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Abstract. We describe Java-MaC, a prototype implementation of the Monitoring and Checking (MaC) architec-
ture for Java programs. The MaC architecture provides assurance that the target program is running correctly with
respect to a formal requirements specification by monitoring and checking the execution of the target program at
run-time. MaC bridges the gap between formal verification, which ensures the correctness of a design rather than
an implementation, and testing, which does not provide formal guarantees about the correctness of the system.

Use of formal requirement specifications in run-time monitoring and checking is the salient aspect of the
MaC architecture. MaC is a lightweight formal method solution which works as a viable complement to the
current heavyweight formal methods. In addition, analysis processes of the architecture including instrumentation
of the target program, monitoring, and checking are performed fully automatically without human direction,
which increases the accuracy of the analysis. Another important feature of the architecture is the clear separation
between monitoring implementation-dependent low-level behaviors and checking high-level behaviors, which
allows the reuse of a high-level requirement specification even when the target program implementation changes.
Furthermore, this separation makes the architecture modular and allows the flexibility of incorporating third party
tools into the architecture. The paper presents an overview of the MaC architecture and a prototype implementation
Java-MaC.

Keywords: software reliability, formal specification, run-time monitoring and checking, execution trace
validation, program instrumentation, Java, Java bytecode engineering

1. Introduction

In the past two decades, much research has concentrated on the methods for analysis and
validation of software systems, which are deployed in safety critical areas such as avionics
and automobiles. Many successful industrial case studies have been conducted in the area
of formal verification [5]. Complete formal verification, however, has not yet become a
prevalent analysis method. Reasons for this are twofold. First, complete verification of
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real-life systems remains infeasible. The growth of software size and complexity seems to
exceed advances in verification technology. Second, verification results apply not to system
implementations, but to formal models of these systems. That is, even if a design has been
formally verified, it still does not ensure the correctness of a particular implementation of
the design. This is because an implementation often is much more detailed, and also may not
strictly follow the formal design. So, there are possibilities for introduction of errors into an
implementation of the design that has been verified. One way that software engineers have
traditionally tried to overcome this gap between design and implementation has been to test
an implementation on a pre-determined set of input sequences. This approach, however,
fails to provide guarantees about the correctness of the implementation on all possible input
sequences.

Consequently, when a system is running, it is hard to guarantee whether or not the current
execution of the system is correct using the two traditional methods: verification and testing.
Therefore, the approach of continuously monitoring and checking a running system with
respect to formal requirements specifications can be used to fill the gap between these two
approaches. This approach might not seem very useful at first glance because detecting
errors does not seem interesting; for example, just reporting that a system is about to crash
is not helpful. Run-time monitoring, however, could help users of the system to detect and
correct errors. First, subtle errors are hard to detect without thorough run-time monitoring.
Second, errors may not cause disastrous system failure immediately. Run-time checking
can find such errors in a timely manner and help the users to take recovery actions before
critical failure happens.

In this paper, we describe Java-MaC, a run-time assurance system for Java programs
based on the Monitoring and Checking (MaC) architecture. The objective of the MaC ar-
chitechture is to provide assurance that the target program is running correctly with respect
to a formal requirements specification. The use of formal requirements specifications in
run-time monitoring and checking is the salient aspect of the MaC architecture. Further-
more, monitoring and checking as well as target program instrumentation are automatically
performed from a given requirement specification. These automatic processes based on
requirement specifications make the run-time analysis rigorous. Another characteristic fea-
ture of the architecture is the separation between monitoring program-dependent low-level
behavior and checking high-level behavioral requirements (see figure 1). This separation
allows the specification of high-level requirements independent of the implementation since
implementation specific details are confined to the low-level specification. In addition, this
separation enables the reuse of a high-level requirements specification even when the target
program implementation changes. Furthermore, this modularity of the MaC architecture
and its implementation based on well-defined interfaces among the components makes it
easy to incorporate third-party tools into the architecture. For example, we were able to
link the Java-MaC system with a network simulator to analyze the correctness of network
simulation traces [3].

The MaC architecture is a general framework, which is not limited to any specific pro-
gramming language. To demonstrate its effectiveness, however, we have implemented a
MaC prototype for Java programs, called Java-MaC. Java-MaC targets Java executable
code (i.e., bytecode). It is easy to deploy Java-MaC, because it automatically instruments
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Figure 1. Overview of the MaC architecture.

the target program and generates the run-time components of Java-MaC based on require-
ments specifications written in two scripting languages.

The paper is organized in two parts. The first part, Sections 2 and 3, briefly describes
the MaC architecture. Section 2 presents an overview of the MaC architecture. Section 3
presents the languages for requirements specification. The second part—Section 4 to
Section 7—focuses on Java-MaC. Section 4 discusses issues on monitoring Java programs.
Section 5 describes the Java-MaC implementation. Section 6 describes overhead reduc-
tion techniques used in Java-MaC. Section 7 provides a small but illustrative example of a
stock client program. Section 8 presents related work. Finally, Section 9 summarizes and
concludes the paper.

2. Overview of the MaC architecture

The overall structure of the architecture is shown in figure 1. The architecture includes two
main phases: a static phase and a run-time phase. During the static phase (i.e., before a
target program runs), the run-time components namely a filter, an event recognizer, and
a run-time checker are automatically generated from a formal requirements specification.
During the run-time phase, (i.e., while the target program executes), information about
the execution of the target program is collected and checked against the given formal
requirements specifications.

2.1. Static phase

The static phase of the MaC architecture starts with a formal requirements specification. A
formal requirements specification is written in two separate parts: a high-level specification
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and a low-level specification. A high-level specification consists of required properties. A
low-level specification contains the definitions of primitive events and conditions used in the
high-level specification. These definitions are in terms of program entities such as program
variables and program methods, and their purpose is to assign high-level meanings to the
program entities. For example, in a gate controller of a railroad crossing system, the safety
requirements that the gate must be completely down when a train is in the crossing may be
expressed using the condition InCrossing. The target program, on the other hand, stores
the position of the train in a variable train position. Here, the low-level specification can
define the condition InCrossing as (600 < train position) && (train position
< 800), where the starting position of the crossing is 600 and the ending position of the
crossing is 800.

The separation of a low-level specification and a high-level specification has two benefits.
First, different implementations can be monitored using the same high-level specification
since only the low-level specification needs to be modified according to the new implemen-
tation. Second, requirements are more naturally specified since implementation specific
details are abstracted.

Once the specifications are written, the next task is to generate run-time components.
A filter is generated from the low-level specification and inserted into the target program
through the automatic instrumentation procedure. An event recognizer is generated also
from the low-level specification automatically. Similarly, a run-time checker is generated
automatically from the high-level specification.

2.2. Run-time phase

During the run-time phase, the instrumented target program is executed while being moni-
tored and checked with respect to a requirements specification.

A filter is a collection of probes inserted into the target program. The essential func-
tionality of a filter is to keep track of changes of monitored objects and send pertinent
state information to the event recognizer. It is called a filter because it “filters” relevant
information about the trace, and sends it to the checking routines. An event recognizer
detects an event from the state information received from the filter. Events are recognized
according to a low-level specification. Recognized events are sent to the run-time checker.
Although it is conceivable to combine the event recognizer with the filter, we chose to
separate them to provide flexibility in an implementation of the architecture. A run-time
checker determines whether or not the current execution history satisfies a requirements
specification. The execution history is captured from a sequence of events sent by the event
recognizer.

3. The MaC language

In this section, we give a brief overview of the languages used to describe specifications. The
language for low-level specification is called Primitive Event Definition Language (PEDL).
PEDL is used to define what information is to be sent from the filter to the event recog-
nizer, and how it is transformed into events used in the high-level specification by the event
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recognizer. High-level specifications are written in the Meta Event Definition Language
(MEDL). One could conceivably write all the correctness requirements in a high-level pro-
gramming language such as Java or C, by directly coding the monitor in these languages.
However, using a specification language like MEDL has the advantage that the user can
specify the correctness requirements “declaratively,” without worrying about the “opera-
tional” details of the monitor. This can help users build reliable and correct monitors for
properties more easily. This separation ensures that the architecture is portable to different
implementation languages and specification formalisms. In Section 3.1, we introduce the
distinction between events and conditions, that is fundamental to the MaC architechture. In
Section 3.2, we discuss how the language may handle the presence of variables that are not
defined. We then formalize our intuitions into a logic in Section 3.3. This logic provides the
formal foundations for PEDL (in Section 3.4) and MEDL (in Section 3.5).

Before presenting the two languages, we first define the notions of event and condition,
which are fundamental to the MaC architecture.

3.1. Events and conditions

The MaC architecture assumes that it is possible to observe the behavior of the target system
and evaluate the observed behavior to check whether required properties are satisfied or
not. The observed behavior consists of “interesting” state changes in the target system. We
distinguish between two kinds of interesting state changes—events and conditions.

Events occur instantaneously during the system execution, whereas conditions represent
information that holds for a duration of time. For example, an event denoting return from
method RaiseGate occurs at the instant the control returns from the method, while a
condition (position == 2) holds as long as the variable position has the value 2. The
distinction between events and conditions is very important in terms of what the monitor
can infer about the execution based on the information it gets from the filter. The monitor
can conclude that an event does not occur at any moment except when it receives an update
from the filter. By contrast, once the monitor receives a message from the filter that variable
position has been assigned the value 2, we can conclude that position retains this value
until the next update.

Since events occur instantaneously, we can assign to each event the time of its occurrence.
Timestamps of events allow us to reason about timing properties of monitored systems. A
condition, on the other hand, has duration, an interval of time when the condition is satisfied.
There is a close connection between events and conditions: the start and end of a condition’s
interval are events, and the interval between any two events can be treated as a condition.
This relationship is made precise later when we present the logic.

We have two attributes time and value, defined for events. time(e) gives the time
of the last occurrence of event e. time(e) refers to the time on the clock of the mon-
itored system (which may be different from the clock of the monitor) when this event
occurs. If the monitored system has several clocks, we assume, for this paper, that the
clocks are properly synchronized to simplify the presentation of this paper. In addition, an
event can have an attribute value. value(e) gives the value associated with e, provided e
occurs.
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3.2. Presence of undefined variables

Reconsider the condition (position == 2) that was used previously. When the variable
position has some integer value, it is very clear what this condition means. However, be-
fore the variable position is initialized at the start of the execution, it is not clear whether
this condition should be considered to be true or false. This problem is not just confined to
the start. During any execution, variables routinely become undefined when they are out of
scope, and if we want to reason about such variables then we need a consistent way of inter-
preting logical formulae having undefined variables. The problems associated with defining
the semantics of logics in the presence of partial functions1 are well-understood [4, 9, 21].
There have been some approaches to defining logics with partial functions where the for-
mulae are interpreted over boolean values, i.e., true and false. However, these approaches
do not work when the logic has primitive relations, like “<” and “≥”, which have some
“natural” interpretation. Another traditional approach towards handling undefined expres-
sions, has been to move to a three-valued logic, where the third value is taken to represent
undefined. We choose to take this later approach, and so interpret the truth of conditions
over a three-valued logic.

We now formalize the issues presented above, in a two-sorted logic that defines the
operations on events and conditions. In this logic, we shall interpret conditions over three
values and not over booleans. PEDL and MEDL are subsets of this logic with added means
of definition of primitive events and conditions.

3.3. Logic for events and conditions

Syntax. We assume a countable set C = {c1, c2, . . .} of primitive conditions. For example,
in the monitoring script language (Section 3.4), these primitive conditions will be Java
boolean expressions built from the values of the monitored variables. In the requirements
description language (Section 3.5) these will be conditions that were recognized by the
event recognizer and sent to the run-time checker.

We also assume a countable set E = {e1, e2, . . .} of primitive events. When an event
occurs, it can have an attribute value, which is an element of a set Sei . For example,
StartM(RaiseGate) is a primitive event in the monitoring script language, which is
present at the start of method RaiseGate and whose attribute value is the tuple of values of
all the parameters with which this method is called. The primitive events in the requirements
description language are those that are reported by the event recognizer.

The logic has two sorts: conditions and events. Figure 2 shows the syntax of conditions
(C) and events (E).

Figure 2. The syntax of conditions and events.



JAVA-MAC: A RUN-TIME ASSURANCE APPROACH 135

Semantics. The models for this logic are sequences of worlds, similar to those used for
linear temporal logic. Each world has a description of the truth values of primitive conditions
and occurrences of primitive events. More formally, a model M is a tuple (S, τ, LC , L E ),
where S = {s0, s1, . . .}, τ is a mapping from S to the time domain (which could be integers,
rationals, or reals), LC is a total function from S × C to {true, false, �}, and L E is a partial
function from S × E to De. Intuitively, LC assigns to each state the truth values of all the
primitive conditions; since we interpret conditions over a 3-valued logic, the truth value of
primitive conditions can be true, false or � (undefined). Similarly, in each state s, L E (s, e)
is defined for each event e that occurs at s and gives the value of the primitive event e. The
mapping τ defines the time at each state, and it satisfies the requirement that τ (si ) < τ (s j )
for all i < j , i.e., the time at a later state is greater.

In order to define what we mean by a condition c being true in model M at time t
(M, t |= c), we need to define what we mean by its denotation (Dt

M (c)). This is defined in
figure 3. Using this we define the meaning of M, t |= c, and of an event e occurring in a
model M at time t (M, t |= e). The formal definition is given in figure 4.2

As stated before, we interpret conditions over three values, true, false, and � (undefined).
The denotation of a primitive condition, c at time t is given by c’s truth value in the last
state before time t . The predicate defined(c) is true whenever the condition c has a well-
defined value, namely, true or false. The denotation of negation (!c), disjunction (c1‖c2)
and conjunction (c1&&c2) are interpreted classically whenever c, c1 and c2 take values
true or false; the only non-standard cases are when these take the value �. In these cases,
we interpret them as follows. Negation of an undefined condition is �. Conjunction of an

Figure 3. Denotation for conditions.
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Figure 4. Semantics of events and conditions.

undefined condition with false is false, and with true is �. Disjunction is defined dually;
disjunction of undefined condition and true is true, while disjunction of undefined condition
and false is �. Implication (c1 ⇒ c2) is taken to !c1‖c2.

For primitive events, once again, the truth value is given by the labels on the states.
Conjunction (e1&&e2) and disjunction (e1‖e2) defined classically; so e1&&e2 is present
only when both e1 and e2 are present, whereas e1‖e2 is present when either e1 or e2 is
present.

There are some natural events associated with conditions, namely, the instant when the
condition becomes true (start(c)), and the instant when the condition becomes false (end(c)).
Notice, that the event corresponding to the instant when the condition becomes � can be
described as end(defined(c)). Also, any pair of events define an interval of time, so forms a
condition [e1, e2) that is true from event e1 until event e2. Finally, the event (e when c) is
present if e occurs at a time when condition c is true.

Notice that every condition can be identified with the events corresponding to when it
becomes true, when it becomes false and when it becomes �. This is the reason why the
languages in the MaC framework, are called “event definition languages”. Also, observe that
MaC reasons about temporal behavior and data behavior of the target program execution
using events and conditions; events are an abstract representation of time and conditions
are abstract representation of data.
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3.4. Primitive event definition language (PEDL)

PEDL is the language for writing low-level specifications. The design of PEDL is based
on the following two principles. First, we encapsulate all implementation-specific details
of the monitoring process in PEDL specifications. Second, we want the process of event
recognition to be as simple as possible. Therefore, we limit the constructs of PEDL to
allow one to reason only about the current state in the execution trace. The name, PEDL,
reflects the fact that the main purpose of PEDL specifications is to define primitive events of
requirement specifications. The operations on events can be used to construct more complex
events from these primitive events. PEDL is dependent on its target programming language.
We will describe PEDL for Java in Section 4.1.

3.5. Meta event definition language (MEDL)

The safety requirements are written in MEDL. Primitive events and conditions in MEDL
specifications are imported from PEDL specifications; hence the language has the adjective
“meta”. The overall structure of a MEDL specification is given in figure 5.

Importing events and conditions. A list of events and conditions to be imported from an
event recognizer is declared.

Defining events and conditions. Events and conditions are defined using imported events,
imported conditions, and auxiliary variables, whose role is explained later in this section.

Figure 5. Structure of MEDL.
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These events and conditions are then used to define safety properties and alarms.

Safety properties and alarms. The correctness of the system is described in terms of
safety properties and alarms. Safety properties are conditions that must be always true
during the execution. Alarms, on the other hand, are events that must never be raised (all
safety properties [19] can be described in this way). Also observe that alarms and safety
properties are complementary ways of expressing the same thing. The reason that we have
both of them is because some properties are easier to think of in terms of conditions, while
others are in terms of alarms.

Auxiliary variables. The language described in Section 3.1 has a limited expressive power.
For example, one cannot count the number of occurrences of an event, or talk about the
i th occurrence of an event. For this purpose, MEDL allows users to define auxiliary vari-
ables, whose values may then be used to define events and conditions. Updates of auxiliary
variables are triggered by events. For example,

e1 -> {count e1’ := count e1 + 1;}

counts occurrences of event e1. A special auxiliary variable currentTime is used to refer
to the current time of the target program. It is set to be the last timestamp received from the
filter.

4. Monitoring Java programs

Our approach to monitoring the execution of a Java program is to insert instrumentation
code within Java bytecode. The instrumentation code is executed as part of the execution of
a Java program to collect necessary state information. There are two conflicting objectives
for supporting the monitoring of Java programs. On the one hand, it is necessary to ensure
that all information relevant to check the required properties is collected during the program
execution. On the other hand, information extraction should not cause undue overhead on
the running program.

A Java program is a collection of objects. Each object has an internal state that is a
collection of object fields and a set of methods that can be invoked during execution.
Methods, in addition, may have local variables. Object fields and local variables may be
references to other objects; however, the state of the program is ultimately contained in
the fields and variables of primitive types. Based on this observation, Java-MaC limits the
monitoring to the values of fields and local variables of primitive types and to method calls.
Monitored entities are declared and used to define events and conditions in a monitoring
script written in PEDL for Java, called Java-PEDL.

This section describes Java-PEDL in detail. Then, we discuss issues associated with
monitoring objects when objects are aliased, that is, multiple references may be used to
update the same field of the same object. Finally, we discuss how to instrument Java bytecode
according to Java-PEDL scripts.
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4.1. PEDL for Java

By the design of the MaC architecture, PEDL is closely related to the target programming
language because events are defined using program entities such as variables and methods.
The automatic instrumentation provided by Java-PEDL must preserve the functional cor-
rectness of the target program and allow fast recognition of events. This means that although
Java-MaC has side effects on resource consumption such as memory and CPU usage, no
program variables are modified by the instrumentation code. In addition, Java-MaC does
not change the control flow of the program unless the program has synchronization errors.
Efficiency of event recognition is achieved by not allowing recursive or circular expressions
in the definitions of events and conditions. We believe that the current design of Java-PEDL
provides the right balance between the expressive power of the language and efficiency of
implementation.

The overall structure of a Java-PEDL specification is shown in figure 6. Each specification
consists of four sections: export declaration, overhead reduction flag, monitored entity
declaration, and event and condition definition.

Exporting events and conditions. This section declares the list of events and conditions to
be exported from the event recognizer to the run-time checker. These events and conditions
are defined in the event and condition definition section.

Overhead reduction flags. The user can enable or disable various overhead reduction
techniques. We discuss these techniques in Section 6.

Figure 6. Structure of PEDL for Java.
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Declaring monitored variables and methods. Each declaration identifies an object that
needs to be monitored. This object resides in a memory location. Since the exact memory
location of the object is not known during the static phase, this object is specified in a
monitoring script as a chain of references that starts in a fixed place in the object graph of
the Java program: either a static variable of a class or a local variable of a static method
such as main(). That is, when we specify such a chain of references in a monitoring script,
it effectively becomes a name for the memory location of the monitored object. In order
to maintain the correspondence between this name and the object location, we assume that
references in the chain used in the declaration of the monitored object, once assigned, do
not change.

Java-PEDL allows the monitoring of fields and variables of the primitive types, but
does not allow objects to be monitored directly. This restriction is adopted deliberately
to minimize monitoring overhead for the following two reasons. First, the overhead of
monitoring an object can be quite significant since if an object contains references to other
objects, then every change to any node that is recursively referenced needs to be detected.
Second, when we detect that an object has changed (i.e., some node in the object graph has
changed), the whole object graph may need to be delivered to the event recognizer. We note
that monitoring primitive variables only, but not objects, is not a severe restriction because
primitive variables constitute and define an object. For the rest of the paper, whenever we
say monitoring an object, we mean monitoring primitive variables of the object.

Java-PEDL identifies execution points to be monitored. There are two possible ways to
identify execution points in a Java program: source code line numbers and the beginnings and
endings of methods. Java-PEDL allows the use of starts and ends of methods as monitored
execution points, but not source code line numbers. This is because a line number does not
have inherent meaning in the target program; for example, reformatting a single statement
to span over two lines can change line numbers. Furthermore, source code may not be
available at the point at which instrumentation is performed.

Defining events and conditions. Primitive conditions in Java-PEDL are constructed from
boolean-valued expressions over the monitored variables. An example of such a condition
is

condition InCrossing = (600 < Train.position) &&
(Train.position < 800)

In addition to these conditions, Java-PEDL also supports the primitive condition of the
form InM(f), where f is the name of a method. This condition is true as long as execution
is currently within the method f. Complex conditions are built from primitive conditions
using boolean connectives.

Primitive events in Java-PEDL correspond to updates of monitored variables and calls/
returns of monitored methods. The event update(x) is triggered when the variable x is
assigned a value. Events startM(f) and endM(f) are triggered when control enters the
method f and returns from f, respectively. For example,

event OpenGate = startM(Control.open())
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defines an event meaning a controller starts opening a gate. The operations on events in
figure 3 can be used to construct more complex events from these primitive events. As
stated earlier, Java-PEDL forbids the use of recursion or circularity in the definition of these
complex events.

For each event, Java-PEDL defines two attributes, time and value. time(e) gives the
time of the last occurrence of event e. value(e,i) gives the i th value in the tuple of
values associated with e, provided e occurs. Java-PEDL defines the values of primitive
events as follows. The value of update(var) is the current value of var. The value of
startM(method) is a tuple containing parameters of the method when the method starts.
The value of endM(method) is a tuple containing the parameters of the method and a
return value (if any) when the method ends. The value of (e when cond) is the value of
the event e.

4.2. Monitoring objects

A Java program forms a complex object graph. Java handles an object via a reference
pointing to the object. Since many references can point to the same object, the same object
can be updated by different object references. For example, consider the variable x pointed
to by an arrow in figure 7. It can be referenced by a.b2.x and a.b1.b’.x. Therefore, if
the monitored object was declared as a.b2.x, then it is not enough to monitor updates to
the variable x by a.b2.x.

There are two issues. The first is how to identify a variable within an object initially.
Java-PEDL requires that a variable be specified with its full path in the object graph. This
allows, for example, a variable x in the object graph such as a.b2.x to be distinguished
from a variable x in a different instance of the same object type such as a.b1.x.

The second issue is how to detect all the updates to the variable, a.b2.x, regardless of
how it is referenced. In order to do this, we need to keep track of the addresses of objects
that contain monitored variables. For this, Java-MaC maintains a globally accessible table
containing addresses of monitored objects and monitored object names, called address
table. The address table resides in the filter. Since an object is located at a unique address
in the heap, comparing the addresses of two objects allows us to efficiently distinguish one
object from another. This also allows us to detect all updates to a monitored object field, no

Figure 7. An object graph.
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matter through what chain of references these updates happen. The use of an address table
reinforces the principle put forth in Section 4.1, that a monitored object corresponds to a
fixed memory location.

The current implementation of the address table assumes however that there is no aliasing
in the declarations of the monitored objects. If, in the example above, both a.b2.x and
a.b1.b’.xwere declared as monitored objects, they would correspond to the same memory
object and require that two messages be sent to the event recognizer for every update to that
object. We have disallowed such aliasing to avoid the extra overhead.

4.3. Instrumentation process

Java-MaC monitors field primitive variables, local primitive variables, and starts/ends of
methods. The Java-MaC instrumentor detects instructions which update monitored variables
or instructions located at the beginnings/endings of methods.

– Field primitive variables. Static field variables and instance field variables are updated by
putstatic and putfield bytecode instructions, respectively. For example, putstatic
A/x I updates a static variable x of integer type (I) declared in a class A with the top
element in the operand stack.

– Local primitive variables.3 Local primitive variables are updated by <T>store,
<T>store <n> and iinc where <T> is a variable type and <n> ∈ {1, 2, 3, 4} which
indicates <n>th local variable. For example, istore x in a method m updates a local
variable x declared in m with the top element in the operand stack.

– Execution points. There is only one starting point in a method—the beginning of a
method definition. There can however be several ending points—the locations of return
instructions. The parameters and the return variable of a method are monitored as local
variables of the method.

During the static, compile phase, the Java-MaC instrumentor identifies candidate update
instructions for the monitored variables. Once the instrumentor recognizes a candidate up-
date instruction (say i) for a monitored variable, varName, the instrumentor inserts a probe
consisting of monitorenter Filter.lock and sendObjMethod(Object parentAd-
dress, <T> value, String varName) right before i , where parentAddress is an ad-
dress of an object whose field varName is monitored. At runtime, when sendObjMethod()
is called, it checks whether or not a variable this probe monitors is actually a monitored
variable by matching parentAddress with the address of a monitored object in the ad-
dress table. If the variable is a monitored variable, sendObjMethod() sends it to the event
recognizer; otherwise, nothing is sent.

The instrumentor inserts monitorexit Filter.lock right after i . The pair of moni-
torenter and monitorexit ensures that the update to a variable and the sending of its new
value are executed atomically (see Section 5.2.1). For execution points, the instrumentor
inserts probes at the starting point of a method (i.e., the beginning of a method definition)
and at the ending points of a method (i.e., locations where return instructions exist).
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Figure 8. Inserted probe in bytecode (indented lines are the probe).

As an example, figure 8 illustrates the probes that Java-MaC inserts to monitor a variable
int a.b, where a is of type A. Indented lines are the probes inserted by Java-MaC. Line 9
updates the field x of class A with the value of the field y of class B. This line is identified
during the instrumentation process as potentially affecting the monitored variable a.b, and
the probe is inserted in front of it. Lines 4 and 5 acquire the lock to ensure that the update
and its monitoring happen atomically. Line 6 duplicates the value to be stored, which was
obtained by the instruction in Line 3, on the stack. Line 7 adds the name of the field as the
second argument. Line 8 invokes sendObjMethod() with the new value of A.b. Lines 10
and 11 release the lock after A.b is updated.

5. The MaC prototype for Java

This section describes the MaC prototype for Java programs, called Java-MaC. Figure 9
shows the overall structure of Java-MaC, which is divided into the static phase and the

Figure 9. Java-MaC.
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dynamic phase. Section 5.1 describes the Java-MaC components of the static phase.
Section 5.2 describes the run-time components of Java-MaC.

5.1. The static phase

Java-MaC has three static-phase components: an instrumentor, a PEDL compiler, and a
MEDL compiler. The PEDL compiler compiles the PEDL script into an abstract syntax
tree, which is evaluated by the event recognizer at run-time. At the same time, the PEDL
compiler generates instrumentation information, which is used by the instrumentor. The
Java-MaC instrumentor takes as input a collection of Java class files in the bytecode format
and instrumentation information that contains a list of monitored variables, monitored
methods and monitoring flags generated from a PEDL script. Based on these two inputs,
the Java-MaC instrumentor inserts a filter into the target bytecode. Similarly, the MEDL
compiler compiles the MEDL script into an abstract syntax tree (medl.out), which is
evaluated by a checker at run-time. The instrumentor and PEDL/MEDL compilers are
detailed in [14].

5.2. The run-time phase

The Java-MaC run-time components consist of a filter, an event recognizer, and a run-time
checker. A detailed description of each component is given below.

5.2.1. The filter. The purpose of the filter is to monitor the execution of the target program,
and extract snapshots of the program execution that are useful to the event recognizer. The
filter consists of the following two functional parts:

– Probes: Probes are inserted into all locations where monitored variables are updated and
where monitored methods begin and end. For a monitored variable, probes extract the
new value of the variable, and pass it to the filter thread. For a monitored method, probes
detect when execution enters and exits the method, and pass the information to the filter
thread.

– Filter thread: A target program is not originally designed to communicate with an event
recognizer. Communication from the target program to the event recognizer is carried out
by the filter thread. Probes communicate with the filter thread using a buffer. The filter
thread sends the contents of the buffer to the event recognizer through a communication
channel.

It is important that the filter reports the monitored updates in the same order as they happen
in the program. If several threads update the same monitored variable, the variable update
and the corresponding report delivery need to happen atomically. To achieve atomicity, the
filter provides a globally accessible lock that all threads acquire before updating a monitored
variable and release after the report is complete. Figure 10 shows the structure of a filter
with two threads performing concurrent updates.
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Figure 10. Structure of a filter.

The overhead of locking can be non-trivial. However, we observe that locking is un-
necessary if a monitored variable is updated by one thread only. In Java-MaC, the use of
locking in the filter is optional. Java-PEDL provides a keyword multithread in the over-
head reduction section (see Section 4.1). Locks are used by probes only when this keyword
is present in the monitoring script. Although this multithread flag should be specified for
each variable separately, the current Java-MaC only supports one flag that applies to all the
monitored variables.

5.2.2. The event recognizer. From a PEDL script, the PEDL compiler generates pedl.out
which consists of a set of abstract syntax trees and two tables. One table contains the names
and the current values of monitored variables and methods. The other table lists the names
of events and conditions, and for each name, it stores a reference to a respective event or
condition tree. The set of abstract trees captures the definitions of events and conditions as
well as the dependencies between events and conditions specified in a monitoring script.

As an example, figure 11 shows a simple PEDL script and figure 12 shows a graphical
representation of the pedl.out of that script.

Figure 11. A simple PEDL script.
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Figure 12. pedl.out of the PEDL script in figure 11.

Figure 13. Evaluation of a dependency graph.

Whenever the event recognizer receives a new snapshot from the filter, it reevaluates the
events and conditions. Figure 13 describes the algorithm used by the event recognizer to
evaluate events and conditions defined in pedl.out. Each root of an abstract tree has a
marker used by the algorithm. In the events and conditions table, each event has a present-
flag entry that is set if an event is present now, whereas each condition has a truth-value
entry that is true if the condition is true and false otherwise.

We now illustrate the evaluation algorithm using the example above. Suppose that the
event recognizer has A.x as 2 and A.y as 5. Then, suppose the filter sends a snapshot of
A.x as 5. When the event recognizer receives the snapshot, it first updates A.x as 5 in the
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value/method table. Then, it removes marks on all roots of event/condition trees and starts
evaluating events and condition expressions from the roots in a top-down manner.

The order of evaluating event/condition trees does not affect the evaluation result. In
other words, whether the event recognizer starts evaluation from n1 or n5 does not change
the result of evaluation. Suppose that n1 is evaluated first. First, the mark of n1 is set. Then,
the truth value field of n1 (false) is copied into its old truth value field and the value of
n1 changes to true because the new value, 5, of A.x is greater than 3. Although c1 has
changed its value, c1 need not be sent to the checker because it is not declared as exported.
Next, n5 is evaluated. When n8 is evaluated, the event recognizer recognizes that n1 has
been already evaluated by looking at the mark of n1. Thus, the event recognizer does not
evaluate n1 again, but just uses the value of n1. Finally, n5 is evaluated as present because
n8 becomes true, and thus, n7 changes from false to true. Since e1 is declared as exported,
e1 is sent to the run-time checker.

PEDL expressions are evaluated in time that is linear in the size of the expressions. This
is because the PEDL dependency graph is acyclic and the evaluation algorithm is essentially
performing a topological sort of this graph.

5.2.3. Run-time checker. The run-time checker evaluates event and condition definitions
in the abstract syntax tree in medl.out whenever the run-time checker receives events or
conditions from the event recognizer. MEDL expressions are evaluated in time linear to the
size of expression, because, like PEDL, MEDL does not allow recursive expressions. If the
run-time checker detects a violation defined by alarm or property, it raises a signal. The
evaluation procedure is similar to that of an event recognizer except for additional steps for
auxiliary variable updates. More details are in [23].

6. Overhead reduction

Any monitoring approach that does not use specialized hardware, causes overhead to the
target system. In this section, we analyze the overhead imposed on the target system by
instrumentation and communication between the target system and the monitor. We then
suggest three techniques to reduce this overhead without compromising the correctness of
monitoring, which can be specified using overhead reduction flags,timestamp, deltaab-
stract, valueabstract, in PEDL as shown in figure 6.

Our overhead analysis is based on the model of the monitoring process shown in figure 14.
The model captures overheads in the filter and the monitor. The monitor combines the
event recognizer and the checker, and thus, this model ignores the effect of the internal
communication between them within the monitor. The following six parameters constitute
overheads in the model. p is the overhead of executing a probe. w is the overhead of writing
a snapshot to the buffer. send is the overhead of sending the content of the buffer to the
monitor when the buffer becomes full. Rec is the overhead of receiving snapshots into the
buffer of the monitor. r is the time taken to read a snapshot from the buffer. e is the overhead
of evaluating properties upon arrival of a snapshot. We will use P, W, Send, Rec, R, and
E to refer to the accumulated values of p, w, send, rec, r , and e, respectively, during the
target program execution.
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Figure 14. The model of monitoring overheads to a target system.

Our discussion is limited to the overhead reduction techniques that can be applied by the
filter. In particular, we are interested in techniques that can be specified in PEDL. There are
three factors that we can control to reduce the overheads at the filter—the snapshot size s,
the frequency of taking snapshots f , and the buffer size buf .

1. Reducing the snapshot size s decreases W , R, send and Rec.
2. Reducing the snapshot frequency f decreases P , W , R, and E . Since the volume of

snapshots delivered from the target program to the monitor is decreased, this also reduces
the communication overheads Send and Rec.

3. Increasing the buffer size buf decreases Send and Rec if each send and receive operation
has high startup overhead.

Reducing s or f may compromise the correctness of property evaluation, since we either
omit some information in the snapshot or do not send all snapshots. On the other hand,
increasing buf , does not affect the correctness of property evaluation although increased
buf delays the delivery of snapshots which may result in late detection of violations. We
present two techniques for reducing s and f correctly.

6.1. Reducing snapshot size

In Java-MaC, a snapshot sent from the filter to the event recognizer consists of an ID of the
monitored variable (1 byte) and the value of the variable (from 1 to 8 bytes). Since each
timestamp is 8 bytes long, if we attach a timestamp to every snapshot, the timestamp would
take a large portion (between 47% and 80%) of the total space taken for the snapshot. To
reduce the snapshot size, it is possible to send timestamps periodically instead of attaching
a timestamp to every snapshot. The timing inaccuracy caused by such a periodic time stamp
is bounded by the period used. Note that periodic timestamps need to contain an ID for
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timestamp, but not the actual time value since it only needs to signal the beginning of
the next period. When snapshots are frequently exported, the savings from such periodic
timestamps can be quite significant. Suppose the period is 100 milliseconds and a snapshot
is sent every millisecond. With a timestamp attached to every snapshot, the timestamps
take the total 8000 bytes per second. Periodic timestamps, however, take only 10 bytes per
second. This type of reduction can be specified in Java-PEDL by using the timestamp
keyword and passing the timestamp delivery period as a parameter to the instrumentor.

Another way to reduce the snapshot size is to use a delta value. When a difference (called
delta value) between two consecutive values of a monitored variable is small enough to
be represented in smaller data type (delta type), the filter can send delta value instead of
new value. When a snapshot has a delta value instead of a normal value, an ID field has a
negative number to indicate use of a delta value. The delta type of int and short is byte.
The delta type of long is int. The delta type of double is float. This option is specified
by including deltaabstract in Java-PEDL.

6.2. Reducing sampling rate

Not every update of a variable affects requirement properties. Therefore, a filter may send
only snapshots which affect properties. We call this technique value abstraction. Value ab-
straction, however, can require expensive computation by the filter thread. Value abstraction
also violates the separation of concerns that we have carefully established between the filter
and the other components of the monitor. Thus, we apply this technique only to cases where
we can check whether properties are affected or not using a simple, fast test.

A simple expression sexpx is defined as “x cmp c,” where x is a monitored variable, cmp
is one of >, >=, ==, <=, <, and c is a constant. Evaluating a simple expression can be
much more efficiently compared to the overhead of sending a value and then evaluating the
event or condition scripts that depend on the value. If x appears only in sexpx ’s, Java-MaC
applies value abstraction to the variable x (i.e., exports the value of x only when any of
sexpx ’s changes). sexpxi are obtained from the event or condition definition of a PEDL
script. We illustrate how simple expressions are obtained from condition definitions by
considering the following two conditions:

condition c1 = (3 < x && x < 10) || y >10 || z > 10;
condition c2 = x > 5 && w > 2*z + 3;

From these, the following five simple expressions are identified:

sexpx0 = x > 3

sexpx1 = x < 10

sexpy0 = y > 10

sexpz0 = z > 10

sexpx2 = x > 5

x appears only in sexpx0, sexpx1, and sexpx2 in the PEDL script. Whenever x is updated,
the probe checks whether any of the value of sexpxi has changed. If the value of any sexpxi
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Figure 15. Value abstraction on updates of variable x .

is changed, the probe exports the new value of x to the event recognizer. Otherwise, the
probe does not. The situation is similar for y. All snapshots updating z and w, however, are
exported because z and w appear in the expression w > 2 ∗ z + 3 which is not a simple
expression. Figure 15 illustrates value abstraction on variable x by highlighting the snapshots
that are exported during a sample execution of the target pogram. The option of using value
abstraction can be specified by including the valueabstract flag in Java-PEDL.

7. Example

We have conducted several case studies. In [11], we have monitored the emulator of a
distributed controller for a large numbers of mobile agents, called Micro Air Vehicles
(MAVs), in order to check whether the MAVs are forming a hexagonal pattern as required. In
[3], we have detected violations of properties such as loop invariants in Ad-hoc On Demand
Vector routing protocol implemented using the NS2 simulator [8]. The NS2 simulator serves
as the instrumented target program and generates a trace for the event recognizer through a
hand-written filter. Kim [14] monitored a simulation of an inverted pendulum (IP) specified
in a hybrid specification language Charon [1] and checked whether the pendulum reaches the
goal position with a rod standing upright. Furthermore, in [15] we check whether transitions
among controllers occur correctly in a real IP program implemented in C/Java and hardware.
Table 1 shows quantitative information on those case studies. Execution time overhead is
not available for the MAV and IP case studies because we cannot measure the execution
overhead accurately for these programs. These programs are periodic tasks that execute on

Table 1. Quantitive information on performed case studies.

MAV AODV IP (Charon simulator) IP

Program size (Kbyte) 41 230 980 48

Spec. size (Kbyte) 1.5 56 3 3

Size overhead 2.5% 0.1% 0.2% 0.1%

Exec overhead N/A N/A 1% N/A
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timer interrupts. The sleep intervals between executions mask out overheads. However, in
the case of IP, which is a real-time application sensitive to the timely completion of each
task invocation, the instrumentation did not lead to any violation of task deadlines. For
AODV, we analyze an execution trace offline; so execution overhead is not meaningful in
this case.

To help the reader understand Java-MaC, however, we describe a small, but illustrative
example for Java-MaC in this paper. Consider a web-site that periodically probes some
remote servers for stock quotes; the server is chosen from a list of possible servers that may
provide this information, based on the web traffic at that time. On obtaining the quotes, the
web-site processes the new information to compute some statistics. If it fails to obtain the
quotes (due to excessive Internet traffic or the failure of the servers it accesses), it reuses old
information in its processing. For such a client program, one may be interested in checking
the following correctness properties:

Real-time requirement: The client is periodic; that is, it tries to query a new server every,
say, 1000 msecs.

Fault tolerance requirement: Old data is used only when either the client fails to connect to
some server after a sufficient number (say 3) retries or it fails to get a response from the
server for the query asked after trying for, say, 4 times.

A MEDL script describing these requirements is given in figure 16. The requirements
for the client can be defined provided the trace contains a signal for the beginning of
the computation (startPgm), an event for when a fresh period of 1000 ms has started
(periodStart), a signal when the client fails to connect to a server (conFail), a signal
when the client resends the query (queryResend), and an event denoting when the client
uses old information (oldDataUSed). Using these events, we can define the real-time
requirement (violatedPeriod) and the fault tolerance requirement (wrongFT). The real-
time requirement is violated whenever the time between successive periodStart events
in the trace (stored in variable periodTime) is not between 900 and 1100 milliseconds.
The fault tolerance requirement is defined in terms of the number of times the client failed
to connect to some server (variable numConFail) and the number of times a query was
resent (variable numRetries).

The run-time checker receives events startPgm, periodStart, conFail, queryRe-
send, and oldDataUsed from an event recognizer at run-time. These events are defined
in the PEDL specification of figure 17 based on methods and variables defined in Client
class. The method main(String[]) is invoked when the client program starts. The method
run() is invoked when a new session begins. The metod failConnection(ConnectTry)
is invoked when connection fails to be established. retryGetData(int) is invoked when
the client retries to get response from the server. processOldData() is invoked when the
old data is used instead of new data.

8. Related work

There has been two research directions for the formal analysis of program implementations.
The first one is to monitor and analyze the behavior of target programs at run-time. This
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Figure 16. MEDL specification for financial client example.

approach provides limited coverage because all the execution paths are not covered. This
approach, however, scales up and can be a practical solution.

JASS (Java with ASSertion) [2] is a precompiler that supports boolean assertions for Java.
Jass takes Java source code and inserts pre/post conditions for methods and invariants for
classes in a special comments. The Java Run-time Timing constraint Monitor (JRTM) [20]
aims to detect violation of timing properties in Java programs. JRTM uses Real-Time Logic
(RTL) [13] as a requirement specification language. A Java program should be manually
instrumented to put a probe in the place where a primitive event happens. Java Event Monitor
(JEM) [17] is an event-mediator like the CORBA event channel. JEM receives predefined
primitive events from event suppliers and detects composite events written in a Java Event
Specification Language [18] based on these primitive events. Temporal Rover [7] monitors
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Figure 17. PEDL specification for financial client example.

Java/C++ programs to check whether LTL requirement specification is violated. Probes
are inserted into source code manually. JavaPathExplorer [12] is a tool that is very close
in spirit to the MaC tool. It also checks the correctness of Java programs with respect
to LTL specifications. The correctness checking is accomplished via the rewrite engine
Maude. Another approach taken is one where the events are first cpatured and then the trace
is analyzed. Kortenkamp et al. [16] have a tool that allows one to capture the trace of a
C/C++ program and then analyze it later with respect to formal correctness requirements.
They also provide utilities that can help “visualize” the trace.

The second approach is to extract abstract models from programs written in conventional
programming language such as Java. Then, extracted models are verified using model
checkers. One significant advantage of this approach is that all possible execution paths of the
program can be covered. This approach, however, may not scale up due to the complexity of
program abstraction and state explosion problem. Bandera [6] generates finite state models
in the input language of verification tool such as Spin from Java programs. These models
are verified using existing model checking tools. Java Path Finder [22] extracts a finite state
model from Java bytecode and applies model checking to this model against properties
written in Java statements. Verisoft [10] is designed to detect a coordination problem such
as deadlock and assertion violation. Verisoft generates state space systematically from
C/C++ source code as long as time and space are allowed.
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9. Conclusion and future work

This paper describes the Monitoring and Checking (MaC) architecture and its prototype im-
plementation Java-MaC. The MaC architecture is a step towards bridging the gap between
verification of system design specifications and validation of system implementations. The
former is desirable but yet impractical for large systems, while the latter is necessary but
informal and error-prone. The MaC architecture supports a light-weight formal methodol-
ogy for confidence of the correct target program execution based on formal requirement
specifications. In addition, the run-time analysis of the architecture produces accurate re-
sults because of the automatic processes including instrumentation, monitoring, and check-
ing. Also, the separation between monitoring program-dependent low-level behavior from
checking high-level behavior increases the flexibility of the architecture.

We have applied Java-MaC successfully to several examples including a network protocol
and a micro air vehicle simulator. We are investigating application domains where we can
fully exploit the features of Java-MaC effectively. We are also developing a methodology
for applying the MaC architecture to support various target platforms, and extending the
capability of MaC to support the steering of a target program to a safe state when a violation
is detected.

Notes

1. Variables can be thought of as partial functions over time
2. Notice, that the definition of Dt

M refers to the definition of |=, and vice versa. However, the definitions are
well-defined.

3. Symbolic names of local variables can be obtained from a classfile when the class is compiled with -g flag.
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