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Abstract. As more computing systems are utilized in various areas of our soci-
ety, the reliability of computing systems becomes a significant issue. However,
as the complexity of computing systems increases, conventional verification and
validation techniques such as testing and model checking have limitations to as-
sess reliability of complex safety critical systems. Such systems often control
highly complex continuous dynamics to interact with physical environments. To
assure the reliability of safety critical hybrid systems, statistical model checking
(SMC) techniques have been proposed. SMC techniques approximately compute
probabilities for a target system to satisfy given requirements based on randomly
sampled execution traces. In this paper, we empirically evaluated four state-of-
the-art SMC techniques on a fault-tolerant fuel control system in the automobile
domain. Through the experiments, we could demonstrate that SMC is practically
useful to assure the reliability of a safety critical hybrid system and we compared
pros and cons of the four different SMC techniques.

1 Introduction

With the rapid advance of computing hardware, more computing systems are utilized
in various areas of our society including avionics and automobiles. Consequently, the
reliability of computing systems becomes a significant issue to our society. However,
as computing power increases, the complexity of computing systems increases rapidly,
which causes many challenges to assure reliability of computing systems. Conventional
verification and validation (V&V) techniques such as testing and model checking have
limitations to assess the reliability of complex safety critical computing systems, since
such systems often control highly complex continuous dynamics to interact with phys-
ical environments.

To assure the reliability of safety critical hybrid systems, statistical model check-
ing (SMC) techniques have been proposed [19, 17, 18, 8, 4, 21, 20, 2]. SMC techniques
approximately compute probabilities for a target system to satisfy given requirements



based on randomly sampled execution traces. Thus, SMC techniques can check the re-
liability of a safety critical hybrid system without analyzing the complex internal logic
of the target system.

However, most literature on the SMC techniques focuses on theoretical aspects of
suggested techniques, not their practical applicability to real-world safety critical sys-
tems.

In this paper, we empirically evaluated the effectiveness (in terms of the precision of
the verification result) and efficiency (in terms of the verification time) of the following
four representative state-of-the-art SMC techniques: single sampling plan (SSP), sta-
tistical probability ratio test (SPRT), Bayesian hypothesis testing (BHT), and Bayesian
interval estimation testing (BIET). 3 We applied these four SMC techniques to a fault-
tolerant fuel control system (FFCS), which is a safety critical system for automobiles.

Contributions of this paper are as follows:

– We demonstrated that SMC techniques can assess the reliability of a complex safety
critical system.

– We made empirical evaluation of the four state-of-the-art SMC techniques system-
atically with carefully controlled experiment environments.

– We identified and compared characteristics of the four SMC techniques, based on
which precise results can be obtained faster by applying multiple SMC techniques
together.

The organization of the paper is as follows. Section 2 overviews the four SMC tech-
niques. Section 3 explains the target FFCS system. Section 4 describes the verification
results by using the four SMC techniques on a Matlab/Simulink model of FFCS. Sec-
tion 5 discusses issues from the empirical study. Section 6 concludes this paper with
future work.

2 Background

In general, a model checking technique [1] checks whether a given modelM satisfies
a given requirement property φ (M |= φ) or not. A statistical model checking (SMC)
technique checks whether a probability for M to satisfy φ is greater than or equal to
a given threshold parameter θ (M |= P≥θ(φ)) or not. We specify φ in bounded linear
temporal logic (BLTL) [20] and that a probability forM to satisfy φ is greater than or
equal to a given threshold θ in probabilistic bounded linear temporal logic (PBLTL) [21]
(see Section 2.1). To compute the probability, SMC techniques utilize random sampling
of execution traces/paths ofM based on statistical techniques.

Figure 1 illustrates the overview of SMC. SMC receives a target modelM which
is an executable simulation model and PBLTL formula φ with θ. In addition, SMC
receives precision parameters based on which the accuracy of the calculated probability
is decided. SMC consists of three components: simulator, BLTL model checker, and
statistical analyzer. Simulator executesM and generates a sample execution trace σi.

3 In this study, we did not evaluate Chernoff-Hoeffding bound SMC technique [4] due to exces-
sive time cost.



Fig. 1. SMC overview

BLTL model checker determines if σi satisfies φ and passes the result (i.e., success if
σi satisfies φ; failure, otherwise) to statistical analyzer. Statistical analyzer calculates
a probability p that M satisfies φ by collecting the result regarding if σi satisfies φ.
Statistical analyzer requests simulator to generate σi+1 repeatedly until the number of
successful results of σs over the total number of σs is distributed within given precision
boundary. Note that SMC does not analyze an internal logic of a target system, and thus
SMC can validate complex safety critical systems without the state explosion problem.

More specifically, suppose that X1, ..., Xn are Bernoulli random variables (i.e., Xi

can be either 0 or 1) of the model checking result of φ over an execution path σ ofM
and p indicates a probability of Xi to become 1 (i.e., P (Xi = 1) = p). Since we do
not know p exactly, we should estimate p using random sampling techniques with user-
given precision parameters. We pick a sample path σi from M by executing M and
test whether σi satisfies φ or not. If σi satisfies φ, xi = 1; xi = 0 otherwise. Note that,
for estimating p, we should determine a number of sample paths n to check φ using
statistical techniques. We may obtain n statically by using heuristics or dynamically
through iterative sampling.

There are two classes of statistical techniques: hypothesis testing (Section 2.2) and
estimation testing (Section 2.3).

2.1 Probabilistic Bounded Linear Temporal Logic (PBLTL)

To define PBLTL, we first define a syntax and semantics of bounded linear temporal
logic(BLTL) [20], and then extend BLTL to PBLTL [21].

For a target modelM, SV is a finite set of real-valued state variables. A Boolean
predicate over SV is a constraint of the form y ∼ v, where y ∈ SV , ∼∈ {≥,≤,=},
and v ∈ R. The syntax of the BLTL logic formula φ is given by the following grammar:

φ ::= y ∼ v | (φ1 ∨ φ2) | (φ1 ∧ φ2) | ¬φ1 | (φ1Utφ2),

where y ∈ SV , ∼∈ {≥,≤,=}, v ∈ R, and t ∈ R≥0.



For other temporal operators, we can define Ftφ as TrueUtφ and Gtφ as ¬Ft¬φ.
We denote a fact that an execution σ satisfies a property φ as σ |= φ. We use σk to
denote a suffix trace of σ starting at step k (σ0 denotes the original execution σ). We
denote the value of a state variable y in σ at step k by V (σ, k, y). We define tk as a
time at step k and t as a time bound. The semantics of BLTL on a trace σk is defined as
follows:

– σk |= y ∼ v iff V (σ, k, y) ∼ v
– σk |= φ1 ∨ φ2 iff σk |= φ1 or σk |= φ2
– σk |= φ1 ∧ φ2 iff σk |= φ1 and σk |= φ2
– σk |= ¬φ1 iff σk 2 φ1
– σk |= φ1U

tφ2 iff there exists i ∈ N such that
1.
∑

0≤l<i tk+l ≤ t,
2. σk+i |= φ2, and
3. for each 0 ≤ j < i, σk+j |= φ1

A probabilistic bounded linear temporal logic (PBLTL) formula is a formula of the
form P≥θ(φ), where φ is a BLTL formula and θ ∈ (0, 1) is a probability threshold.
We denote that a modelM satisfies PBLTL property P≥θ(φ) asM |= P≥θ(φ), which
means that a probability for M to satisfy φ is greater than equal to θ (see [21] for
detailed description).

2.2 Hypothesis Testing

For hypothesis testing, we build a hypothesis H : p ≥ θ against an alternative hypoth-
esis K : p < θ where θ is a threshold over (0,1) and p is a true probability that M
satisfies φ. Hypothesis testing checks whether H is accepted or not based on the ran-
domly sampled paths. In this paper, we utilize the following three hypothesis testing
techniques - single sampling plan (SSP), sequence probability ratio test (SPRT), and
Baysian hypothesis testing (BHT).

Single Sampling Plan (SSP) SMC techniques cannot compute a true probability p ex-
actly, but can estimate p within given error bounds. Precision parameters for SSP [17]
are error bounds α and β, and a half size of indifference region δ. For testing a hy-
pothesis H , there are two types of errors such as false negative (also known as a type
I error) which rejects a true hypothesis H and false positive (also known as a type II
error) which accepts a false hypothesis H . We can bound an error probability of a false
negative error within α. Similarly, we can bound an error probability of a false positive
error within β. The left side of Figure 2 presents the function of probability Lp of ac-
cepting the hypothesis H as a function of p with the probability of a type I error and
type II error as exactly α and β. However, we want to give similar probability Lp with
p = θ to p = θ − ε for arbitrarily small ε > 0 for reality. To solve this problem, we
introduce indifference region (p1, p0) around θ where p0 = θ+δ, p1 = θ−δ, and δ is a
half size of indifference region (see right side function in Figure 2). Therefore, instead



Fig. 2. Function of probability Lp of accepting the hypothesis H : p ≥ θ (left side) and function
of probability Lp of accepting the hypothesis H0 : p ≥ p0 with indifference region (right side).

of testing H against K, we use the modified hypothesis H0 : p ≥ p0 against the alter-
native hypothesis H1 : p < p1. If the probability p is in (p1, p0), then p is sufficiently
close to θ so that we do not care which hypothesis is accepted.

For SSP, a user can determine a maximum number of sample paths n and a threshold
number of success sample paths c statically. After determining n and c, SSP executes a
target program multiple times. If the number of success sample paths that satisfy φ are
greater than c, then H is accepted; K is accepted otherwise. Then, we can express the
probability that the number of success sample paths among n samples are less than c
with the cumulative distribution function for binomial distribution B(n, p):

F (c;n, p) =

c∑
i=0

(
n

i

)
pi(1− p)n−i.

Therefore, we accept H with 1 − F (c;n, p) using n and c, and accept K with
F (c;n, p) using n and c. We can obtain minimal value for n and c using binary search
based algorithm with given p0, p1, α, and β. Note that SSP is the only SMC tech-
nique that computes the number of required sample paths statically among the SMC
techniques utilized in this study.

Sequence Probability Ratio Test (SPRT) SPRT [19, 17, 18, 15] determines a num-
ber of required sample paths dynamically at runtime. If another sample path is needed,
SPRT generates one more sample path by executing a target system. If the information
from generated sample paths are enough to determine hypothesis H0, SPRT stops ex-
ecuting a target program and outputs the result that H0 is accepted or not. SPRT uses
precision parameter inputs α, β, and δ which are same in SSP.



SPRT operates as follows. After generating mth sample paths of the test, we calcu-
late the quantity

p1m
p0m

=

m∏
i=1

Pr[Xi = xi|p = p1]

Pr[Xi = xi|p = p0]
=
pdm1 (1− p1)m−dm

pdm0 (1− p0)m−dm

where dm =
∑m
i=1 xi and xi is ith observation of σi |= φ. pjm is the probability

of the sequence x1, ..., xm with Pr[Xi = 1] = pj for j=0,1. Therefore, the above
quantity makes the ratio of two probabilities, the probability ratio. The hypothesis H0

is accepted if
p1m
p0m

≤ B,

and the hypothesis H1 is accepted if

p1m
p0m

≥ A.

Otherwise, we should generate m + 1th sample path of the test. A and B are selected
to bound error probability α and β, with A > B. In practice, we choose A = 1−β

α and
B = β

1−α (detailed description is found in [15, 17]).

Bayesian Hypothesis Testing (BHT) BHT [8] dynamically determines the number of
sample paths during simulation as same in SPRT. BHT uses two precision parameter
inputs such as threshold T of determining H0 and prior density g for p, the actual
probability of satisfying φ. In Bayes’ theorem, we get prior probability using current
information first. After obtaining new information, we can obtain posterior probability
refining prior probability. BHT uses Bayes’ theorem to determine the number of sample
paths of the test.

Let P (H0) and P (H1) be the strictly positive prior probabilities of accepting H0

and H1 and satisfying P (H0) + P (H1) = 1. Let d = (x1, ..., xn) be a sequence of
n sample paths of the test. Bayes’ theorem states that the posterior probabilities of
accepting H0 and H1 based on observations of d are

P (H0|d) =
P (d|H0)P (H0)

P (d)
P (H1|d) =

P (d|H1)P (H1)

P (d)

for every d with P (d) = P (d|H0)P (H0) + P (d|H1)P (H1) > 0.
BHT operates as follows. After generating mth sample paths of the test, we can

calculate the quantity
P (H0|d)
P (H1|d)

=
P (d|H0)

P (d|H1)
· P (H0)

P (H1)

where d = (x1, ..., xm). We call the above quantity as the ratio of the posterior proba-
bilities. Here, we define the Bayes factor B of d and hypotheses H0 and H1 as follows:

B =
P (d|H0)

P (d|H1)



The Bayes factor B can be interpreted as a measure of the evidence in favor of H0 and
also 1

B can be the evidence in favor of H1. We introduce a Bayes factor threshold T to
test H0 against H1 such that T ≥ 1. The hypothesis H0 is accepted if B > T , and the
hypothesis H1 is accepted if B < 1

T . Otherwise, BHT generates m + 1th sample path
using simulation 4 (detailed description is found in [8]).

2.3 Estimation Testing

Estimation testing can approximately compute p, the probability that the model M
satisfies the given property φ expressed by bounded linear temporal logic (BLTL). With
p, we can determine whether the probabilistic bounded linear temporal logic (PBLTL)
is satisfied or not. For that purpose, we use a following statistical estimation testing
technique.

Bayesian Interval Estimation Testing (BIET) BIET [21] dynamically determines the
number of sample paths for checking the satisfiability of the modelMwith the property
φ during simulation as SPRT and BHT do. BIET also uses the Bayes’ theorem. BIET
uses four precision parameter inputs such as a half-size δ′ of an estimation interval
which will contain pwith high probability, the coverage goal c of the estimation interval,
and the parameters α′, β′ of the Beta prior. In fact, BIET estimates interval around the
probability p instead of estimating p, but we regard the mean of the estimated interval
as p̂, the estimated value of true probability p, i.e., the estimated interval is (p̂− δ′, p̂+
δ′). We call the estimated interval as (t0, t1). We have a coverage goal such that the
probability that the probability satisfying M |= φ is in (t0, t1) should be over the
coverage c ∈ ( 12 , 1). The exact description of the coverage goal is as follows:∫ t1

t0

f(u|x1, ..., xn)du = c

where xi is ith observation of σi |= φ for i = 1, ..., n and n is the number of sample
paths. We call the coverage goal as a 100c percent Bayesian interval estimate of p.
Since BIET uses the Bayes’ theorem, we need prior information, i.e., prior density of p
to obtain prior probability. For simplicity, we focus on the Beta prior with parameters
α′, β′(See [21] for details).

At mth stage of the test, by Beta prior with α′, β′, we can calculate the quantity

p̂ =
x+ α′

m+ α′ + β′

where x =
∑m
i=1 xi is the number of success sample paths during m number of sample

paths. Next, using t0 = p̂− δ′, t1 = p̂+ δ′, we can calculate the quantity

γ =

∫ t1

t0

f(u|x1, ..., xm)du

4 T corresponds to the inverse number of error bounds α and β for SSP and SPRT [21].



where γ is the coverage of m number of sample paths for checkingM |= φ. If γ ≥ c,
then BIET stops the simulation and outputs t0, t1, and p̂. Otherwise, BIET generates
m+ 1th sample path and repeats.

3 Fault-tolerant Fuel Control System

This section overviews a fault-tolerant fuel control system (FFCS) [12] in an automobile
domain. We selected FFCS as a target system to apply the SMC techniques for the
following reasons:

– FFCS is a safety critical system whose reliability is very important.
– FFCS is a complex real-world application, not a toy example such as ones in proba-

bilistic symbolic model checker (PRISM) [11] benchmarks. Most SMC papers use
PRISM benchmarks as their target examples.

– A Simulink/stateflow model of FFCS is publicly available. Thus, it is convenient
to build prototypes of the SMC techniques for FFCS based on a Simulink/stateflow
simulator.

Figure 3 is an overall diagram of FFCS. FFCS [12] controls a fuel rate to inject fuel
based on sensor data for best performance, detects a sensor fault, and shuts down an
engine for safety in the presence of multiple sensor failures. FFCS has the following
four sensors: throttle angle sensor, speed sensor, exhaust gas oxygen (EGO) sensor, and
manifold absolute pressure (MAP) sensor. FFCS receives these four sensor inputs and
generates a proper fuel rate and an air-fuel ratio. FFCS consists of the following three
components: fuel rate controller, air-fuel ratio calculator, and sensor failure detector.
Fuel rate controller receives the four sensor data and calculates a proper fuel rate to
make an air-fuel ratio optimal (i.e., 14.6). Air-fuel ratio calculator receives EGO sensor
data and a fuel rate and calculates the air-fuel ratio. Sensor failure detector receives all
four sensor data and controls the fuel rate controller to increase/decrease the fuel rate
in the presence of a single sensor fault or shuts down the engine if multiple sensors fail,
since the air-fuel ratio cannot be controlled with failures of multiple sensors.

The size and complexity of the Simulink/stateflow FFCS model in terms of Hal-
stead [3] metrics are described in Table 1. We counted each atomic block (i.e., a mod-
ule of a mathematical function or control logic) as an operator and each input of an
atomic block as an operand of the Simulink/stateflow FFCS model. The automatically
generated C code from the model has 8266 LOC in 222 functions.

Table 1. Size and complexity of the FFCS Simulink/stateflow model in Halstead metrics

N1: # of N2:# of n1:# of n2:# of N :program n: program V : program D: program E: program

operators operands distinct distinct length vocabulary volume difficulty effort

operators operands (= N1 +N2) (=n1 + n2) (N × logn) (=n1/2×N2/n2) (= D × V)

65 111 35 94 176 129 1234.0 20.7 25500.0



Fig. 3. Block diagram of FFCS

A requirement property for FFCS is that a probability that the fuel rate does not
become zero for one second in 100 seconds should be greater than equal to threshold θ.
The property is crucial in a real world, because if the fuel rate is zero for one second,
then the engine stops and can cause a serious accident. This property can be expressed
by PBLTL as follows [21]:

P≥θ(¬(F 100G1(fuelrate = 0)))

4 Experimental Study

We have applied the four SMC techniques to FFCS with precision parameters as inde-
pendent variables and checked whether FFCS satisfies the given requirement property
in PBLTL or not.

4.1 Experiment Setup

We set a stochastic environment for FFCS as follows. The environment of FFCS gener-
ates random faults at the EGO, MAP, and speed sensors as [21] does. The random faults
are modeled by three independent Poisson processes with different arrival rates [16]. We
assume one fault event remains for one second. When a fault event occurs in a sensor,
FFCS remains in a failure mode for one second and returns to a normal mode. We uti-
lize the following four inter-arrival fault rates (i.e., mean inter-arrival times of sensor
fault) to the three sensors: (3,7,8), (10,8,9), (20,10,20) and (30,30,30).

For the SMC techniques, we use the following precision parameters:

– Hypothesis testing techniques
• SSP:
∗ threshold θ ∈ {0.5, 0.7, 0.9, 0.99}
∗ a half-size of indifference region δ ∈ {0.01, 0.03, 0.05}



∗ error bounds α, β ∈ {0.1, 0.01, 0.001}
• SPRT:
∗ threshold θ ∈ {0.5, 0.7, 0.9, 0.99}
∗ a half-size of indifference region δ ∈ {0.01, 0.03, 0.05}
∗ error bounds α, β ∈ {0.1, 0.01, 0.001}

• BHT:
∗ threshold θ ∈ {0.5, 0.7, 0.9, 0.99}
∗ Bayes factor threshold T ∈ {10, 100, 1000}
∗ prior density g = uniform density over (0,1)

– Estimation testing technique
• BIET:
∗ interval coverage c = {0.9, 0.99, 0.999}
∗ a half-size of estimation interval δ′ = {0.01, 0.03, 0.05}
∗ parameters of Beta prior α′ = β′ = 1 5

We performed each experiment five times to obtain average verification result over
[0, 1] regarding whether the hypothesis H is accepted or not where H: a probability to
satisfy φ(= ¬(F 100G1(fuelrate = 0))) is greater than or equal to θ. In addition, we
measured the average verification time for each experiment.

We built a statistical model checker as a Matlab module which runs together with
a FFCS model. We use a Matlab simulator as a simulator component to generate an
execution trace σ of a Matlab/Simulink FFCS model. Then, the BLTL model checker
analyzes if σ satisfies the requirement property φ. After the BLTL model checker eval-
uates σ, the statistical analyzer calculates a required number of sample traces dynam-
ically based on the precision parameters and the number of success/fail sample traces
generated so far. If a number of the generated samples reaches the required number, the
statistical model checker generates a verification result and terminates the SMC pro-
cess. Note that all sub-components of SMC are independent from each other and can be
re-used for other target systems without modification. Thus, it will not be difficult for
practitioners to apply SMC techniques to their safety critical systems. 6

We used Matlab R2010a for the experiments. All experiments were performed on 64
bit Windows 7 Professional K equipped with a 3 GHz Intel processor and 16 gigabytes
of memory.

4.2 Experimental Results

Tables 2-4 describe the experiment results of applying the hypothesis testing techniques
to FFCS with fault inter-arrival rate (3,7,8) and δ = 0.03. 7 In these three tables,

– θ is a threshold of the hypothesis H for SSP, SPRT, and BHT

5 α′ = β′ = 1, since we assume the prior density to be a uniform density over (0, 1).
6 We have released the statistical analyzers using SSP, SPRT, BHT, and BIET techniques pub-

licly at http://pswlab.kaist.ac.kr/tools/SMC/.
7 Full experiment data with the other three fault inter-arrival rates and δ ∈ {0.01, 0.05} is avail-

able at http://pswlab.kaist.ac.kr/data/hvc2012-expr-results.zip



Table 2. Experiment result of SSP with fault rate (3, 7, 8) and δ = 0.03

α, β

threshold θ

0.5 0.7 0.9 0.99

n m acpt time n m acpt time n m acpt time n m acpt time

0.1 455 255.3 1.0 688.3 386 307.0 1.0 821.5 161 141.5 0.0 381.3 57 5.8 0.0 17.1

0.01 1501 857.8 1.0 2308.1 1261 1001.5 1.0 2686.7 531 468.8 0.0 1256.4 113 5.0 0.0 14.8

0.001 2649 1487.8 1.0 4013.2 2226 1764.3 1.0 4760.8 932 806.8 0.0 2172.5 170 6.0 0.0 20.3

Table 3. Experiment result of SPRT with fault rate (3, 7, 8) and δ = 0.03

α, β

threshold θ

0.5 0.7 0.9 0.99

n acpt time n acpt time n acpt time n acpt time

0.1 26.6 1.0 17.6 34.0 1.0 22.4 108.4 0.0 71.5 5.6 1.0 3.7

0.01 49.0 1.0 32.3 93.4 1.0 61.6 484.0 0.0 319.4 5.6 1.0 3.7

0.001 72.8 1.0 48.0 127.6 1.0 84.2 786.6 0.0 519.2 11.6 1.0 7.7

Table 4. Experiment result of BHT with fault rate (3, 7, 8)

T

threshold θ

0.5 0.7 0.9 0.99

n acpt time n acpt time n acpt time n acpt time

10 3.6 1.0 2.4 5.0 1.0 3.3 42.2 0.8 27.9 21.0 0.2 13.9

100 7.6 1.0 5.0 26.0 1.0 17.2 3917.2 0.2 2585.4 27.0 0.0 17.8

1000 13.6 1.0 9.0 48.4 1.0 31.9 4013.2 0.2 2648.7 35.2 0.0 23.2

– n is a maximum number of required sample paths andmmeans an average number
of sample paths generated for SSP. For SPRT and BHT, n is an average number of
sample paths generated for SPRT and BHT.

– acpt is an average result over [0, 1] regarding the hypothesis H where 0 is ‘reject’
and 1 is ‘accept’

– time is an average verification time for each experiment in seconds

Table 5 describes the experiment result of applying the estimation technique BIET
to FFCS with fault inter-arrival rate (3,7,8), where n is an average number of sample
paths, p̂ is an estimated probability to satisfy φ, and time indicates an average verifi-
cation time in seconds. Tables 2-5 show that n (m for SSP) increases as the precision
parameters becomes smaller. For example, for SSP, when α and β decrease from 0.1



Table 5. Experiment result of BIET with fault rate (3, 7, 8)

δ′
interval coverage c

0.9 0.99 0.999

n p̂ time n p̂ time n p̂ time

0.05 104.8 0.8835 69.2 273.0 0.8849 180.2 475.5 0.8830 313.8

0.03 276.6 0.8944 182.6 729.4 0.8889 481.4 1191.5 0.8924 786.4

0.01 2733.8 0.8856 1804.3 6696.5 0.8861 4419.7 10924.2 0.8865 7210.0

to 0.001 with threshold θ = 0.5, m increases from 255.3 to 1487.8 (Table 2). Similar
tendencies are observed for SPRT, BHT, and BIET.

Regarding Effectiveness (Precision of the Verification Results) All four techniques
produce similar results. For hypothesis testing techniques SPRT, SSP, and BHT, the
probability for FFCS with the fault inter-arrival rate of sensors (3,7,8) and δ = 0.03
to satisfy the requirement property φ is between 0.7 and 0.9. This is because acpts are
1.0 when θ ≤ 0.7 while acpts are close to 0 when θ ≥ 0.9 in Tables 2-4.8 Also, note
that n of SPRT and BHT increases exponentially as θ increases from 0.5 to 0.9, and
decreases sharply from 0.9 to 0.99. For example, for SPRT with α=β=0.1 (Table 3), n
becomes 26.6, 34.0, 108.4 and 5.6 as θ becomes 0.5, 0.7, 0.9 and 0.99, respectively. In
general, for the hypothesis testing techniques that generates sample paths dynamically
(i.e., SPRT and BHT), if a true probability is close to the threshold θ, a large number
of sample paths is required to determine whether a given hypothesis H is accepted
or not. By the above results, we can conclude that a true probability that FFCS with
the fault rate (3,7,8) satisfies the requirement property is close to 0.9. Furthermore,
BIET computes the probability between 0.8830 (with c = 0.999 and δ′ = 0.05) and
0.8944 (with c = 0.9 and δ′ = 0.03) (Table 5), which is included in the estimated
probability interval (0.7,0.9) of the hypothesis testing techniques. Therefore, based on
the above analysis of the results, we can conclude that the verification results of the
SMC techniques are precise.

Regarding Efficiency (Verification Time) The time taken for each experiment was
moderate. The longest experiment took 7210.0 seconds (i.e., around 2 hours) to gener-
ate 10924.2 sample paths on average for BIET with c = 0.999 and δ′ = 0.01 (Table 5).
Note that most other experiments took much less time. For example, the longest exper-
iments in SSP, SPRT, and BHT took 4760.8 (α=β=0.001 and θ=0.7) (Table 2), 519.2
(α=β=0.001 and θ=0.9) (Table 3), and 2648.7 (T=1000 and θ=0.9) (Table 4) seconds,

8 The result of SPRT with θ = 0.99 is not reliable, since the precision of SPRT is low when θ is
close to 1. Also, note that n becomes very small (i.e., less than 12) with θ=0.99 in Table 3.



respectively. Therefore, we can conclude that statistical model checking can assure re-
liability of a complex target system at modest cost. 9

5 Discussion

5.1 Practicality of Statistical Model Checking

Through the empirical evaluation of the SMC techniques on FFCS, we believe that
statistical model checking is practically useful for the following reasons:

– SMC can check a probability for a complex hybrid system to satisfy a given re-
quirement property φ. In this project, we could statistically check the probability
for FFCS to satisfy φ, since we just generated random sample execution paths with-
out analyzing the internal structure of FFCS, which is a great advantage of SMC.

– SMC allows a user to select proper trade-off between verification precision and
time cost by selecting appropriate precision parameter values (Section 4.2). In some
cases, due to limited project time, it may be more valuable to obtain less precise
verification in short time than more precise verification result in much longer time.

– The SMC techniques can obtain precise verification results in a moderate amount
of verification time (i.e., less than two hours for the most experiments in Sec-
tion 4.2). 10

5.2 Necessity of Proper Precision Parameter Values

We found that, for SSP and SPRT to produce precise verification results, δ should be
very small when θ is close to 1. For example, the verification result of SPRT was ‘ac-
cept’ for θ = 0.99 with δ=0.03 (see Table 3), which is considered as an incorrect result,
since the other SMC techniques conclude that the estimated probability is between 0.7
and 0.9 (Section 4.2). The reason for these imprecise results of SSP and SPRT is due
to the limited size of indifference region. For example, if the threshold θ is 0.99 and
δ ≥ 0.01, then p0 becomes 1, which causes the denominator of the probability ratio
p1m
p0m

to be 0 when one false sample occurs for SPRT, which can cause imprecise result.
For SSP, when n=170 with α = β = 0.001 and δ= 0.03, a number of success samples
should be larger than 169 to accept H . In other words, if one sample path violates φ,
then the verification finishes immediately with ‘reject’ result. Therefore, SSP and SPRT
should be applied with very small δ when θ is close to 1.

In addition, BHT with threshold θ = 0.9 produced different verification results with
different T . With T=10, the verification result was 0.8 (i.e., almost ‘accept’) on average.
However, with T=100 or 1000, the verification results were 0.2 (i.e., almost ‘reject’) on
average. From the results of the other techniques which indicate the true probability
p ∈ (0.7, 0.9) (Section 4.2), we can conclude that the verification result with T=10

9 SSP takes much more time to generate one sample than the other techniques, since the heuris-
tics of SSP to determine a maximum number of sample paths is very complex.

10 If the required reliability goal is very high (i.e., from 1−10−4 to 1−10−5 for SIL 4 level [6]),
SMC may take multiple weeks.



Table 6. Comparison of the four statistical model checking techniques

Technique Precision Speed # of sample Applicability
decision

Hypothesis
testing

SSP Low when θ is Slow except when Static Low
close to 1 θ is close to 1

SPRT Low when θ is Fast Dynamic Middle
close to 1

BHT Middle Slow when θ is close Dynamic High
to true probability

Estimation BIET High Slow Dynamic High
testing

was imprecise. This is because T was not sufficiently small enough to obtain a precise
verification result. Therefore, proper precision parameter values are important to obtain
precise verification results.

5.3 Comparison of the SMC techniques

Table 6 summarizes characteristics of the four SMC techniques. The precision of SSP
and SPRT is lower than the other techniques when θ is close to 1 because of the size
restriction of the indifference region (Section 5.2). The precision of BIET is higher
than the other techniques by the law of large numbers [14], because BIET utilizes more
samples than the other techniques. BHT achieves a middle level of precision compared
to SSP/SPRT and BIET. Regarding verification speed, SSP is slow except when θ is
close to 1; when θ is close to 1, SSP is fast (but imprecise) since a number of samples
is small. BHT is slow by generating a large number of samples when θ is close to a true
probability. BIET is relatively slow due to a large number of samples utilized. SPRT is
relatively fast, since it does not have weaknesses of the other techniques in terms of the
verification speed. By considering these aspects, the applicability of BHT and BIET is
relatively higher than that of SPRT and SSP.

As shown in Table 6, there is no single best SMC technique for all aspects. Thus, a
combination of different SMC techniques can achieve precise result faster. For exam-
ple, many safety critical systems should satisfy requirement property φ with very high
probability for reliable operations (i.e., θ should be larger than 0.9999). We know that
SPRT is faster than BIET, but its precision is low when θ is close to 1. In such cases,
we can first apply SPRT to a target system with low θ for fast verification speed. If
the verification results for low θ values (i.e., θ ∈ [0.5, 0.7]) are ‘reject’, then we do
not need to verify a target system further. Otherwise, we use BIET for higher θ (i.e.,
θ ∈ [0.9, 0.99]), which is more precise but slower than SPRT, since SPRT is imprecise
for θ close to 1. Consequently, this combined method can achieve precise result faster
than BIET only. 11

11 From this observation, we have developed a hybrid SMC technique which combines SPRT,
the fastest SMC technique and BIET, the most accurate SMC technique. We have showed that



6 Conclusion and Future Work

From our empirical study, we demonstrated that SMC techniques can assess the reliabil-
ity of a complex safety critical system such as FFCS. Based on the statistical techniques,
SMC techniques can estimate the reliability of a complex safety critical hybrid system,
to which conventional V&V techniques often fail to apply due to high complexity of a
target system.

Therefore, we believe that industries on safety critical system domain can benefit
from the SMC techniques much. As market competition becomes severe, many compa-
nies try hard to improve the quality of their products and to obtain safety certificate such
as ISO 26262 [7] for automobiles and DO178B/C [13] for avionics by validating the re-
liability of the products. However, it has been very difficult to validate the reliability of
complex hybrid systems due to aforementioned reasons. SMC can be used to validate
the reliability goal assigned to a target system/component effectively and efficiently.
In [9], we have demonstrated that SMC can be a solution for validating software relia-
bility at an early development stage to reduce the defect correction cost of conventional
software reliability assessment procedures such as IEEE Std.1633 [5].

As future work, to improve the practicality of the SMC techniques further, we plan
to collaborate with automobile companies like Hyundai or Kia on the application of
the SMC techniques on automobile controllers. In addition, we will develop a safety
engineering process to validate software reliability based on the SMC techniques, which
is essential to obtain safety certificate.
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