.3%* 1.0
Def-Use Follows LR-Def

MFF RFF Cv Sz MFF RFF Cv Sz MFF RFF Cv Sz
Accountsubtype 0.13 0.3 22.0% 299 024 0.06 71% 192 0.23 0.03 1.9% 1.87

Alarmclock 092 030 234% 3.51 052 0.26 62.3% 2.03 0.2* 027 49.6% 2.01
Clean 1.0 0.04 52% 2.0 0.03* 0.08% 111.7% 1.28 0.03* 0.07* 14.3% 1.03
Groovy 0.35* 0.43* 53% 3.0 026 045 59.1% 3.02 0.30* 0.38* 6.3% 2.09
Piper 0.0* 0.02% 0.5% 1.13 0.70 0.09 13.0% 3.54 0.01* 0.03* 2.8% 1.78
Producerconsumer 1.0 0.36 41% 2.0 05*% 0.5% 247% 3.71 1.0 0.31 59% 2.30
Stringbuffer 0.33 0.56 62% 233 1.0 083 238.1% 446 04* 0.30* 143% 1.4
Twostage 0.92 0.13 83% 292 092 007 3745% 292 0.03* 0.03* 72.3% 1.19
Wronglock 0.34* 0.46* 19.5% 2.14 0.34* 0.35* 0.0%* 1.0 0.28* 0.33* 59% 2.0
PSet Sync-Pair

MFF RFF Cv Sz MFF RFF Cv Sz
Accountsubtype 0.36*% 0.44* 294% 6.6 021 0.0 8.1% 1.87

Alarmclock 092 04 35.0% 5.20 0.53 0.26 149% 2.04
Clean 1.0 0.11 11.4% 2.93 0.06* 0.06* 8.7% 1.30
Groovy 0.33% 0.4% 6.8% 3.0 041* 046* 52.0% 3.02
Piper 0.43 0.06 51% 194 0.64 0.03 53.6% 3.49
Producerconsumer 1.0 0.4 6.3% 234 05* 038* 304% 3.72
Stringbuffer 1.0 0.76 73% 30 10 0.74 38.7% 4.35
Twostage 092 0.06 268% 292 092 0.07 66.6% 2.92
Wronglock 046 060 473% 296 0.31* 0.30* 0.0%* 1.0

*= not statistically significant difference at « = 0.05.
MFF, maximum coverage fault detection; RFF, random fault detection; Cv, percent increase in coverage over
random; Sz, test suite size.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

S. HONG ET AL.

1.0 T T T T T T T T T T T T T T]
g ! w L w
= 0.8 0 0 T
3 o6l T * T
o - + +
8 4= f -
FerB o«) ﬁ + “ . B
= oo ! 1 ! 1 I | ! 1 I] ! 1 I] I T
& &K L & < & & & < & & &K g & < &
F& FF FF FFEFe FEoFe
Blocked BlockedPair Blocking DefUse Follows LRDef PSet SyncPair
(a) Arraylist
- 10F T T X L q; T T T T T T T T T T L
2 08w ﬁ 1
3 06} - .
A 04l L L i
=S 02f e . I -
< _ | e
- 00 | I I I I I I T I ! P I T I #A
< &K < &K < & & < &K
F& & EE S FE & S
Blocked BlockedPair Blocking DefUse Follows LRDef PSet SyncPair
(b) Boundedbuffer
1.0 [T T T T + T T T T _ T i T T T
= - -
£ o T ¥ 5T %
2 06 I
5]
e 0.4 |
02 + | + L+ +]
=00t]] ! '1L R LT LT !] LT ——
L & < & & & & L & L & & &
F& FE & & & & & &8
Blocked BlockedPair Blocking DefUse Follows LRDef PSet SyncPair
(c) Vector
Figure 10. Maximum fault detection, greedy versus random, across mutants. MFF = maximum fault

detection, RFF = random fault detection.

& &
s 60 F T T T T T T T £ T T T T T T T F
200 |- 1
3 D i + _
S B 1 9% o B e
s g %8 —é) %] 1 o % 100 -]
> > -
£ = 10f 1 &~ e = &
T) (U = | | | | | ﬁ | 1 B (1] = I I L I L i
[~2 D> R & S > =7 > R & & e N
FSFF SN E & F SFF TS
¢ F T T T ¢ F & T T
2 2
(a) Arraylist (b) Boundedbuffer
o
)
g _ 80 F T T T % % T T]
o 60 %
OF w0l & & o .
> E N]
£ 5 201& jf,
<
) (0] =1] l I] I =
~ >) 2 & Kooy &
F ST ST E S
QT ¥ ¥ O TV)
~
(c) Vector

Figure 11. Relative improvement in coverage, greedy versus random, across mutants.

increases can be observed. For example, for the Clean object with the Def-Use coverage metric,
the average fault detection of test suites achieving maximum coverage is generally higher (up to 25
times higher) than that of randomly generated test suites.

Copyright © 2014 John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

ARE CONCURRENCY COVERAGE METRICS EFFECTIVE FOR TESTING

We can see a similar tendency for mutation object Arraylist. For the Arraylist object, the mean
fault detection of maximum achievable test suites of every coverage metric is higher than or equal
to the highest fault detection of corresponding randomly generated test suites.

Note that, for the Boundedbuffer object, the reduced test suites with respect to a coverage metric
provide useful results although their correlations with fault detection are low. In contrast, LR-Def
displays moderate to high correlations in fault detection as shown in Table IV, but the reduced test
suites with respect to LR-Def do not have higher fault detection than randomly generated test suites
in most cases.

We were surprised, however, that there were object/coverage metric pairs for which reduction to
maximize coverage had a negative impact on the fault detection effectiveness of the testing process.
For example, for Wronglock, test suites reduced to satisfy Blocked-Pair found the fault 21% of the
time, as compared with 35% when using random test suites of equal size.

The case in which Def-Use was applied to Stringbuffer was more surprising. Here, we see greedily
reduced test suites detecting the fault 33% of the time on average, relative to the 56% detection rate
for randomly reduced test suites of equal size. As we demonstrate in Section 4.6, however, when
achieving maximum coverage for complex coverage metrics, there exist several difficult-to-cover
test requirements that are satisfied only by specific test executions that do not necessarily detect a
fault (see Table X). During greedy test suite reduction, these executions must be selected to achieve
maximum coverage and are thus useless with respect to fault detection but always present. We
hypothesize that this is the cause of this unusual behaviour.

4.5. Effect of combining concurrency coverage metrics

In the previous subsections, we demonstrated that while every coverage metric has a meaningful
value as a predictor of fault detection effectiveness and also as a target for test generation, there is
strong variation in the relative usefulness of the coverage metrics for both purposes across target
programs. This implies that identifying a single proposed concurrency coverage metric to use for
testing an arbitrary target program may be unrealistic.

One possible solution for addressing this variability is to combine complimentary concurrency
coverage metrics, mitigating the shortfalls of each [14, 16]. To determine whether this solution is
effective, we created and studied the effectiveness of six combined coverage metrics. The rationale
for selecting these metrics was detailed in Section 3.1.1, but in short, these combinations were
viewed as most likely to yield improvements over the original metrics.

4.5.1. Combined coverage metrics as predictors. We begin by examining the effectiveness of our
combined metrics as predictors of testing effectiveness. In Table VII and Figure 12, we present
the correlation of coverage and fault detection effectiveness of the combined coverage metrics as
compared with the original metrics they are derived from. Based on these results, we see that the
combined metrics are a mixed bag in terms of improvements. Across the single-fault objects, in 26
of the 54 combinations of combined metrics and objects, the combined metric achieves a correla-
tion equal to or higher than the highest correlation observed from its composite original metrics.
Typically, in these cases, the gains over the highest correlation observed from an original metric are
small, but in some cases, the gains over the lowest performing metric are quite high. For example, in
the case of the Arraylist object, the lowest correlation in the combined coverage metric is upgraded
from the original coverage metrics, whereas the highest correlation still remains.

In the case of the Wronglock object, only data access metrics are effective predictors of fault
detection, with all pairwise synchronization-based metrics achieving no higher than 0.12 correla-
tion. Similar behaviour also occurs for the Accountsubtype object. In these scenarios, the failure
of synchronization-based metrics is masked by the inclusion of data access metrics (notably, PSet,
which per Section 4.2 we found to be the single most effective original metric overall). For the
Wronglock and Accountsubtype objects, the all combined coverage metrics show the moderate
correlations (0.53 ~ 0.58 for Wronglock, and 0.58 ~ 0.61 for Accountsubtype).

In the opposite scenario, however, where synchronization-based metrics outperform data access
metrics in terms of correlation, results are more mixed. For example, the combination of Def-Use to

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

S. HONG ET AL.

Table VII. Correlations over combined metrics.

Blocked-Pair + Def-Use Blocked-Pair + PSet Follows + Def-Use

CM Blocked-Pair Def-Use CM Blocked-Pair PSet CM Follows Def-Use

Accountsubtype 0.61 0.39 0.60 0.59 0.39 0.57 0.60 0.28 0.60
Alarmclock 0.60 0.52 0.56 0.65 0.52 0.59 052 0.66 0.56
Clean 0.38 0.73 096 021 0.73 0.83 073 0.17 0.96
Groovy 0.56 0.50 045 055 0.50 048 0.1 0.52 0.45
Piper 0.59 0.62 0.07 048 0.62 0.67 0.62 0.59 0.07
Producerconsumer 0.31 0.17 0.57 0.15 0.17 0.30 0.17 0.21 0.57
Stringbuffer 0.46 0.67 043 0.61 0.67 0.87 0.67 0.44 0.43
Twostage 0.92 0.94 092 0.88 0.94 096 094 0.88 0.92
Wronglock 0.53 0.12 053 058 0.12 058 053 0.0 0.53
Follows + PSet Sync-Pair + Def-Use Sync-Pair + PSet

M Follows PSet CM Sync-Pair Def-Use CM Sync-Pair PSet
Accountsubtype 0.58 0.28 0.57 0.60 0.28 0.60 0.58 0.28 0.57
Alarmclock 0.25 0.66 059 027 0.19 0.56 055 0.19 0.59
Clean 0.20 0.17 0.83 0.07 0.09 096 0.66 0.09 0.83
Groovy 0.52 0.52 048 051 0.52 045 052 0.52 0.48
Piper 0.63 0.59 0.67 0.61 0.62 0.07 0.67 0.62 0.67
Producerconsumer 0.11 0.21 0.30 0.26 0.11 0.57 0.14 0.11 0.30
Stringbuffer 0.66 0.44 0.87 0.66 0.66 043 0.74 0.66 0.87
Twostage 0.92 0.88 096 0.90 0.96 092 0.96 0.96 0.96
Wronglock 0.58 0.0 058 053 0.0 053 058 0.0 0.58

Each cell contains coverage and fault detection correlation.
CM, combined metric correlation.

07F i 1 1 I I i i —
£ OSF - - - <5 - =5]
2 oiF @ .
LhE = N - :
OE + ! + ! 1 ! + | + ! Es ! [
Fe 1 o FE TIGTR T TP S Sy &
\&é?z{g x&§{b@c" \&8%3 ©§ “‘3\) o\\o F o> %cﬁQo\\oéﬁ <¢°\\°©% &\8 “:UQ &\8 ‘:@fa i&\g \/QQ %08 Qyé\/ . @Q
%\Oo 0@‘5 %\Oo @@03 %\OQQ%?}" Q’\Oc' %Q}' QQé\\B Q QQJ@ Q Q% %ﬁ QQ C"%@@ S er@ S Qc) S
<9 <9
(a) Arraylist

= o T I I ' -+ ' + : + ! + ' b

2 3F == == == == == (5] -

o 03F -

S 01 el < = = = e]

0.0 +] == | | | + I | | + | -

Q
& & & & X < $%>< 4 Q@X QXG"X ST R & <
©§q’©f$ ngz’é\) 53% 0§2\) o\\&l@? S %z‘%’Qo\\o@“QQO\\o@é\) & i QQQ’% P & ‘iQ 03%\9;\’ %‘4)@
F&F T Feo Feo7 % S T ST T SN SN
VP RO RXR ¥R Q 9 9

Correlation

|“|_

#

_|_II|_

#.

-

\)(_ %

s [N

Gl

-

¢

[
)

(c) Vector

Figure 12. Correlations across mutants, combined metrics. FF = fault detection, SZ = test suite size.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

ARE CONCURRENCY COVERAGE METRICS EFFECTIVE FOR TESTING

Follows results in a moderate correlation of 0.52, but this is a small drop from the original metrics’
respective correlations of 0.56 and 0.66. In fact, examining our original suggestion of PSet, we find
that for 23 of the 24 combinations of combined metrics including PSet and single-fault objects,
PSet’s correlation is within 0.05 of the combined correlation, and for 17 combinations, it is equal to
or greater than PSet’s correlation.

More concerning are scenarios where combinations of metrics significantly reduce the
correlation. For example, in the case of Follows + PSet, the combined metric often performs
far worse than either metric alone (e.g., Alarmclock, Clean, and Producerconsumer all show the
correlation dropping by 50%). Similar scenarios can be seen when using other combinations as well.
Thus, while it is true that in some cases, a combination of metrics can be a better predictor than
single metrics alone, we cannot offer a general recommendation, as there are also many cases where
combinations are less effective predictors.

4.5.2. Combined metrics as test case generation targets. While having more effective predictors of
testing effectiveness is useful, we are also interested in having more effective test case generation
targets. In Table VIII and Figure 13, we present the fault detection results for test suites achieving
the maximum achievable coverage for the single-fault objects and for the mutation testing objects,
respectively. In Table IX, we present the relative improvement in fault detection when using
combined coverage metrics over the original coverage metrics for the single-fault objects.

The results show that for every object and for every combined coverage metric, the fault detection
effectiveness of the reduced test suite with respect to a combined coverage metric is higher than
or equal to that of an original coverage metric. Naturally, the fault detection for a given coverage
metric can only remain the same or increase by combining it with another metric (the concurrency
coverage metrics studied, like typical sequential coverage metrics, are monotonic). Therefore, the
existence of improvements is not especially interesting.

Table VIII. Maximum achievable coverage test suite statistics, combined metrics.

Blocked-Pair + Def-Use Blocked-Pair + PSet Follows + Def-Use

MFF RFF Cv Sz MFF RFF Cv Sz MFF RFF Cv Sz

Accountsubtype 0.15 040 188% 3.28 0.36* 0.46* 23.7% 6.85 0.17* 0.28* 13.6% 3.12

Alarmclock 092 030 224% 3.88 092 045 320% 556 092 035 19.7% 4.32
Clean 1.0 0.18 11.6% 372 1.0 023 268% 4.16 1.0 0.11 4.1% 2.22
Groovy 0.65* 0.60* 17.3% 3.99 0.69* 0.58* 23.8% 4.00 0.30 0.41 10.0% 3.00
Piper 04 0.01 43% 206 0.7 0.02 187% 2.10 0.68 0.06 12.7% 3.59
Producerconsumer 1.0 0.60 82% 4.61 1.0 069 20.7% 483 1.0 055 7.4% 4.01
Stringbuffer 1.0 087 267% 689 1.0 089 69.0% 69 1.0 079 122% 4.38
Twostage 092 0.13 225% 376 092 0.16 228.0% 3.73 092 0.11 15.1% 2.92
Wronglock 0.34* 043* 177% 2.17 0.54*% 0.56* 40.6% 2.97 0.41*% 0.42* 17.1% 2.16
Follows + PSet Sync-Pair + Def-Use Sync-Pair + PSet

MFF RFF Cv Sz MFF RFF Cv Sz MFF RFF Cv Sz
Accountsubtype 0.36* 047* 193% 6.64 021 035 13.4% 3.14 04* 0.42* 18.5% 6.68

Alarmclock 092 046 13.6% 5.93 092 041 09%* 438 092 053 27.1% 6.00
Clean 1.0 0.08 95% 297 1.0 0.11 09% 217 1.0 0.07 7.6% 293
Groovy 0.46* 042* 157% 3.0 0.38* 0.46* 10.1% 3.01 0.33* 0.39* 14.6% 3.02
Piper 0.68 0.03 483% 3.57 0.70 0.08 189% 3.56 0.68 0.1 16.0% 3.53
Producerconsumer 1.0 0.55 52.5% 4.13 1.0 043 158% 399 1.0 055 105% 4.22
Stringbuffer 1.0 0.80 548% 456 1.0 072 128% 452 1.0 082 158% 4.61
Twostage 092 0.13 1112% 292 092 0.09 0.0% 292 092 0.10 29.9% 2.92
Wronglock 0.52*% 0.61* 41.6% 297 032 046 17.6% 2.14 048 0.6 43.0% 3.01

*= not statistically significant difference at « = 0.05.
MFF, maximum coverage fault detection; RFF, random fault detection; Cv, percent increase in coverage over
random; Sz, test suite size.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

S. HONG ET AL.

o T T T T]
o . T =a =3
8 = + + i
L
A A
F A
= L 1 ! L -
< & < & <
& ¢ & @& <
BlockedPair + BlockedPair + Follows + Follows + SyncPair + SyncPair +
DefUse PSet DefUse PSet DefUse PSet
(a) Arraylist
= 10F 7 T T T T T T T T T T]
S -
5 08F B
% 0.6 |- B
A 04} -+ e e - . |
T% 02} I . i
= 00 - L T L == L 1 ! T L i
< & < < <
& & & & & & & &g gL
BlockedPair + BlockedPair + Follows + Follows + SyncPair + SyncPair +
DefUse PSet DefUse PSet DefUse PSet
(b) Boundedbuffer
= 1.0F= T x x T T T T L 7]
2 osf = - E T E .
% 0.6 1
A 04} N
ERA + + + + + i
= 0.0 | T ! T -+ + ! + ! +
< <¢ <
& & g Qﬁ‘é‘ @é‘ g:“ & g &g
BlockedPair + BlockedPair + Follows + Follows + SyncPair + SyncPair +
DefUse PSet DefUse PSet DefUse PSet
(¢) Vector

Figure 13. Maximum fault detection, greedy versus random, across mutants, combined metrics. MFF =
maximum fault detection, RFF = random fault detection.

Instead, we wish to determine whether combinations either offer improvements over both metrics
simultaneously, indicating a clear improvement in fault detection for some objects and indicating
less variability in the effectiveness of the metric as a test generation target; or alternatively, whether
combinations offer improvements over each metric in different scenarios. In other words, we wish
to determine whether, for some combined metric A+B, improvements are found over only A for one
object, while improvements are found over only B for some other object.

Based on Table IX, we can see that statistically significant examples of both types of improve-
ments exist. For example, when applying the Blocked-Pair + PSet coverage metric over the Piper
object, improvements over PSet and Blocked-Pair of 62.5% and 78.4% exist.

Additionally, for the Follows + Def-Use combination, we can see that for both Alarmclock and
Clean, the combined metric is an improvement over Follows by 76.4% and 3150.0%, while for the
Piper and Stringbuffer objects, it is a comparable improvement over Def-Use. Similar patterns can
be seen for all other combinations of metrics, indicating that the combined metrics do frequently
reduce variability as compared with the use of individual metrics.

This reduction in variability is further illustrated by examining the fault detection rates for orig-
inal test suites (Section 4.4). While the fault detection effectiveness across combined metrics is
consistent within each object, the fault detection effectiveness for original metrics sometimes varies
strongly across metrics. For example, within pairwise metrics (i.e., those used to create combined
metrics), test suites generated for the Clean object vary in average fault detection from 0.0 to 1.0
as shown in Table VI, while the average fault detection for combined metrics is always 1.0. Other
objects exhibit similar behaviour.

As noted in Section 4.4, there is no best original metric to use as a test case generation target.
However, several combined metrics when used as test case generation targets always produce, on

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)

DOI: 10.1002/stvr

ARE CONCURRENCY COVERAGE METRICS EFFECTIVE FOR TESTING

Table IX. Relative improvement in fault detection using combined metrics.

Blocked-Pair + Def-Use Blocked-Pair + PSet Follows + Def-Use

Blocked-Pair Def-Use Blocked-Pair PSet Follows Def-Use
Accountsubtype 5.2%%* 11.1%* 147.3% 0.0%* 0.0%* 27.7%*
Alarmclock 0.0%* 0.0%* 0.0%* 0.0%* 76.4% 0.0%*
Clean inf% 0.0%* inf% 0.0%* 3150.0% 0.0%*
Groovy 2.4%* 84.7% 8.4%* 104.5% 14.2%* 0.0%*
Piper 1.9%* inf% 78.4% 62.5% 0.0%* inf%
Producerconsumer 56.6% 0.0%* 56.6% 0.0%* 100.0% 0.0%*
Stringbuffer 0.0%* 195.4% 0.0%* 0.0%* 0.0%* 195.4%
Twostage 0.0%* 0.0%* 0.0%* 0.0%* 0.0%* 0.0%*
Wronglock 60.7% 0.0%* 153.5% 18.3%* 20.0%* 20.0%*

Follows + PSet Sync-Pair + Def-Use Sync-Pair + PSet
Follows PSet Sync-Pair Def-Use Sync-Pair PSet

Accountsubtype 50.0% 0.0%* 0.0%* 55.5%%* 85.7% 8.3%*
Alarmclock 76.4% 0.0%* 71.4% 0.0%* 71.4% 0.0%*
Clean 3150.0% 0.0%* 1344.4% 0.0%* 1344.4% 0.0%*
Groovy 71.4% 36.3%* 0.0%* 8.6%* 0.0%* 0.0%*
Piper 0.0%* 58.9% 9.5%%* inf% 5.9%%* 58.9%
Producerconsumer 100.0% 0.0%* 100.0% 0.0%* 100.0% 0.0%*
Stringbuffer 0.0%* 0.0%* 0.0%* 195.4% 0.0%* 0.0%*
Twostage 0.0%* 0.0%* 0.0%* 0.0%* 0.0%* 0.0%*
Wronglock 51.1% 13.3%* 2.4%* 0.0%* 53.6% 5.0%%*

* = not statistically significant difference at « = 0.05.

average, higher fault detection than any single original metric (excluding fault detection values
that are not statistically significant). In fact, every combined metric containing PSet exhibits this
behaviour. Note that these test suites are typically larger than those generated solely from original
metrics, but given the small size of all test suites (less than seven tests on average), this seems
acceptable.

This result also supports our conjecture that there are other factors that influence testing
effectiveness beyond those that the concurrency coverage metrics studied capture (see Section 5.2).

In summation, while the predictive value of combined metrics differs from that of original metrics
in ways that is not necessarily positive or negative, combined metrics as test case generation targets
— in particular those metrics based on a combination of PSet with a pairwise, synchronization
metric — are clearly superior to any original metric studied.

4.6. Effectiveness of difficult-to-cover test requirements

Our analysis has clearly demonstrated that increasing coverage levels of the presented concurrency
coverage metrics tends to result in practically significant increases in fault detection effectiveness.
Nevertheless, this does not necessarily imply that all test requirements are worth the effort required
to cover them. Per RQ4, we would like to determine whether difficult-to-cover test requirements —
those that are satisfied by only a small percentage of tests — yield fault detection gains beyond those
found in the other, easier to cover test requirements. This is key to establishing if specialized tech-
niques that target hard to cover test requirements are likely to yield improvements in fault detection
(akin to techniques for covering branches in structural coverage metrics).

First, we begin by establishing that difficult-to-cover test requirements exist. In Figure 14,
we plot, for each covered test requirement, the percentage of test executions covering the
requirement, that is, difficulty of covering the test requirement (Figure A.3 for all objects, in
Section 6). Requirements have been ordered from least likely to be covered to mostly likely to
be covered. (The x-axis represents the difficulty percentile; i.e., at 40%, the requirement plotted is
easier than 40% of all requirements and more difficult than 60%.) For each object and coverage
criteria, there exists significant variation in the difficulty of covering test requirements —

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

S. HONG ET AL.

. — -
g o / - — Blocked
an 80 | — 1| — - BlockedPair

- || — Blocking
E o 7/ — DefUse
g 40 n Follows
3 - — - LRDef

- / -
Lﬁ) 0 - - PSet
S = 1 I I I I 41| — SyncPair

0 20 40 60 80 100

(a) Accountsubtype

g 100 ————————— § ;
=4 | = i
0 o0
8 4 =]
5 —
o) 45]
2 >
5] 12]
o o}
IS = E
g &
S 9 o =
~ | =]
80 o0
8 4 g]
5 —
5] 15]
3 1z i
@] 7 @]
e —_— = L3 |

0 20 40 60 80 100

(d) Boundedbuffer (e) Vector

Figure 14. Relative difficulty of covering individual coverage requirements for four single-fault objects and

all mutation objects. The x-axis represents the difficulty percentile. Requirements covered by the fewest

number of executions are leftmost on the x-axis; requirements covered by the largest number of executions
are rightmost. The y-axis indicates the percentage of executions that cover the requirement.

most objects contain several requirements that are covered by few executions (less than 1%),
with most test executions being relatively easily covered (with greater than 10% covering the
test executions).

Having established that difficult-to-cover test requirements exist, we would like to determine
whether these test requirements are, on average, particularly effective at detecting faults. Towards
this, in Table X, we present the average fault detection of test executions covering difficult-to-cover
requirements (defined as the 10% most difficult requirements to cover) as compared with other test
requirements. We selected the 10% threshold as it frequently resulted in one or fewer test execu-
tions being selected, while larger thresholds were too easy to cover to be considered ‘difficult’.
Note that ‘NA’ indicates that the number of requirements was less than 10; that is, there was no
bottom 10%.

Here, we see that in some instances, there does appear to be a practically and statistically
significant difference in the fault detection rate of test executions satisfying difficult-to-cover
test requirements relative to other test requirements. For example, for the Arraylist object,
difficult-to-cover test requirements of all coverage metrics are better than other test require-
ments, with the relative differences in fault detection effectiveness ranging from 91.5% to 942.4%.
Clearly, for many objects, the effort needed to satisfy difficult-to-cover requirements is potentially
worthwhile.

In other cases, however, the relative difference between difficult-to-cover and easy-to-cover test
requirements is either practically marginal (e.g., for the Vector where differences are small and often
close to zero) or not statistically significant (e.g., the Groovy and Stringbuffer object). Given these
results, it is difficult to draw any conclusions concerning the value of difficult-to-cover requirements
in testing a particular program.

In some cases, the extra effort is clearly unlikely to be rewarded as the relative differences
are minor.

On the other hand, in many cases, the relative difference is quite large, but (due to the small
number of test requirements) not statistically significant. Thus, it appears that studies with objects
that produce larger numbers of test requirements are required to better address this question. We

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

ARE CONCURRENCY COVERAGE METRICS EFFECTIVE FOR TESTING

Table X. Fault detection effectiveness for difficult and easy to cover test requirements.

Blocked Blocked-Pair Blocking

DFF EFF % DFF EFF % DFF EFF %
Arraylist 0.75 0.05 1259.3% 0.15 0.08 91.5% 0.46 0.04 942.4%
Boundedbuffer 0.19* 0.30* 0.0%* 0.23*% 0.26* 0.0%* 0.17* 0.26* 0.0%*
Vector 0.13* 0.10%* 31.8%* 0.06 0.08 0.0% 0.10* 0.09* 2.9%*
Accountsubtype 0.07* 0.07* 0.0%* 0.07* 0.07* 0.0%* 0.07* 0.07* 0.0%*
Alarmclock NA NA NA 1.0* 0.28*% 254.9%* NA NA NA
Clean NA NA NA 0.0* 0.0* 0.0%* 0.0% 0.0* 0.0%*
Groovy 0.34* 0.23* 46.5%* 0.34* 0.23* 47.6%* 0.34*% (0.23* 50.2%*
Piper NA NA NA 0.47* 0.04* 978.3%* NA NA NA
Producerconsumer NA NA NA 0.31 0.17 79.8% 0.21* 0.18% 18.8%%*
Stringbuffer NA NA NA 0.79*% 0.50* 58.7%* 0.88*% 0.49* 77.5%*
Twostage 1.0 0.10 854.7% 1.0* 0.21* 356.1%* 1.0 0.25 294.7%
Wronglock NA NA NA NA NA NA NA NA NA

Def-Use Follows LR-Def

DFF EFF % DFF EFF % DFF EFF %
Arraylist 0.10 0.05 106.1% 0.19 0.06 181.5% 0.18 0.04 345.5%
Boundedbuffer 0.39 0.30 30.0% 0.28*% 0.25% 11.3%* 0.21 0.29 0.0%
Vector 0.04 0.07 0.0% 0.04 0.06 0.0% 0.11* 0.10* 19.5%*
Accountsubtype 0.07* 0.07* 5.3%* 0.07* 0.07* 0.0%* 0.07* 0.07* 0.0%*
Alarmclock 0.14* 0.16* 0.0%* 1.0* 0.17* 464.2%* 0.21 0.11 90.9%
Clean 0.5% 0.03* 1490.9%* 0.0* 0.00* 0.0%* 0.0* 0.03* 0.0%*
Groovy 0.23 0.21 8.1% 0.19*% 0.22% 0.0%* 0.22* 0.21* 2.9%%*
Piper 0.01 0.01 0.0% 0.19* 0.08* 123.5%* 0.01 0.02 0.0%
Producerconsumer 0.32* 0.18% 69.9%* 0.35 0.18 93.8% 0.67 0.19 248.3%
Stringbuffer 0.0 0.30 0.0% 0.0* 0.40%* 0.0%* 0.16% 0.32* 0.0%*
Twostage 0.75 0.04 1611.9% 1.0* 0.19% 407.4%* 0.03 0.04 0.0%
Wronglock 0.28% 0.26* 4.7%* NA NA NA 0.29*% 0.26* 10.3%*

PSet Sync-Pair

DFF EFF % DFF EFF %
Arraylist 0.16 0.06 176.5% 0.19 0.06 181.5%
Boundedbuffer 0.35% 0.32% 10.8%* 0.28*% 0.25* 11.3%*
Vector 0.07 0.08 0.0% 0.04 0.06 0.0%
Accountsubtype 0.09 0.07 19.9% 0.07* 0.07* 0.0%*
Alarmclock 0.48*% 0.26%* 82.7%* 1.0* 0.17* 464.2%*
Clean 0.5* 0.02*% 2289.7%* 0.0* 0.00* 0.0%*
Groovy 0.23* 0.21* 7.5%* 0.19% 0.22% 0.0%*
Piper 0.18 0.01 867.2% 0.19% 0.08* 123.5%*
Producerconsumer 0.39 0.19 107.2% 0.35 0.18 93.8%
Stringbuffer 0.5% 0.30% 65.5%* 0.0* 0.40* 0.0%*
Twostage 1.0 0.10 839.7% 1.0* 0.19* 407.4%*
Wronglock 0.31 0.27 13.0% NA NA NA

* = not statistically significant at p = 0.05.
DFF, difficult-to-cover fault detection; EFF, easy-to-cover fault detection; %, percent increase in average fault
detection for DFF over EFF coverage requirements.

discuss the implications of this for concurrent test case generation approaches in the next section
(see Section 5.4).

5. DISCUSSION

Our results have addressed our original research questions as follows. Per RQ7 and RQ2, we have
shown that for every coverage metric, for some programs, (i) the metric is a moderate, independent

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

S. HONG ET AL.

predictor of fault detection, and (ii) the testing process can be made more effective by using test
suites that achieve maximum coverage instead of random test suites of equal size.

In short, we have provided evidence that existing concurrency coverage metrics can be useful.
Consequently, testers can use concurrency coverage metrics as part of their testing process with
confidence, either to estimate testing effectiveness or as a goal for the testing process. Furthermore,
testing researchers can justify as worthwhile the effort spent developing tools and techniques based
on concurrency coverage metrics.

Nevertheless, the variation in the relative effectiveness of coverage metrics raises issues concern-
ing how to apply these metrics in practice. Additionally, the generally moderate levels of correlation
and fit observed hint that while these metrics appear effective, improvements to these metrics are
both possible and desirable.

Towards addressing this variability and to better understand how test generation should be
approached to improve fault detection, we proposed and addressed research questions RQ3 and
RQA4. Per RQ3, we have seen that using two coverage metrics combined can, in some cases, improve
the reliability of coverage metrics as estimators of testing effectiveness and particularly as test gen-
eration targets. Per RQ4, we have shown that at least in some cases, satisfying difficult-to-cover test
requirements often returns meaningful improvements in fault detection. These results provide some
guidance how test generation for concurrency testing can be improved with respect to the resulting
fault detection rates.

In the remainder of this section, we discuss the practical implications of the study and highlight
additional areas of research that we believe should be explored.

5.1. Practical implications for testers

Following a study of several coverage metrics, the question every tester naturally asks is as follows:
which metric should I use?

Examining the correlation with fault detection (Table IV and Figure 7) and the fault detection
effectiveness of maximum test suite result (Table VI and Figure 10), we see that if a tester must
select a single ‘best’ metric, PSet seems to be the only possible choice. For seven objects among
nine single-fault objects, PSet coverage’s correlation with fault detection is over 0.57. PSet always
achieved a greater correlation with fault detection than size (S-FF). Additionally, the reduced test
suites with respect to PSet achieve higher fault detection than random test suites of equal size for
six objects and achieve lower fault detection than random test suite for only one object (Wronglock).
PSet is clearly not ideal in many scenarios — Def-Use was similarly effective as a generation target
for Boundedbuffer while requiring fewer test executions and Blocking was more effective as a gen-
eration target for Groovy — but on the whole, it was consistently effective as a predictor and for test
case generation.

With respect to the other metrics, our results suggest basic guidelines. Recall from Table II
the coverage metric properties of singular/pairwise. Comparing the results for singular and pair-
wise metrics while holding the other metric property (synchronization/data access) constant reveals
two patterns.

First, the fault detection for maximum coverage test suites for pairwise metrics tends to be equal
to or higher than when using singular metrics. Thus, as test case generation target, it is preferable to
select pairwise metrics. Second, pairwise metrics generally have higher correlation with fault detec-
tion and more reliable overall tendency across programs than singular metrics. For every single-fault
object, the correlation of Blocked-Pair is higher than or equal to the correlations of its singular ver-
sions Blocked and Blocking. In contrast, LR-Def often shows as high correlations as Def-Use or PSet
do. But, the maximum test suites of LR-Def show significantly less fault detection than Def-Use and
PSet, which indicates its practical limitation.

Of course, as noted previously, pairwise metrics have more requirements and thus require more
test executions to achieve maximum coverage. Nevertheless, the stronger correlation between pair-
wise coverage metrics and fault detection indicates that investing the effort needed to satisfy a
pairwise coverage metric is preferable to investing the same amount of effort satisfying a singular

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

ARE CONCURRENCY COVERAGE METRICS EFFECTIVE FOR TESTING

metric. When a test reaches a likely saturation point in a singular coverage metric, we recommend
achieving as many pairwise coverage requirements as possible rather than targeting a few remaining
singular requirements.

The previous advice relates to the previously proposed individual metrics. Based on the results
given in Section 4.5 related to RQ3, if we are primarily interested in selecting a test generation target,
we would do well to use combined metrics. While the correlations for combined metrics, shown
in Table VII, are not always improvements over those for the original metrics, fault detection rates
for test suites achieving maximum coverage are typically improved. In particular, we recommend
a metric combining PSet and a pairwise synchronization coverage metric (e.g., Follows), as this
provides a somewhat reliable testing estimator and more effective test generation target than any
of the original metrics used. As with the move from singular to pairwise metrics, this increases the
number of requirements (being a combination of two pairwise metrics), but as shown in Table VIII,
for the systems studied, the size of the resulting test suites is not significantly larger than the size of
suites defined over the original metrics.

As a final note, for some objects, there was a large difference in fault detection depending on
the code constructs (synchronization/data access) used to define the metrics. For example, when
using data access-based coverage metrics with Wronglock, the correlation with fault detection was
roughly four times that of synchronization-based metrics. However, for Piper, the opposite was
true; data access-based metrics show poor fault detection in the reduced test suites. Even among
combined metrics, which are intended to reduce these variations by combining metrics based on
different constructs, this behaviour was still observed, for example, Follows + PSet as compared
with Blocked-Pair + PSet for the Arraylist and Boundedbuffer systems.

We found this surprising: while in theory, such behaviour can also exist between founda-
tionally different sequential coverage metrics (e.g., metrics defined over def-use pairs versus
those defined over branch constructs), in our experience, such dramatic differences do not occur
in practice.

5.2. Limitations of existing concurrency metrics

As noted, in some cases, the concurrency coverage metrics explored exhibited low correlation with
fault detection and/or poor fit during linear regression. These results stand in sharp contrast to results
related to sequential coverage criteria, where, for example, much better linear regression fit has
been achieved using only test suite size and coverage levels, with adjusted R? values over 0.90
being typical [17, 18]. In contrast, we observed few adjusted R? values greater than 0.8, indicating
that a great deal of effectiveness is unaccounted for by test suite size and coverage. By uncovering
additional factors that contribute to fault detection effectiveness, we may be able to improve our
concurrency coverage metrics and testing techniques.

As an initial step towards this, we extended our linear regression analysis to consider two addi-
tional factors: the probability of a delay being inserted (PB), and the length of the delay inserted (DL)
(see Section 3.2.2). These factors were controlled for during test execution and have been observed
to impact the effectiveness of concurrent testing in previous work [13, 15]. We then repeated our
regression analysis, selecting the model with the highest fit for each combination of coverage metric
and program.

Following this, we compared each selected model’s fit against the same model with PB and DL
omitted as explanatory variables. We found that while sometimes the improvement when using PB
and DL as explanatory variables was small (< 0.01), often the improvement was significant: the
average relative increase in adjusted R? was 50.5% (maximum 814%), and the average improvement
in adjusted R? was 0.05 (maximum 0.37). In some cases, PB and DL account for the bulk of the
predictive power; for example, for Alarmclock, the best adjusted R? for the (usually effective) PSet
metric increased from 0.45 to 0.78, an improvement of 75.1%.

We believe that these results highlight the need to further improve concurrency coverage met-
rics to provide better guidance to testers and testing techniques. Ideally, a coverage metric should
perfectly capture the effectiveness of the testing process, providing a highly accurate estimate of

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

S. HONG ET AL.

Table XI. Relation between fault types and concurrency coverage metrics.

Coverage metrics of Coverage metrics of
highest correlation with highest fault detection
Fault type Study object fault detection with maximum test suites
Stringbuffer PSet (LR-Def)]g;?lilfgg;f air, Follows, PSet,
Qﬁ‘;ﬁy PSet, Sync-Pair, (Blocked, Blocked, Blocked-Pair,
Twostage Blocked-Pair, Blocking, Def-Use, Blocking, Def-Use, Follows,
Follows, LR-Def, Sync-Pair) PSet, Sync-Pair
Accountsubtype Def-Use Follows
Data race Blocked, Blocked-pair,
Alarmclock Blocked Def-Use, PSet
Wronglock PSet NA
Clean Def-Use (Blocked-Pair, LR-Def, PSet) Def-Use, PSet
Deadlock . .
(with waif) Qroovy Follows, Sync-Pair Blocking
Piper PSet Follows
Order violation Producerconsumer Def-Use Def-Use, LR-Def, PSet

testing effectiveness, upon which techniques for improving coverage can be built. At a minimum,
we would like concurrency coverage metrics to be better predictors than PB and DL, as the most
effective set of parameters — much like the metrics explored — varies unpredictably depending
on program.

5.3. Relationship between metric effectiveness and fault type

One potential factor that may account for the variability in testing is the types of faults present.
Concurrency faults, in contrast to sequential faults — which can take nearly any form — are
errors in specific constructs: for example, data races, for example, unsynchronized accesses to
a shared variable with at least one write operation; and deadlocks, for example, incorrect syn-
chronization orders such as wait (m) after notify (m). Thus, detecting these faults can be
easier or more difficult depending on the metric used, as different metrics focus on different
code constructs.

To investigate this, in Table XI, we again present the best metrics, as measured by correlation
and the effectiveness of maximum coverage test suites, for each object grouped by the type of fault
present. The best metrics with respect to correlation are presented in the third column, while the
best metrics with respect to fault detection rate for maximum achievable coverage test suites are
presented in the fourth column (‘NA” indicates that no metric was better than random with statistical
signiﬁcance)." In the case of ties for best, all metrics are presented. Furthermore, in the case of
correlation, all metrics achieving high correlation (> 0.7) are listed in parentheses. Note that we
present only the single-fault objects as the type of faults present is already known from previous
work [22-24]; when using mutation operators, we cannot be certain of the type of fault without
a large amount of effort, an infeasible task for each mutant. Additionally, note that this (like the
previous subsection) is an exploratory ad-hoc analysis; additional work will be required to verify
the observations made.

Our expectation was that if the test requirements of a coverage metric M are formulated over
constructs matching those involved with fault type 7', metric M should perform well over objects
of exhibiting fault type T'. For example, we expected that Def-Use and PSet should perform well

ITo select the best metric with respect to fault detection, we exclude coverage metrics whose fault detection is not
statistically significantly different than randomly generated test suites of equal size.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

ARE CONCURRENCY COVERAGE METRICS EFFECTIVE FOR TESTING

over objects exhibiting data race and atomicity violations, as the test requirements generated by
these coverage metrics are based upon data access operations. We also expected that Blocked-Pair,
Follows, and Sync-Pair metrics should perform well on objects exhibiting deadlock faults, as the
test requirements of these coverage metrics are based on lock operations.

As shown in Table XI, there is no clear relationship between the fault type and the most effective
coverage with respect to correlation. For example, for data race faults, Def-Use, Blocked, and PSet
have the highest correlations on Accountsubtype, Alarmclock, and Wronglock, respectively. Indeed,
even the best type of metric (synchronization/data access) varies depending on the program. Clearly,
there is no best coverage metric for any fault type.

We see similar results with respect to fault detection effectiveness for maximum coverage test
suites. For example, for deadlock faults, Def-Use and PSet have the highest fault detection with
maximum test suites for Clean. However, for Groovy and Piper, Blocking and Follows have the
highest fault detection with maximum achievable coverage test suites, respectively. Again, not only
is there no best metric, but also there is no best type.

One possible reason why we observed no relationship between fault type and concurrency
coverage metrics is because test requirements for concurrency coverage metrics do not capture con-
currency faults precisely. To better understand why, consider Figure 15. In the figure, (a) and (b)
show two executions that cover Sync-Pair requirement (b2, b1) (i.e., a synchronization block 52
happens before a h1) where b2 is a synchronized block of Thread 2 (lines 11 to 14) containing
notifyAll (m) and bl is a synchronized block of Thread 1 (lines 2 to 5) containing wait (m).
Because wait (m) and notifyAll (m) should be used inside a synchronized block on m, we
expect to detect the deadlock caused by calling wait (m) after notify (m) by covering the test
requirements for Sync-Pair coverage, including (b2, b1). However, no test requirement for Sync-
Fair coverage is guaranteed to capture the deadlock situation precisely, as shown in Figure 15.
In this case, both Figure 15(a) and Figure 15(b) cover (b2, b1), but only Figure 15(b) raises
a deadlock.

In contrast, to detect this specific deadlock fault, the sequence of data accesses on the variable
eventl.count is more important than the sequence of lock operations. Figure 15 shows that the
fault appears when Thread 1 executes a waiting operation on the lock m (line 04) after Thread 2
executes a notification on the same lock (line 13). The fault detection depends on the sequence of
data accesses on eventl.count (i.e., line 01 — line 12 — line 03). We suspect that this is the
reason that the data access coverage metrics PSet and Def-Use show high correlation with the fault
detection for Clean.

This case implies that not only the coverage metric that captures a faulty thread interaction is
important for fault detection but also the coverage metric that captures execution paths up to the
faulty thread interaction is important.

Such issues on concurrency coverage metrics again highlight the need to better understand
how to capture what represents effective testing. Additionally, they help explain why using mul-
tiple concurrency coverage criteria, per Section 4.5, can be an effective strategy to improve fault
detection.

[Thread 1] [Thread 2] [Thread 1] [Thread 2]
| 1

01 1. =0 |

} 11 synchronized(m) {//b2 eventl.count \S

| -
112 evex_ltl .count=1 :11 synchronized (m) {//b2
113 notifyAll (m) 112 eventl.count=1

i
114} 13 notifyall (m)
o 114 }
01 eventl.count=0 | K:/
02 synchronized (m) {//bl} 02 synchronized (m) {//bl:
03 if (eventl.count==1) } 03 if(eventl.count==1)!
04 wait(m) ! 04 wait(m) < Error: deadlock
05 } | 05 }]

(a) a correct execution that covers a Sync-Pair test require- (b) an execution that covers a Sync-Pair test requirement
ment (b2, b1) (b2, b1), which raises a deadlock

Figure 15. Two execution scenarios of Clean.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

S. HONG ET AL.

5.4. Implications for concurrent test case generation research

Work on test case generation methods for concurrency testing is an active — but relative to work
on sequential testing — young area of research. In sequential test case generation, several tech-
niques focus on methods for satisfying difficult-to-cover test requirements (e.g., symbolic execution,
genetic approaches), and many, if not most approaches, center around a single metric, branch cover-
age. In contrast, current approaches to concurrent test generation have little ability to target specific
difficult-to-cover requirements, and the coverage metric used to evaluate these approaches has not
been standardized.

Given this, it seems reasonable to consider whether, as in sequential testing, effort to develop
new techniques for covering difficult-to-cover requirements is warranted, and if so, what cover-
age metric(s) should be targeted. We have already largely addressed the latter question earlier
in Section 5.1: PSet, combined with any of the three pairwise, synchronized metrics already
proposed, offers the most consistently high levels of fault detection. As noted previously in
Sections 4.3 and 5.3, however, there exist additional factors that current concurrency coverage met-
rics fail to capture. Thus, future work on concurrent test generation could be greatly improved
by first considering how we can better (or perhaps more consistently) capture effective concurrent
testing as a metric.

The answer to the former question — whether to target difficult test requirements — is similarly
ambiguous. Given our results for RQ4, it seems that while in some cases, difficult requirements do
offer improved fault detection relative to other requirements (e.g., for the Arraylist object), in most
cases, no statistically significant improvements were found. Nevertheless, no statistically signifi-
cant decreases in fault detection were observed, and thus, if a test generation method that increases
the likelihood of satisfying difficult requirements could be found, it would certainly improve test-
ing effectiveness. Of course, the details of any new technique — specifically, whether the technique
would slow the overall rate of test case generation — would determine whether it represents an
improvement over existing approaches; there is little doubt that the potential to improve fault
detection via targeting of difficult requirements exists.

6. CONCLUSION

In this work, we have evaluated the relationship between eight previously proposed concurrency
coverage metrics and fault detection effectiveness using 12 concurrent programs drawn from pre-
vious work in concurrency testing. We observed moderate correlations between coverage and fault
detection effectiveness, established via linear regression that each coverage metric has a predictive
value separate from test suite size, and found statistically and practically significant increases in
fault detection effectiveness when using test suites reduced to achieve maximum coverage relative
to random test suites of equal size. In addition, we confirmed that combinations of these coverage
metric provide more reliable performance across different programs, particularly with respect to test
generation, and that difficult-to-cover test requirements may be particularly effective with respect to
fault detection. These results demonstrate that existing concurrency coverage metrics — in particu-
lar combinations of PSet and a pairwise synchronization-based coverage metrics — can be effective
metrics for evaluating concurrency testing effectiveness and thus provide key evidence supporting
the construction of techniques based on these metrics.

Nonetheless, while each metric explored was useful in some contexts, the predictive and test case
generation value of each metric, even combined metrics that were proposed specifically to avoid this
variation, often varied considerably from program to program, indicating that more work in this area
is required. We hope to explore methods for improving these metrics in the future and encourage
others to do the same.

APPENDIX:
In this appendix, we present the results (discussed in Section 4) for all study objects.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

ARE CONCURRENCY COVERAGE METRICS EFFECTIVE FOR TESTING

— Blocked - DefUse PSet — Blocked - DefUse PSet
- BlockedPair Follows — SyncPair - BlockedPair Follows — SyncPair
—— Blocking - LRDef —— Blocking - LRDef
S 0F——T= I] T T3 & 100FT T | T T =
~ ~ ~
o / o 90 -—— o = = = = = = =
g0 90 |-] & e
g s 80f .
2 sof 4 £ 7 -
S o S eof -
@ 1 o sof i
E 60 L1] I I] I E 40 k=L ! I] I =
0 200 400 600 800 1000 0 200 400 600 800 1000
Test Suite Size Test Suite Size
(a) Accountsubtype (b) Alarmclock
~ 10FC —m—— =T — T] ~ I0F—"T—'T T T
S w7 € ool .
o OF 1 g sof/ .
£ g0 4 £ 70F 7
2 / 2 60 -
S 70F 1 8 350 —
g 60 4 @ 9r 1
> > 30k i
< 50 bad] ! |] | < 20 =1 l |] | =
0 200 400 600 800 1000 0 200 400 600 800 1000
Test Suite Size Test Suite Size
(c) Clean (d) Groovy
~ e e e~ 0= : - T =
IS - - IS
~ Ve -~ - 9 - - —-—"=-—"=-—"= === —— a
) 90 / - 2 -
] / S 80f -
S g0 4 < Vs
) / 5 10 - = = .
© {4 < -
) on 60 7/ -
> >
< 60 1 1 |] 1 — < 50 |] 1 | =
0 200 400 600 800 1000 0 200 400 600 800 1000
Test Suite Size Test Suite Size
(e) Piper (f) Producerconsumer
S == = I — 5 20T fl ' ' ' '
~ | / _ ~— A -]
g 80 / 5 Bfz
£ ok 1 £
2 2 10} -
))
O 40 — &)
< I I I I I I < I I I I I I
0 200 400 600 800 1000 0 200 400 600 800 1000
Test Suite Size Test Suite Size
(g) Stringbuffer (h) Twostage
~IWF— T — — — — F — — 17— — T4
g o5l :
2 90 .
= 851 -
z s0f .
o T5F .
c;b 70 |- .
< ST Il Il Il Il Il Il]
0 200 400 600 800 1000

Test Suite Size
(i) Wronglock

Figure A.1. Size versus coverage, all single-fault objects.

Copyright © 2014 John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

S. HONG ET AL.

©—@ Blocked B— B DefUse PSet ©—@ Blocked B— B DefUse PSet
A— A BlockedPair *—* Follows ¢— ¢ SyncPair 4— A BlockedPair *—* Follows ¢~ ¢ SyncPair
¥—¥ Blocking +— + LRDef ¥—V Blocking += + LRDef
= =
g 10 9 & 10FT T T TF |, =
3 08 4 38 os} n .
53 5]
A 0.6 - A 06 -
S 04 4 3 o4} & -
HR Zo AR
0.2 — 02 —
g0 & ,,_/‘!#_,_——ﬁ/ fﬂ V !
E 0.0 = E 0.0k — I | [—
50 60 70 80 90 100 0 20 40 60 80 100
Coverage (%) Coverage (%)
(a) Accountsubtype (b) Alarmclock
= =
S g
31 51
Q Q
k5] o
A A
E E
= =
))
> >
< <
Coverage (%) Coverage (%)
(c) Clean (d) Groovy
g 10FT T T 9 g LOF 7 T P = T T S =
= = *
g 08 1 8 o8} / g
& o6l 4 2 o6k # 7 -
= = /
S 04 4 = * / /
ot o b | £ 04 — J A /;‘ — —
5 O ~ Dol Moy (N
< 00k ¢ 4 — 0" 4 & A4 4 4 < ! | ! ! L& !
50 60 70 80 90 100 40 50 60 70 80 90 100
Coverage (%) Coverage (%)
(e) Piper (f) Producerconsumer
.5 .5 1LOFT T T T T
3 S 08} .
Q Q
A A o6l / .
E E 04} i
ib g‘) 02 - / —
< < ool —% — ¢] I —
0 5 10 15 20 25
Coverage (%) Coverage (%)
(g) Stringbuffer (h) Twostage
£ 10T T T T T] =
1)
Z 09l 1 .
g 08F |]
A 07 ; -
= 0.6 A / -
£ 05 o\ / i
c>;b 04 \ 4 -
< 03|,]] [| | .
50 60 70 80 90 100
Coverage (%)

(i) Wronglock

Figure A.2. Coverage versus fault detection effectiveness, all single-fault objects.

Copyright © 2014 John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

ARE CONCURRENCY COVERAGE METRICS EFFECTIVE FOR TESTING

100 FT - F - = - F - =g =————T1———— =
8; ; - - = — Blocked
z S0 - —= 1| — ° BlockedPair
@ g0 !/ / || — Blocking
B o/ r — + DefUse
2 40} == 1 Follows
3 w0 L - / 1| — ° LRDef
= o PSet

0Okl —] I |] I d| — ° SyncPair
0 20 40 60 80 100

8'" 100 F7 8'-' =
&80 2 -
2 ol 2 -
- Bt
g df g .
O 20F — O -
IS 0 kL I _
0 20 40 60 80 100
(b) Alarmclock (c) Arraylist
g 100 T T T ——7 gl —— == = =T —T———T 1
& 80| 4 L .
g el 1 £ .
— —
S 4o0f 4 @ -
S 20 4 8 g
ST = 4 =]
0
8"‘ 100 FF = 8'-' =
X 80 4 X .
2 e} 4 2 .
3 3
o 20, 1 © .
R Ok 4 = =
0
(f) Groovy (g) Piper
g 100 [T = T T ———— | gI0F ; 7 — % T T]
&0 J [7 1 % 8o, / / -
2 ol 7 | B 4 2 e’ - — a
5 4L ! g / 1 5 oL 7 /
2 It d g ol 7 —]
O 2014 (3 41 O 20| _ — -
IS O—|_/!—hl———"’J_|_‘ ! I L d o ob_—=3 —/—I— =T = = [
0 20 40 60 80 100 0 20 40 60 80 100
(h) Producerconsumer (1) Stringbuffer
cB'~7O—| T T T T T 8’-<]00— = — J — > — = T I
x 00 J 1 & 8ok e s i
B0 50 N en / 7
£ 40 ;00 4 E eof / .
g 38 B —_ -] % a0k // _ - i
O 0. —=Z - 7= FF"F——— 4 © 204 .
R 0 blm—=t —— I I [IS 1 1 1 1 1
0 20 40 60 80 100 20 40 60 80 100
(j) Twostage (k) Wronglock
g 100 FT =
Q
¥ 80t _
£ oof -
3 40k -
>
S 20t .
X 0k = — = —
0 20 40 60 80 100
(1) Vector
Figure A.3. Percentage of test executions covering test requirements, sorted, all single-fault and mutation
objects.
Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)

DOI: 10.1002/stvr

S. HONG ET AL.

ACKNOWLEDGEMENTS

This work is supported in part by the National Research Foundation of Korea (NRF) Mid-career
Research Program funded by the Ministry of Science, ICT and Future Planning (MSIP), Korea (NRF-
2012R1A2A2A01046172), the IT R&D Program of Ministry of Knowledge Economy (MKE)/Korea Eval-
uation Institute of Industrial Technology(KEIT), Korea (10041752), the Information Technology Research
Center (ITRC) support program funded by MSIP and supervised by the National IT Industry Promotion
Agency (NIPA), Korea (NIPA-2014-H0301-14-1023), the World Class University program through the NRF
funded by the Korean Ministry of Education, Science and Technology (MEST), Korea (R31-30007), the
National Science Foundation through award CNS-0720757, the Air Force Office of Scientific Research
through award FA9550-10-1-0406, and the Fonds National de la Recherche, Luxembourg (FNR/P10/03).

REFERENCES

1. Savage S, Burrows M, Nelson G, Sobalvarro P, Anderson T. Eraser: a dynamic data race detector for multithreaded
programs. ACM Transactions on Computer Systems (TOCS) 1997; 15(4):391-411.

2. Engler D, Ashcraft K. RacerX: effective, static detection of race conditions and deadlocks. Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), New York, NY, USA, 2003; 237-252.

3. Hong S, Kim M. Effective pattern-driven concurrency bug detection for operating systems. Journal of Systems and
Software (JSS) 2013; 86(2):377-388.

4. Bron A, Farchi E, Magid Y, Nir Y, Ur S. Applications of synchronization coverage. Proceedings of the ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming (PPoPP), Chicago, Illinois, USA, 2005;
206-212.

5. Lu S, Jiang W, Zhou Y. A study of interleaving coverage criteria. Proceedings of the Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering(ESEC/FSE), Dubrovnik, Croatia, 2007; 533-536.

6. Trainin E, Nir-Buchbinder Y, Tzoref-Brill R, Zlotnick A, Ur S, Farchi E. Forcing small models of conditions on
program interleaving for detection of concurrent bugs. Proceedings of the Workshop on Parallel and Distributed
Systems: Testing, Analysis, and Debugging (PADTAD), Chicago, Illinois, USA, 2009.

7. Yang CD, Souter AL, Pollock LL. All-du-path coverage for parallel programs. Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA), Clearwater Beach, Florida, USA, 1998; 153-162.

8. Tracey N, Clark J, Mander K, McDermid J. An automated framework for structural test-data generation. Proceedings
of the IEEE International Conference on Automated Software Engineering (ASE), Honolulu, HI, 1998; 285-288.

9. Godefroid P, Klarlund N, Sen K. DART: directed automated random testing. Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), Chicago, IL, USA, 2005; 213-223.

10. Pacheco C, Lahiri SK, Ernst MD, Ball T. Feedback-directed random test generation. Proceedings of the International
Conference on Software Engineering (ICSE), Minneapolis, USA, 2007; 75-84.

11. Cadar C, Dunbar D, Engler D. KLEE: unassisted and automatic generation of high-coverage tests for complex sys-
tems programs. Proceedings of the USENIX Conference on Operating Systems Design and Implementation (OSDI),
San Diego, CA, USA, 2008; 209-224.

12. Edelstein O, Farchi E, Nir Y, Ratsaby G, Ur S. Multithreaded Java program test generation. IBM Systems Journal
2002; 41(1):111-125.

13. Kfena B, Letko Z, Vojnar T, Ur S. A platform for search-based testing of concurrent software. Proceedings of the
Workshop on Parallel and Distributed Systems: Testing, Analysis, and Debugging (PADTAD), Trento, Italy, 2010;
48-58.

14. Wang C, Said M, Gupta A. Coverage guided systematic concurrency testing. Proceedings of the International
Conference on Software Engineering (ICSE), Waikiki, Honolulu, Hawaii, USA, 2011; 221-230.

15. Hong S, Ahn J, Park S, Kim M, Harrold M J. Testing concurrent program to achieve high synchronization coverage.
Proceedings of the International Symposium on Software Testing and Analysis (ISSTA), Minneapolis, MN, USA,
2012; 210-220.

16. Hong S, Staats M, Ahn J, Kim M, Rothermel G. The impact of concurrent coverage metrics on testing effective-
ness. Proceedings of the IEEE International Conference on Software Testing, Verification and Validation (ICST),
Luxembourg, Luxembourg, 2013; 232-241.

17. Andrews JH, Briand LC, Labiche Y, Namin AS. Using mutation analysis for assessing and comparing testing
coverage criteria. [EEE Transactions on Software Engineering (TSE) 2006; 32(8):608-624.

18. Namin AS, Andrews JH. The influence of size and coverage on test suite effectiveness. Proceedings of the
International Symposium on Software Testing and Analysis (ISSTA), Chicago, IL, USA, 2009; 57-68.

19. Zhu H, Hall PAV, May JHR. Software unit test coverage and adequacy. ACM Computing Surveys (CSUR) 1997,
29(4):366-4217.

20. Tasiran S, Keremoglu ME, Muslu K. Location pairs: a test coverage metric for shared-memory concurrent programs.
Empirical Software Engineering (ESE) 2012; 17(3):129-165.

21. XuZ, Kim Y, Kim M, Rothermel G, Cohen M. Directed test suite augmentation: techniques and tradeoffs. Proceed-
ings of the ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE), Santa Fe, NM,
USA, 2010; 257-266.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
DOI: 10.1002/stvr

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

ARE CONCURRENCY COVERAGE METRICS EFFECTIVE FOR TESTING

Dwyer MB, Person S, Elbaum SG. Controlling factors in evaluating path-sensitive error detection techniques. Pro-
ceedings of the ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE), Portland,
Oregon, USA, 2006; 92—104.

Park CS, Sen K. Randomized active atomicity violation detection in concurrent programs. Proceedings of the ACM
SIGSOFT International Symposium on Foundations of Software Engineering (FSE), Atlanta, Georgia, USA, 2008;
135-145.

Nistor A, Luo Q, Pradel M, Gross TR, Marinov D. BALLERINA: automatic generation and clustering of efficient
random unit tests for multithreaded code. Proceedings of the International Conference on Software Engineering
(ICSE), Zurich, Switzerland, 2012; 727-737.

Sherman E, Dwyer MB, Elbaum S. Saturation-based testing of concurrent programs. Proceedings of the Joint Meet-
ing of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering(ESEC/FSE), Amsterdam, The Netherlands, 2009; 53-62.

Yu J, Narayanasamy S. A case for an interleaving constrained shared-memory multi-processor. Proceedings of the
Annual International Symposium on Computer Architecture (ISCA), Austin, Texas, USA, 2009; 325-336.

Bradbury JS, Cordy JR, Dingel J. Mutation operators for concurrency Java (J2SE 5.0). Workshop on Mutation
Analysis (MUTATION), Raleigh, North Carolina, USA, 2006; 11-20.

Do H, Rothermel G. A controlled experiment assessing test case prioritization techniques via mutation faults.
Proceedings of the IEEE International Conference on Software Maintenance (ICSM), Budapest, Hungary, 2005;
411-420.

Stoller SD. Testing concurrent Java programs using randomized scheduling. Proceedings of the International
Workshop on Runtime Verification (RV), Copenhagen, Denmark, 2002; 142-157.

Burckhardt S, Kothari P, Musuvathi M, Nagarakatte S. A randomized scheduler with probabilistic guarantees of
finding bugs. Proceedings of the International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), Pittsburg, PA, USA, 2010; 167-178.

Nagarakatte S, Burckhardt S, Martin MMK, Musuvathi M. Multicore acceleration of priority-based schedulers for
concurrency bug detection. Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), Beijing, China, 2012; 543-554.

Park S, Lu S, Zhou Y. CTrigger: exposing atomicity violation bugs from their hiding places. International Conference
on Architectural Support for Programming Languages and Operating Systems (ASPLOS), Washington, DC, USA,
2009; 25-36.

Kvam PH, Vidakovic B. Nonparametric Statistics with Applications to Science and Engineering. Wiley: Hoboken,
New Jersey, 2007.

Mallows CL. Some comments on Cp. Technometrics 1973; 15(4):661-675.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)

DOI: 10.1002/stvr

	Are concurrency coverage metrics effective for testing: a comprehensive empirical investigation
	Summary
	Introduction
	Background and Related Work
	Concurrency coverage metrics
	Assessing the effectiveness of concurrency coverage metrics

	Study Design
	Variables and measures
	Independent variables
	Concurrency coverage metrics
	Test suite construction

	Dependent variables
	Achieved concurrency coverage of test suites
	Test suite size
	Fault detection effectiveness of generated test suites
	Difficulty of satisfying test requirements
	Fault detection effectiveness of test requirements

	Experiment setup
	Mutant generation
	Test generation and execution
	Data collection

	Threats to validity
	External
	Internal
	Construct
	Conclusion

	Result and Analysis
	Visualization
	Correlation between variables
	Models of effectiveness
	Effectiveness of maximum coverage
	Effect of combining concurrency coverage metrics
	Combined coverage metrics as predictors
	Combined metrics as test case generation targets

	Effectiveness of difficult-to-cover test requirements

	Discussion
	Practical implications for testers
	Limitations of existing concurrency metrics
	Relationship between metric effectiveness and fault type
	Implications for concurrent test case generation research

	Conclusion
	APPENDIX:
	REFERENCES

