
Re-engineering Software Architecture of Home Service
Robots: A Case Study

Moonzoo Kim, Jaejoon Lee,
Kyo Chul Kang

Computer Science and Engineering Department
Pohang University of Science and Technology

Pohang, South Korea

{moonzoo,gibman,kck}@postech.ac.kr

Youngjin Hong, Seokwon Bang
Interaction Lab.

Samsung Advanced Institute of Technology
P.O.Box 111, Suwon

440-600, South Korea

{bhong,banggar.bang}@samsung.com

ABSTRACT
With the advances of robotics, computer science, and other
related areas, home service robots attract much attention
from both academia and industry. Home service robots
present interesting technical challenges to the community in
that they have a wide range of potential applications, such
as home security, patient caring, cleaning, etc., and that the
services provided by the robots in each application area are
being defined as markets are formed and, therefore, they
change constantly.

Without architectural considerations to address these chal-
lenges, robot manufacturers often focus on developing tech-
nical components (e.g., vision recognizer, speech processor,
and actuator) and then attempt to develop service robots
by integrating these components. When prototypes are de-
veloped for a new application, or when services are added,
modified, or removed from existing robots, unexpected, un-
desirable, and often dangerous side-effects, which are known
as feature interaction problem, happen frequently. Reengi-
neering of such robots can make a serious impact in delivery
time and development cost.

In this paper, we present our experience of re-engineering
a prototype of a home service robot developed by Samsung
Advanced Institute of Technology. First, we designed a mod-
ular and hierarchical software architecture that makes inter-
action among the components visible. With the visibility of
interactions, we could assign functional responsibilities to
each component clearly. Then, we re-engineered existing
codes to conform to the new architecture using a reactive
language Esterel. As a result, we could detect and solve
feature interaction problems and alleviate the difficulty of
adding or updating components.

Categories and Subject Descriptors
D.2.11 [Software Architecture]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’05,May 15–21, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-58113-963-2/05/0005 ...$5.00.

General Terms
Design, Reliability

Keywords
software re-engineering, robot programming, reactive sys-
tems

1. INTRODUCTION
Home service robots have received much attention from

academia as well as industry in anticipation that home ser-
vice robots will potentially increase quality of human life
in a wide range of application areas. Thus, leading con-
sumer product companies such as Sony [2], Honda [1], and
Samsung have invested a great deal of efforts in developing
home service robots. Home service robots utilize various
technology-intensive components such as speech recognizers,
vision processors, and actuators to offer service features. As
markets for home service robots are still being formed, how-
ever, these technical components undergo frequent changes
and new services are added or existing services are often
removed or updated to address changing needs of the user.
Thus, home service robots present interesting software en-
gineering challenges to the research and development com-
munity.

Due to limited development resources, developers of home
service robots tend to focus on technology intensive compo-
nents at an early stage of product development without an
architectural consideration of how they will be integrated to
create services. Furthermore, engineers are often grouped
into separate teams based on the underlying technologies
(e.g., speech processing, vision processing), which makes in-
tegration of these components more difficult. Without a
fore-thought architectural design, an initial product tends
to be developed by integrating these components in an ad-
hoc and bottom-up way. As a consequence, products often
suffer from feature interaction problems [10, 24]. Feature
interaction problems found in systems developed without
careful architectural design are hard to analyze and solve
because it is difficult to see how behaviors of components
are coordinated to create services, i.e., how control informa-
tion flows between components for services. Therefore, in
order to improve quality of the product, re-engineering of
the product had to be enforced at a later stage.

In this paper, we describe our experience of re-engineering
a prototype of a home service robot, called Samsung Home
Robot (SHR), developed by Samsung Advanced Institute of

505

Technology (SAIT). We concentrated on designing a soft-
ware architecture (SA) [15, 23, 5] for easy integration of
components. More specifically, we focused on a SA that
makes interactions between components visible, thus allow-
ing behavior analyses of a product. We designed a SA for
SHR based on the following three principles.

• separation of the control plane from the computational
plane

• distinction between global behavior and local behavior

• layering in accordance with a data refinement hierar-
chy

The new SA designed with these principles is modular
and hierarchical, and systematic addition or modification
of service components became feasible. With the interac-
tion visibility between components, we could assign behav-
ioral responsibilities to the components accurately, and de-
tect/solve feature interaction problems easily. We re-engineered
the existing implementation to conform to the new SA using
a reactive language Esterel. Because of the compositionality
property and reactive operators of Esterel, the re-engineered
implementation became compact and easy to analyze and
update.

Section 2 describes components and services of SHR and
reviews the previous implementation of SHR. Section 3 in-
troduces the three principles used for re-engineering, and the
new SA created by applying these principles and experiment
results are described in section 4. Section 5 summarizes the
lessons learned from the project, and section 6 concludes
this paper with future works.

2. BACKGROUND ON SHR
SHR is a prototype of a home service robot for daily home

services such as home surveillance, etc. Section 2.1 explains
history of developing SHR. The hardware of SHR is de-
scribed in Section 2.2. The services of SHR are explained
in Section 2.3. Section 2.4 shows the previous architecture
of SHR. Finally, Section 2.5 describes the statistics on the
SHR software.

2.1 Development History
SHR100 is a successor of SHR50 and SHR00. Devel-

opment of SHR00 started in 2002 by four separate teams
consisting of 13 people working on speech recognition, vi-
sion recognition, map building, and actuator control. These
teams completed developing their own part and tried to in-
tegrate their parts altogether at a later stage. SHR50 as
well as SHR00, however, exhibited often unstable behav-
iors such as missing user commands and stuttered move-
ment although each part had worked successfully when not
integrated (this kind of failure is not uncommon in robot-
ics field [13]). As a consequence, they decided to give up
SHR50 and SHR00 and develop both hardware and soft-
ware of SHR100 from scratch. To prevent similar prob-
lems, SHR100 was equipped with larger memory and faster
CPU. Also, SAIT requested POSTECH to design a software
architecture after ten months of the new development (at
that point, SAIT completed a high-level task specification
of SHR100 and several service features were implemented).
At that request, POSTECH reviewed the specifications as
well as the implementation of SHR100. Then, POSTECH

designed a new software architecture and re-engineered ex-
isting implementation for six months.

2.2 Hardware
SHR100 has a single board computer (mobile Pentium IV

2.4G with 512MB memory running embedded WindowsXP)
controlling peripherals as follows.

• Input peripherals

– 1 ceiling camera for building a map (640x480 res-
olution and 5 frames/s)

– 1 front camera for recognizing users and remote
surveillance (320x240 resolution and 15 frames/s)

– 8 microphones for speaker localization and speech
recognition (8 Khz sampling rate)

– 1 structured light sensor for obstacle detection
and footstep recognition

• Output peripherals

– 1 LCD display for information display

– 1 speaker for speech generation

– 2 actuators for right and left wheels

• Input/output peripheral

– Wireless LAN for communicating to a home server

The components of SHR100 are illustrated in Figure 1.

2.3 Services
Some of the primary services of SHR100 are described as

follows.

• Call and Come (CC)
This service first analyzes audio data sampled from
eight microphones attached to the surface of the robot
and detects predefined sound patterns (e.g., hand clap
or voice command). There are two commands “come”
and “stop”. Once a “come” command is recognized,
the robot tries to detect the direction of sound source
by comparing the strength of sound captured by eight
microphones. Then, the robot rotates to the direction
of sound source and tries to recognize a human face
by analyzing video data captured by the front cam-
era. If the caller’s face is detected, the robot moves
forward until it reaches within 1 meter from the caller
(distance from the caller is measured by the structured
light sensor).

A “Stop” command is similar to a “come” command
except that the robot does not move forward if a “stop”
command is given while the robot is not moving. When
the robot is moving, a “stop” command makes the ro-
bot stop. If command recognition, sound source detec-
tion, or face recognition fails, CC resets to the initial
state and waits for new commands. CC is preemptible,
i.e., newly recognized command makes the robot ig-
nore the previous command and follow the new one.

• User Following (UF)
The robot uses the front camera and the structured
light sensor to locate a user. Once UF is triggered, the
robot constantly checks vision data and sensor data

506

Figure 1: Hardware components of SHR100

from the structured light sensor in every 200 ms for
locating the user. The robot keeps following the user
within 1 meter range. If the robot misses the user, the
robot notifies the user by speaking “I lost you” and UF
terminates. Then, the user gives “come” command to
let the robot to recognize the user and restart UF.
Similar to CC, UF is a preemptible service.

• Security Monitoring (SM)
The robot patrols around a house for surveillance using
the map generated by Simultaneous Localization and
Map building (SLAM) module. Intrusion or accidents
are defined as patterns recognizable from vision and
sound data. For example, intrusion can be detected by
watching images and sounds from doors and windows.
Once such an event is detected, the robot notifies the
user directly via an alarm or indirectly through a home
server.

• Tele-presence (TP)
A remote user can control the robot using a PDA.
The robot sends the remote user a map of the house
generated by the SLAM module periodically. The user
can command the robot to move to a specific position
in the map displayed at the PDA. In addition, the
robot can send images obtained from the front camera
to the remote PDA for surveillance.

2.4 Architecture
Figure 2 illustrates the previous SA of SHR100. Each ser-

vice component in Figure 2 implements service feature men-
tioned in Section 2.3. The input data are gathered from the
sensors (e.g., the 8-channle microphones, the front camera,
etc) and distributed to the corresponding service compo-
nents. The service components read and process the input
data to retrieve information required for the services. For
instance, CC component processes the audio data to iden-
tify the user’s commands and also to detect the direction
of the sound source. The outputs of the service compo-
nents are action commands (e.g., rotate, go forward, stop,
etc) moving the robot to specified directions. The naviga-
tion component receives these commands and converts them
into schema data to control the actuators. While the robot

is moving, it also performs the reactive actions such as ob-
stacle avoidance or emergency stop, which are critical for
safety.

Figure 2: Previous SA of SHR100

When only a few service components are integrated, their
interactions are trivial and manageable with this architec-
ture model. As more services are integrated, however, the
complexity of their interactions grows exponentially in this
architecture. Thus, issues such as priorities among services
or global system modes are hard to handle correctly.

2.5 Software Statistics
The version of the SHR100 software which POSTECH

re-engineered contained complete CC and UF components.
Other services such as security monitoring or tele-presence
were not completely implemented in the version of the SHR100
software. The rough statistic summary of the SHR100 soft-
ware is described in Table 1. For the CC and UF services,
and other related parts, we show the total number of source
files and total lines of code. Critical parts of the applica-
tion (mostly recognition algorithms and device drivers) were
given to POSTECH from SAIT as DLL (Dynamic Linked
Library) format for security reason. For DLLs, we show the
number of DLL files and total size of DLLs.

507

Components # of source files Size

Call and come 29 4000 lines
User following 43 9000 lines

Others 43 3600 lines
DLLs 39 38 MB

Table 1: Statistics on the SHR100 application

3. RE-ENGINEERING PRINCIPLES
First, we reviewed specification and implementation of

SHR100 thoroughly. Based on observations from the re-
viewing process, we could propose three re-engineering prin-
ciples. Figure 3 illustrates a new SA designed according to
these three principles.

Figure 3: SA designed based on the principles

3.1 Principle 1: Separation of Control
Components from Computational
Components

There are two classes of data manipulated by SHR100.
The first class of data is computational data (voice/vision/sensor
data) which are handled in large volume. The second class
of data is control data for controlling components. These
two classes of data have distinct characteristics. For exam-
ple, missing a few vision images may result in less accurate
vision recognition, but probably not a critical failure. Los-
ing a single stop control signal, however, may cause damage
to the valuable properties of a house.

By clearly separating the control plane containing control
components from the data plane containing computational
components, data flow among components can be classified
more clearly because we can distinguish control data flow
from computational data flow. Furthermore, we can ap-
ply different development methodologies optimized for each
plane. In other words, we can apply control oriented devel-
opment methodology to the control plane and data oriented
development methodology to the data plane, which increases
reliability and efficiency of the system.

For the control plane, correctness is the foremost concern
due to complexity of reactive systems. Therefore, for the
control plane, adopting a formal method framework such
as Esterel [6] to design, implement, and validate/verify is

a suitable way [14]. 1 [22] studies four different formal
methodologies for robotics domain. MAESTRO [12] and
ORCCAD [7] provide high-level languages specialized for ro-
botics domain. For the data plane, efficient computation is
the most important goal. In addition, computational com-
ponents need to communicate with hardware devices such as
camera and microphone. Therefore, the data plane is imple-
mented in C/C++ and assembly language for both efficiency
and communication with HW.

3.2 Principle 2: Separation of Global
Behaviors from Local Behaviors

When a home service robot is developed by integrating
components implementing various features, these features
may interact with each other. Without careful analysis of
their interactions, however, they may cause feature interac-
tion problems. The main cause of feature interaction prob-
lems is the unclear separation of global concern from local
ones. Each service feature may have its own state (local con-
cerns) to provide the service (e.g., UF may have ‘user relo-
cating’ state). At the same time, the global concerns should
also be defined and maintained for the system integrity (e.g.,
the safety critical user commands should override currently
active services).

The integration of SHR100 had been made in an ad-hoc
and bottom-up manner and the robot sometimes exhibited
unexpected behaviors. For instance, we noticed that the ro-
bot occasionally ignored a “stop” command during the UF
service: this was a safety critical problem and we tried to
identify its cause. Through the analysis, we found that a
feature interaction problem had occurred between the UF
and CC features. Basically, UF was designed to track a user
only with vision data, not with audio data. Therefore, when
UF failed to locate a user the robot was following, UF re-
quested CC to relocate the user by detecting the direction of
the sound source. The feature interaction problem described
above had occurred at this situation, when the user’s voice
command was “stop”. The CC feature sent the direction of
sound source to UF and also sent a stop signal to the Navi-
gation component. However, UF resumed moving the robot
to the direction of the user informed by CC.

To address such problems, we have applied the second
engineering principle for designing the control plane. Each
of the Service Manager components in Figure 3 defines the
behavior of service feature by controlling the computational
components. Also, each service component can be executed
and tested independently from other service components.
The Mode Manager component defines the system modes
(e.g., initialization, termination, power saving, and charg-
ing modes) and the interaction policy (e.g., priority, concur-
rency) between services features.

Mode Manager monitors information from components
and defines global states based on interactions among the
components. Based on global state, Mode Manager sends
controlling signals (e.g. suspend, resume, and reset, etc) to
service components. Service components should have inter-
faces for these controlling signals. In other words, policies
on services can be enforced using these controlling signals.
With this architecture model, we could specify, modify, and
validate the robot’s behavior specifications systematically.

1Formal framework for reactive systems is hard to apply
toward mixed architecture such as Figure 2 because formal
framework focuses on control aspects.

508

3.3 Principle 3: Layering in Accordance with
Data Refinement Hierarchy

We also analyzed the previous architecture with respect to
data computations required for service features. We found
that there existed computational redundancies among ser-
vices. For example, the image format conversion component,
which converted captured image data into a file format (e.g.,
JPEG or GIF), was required by the UF, CC, SM, and TP
services. With the previous architecture, the image format
conversion component had to be replicated at each of the
service components, which resulted in high consumption of
resources such as CPU, memory, etc.

Another finding was that data computations could be lay-
ered abstractly. Data computation of higher layer could be
provided by using computations provided by the lower lay-
ers. Also, we noticed that different service features might
use different computational component layers. For example,
CC required the vision data to be processed at the “Object
Recognition” layer, while TP required the output from the
“Image Format Conversion” layer (see the Vision Manager
component in Figure 4).

Based on the two observations on the data plane, we ap-
plied the third engineering principle. The resulting archi-
tecture is shown at Figure 4. Vision Manager and Audio
Manager consist of layers for data computations and a con-
troller located at the top of the layers, called Quality of
Service (QoS) Manager. QoS Manager determines the level
at which computation should be performed for services.

4. EXPERIMENTAL RESULTS
In this section, we explain result of the re-engineering.

First, we show a new SA in Section 4.1. Then, details about
the control plane and the data plane are described in Sec-
tion 4.2 and Section 4.3 respectively.

4.1 New Architecture
We applied the re-engineering principles explained in Sec-

tion 3 to the previous architecture design of SHR 100. The
new architecture is shown in Figure 4. At first, we iden-
tified five computational components - SLAM, Navigation,
User Interface, Vision Manager, and Audio Manager. After
identifying and separating the computational components,
we could easily identify control components (CC, UF, TP,
and SM). All computational components were connected via
a data connector/bus. Similarly all control components were
connected via a control connector/bus. Then, Mode Man-
ager was specified to control global behavior of the robot
by receiving all up-stream events and managing the control
components. Each of these control components and Mode
Manager was specified as a separate module in Esterel.

4.2 Control Plane
We re-engineered core implementation of the control plane

written in C/C++ into Esterel. Through re-engineering,
several bugs in the implementation were found. For exam-
ple, a main control procedure for the CC service was imple-
mented in void CCallComeDlg::ProcessState() illustrated
in Figure 5. ProcessState() is called periodically once in
every 100 ms. Given a command, CC executes through se-
quential “steps” each of which corresponds to a case state-
ment block (i.e. case n: ... break;). Each step is
identified by the value of m order declared at line 2. At

Figure 4: New SA of SHR100

the end of each case statement block, m order is updated
to determine the next step. After one step is executed,
ProcessState() is terminated and called again after 100 ms.
If a new command is given between two adjacent invocations
of ProcessState(), the previous command is ignored and
the new command is processed.

01:class CCallComeDlg {

02: int m_order;

03: ...

04:void processState() {

05: ...

06: switch(m_order) {

07: case 0: STOP();

08: m_order++;

09: break;

10: case 1: ROTATE();

11: m_order++;

12: break;

13: case 2: static int nCount = 0;

14: if (abs(m_befO-curO)==0) nCount++;

15: else nCount = 0;

16: if (nCount > 2) m_order++;

17: break;

18: ...

19: case 9: CALL_N_COME_FINISHED();

20: m_order = -1;

21: break;

22: }

23:}

Figure 5: A main control procedure for the CC ser-
vice in C++

509

This pattern of reactive programming is a straight-forward
way to implement preemption in C/C++, but error prone.
For example, at line 16, nCount is used for testing two times
whether SHR stops rotation. Testing may, however, hap-
pen only one time. nCount can be greater than two all the
time because nCount is declared as a static local variable at
line 13. This error decreases the accuracy of user recogni-
tion due to blurred image captured while the robot does not
stop rotation completely.

Esterel prevents such errors by handling a preemptive
event e with preemption operator such as EVERY e DO statements
END EVERY (see line 14 to line 28 in Figure 6). Figure 6 is
a skeleton of re-implemented core of the control plane in
Esterel. 2

01:module control_plane: % Control Plane

02:input EVENT: integer;

03:output STOP,ROT,GO,CC_DONE,CS_DONE,DET,N_DET;

04:signal CALL_COME, CALL_STOP in

05:run mode_man||run cnc||run uf||run tp||run sm;

06:end signal

07:end module

08:

09:module cnc: % Call and Come service

10:function human_in_range() : boolean;

11:input CALL_COME,CALL_STOP; %come,stop commands

12:output STOP,ROT,GO,CC_DONE,CS_DONE,DET,N_DET;

13:var mv:=false:boolean,n:integer in

14: every immediate [CALL_COME or CALL_STOP] do

15: present

16: case CALL_COME do % come command

17: mv := true;

18: emit STOP; pause;

19: run rot_det;

20: ...

21: emit CC_DONE;pause;

22: case CALL_STOP do % stop command

23: emit STOP;

24: if mv=true then emit CS_DONE;

25: else mv:=true;pause;run rot_det end if;

26: end present;

27: mv := false;

28: end every

29:end var

30:end module

31:...

Figure 6: Skeleton Esterel code for the control plane

A module control plane (line 1 to line 7) represents the
control plane containing Mode Manager mode man, the CC
service cnc, the UF service uf, the TP service tp, and the
SM service sm. Line 5 executes these five components con-
currently using a module execution operator run and a par-
allel operator ||. Communication among the control com-
ponents (services) is implemented using (valued) events de-
clared from line 2 to line 4. mode man coordinates control
components through these events.

A module cnc is defined from line 9 to line 30. At line

2Size of the Esterel program is around 200 lines. Size of
generated C code from the Esterel program is around 1000
lines. The object file compiled from this C code is 17KB.

10, CC declares an external C function human in range()

which detects if a user is within 1 meter range. Line 14 to
line 28 execute when a “come” command (CALL COME) or a
“stop” command (CALL STOP) is given. A “come” command
is handled from line 16 to line 21. A “stop” command is
handled from line 22 to line 25. A task of rotating the robot
toward a user’s direction and recognizing the user is imple-
mented in a submodule rot det (not shown in Figure 6).
rot det is executed for both “come” and “stop” commands
at line 19 and line 25.

4.3 Data Plane
The data plane consists of five computational components

(SLAM, Navigation, User Interface, Vision Manager, and
Audio Manager) and one data repository. The computa-
tional components read input data from the sensors and
process them to generate outputs, such as events or tem-
porary data. The events are first sent to Mode Manager
to determine the global state of the robot, and then deliv-
ered to the relevant Service Manager. The temporary data
are stored at Data Repository and used as inputs for other
computational components. For example, Vision Manager
generates current user’s location in every 200ms during the
UF service. Then, Navigation determines the robot’s next
destination based on the user’s location data in the reposi-
tory.

Raw data obtained by vision or audio sensors are processed
through data refinement hierarchy (layers). The layers in
the computational components are identified and organized
based on the hierarchy as suggested in Section 3.3. For ex-
ample, as illustrated in Figure 7, image data from the front
camera are first captured (L1:Image Acquisition Layer), then
converted into a file format (L2:Image Conversion Layer),
and finally a human face is recognized by analyzing colors
in the file (L3:Object Recognition Layer).

QoS Manager controls the computational component to
process data at the ‘right’ level. Without QoS Manager, the
components always generated the most refined data whether
the data was required by currently active service or not. For
example, Figure 7 shows a part of behavior specifications
for Vision QoS Manager. The state transitions from ‘Vision
Ready’ to ‘UF Vision’ and ‘CC Vision’ trigger a ‘Recognize
Object’ event, which uses service of the ‘Object Recognition’
layer. 3 On the other hand, TP and SM trigger a ‘Convert
Format’ event which requires service of the ‘Image Conver-
sion’ layer, not service of the ‘Object Recognition’ layer.

To support this hierarchy, we provided interface classes
of the Layers architectural pattern [9] as in Figure 8. The
implementation part of Figure 8 shows how the layers in Vi-
sion Manager are implemented by using the interface classes.
The invocation of the L3Svc method in the Vision L3 ObjRec

class propagates down to L1Svc in the Vision L1 ImageAcq

class through the L2Svc, before starting its own data com-
putation (see if(lLayer->L2Svc()) of L3Svc in Figure 8).

5. LESSONS LEARNED
In this section, we summarize the lessons learned from the

re-engineering project which, we believe, can be applied to
other projects of similar domains.

3Note that the loop transition of the ‘UF Vision’ state means
that UF requires the vision data generated in every 200 ms
until the service terminates.

510

Figure 7: Vision QoS Manager

Figure 8: Layered Implementation of Vision Man-
ager

5.1 Necessity of Re-engineering
From the experience of re-engineering SHR100, we are

convinced that product re-engineering is essential, not op-
tional in many cases. Due to limited development time and
resource, developers tend to concentrate only on technology
oriented components at the early stage of product devel-
opment without considering how they will be integrated.
Furthermore, separate team-oriented organization structure

makes integration of components more difficult. Therefore,
once feasibility of the project is confirmed through a proto-
type of a product, re-engineering the product at a later stage
should be enforced for increased quality of the product. The
benefits we obtained from re-engineering are as follows.

• Convenient feature interaction analysis
The re-engineered SA helped analyzing feature inter-
action problems and finding the sources of the prob-
lems by capturing interactions among the components
clearly. Without the new SA, however, analyzing such
problems and tracking down their causes in the pro-
gram code would be time-consuming task. It is be-
cause communication points among the components
are scattered in the code and the number of the inter-
action points increases rapidly as the number of com-
ponents increases.

• Simple component plug-in
We could replace the existing UF service with a newer
version with nominal code modification in the new ar-
chitecture. The original UF code used only vision data
from the front camera for tracking movement of the
user. The newer version used vision data as well as
sensor data from the structured light sensor for better
accuracy of tracking the user.

• Exhaustive code reviewing
Re-engineering helped to uncover subtle bugs in the
original design and implementation because re-engineering
required thorough code reviewing for restructuring ex-
isting implementation. For example, we detected a
bug on the CC service which decreased the accuracy
of detecting a user (see Section 4.2).

5.2 Separation of Priority Management
Through the project, we found that the unclear separation

of global priority scheme from local ones was one of the pri-
mary causes of feature interaction problems. Before adopt-
ing the proposed software architecture, each service com-
ponent was developed without considering other services.
Also, how these services would be coordinated (i.e., a global
service priority scheme) was determined after the compo-
nents were developed. Therefore, the global priority had to
be embedded later into the service components in an ad-hoc
manner. As more service components were integrated, the
priority often became inconsistent and unmanageable, and
the robot exhibited incorrect behaviors.

For example, the priority between CC and UF was imple-
mented inconsistently: for the structured light (SL) sensor,
CC had a higher priority over UF, while UF had higher pri-
ority for controlling the actuator. This inconsistency caused
the robot to behave abnormally when CC was activated dur-
ing the UF service. The activated CC service made the SL
sensor generate only the obstacle detection data required
for CC. However, UF, which assumed the data from the SL
sensor to be the footstep recognition result, continued con-
trolling the actuator and moved the robot to unexpected di-
rections. This example may seem trivial. But understanding
such problems and tracking down their causes in program
code were difficult and time-consuming tasks, as interactions
between components should be analyzed thorougly.

With the new architecture, the priority scheme is sepa-
rated from the service components and the manageability of

511

priority was increased drastically because the control plane
made the priority scheme visible. Also, the engineers, who
developed the technology oriented components, could focus
more on the computational aspects such as new algorithms
for performance improvement, as long as they abide by the
architecture.

5.3 Needs of Monitoring Capability
A monitoring capability is an important aid for tracking

down possible sources of a problem. Determining where to
put monitoring points in a system, however, can be difficult,
if the role of each component and the way they interact each
other are not clearly defined. The new SA that we proposed
could alleviate this difficulty with clear separation of control
and data planes and the distinction between control and
data flows.

Suppose, for example, that the robot does not follow a
user while the robot is in the UF mode. In this case, we
have to figure out whether it is due to failure in recognizing
the user, or controller’s failure to give a move signal to the
actuator. The separated control and data planes allowed us
to monitor information flows conveniently by tapping the
control bus and the data bus. First, we could obtain infor-
mation on data plane. More specifically, we chose to monitor
information obtained from the structured light sensor and
the front camera. The left window in Figure 9 shows candi-
date positions for the user detected by the structured light
sensor. The snapshot located in the right window of Fig-
ure 9 shows the user recognized from the front camera. By
analyzing monitored information from these two viewpoints,
we could figure out whether user recognition failed or not.
Second, if user recognition is correct, we need to monitor the
control plane. Control flow in the control plane is observed
and displayed in other window (not shown in Figure 9).

Figure 9: Monitor for the UF service

We used this monitor to figure out possible causes of mis-
behavior from various viewpoints. We believe that the ca-
pability of monitoring from various viewpoints is essential
in developing reactive systems.

5.4 Advantages of a Reactive Programming
Language

We found that a language that provides primitives for
modeling reactive systems and allows refinement of the model
to implementation was quite useful in the following ways:

• Clear interactions among components

Esterel allows programming of interactions among the
components using explicit communication mechanisms
such as input/output events and signals (see Section 4.2).
Events and signals are declared clearly in component
definitions (modules in Esterel) and sent/received ex-
plicitly using operators such as EMIT/PRESENT. Thus,
behaviors of components are easy to follow.

• Compact implementation
Esterel provides pre-defined operators for expressing
activities of reactive systems (e.g. communication (EMIT
and PRESENT), concurrency (||), and preemption(EVERY))
which often have complex implementation when gen-
eral high-level languages are used. Thus, a reactive
system implemented in Esterel becomes compact and
easy to analyze and update.

• Formal analysis capability
An Esterel program has its formal semantics as a fi-
nite state machine (FSM), which allows rigorous analy-
sis. Based on the FSM, a user can simulate an Esterel
program step by step using the xes graphical simula-
tor. Furthermore, using the xeve model checker [3],
subtle errors (hard to detect using simulation) can be
detected by exploring the whole state space. For ex-
ample, we could detect and fix a feature interaction
problem which caused the robot not to stop when the
user gave a “stop” command. For more details about
the verification result, see [17].

6. CONCLUSIONS
Hardware oriented or technology oriented organizations

often consider software development as a last-minute task
that can be achieved by simply integrating technology in-
tensive components in a bottom-up way. In most cases,
however, the components have to interact with each other
to provide services that customers demand and their fea-
ture interactions often cause a system failure or malfunction.
Therefore, we need a sound software engineering approach
that supports both top-down and bottom-up views to coor-
dinate the integrated components correctly.

We have reported a case study of re-engineering a home
service robot SHR. First, we propose three engineering prin-
ciples to design a SA of SHR100 - separation of control
plane from data plane, hierarchy of global behavior and lo-
cal behavior, and layering of data manipulation components.
Then, according to these principles, we designed a new SA of
SHR100 and re-engineered existing source code to conform
to the SA. We used Esterel for re-engineering the control
plane of SHR100 to take advantage of its reactive operators
as well as clear compositionality. By this re-engineering, in-
teractions among the components became visible and the
responsibility of behaviors could be assigned to components
clearly. We could detect and solve a feature interaction prob-
lem which caused the robot not to stop when a user gave a
“stop” command.

As a future work, we will handle the resource management
problem which is frequent source of unstable behaviors such
as stuttering movement and ignorance of user input under
heavy resource utilization. For this purpose, Monitoring and
Checking framework [18] can be explored. Furthermore, we
are considering a real-world virtual prototyping framework
such as ASADAL/OBJ [20] to reduce development time and
cost [16].

512

7. REFERENCES

[1] Honda asimo home page. http://asimo.honda.com/.

[2] Sony aibo home page.
http://www.sony.net/Products/aibo/.

[3] A.Bouali. Xeve: an esterel verification environment.
Technical report, INRIA, Dec. 2000.

[4] R. C. Arkin and T. R. Balch. Aura: Principles and
practice in review. Journal of Experimental and
Theoretical Artificial Intelligence(JETAI), Volume
9(Number 2/3):175–188, April 1997.

[5] L. Bass, P. Clements, and R. Kazman. Software
Architecture in Practice. Addison-Wesley, 1998.

[6] G. Berry. The foundations of esterel. In Proof,
Language and Interaction: Essays in Honour of Robin
Milner, MIT Press, 2000.

[7] J. Borrelly, E. Coste-Maniére, B. Espiau, K. Kapellos,
R. Pissard-Gibollet, D. Simon, and N. Turro. The
orccad architecture. International Journal of Robotics
Research, 17(4):338–359, 1998.

[8] R. Brooks. A robust layered control system for a
mobile robot. IEEE Journal of Robotics and
Automation, 2(1):14–23, 1986.

[9] F. Buschmann, R. Meunier, H. Rohnert,
P. Sommerlad, and M. Stal. A System of Patterns:
Pattern-Oriented Software Architecture. John Wiley &
Sons, 1996.

[10] E. J. Cameron and H. Velthuijsen. Feature
interactions in telecommunications systems. IEEE
Communications Magazine, 31(8):46–51, Aug 1993.

[11] E. Coste-Manière and R. Simmons. Architecture, the
backbone of robotic systems. IEEE International
Conference on Robotics and Automation, 2000.

[12] E. Coste-Maniére and N. Turro. The maestro language
and its environment : Specification, validation and
control of robotic missions. Proceedings of the 10th
IEEE/RSJ International Conference on Intelligent
Robots and Systems, 1997.

[13] A. C. Domı́nguez-Brito, D. Hernández-Sosa,
J. Isern-González, and J. Cabrera-Gámez. Integrating
robotics software. IEEE International Conference on
Robotics and Automation, 2004.

[14] B. Espiau, K. Kapellos, and M. Jourdan. Formal
verification in robotics: Why and how? International
Symposium on Robotics Research, Oct 1995.

[15] R. N. T. et. al. A component- and message-based
architectural style for GUI software. Software
Engineering, 22(6):390–406, 1996.

[16] K. Kang, M. Kim, J. Lee, B. Kim, Y. Hong, H. Lee,
and S. Bang. 3d virtual prototyping of home service
robots using asadal/obj. International Conference on
Robotics and Automation, 2005.

[17] M. Kim, K. Kang, Y. Hong, H. Lee, and S. Bang.
Formal verification of the robot movements.
International Conference on Robotics and Automation,
2005.

[18] M. Kim, M. Viswanathan, S. Kannan, I. Lee, and
O. Sokolsky. Java-mac: A run-time assurance
approach for java programs. Formal Methods in
System Design, 2004.

[19] D. Kortenkamp and A. C. Schultz. Integrating
robotics research. Autonomous Robots, 6:243–245,
1999.

[20] J. Lee, H. Kim, and K. Kang. A real world object
modeling method for creating simulation environment
of real-time systems. Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
Volume 9:93–103, Oct 2000.

[21] R. Pack, D. M. Wilkes, and K. Kawamura. A software
architecture for integrated service robot development.
IEEE International Conference on Systems, Man and
Cybernetics, 1997.

[22] L. Pinzon, H.-M. Hanisch, M. Jafari, and T. Boucher.
A comparative study of synthesis methods for discrete
event controllers. Formal Methods in System Design,
15(2):123–267, 1999.

[23] M. Shaw and D. Garlan. Software Architecture:
Perspectives on an Emerging Discipline. Prentice-Hall,
1996.

[24] P. Zave. Architectural solutions to feature-interaction
problems in telecommunications. Feature Interactions
in Telecommunication and Software Systems V, Sep
1998.

513

