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Abstract

Flash memory has become virtually indispensable in
most mobile devices, such as mobile phones, digital cam-
eras, mp3 players, etc. In order for mobile devices to suc-
cessfully provide services, it is essential that flash memory
be controlled correctly through the device driver software.
However, as is typical for embedded software, conventional
testing methods often fail to detect hidden flaws in the com-
plex device driver software. This deficiency incurs signifi-
cant development and operation overhead to the manufac-
turers. As a complementary approach to improve the re-
liability of embedded software, model checking provides a
complete analysis of a target model but the size of the target
software is limited due to the state explosion problem.

In this project, we have verified the correctness of a
multi-sector read operation of Samsung OneNANDTM flash
device driver by using both model checking and testing. We
started the verification task with the model checkers NuSMV
and Spin for an exhaustive analysis of a small size flash as a
pre-testing step. We then set up a testbed based on a formal
model used for model checking and performed testing on a
large size flash. Through these verification tasks, we could
successfully verify the correctness of the multi-sector read
operation with both complete exploration of model checking
and scalability of testing.

1 Introduction

Among the various storage platforms, flash memory has
become the most popular choice for mobile devices ow-
ing to its good characteristics such as low power consump-
tion and strong resistance to physical shock. Thus, in or-
der for mobile devices to successfully provide services to
users, it is essential that the device driver of the flash mem-
ory operates correctly. However, as is typical of embedded
software, conventional testing methods often fail to detect
hidden bugs in the device driver software for flash mem-
ory since it is infeasible to test all possible scenarios gener-
ated from the complex control structure of the device driver.
This deficiency incurs significant overhead to the manufac-
turers. For example, Samsung spent more project time and
resources to test flash software than in developing the soft-
ware.

Limitations of conventional testing were manifest in the
development of flash software for Samsung OneNANDTM

flash memory [1]. For example, a multi-sector read func-
tion was added to the flash software to optimize the reading
speed (see Section 3.1). However, this function caused nu-
merous errors in spite of extensive testing and debugging ef-
forts, to the extent that the developers seriously considered
removing the feature. Model checking can be a complemen-
tary technique to address the above mentioned weakness of
testing through exhaustive analyses. However, due to the
state space explosion problem, the size of the model that
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can be verified using a model checker is limited.
In this project, we have verified the correctness of a

multi-sector read operation of a Samsung OneNAND flash
device driver by using both model checking and testing.
First, we started the verification task with the model check-
ers NuSMV [5] and Spin [10] for an exhaustive analysis of a
small size flash as a pre-testing step. Then, based on the for-
mal model used in model checking, we setup a testbed for
both exhaustive testing on a small size flash and random-
ized testing on a large size flash. Our experience shows that
model checking and testing can be effectively used together
and this approach efficiently provides more complete anal-
ysis results. Through these verification tasks, we success-
fully verified the correctness of the multi-sector read opera-
tion with both complete exploration of model checking and
scalability of testing.

2 Overview of the OneNAND Verification
Project

In this section, we overview the device driver software
for OneNAND flash memory.

2.1 Overview of the Device Driver Soft-
ware for OneNAND Flash Memory

OneNAND is a single chip comprising a NOR flash in-
terface, a NAND flash controller logic, NAND flash array,
and a small internal RAM. OneNAND provides a NOR in-
terface through its internal RAM. When an application ex-
ecutes a program in OneNAND, the corresponding page
of the program is loaded into the RAM in OneNAND by
the demand paging manager (DPM) for XIP (execution in
place).

Unified storage platform (USP) is a software solution
for OneNAND based mobile embedded systems. Figure 1
presents an overview of USP. It manages both code stor-
age and data storage. USP allows applications to store and
retrieve data on OneNAND through a file system. USP con-
tains a flash translation layer (FTL) through which data and
programs in the OneNAND device are accessed. The FTL
consists of three layers - a sector translation layer (STL),
a block management layer (BML), and a low-level device
driver (LLD). Generic I/O requests from applications are
fulfilled through the file system, STL, BML, and LLD, in
order. A prioritized read request for executing a program
is made by DPM and this request goes to BML directly.
Although USP allows concurrent I/O requests from mul-
tiple applications through STL, BML operations must be
executed sequentially, not concurrently. For this purpose,
BML uses a binary semaphore to coordinate concurrent I/O
requests from STL. Furthermore, a prioritized read request
from DPM can preempt generic I/O operations requested

from STL. Thus, it is important to guarantee the correctness
of I/O operations in concurrent settings.

OneNAND Flash Memory Devices
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Figure 1. An overview of USP

2.2 Overview of Sector Translation (STL)

A NAND flash device consists of a set of pages, which
are grouped into blocks. A unit can be multiple of, or equal
to a block. Each page contains a set of sectors. When new
data is written to flash memory, the data is written on empty
physical sectors and the physical sectors that contain the old
data are marked invalid rather than overwriting old data di-
rectly. Since the empty physical sectors may reside in sep-
arate physical units (PU), one logical unit (LU) containing
data is mapped to a linked list of PUs. Flash file systems
must manage mapping from logical sectors (LS) to physi-
cal sectors (PS) and perform garbage collection. This map-
ping information is stored in a sector allocation map (SAM),
which returns the corresponding PS offset from a given LS
offset. Each PU has its own SAM.

Figure 2 illustrates a mapping from logical sectors to
physical sectors where 1 unit contains 4 sectors. Suppose
that a user writes LS0 of LU7. An empty physical unit PU1
is then assigned to LU7, and LS0 is written into PS0 of
PU1 (SAMPU1[0] = 0). The user continues to write LS1
of LU7, and LS1 is subsequently stored into PS1 of PU1
(SAMPU1[1] = 1). The user then updates the LS1 and
LS0, which results in SAMPU1[1] = 2 and SAMPU1[0] =
3. Finally, the user adds LS2 of LU7, which adds a new
physical unit PU4 to LU7/and yields SAMPU4[2] = 0.
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Figure 2. Mapping from logical sectors to
physical sectors

2.3 Project Scope

Our team consists of two professors, one graduate stu-
dent, and one senior engineer at Samsung Electronics. We
worked on this verification project for six months. We spent
the first three months reviewing USP design and code to be-
come better familiarized with USP and OneNAND flash.
Most parts of USP are written in C (∼30000 lines) and a
small portion of USP is written in ARM assembly language.

USP has a set of elaborated design documents that is a
total of 259 pages long. It has a set of design documents on
each layer of FTL and DPM as well as a software require-
ment specification (SRS) document. The SRS document
specifies 13 functional requirements for USP. Each func-
tional requirement specifies its own priority. There are three
functional requirements that have “very high” priority - con-
currency handling, support prioritized read operation, and
manage sectors. In this paper, we concentrate on the third
property, particularly on the correctness of multi-sector read
operation. 1

3 Overall Plan for Verification of Multi-
sector Read Operation

This section describes an overview of the multi-sector
read operation and the overall plan for verification of the
operation.

1Analyses of the first two properties will be reported in a separate arti-
cle.

3.1 Overview of Multi-sector Read Oper-
ation

USP provides a mechanism to simultaneously read as
many multiple sectors as possible in order to improve the
reading speed. The main procedure of this mechanism is
implemented in a single function in STL, called MSR().
Due to non-trivial traversal of complex data structures
for logical-to-physical sector mapping (see Section 2.2),
MSR() (157 lines long) is highly complex, having 4-level
nested loops. The outermost loop iterates until a specified
number of sectors are read completely. The second outer-
most loop iterates over LUs of data and the third loop it-
erates over physical units mapped to a current LU. The in-
nermost loop reads PS’s in the current PU in the order of
corresponding LS’s in the current LU, i.e., reading the PS
containing the first LS of the current LU first, then another
PS for the second LS and so on. At this stage of opera-
tion, MSR figures out consecutive PS’s in the current PU
that contain consecutive data and read such multiple PS’s as
a whole for the performance improvement. Consequently,
this function has a notorious bug history. For example, if
MSR is implemented incorrectly, MSR may read data in-
correctly in the case 3 of Figure 3 because data are not dis-
tributed over PS’s in order.
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Figure 3. Possible distributions of data
“ABCDEF” to physical sectors

According to the target requirement property, the MSR()
should read multiple sectors correctly, i.e., the content of the
read buffer should correspond to the original data written in
the flash memory when the function finishes its reading.

We assume that each sector is 1 byte long and each unit
has four sectors in our verification tasks. Also, we assume
that data is a fixed string (e.g. “ABCDE” if we assume that
data is 5 sectors long, and “ABCDEF” if we assume that
data is 6 sectors long). In order to check iterations at every
loop level, it is necessary to check flashes having data oc-
cupying at least 2 logical units and at least one logical unit
should be distributed over more than one physical unit. A
number of possible distribution cases for l logical sectors
and n physical units where 5 ≤ l ≤ 8 (i.e., 2 logical units
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are occupied by data) and n ≥ 2 can be obtained by the
following formula.

n−1∑

i=1

((4×i)C4 × 4!)× ((4×(n−i))C(l−4) × (l − 4)!)

Table 1 shows the total number of possible cases for 6
logical sectors and 5,10,20, and 1000 physical units, respec-
tively, according to the above formula. For example, if a
flash has 1000 physical units with data occupying 6 logical
sectors, there exist a total of 3.9 × 1022 different distribu-
tions of the data.

PUs 5 10 20 1000
Cases 1.4× 106 2.7× 108 4.1× 1010 3.9× 1022

Table 1. Total number of distribution cases

3.2 A Plan for Verification Tasks

Our ultimate goal is to verify the correctness of MSR()
when multiple applications execute MSR() concurrently.
It is well known, however, that concurrency increases the
complexity of verification exponentially due to the expo-
nential number of interleaving scenarios. Thus, following
the basic guideline that verification should start from a sim-
ple model and continue to enlarge the model gradually, our
first goal is to verify the correctness of MSR() without con-
currency, i.e., we assume that only one thread uses MSR()
at a time. This article reports experimental results on this
goal.

A test process consists of the following three steps.

1. Given data (say “ABCDEF”), the test harness dis-
tributes the data into physical sectors and updates
SAM accordingly (see Figure 3).

2. MSR() reads the data through traversing physical units.

3. The test harness checks whether the read buffer con-
tains the same original data after MSR() finishes.

In order to maximize the advantages of both model
checking and testing, we have verified the multi-sector read
operation through a series of verification tasks. First, we
start the verification task with model checkers NuSMV and
Spin for an exhaustive analysis of a small flash memory
consisting of 5∼10 physical units. Then, based on the for-
mal model used in model checking, we setup a testbed for
both exhaustive testing on a small size flash and randomized
testing on a large flash memory consisting of 1000 physical
units. The overall plan is as follows:

1. Model checking with NuSMV and Spin (∼10 PUs)

2. Exhaustive testing on a small flash (∼20 PUs)

3. Randomized testing on a large flash (∼1000 PUs)

There have been various approaches to improve the scal-
ability of model checkers, including the use of different en-
coding techniques and/or abstractions. For example, sym-
bolic model checking such as NuSMV encodes state space
with boolean variables, whereas explicit model checking
such as Spin uses bit-vector for the compact representation
of state space. Nevertheless, it is well-known that the pre-
estimation of their relative scalability on a particular appli-
cation domain is practically impossible, as a number of case
studies have reported earlier [4, 6, 8, 14]. Therefore, we
apply both techniques on a series of small-scale MSR() to
benchmark their performance.

First, we used the NuSMV model checker for verifica-
tion of MSR(). NuSMV was our first choice as a model
checker, as it is well known for its capability of handling
large state space using symbolic manipulation. Details on
the verification task are presented in Section 4.

Second, we wrote a Spin model for MSR() for closer
connection between the formal model and MSR() since
Promela (an input specification language for Spin) has close
similarity with C programming language. Details of this
verification task are presented in Section 5.

Third, we abstracted MSR() into a simpler version
(called S MSR()) based on the Spin model. We then tested
S MSR() for all possible cases for a small flash contain-
ing 20 PUs. Finally, we generated test cases randomly
for a large flash memory containing 1000 PUs and tested
S MSR() on these randomly selected test cases. Details of
the third and fourth tasks are presented in Section 6. We per-
formed all verification tasks using a workstation equipped
with Xeon Woodcrest 5160 (dual core 3 GHz) and 32 giga-
bytes memory. The workstation runs 64 bit Fedora Linux 7
and uses Spin 4.3.0 and NuSMV 2.4.3.

4 Model Checking MSR() using NuSMV

Model checking techniques [7] are known to be effective
for comprehensive verification of small-scale models, but
also suffer from a scalability problem – the time and space
complexities grow exponentially as the size of the search
space grows. This scalability issue is intrinsic to model
checking algorithms, which have time complexity bounded
by the size of the search space that grows exponentially with
the number of state variables.

4.1 Symbolic Model Checking

In symbolic model checking [15], a system model is rep-
resented with a compact boolean formula. For example,
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the simple code “if (x < 2) then x = x + 1”, where x
ranges over 0..3, may be encoded with two boolean vari-
ables, x1, x0, representing the current value x and another
two boolean variables, x′1, x

′
0, representing x′ which is the

next value of x. The relationship among x and x′ may be en-
coded as x′0 = ¬x1∧¬x0∨x1∧x0 and x′1 = ¬x1∧x0∨x1.

This symbolic representation makes it possible to math-
ematically verify a system property through a series of sym-
bolic computations; for example, if we wish to verify that
the property “x is less than or equal to 2” holds for all
execution sequences, then the property can be encoded as
¬(x1 ∧ x0) and be verified through a satisfiability check
of ¬(x′0 ∧ x′1) that may require a series of boolean for-
mula manipulations. NuSMV uses OBDDs (Ordered Bi-
nary Decision Diagrams) [3] for efficient manipulation of
this boolean formula [15].

This approach can be quite effective when a large num-
ber of system variables have simple transition relationships
that quickly stabilize; for an extreme example, consider a
program with an integer input variable x that ranges over 0
to 1000 and suppose the value of x changes inside of the
program with the assignment statement x = x mod 2. The
symbolic encoding of this program may require 10 boolean
variables, e.g., x9, x8, x7, . . . x1, x0 to represent the vari-
able x, but their simple transition relation ( x′i = 0 for all
i = 1..9 and x′0 = x0) makes a boolean manipulation on
x quite trivial. On the other hand, exhaustive testing (or
explicit model checking) may require 1001 test cases (or
iterations) for checking all values of x.

4.2 Model Translation

We manually specified a NuSMV model for MSR() af-
ter reading corresponding design documents and C code.
The first challenge in creating a NuSMV model for MSR()
arises from the different modeling paradigms used in C and
NuSMV; the NuSMV modeling language is dataflow-based,
whereas both C and Promela are control-flow based lan-
guages. This is a major reason why Spin has been favored
in program verification.

The first two columns in Figure 4 show an intuitive trans-
lation of a simple C code into Promela; the do-statement in
Promela models the repetition where “::” indicates choices
and “->” indicates control-flow. On the other hand, the
translation into NuSMV for the same C code (the last col-
umn of Figure 4) is considerably more involved since the
NuSMV model mainly focuses on how data changes the
value from its previous value. The notion of “flow of con-
trol” is artificially provided by introducing a boolean vari-
able after do indicating whether the current state is before
or after performing the loop. Note that the next value of i
depends on the current values of i and after do. Due to the
differences in the employed modeling paradigms and the

sum=0;

for(i=0; i<10; i++)
{

sum +=i;
}
i=0;

sum=0;
i=0;
do
:: i<10->sum=sum+i;i=i+1; 
:: else->break ;
od;
i=0; 

init(sum):=0;
init(i):=0;
init(after _do):=0; 
next(sum):= case 

i<10 :sum+i;
1      :i;
esac;

next(i):= case
i<10       : i+1;
after_do: 0;
1            : i;
esac;

next(after _do):= (i=10); 

C code Promela code NuSMV code

Figure 4. Examples: model translation

lack of variable indexing of arrays, the resulting NuSMV
model for the MSR() operation reaches 1000 lines of code.

Other issues such as abstraction of data structures and
handling of pointers are handled by removing auxiliary in-
formation that is not necessary for the verification purpose
and by replacing pointers in a linked list as an array index.

4.3 Performance Analysis

We have performed a series of experiments in order to
assess the efficiency of NuSMV for checking an essential
property of MSR(),

INV : after MSR → (∀i.logical sectors[i] = buf [i]),

which means that the MSR() routine always maintain the
data consistency between logical sectors and the read buffer.

We have restricted the data size of each logical sector to
3, i.e., the data vary over {0,1,2}, because it is too time con-
suming to perform the same experiment using full data do-
main. The resulting performance of NuSMV is quite poor;
as shown in Table 2, it takes more than 32 hours for veri-
fying the property when the number of logical sectors is in-
creased to 7 and the number of physical units is 5. We also
note that the verification time has worse scalability than that
of the memory consumption.

logical sectors 5 6 7
time (seconds) 369.73 1, 502.45 32 hours

memory (Mega bytes) 61.50 137.97 640.37

Table 2. Time and space complexity of
NuSMV model checking with 5 physical units

The exponential growth of verification time is mainly
due to the dynamic reordering of BDD variables to keep
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the symbolic representation of the state space as compact as
possible. OBDD representations for a boolean formula can
be quite different in terms of the number of nodes represent-
ing the formula. Since finding an optimal BDD variable
ordering is an intractable problem (an NP-complete prob-
lem [2]), NuSMV periodically attempts to improve order-
ings by moving each variable through the ordering to find
its best location using the sifting algorithm [16]. This or-
dering process is known to be effective to reduce the state-
space, but is time-consuming, as is clearly seen from our
experiments.

5 Model Checking MSR() using Spin

Due to modeling difficulty and performance limitations
of NuSMV, as described in Section 4.2 and Section 4.3,
we used Spin as an alternative model checker. Promela
is similar to C and as such it is easier to make a formal
Promela model from MSR() compared to NuSMV. Further-
more, we can use Modex [12], which is a general purpose
semi-automatic translation tool from C to Promela, to create
a Promela model with embedded C code from MSR().

5.1 Spin Model Checker

Spin is an explicit model checker. In explicit model
checking, each system state (called a state vector) consists
of variables of a verification model and all system states are
stored in a huge hash table explicitly. Thus, it is commonly
perceived that Spin cannot handle large state spaces com-
pared to a symbolic model checker such as NuSMV. How-
ever, due to its simple state space generation and traver-
sal methods, Spin outperforms symbolic model checkers
on some domains. Another advantage of an explicit model
checker is that data structures in a model do not incur extra
overhead other than increase of the size of state vector be-
cause data structures are stored into the state vector as they
are, not through complex BDD encoding.

One benefit of using Spin is that it supports the inclusion
of embedded C which alleviate the limitations of Promela
and provides a means for data abstraction. From a given
Promela model, Spin generates a verifier written in C, and
compiles/executes the verifier to perform verification. Spin
versions 4.0 and later support the inclusion of embedded C
code into Promela models through a c code{...} key-
word. The main purpose of this extension is to support
semi-automatic model extraction from C code [11]. The
contents of the embedded C code fragments are blindly
copied through from the text of the model into the code
of the verifier that Spin generates. Thus, variables in em-
bedded C code are not stored into a state vector and do not
contribute to verification. A user can add variables in em-
bedded C code to a state vector using a c track statement.

do
:: if

:: sect < 4 * MAX_PUN ->
if
:: used[’A’]==false ->

PU[sect/4].sector[sect%4]=’A’;
used[’A’]=true;
SAM[sect/4].offset[0]=sect%4;

:: used[’B’]==false ->
...
:: skip;
fi;sect=sect+1;

:: else-> break;
fi;

od

Figure 5. A pseudo environment model

Also, a user can track the values of a variable in embedded
C code without adding the variables to the state vector, and
thus the search traversal of Spin can work correctly. With
these embedded C extensions, a user can apply data abstrac-
tions in a verification model to increase the scalability of
model checking.

5.2 Model Translation

In a Promela model, an environment (i.e., logical sectors,
physical sectors and SAM) is created in a way similar to
the pseudo code in Figure 5. Note that all possible distribu-
tions of data into physical sectors are generated exhaustively
through non-deterministic guarded commands.

For MSR(), Modex [12] creates a single Promela process
whose control structures are translated from MSR(). All C
control structures such as if() and while() are trans-
lated into corresponding Promela statements. Other C state-
ments are inserted into an embedded C code of the Promela
model starting with a keyword c code{...}. Therefore,
the Promela model generated by Modex has the same 4-
level nested loops as MSR(). Then, we manually modified
the generated Promela model to make embedded C code
work correctly under the Spin verification environment.

For data structures used by MSR(), we replace a linked
list of physical units and SAMs in MSR() with an array of
physical units and SAMs, since Spin cannot directly track a
dynamic linked list in embedded C code. Thus, we modi-
fied the data structure of physical units and SAMs and cor-
responding statements to use the modified data structure.
This modification was made through a manual translation
script, which is given as an additional input to Modex. The
translation script for Modex is 63 lines long.

The requirement property is checked by
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assert(logical sectors[0] == buf[0] &&
... ) statement located at the end of MSR(). The
translated Promela model is 250 lines long, including
embedded C code.

5.3 Performance Analysis

We have performed a series of experiments with differ-
ent lengths of data as well as different numbers of physi-
cal units. These experiments were performed without lossy
compression such as bitstate hashing [10]. Figure 6 illus-
trates performance data for checking the requirement prop-
erty. In all of the experiments, Spin shows that the require-
ment property is satisfied.

Spin verified a flash containing 10 physical units and 6
logical sectors in 50 minutes, consuming 20 gigabytes of
memory. Considering that Spin exhaustively analyzed all
2.7 × 108 cases (see Table 1), at a rate of 11 microseconds
per case, the verification performance of Spin is not obstruc-
tive. As can be seen in Figure 6, the memory consumption
and verification time increases exponentially in relation to
the number of physical units. The bottleneck in this verifi-
cation task is its memory consumption. Spin handles states
explicitly, and thus the exponentially increasing number of
possible distribution cases accordingly causes an exponen-
tial increase of memory.

Compared to NuSMV, however, Spin shows signifi-
cantly better performance for verification tasks of this
type. For example, for a test case of 7 logical sectors
and 5 physical units, Spin takes 62 seconds with 797
megabytes, 268 megabytes of which is consumed for a hash
table setup, while NuSMV takes more than 32 hours with
640 megabytes. 2 This performance advantage is mainly
achieved by the fact that Spin stores state space without
BDD encoding, which was the performance bottleneck of
NuSMV in verification tasks of this type (see Section 4.3).

6 Testing MSR()

Based on the Promela model for MSR(), we developed
a testing environment as well as an abstracted version of
MSR(), called S MSR(). Test input to S MSR() is a con-
figuration of a flash memory consisting of PUs and corre-
sponding SAMs as depicted in Figure 3 and Figure 2. Given
a configuration, we checked whether or not S MSR() read
the content of a flash memory correctly by comparing the
read buffer with the content of the flash memory. These test
inputs were generated by the similar algorithm to the envi-
ronment model in the Promela model (see Figure 5) which
generates all possible configurations of a flash memory ex-

2Note that the data size of each logical sector in NuSMV experiments
was 3 while Spin used a full data size, i.e., 256.

haustively. 3 We tested S MSR() instead of MSR() for the
following reasons.

First, we could not compile and execute MSR() directly,
because, for security reasons, Samsung did not provide us a
testbed that included OneNAND device and low-level codes
necessary for compilation. This type of situation occurs fre-
quently in software development projects, particularly when
the target software has yet to be completely developed, and
other parts necessary for compiling and executing the target
code are not available.

Second, MSR() calls numerous sub-functions to access
OneNAND devices. Figure 7 shows a partial dependency
graph of MSR(). A full dependency graph of MSR() has
total 56 distinct sub-functions (we do not have code for 8
out of 56 functions) in 9-level depths. Since our focus is to
analyze MSR(), not its underlying functions, it is desirable
to use abstracted versions of such sub-functions, similar to
those used in the Promela model.

For example, BML MRead() (located at the center of
Figure 7) reads consecutive physical sectors that contain
consecutive data in one physical unit. BML MRead() per-
forms various other detailed tasks such as setting device reg-
isters and handling a read error of a physical sector among
consecutive ones, etc. The Promela model as well as the
NuSMV model do not contain such details, but contain
essential sector traversing operations only. We removed
such non-essential details, but the core control structure of
MSR() is maintained.

The reuse of abstract formal models reduces the testbed
setup time since we do not have to re-analyze MSR() to
decide what to include for testing. In this way, S MSR()
contains only the essential core of MSR() and all auxiliary
environments are omitted. Furthermore, because S MSR()
contains less code and abstract operations, testing time is
reduced. Consequently, we could concentrate on MSR()
without having to consider details of those sub-functions.

MSRMSRMSRMSR

____ConstructSamConstructSamConstructSamConstructSam OAMOAMOAMOAM____DebugDebugDebugDebugBMLBMLBMLBML____MReadMReadMReadMRead OAMOAMOAMOAM____MMMMeeeemmmmsssseeeetttt

OAMOAMOAMOAM____DebugDebugDebugDebug

OAMOAMOAMOAM____AcquireSMAcquireSMAcquireSMAcquireSM

____HandlePrevErrorHandlePrevErrorHandlePrevErrorHandlePrevError

____ChkInvalidMarkChkInvalidMarkChkInvalidMarkChkInvalidMark

BBMBBMBBMBBM____HandleBadBlkHandleBadBlkHandleBadBlkHandleBadBlk

OAMOAMOAMOAM____ReleaseSMReleaseSMReleaseSMReleaseSM

A function with A function with A function with A function with 

no source codeno source codeno source codeno source code

A function with  A function with  A function with  A function with  

source codesource codesource codesource code
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Figure 7. A partial dependency graph of
MSR()

3Although the environment model in the Promela model uses non-
determinism, we can implement the same effect using iterations in C.
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Figure 6. Time and space complexity of Spin model checking

Table 3 shows the time taken to perform exhaustive test-
ings with 6 sectors long data. For all of these exhaustive
testings, no violation of the property was detected. Exhaus-
tive testing could analyze a larger flash than Spin could an-
alyze since memory was not a bottleneck. Also, the perfor-
mance of exhaustive testing is roughly 50 times faster com-
pared to Spin for the case of 10 PUs, mainly because Spin
bookkeeps all states and transitions in memory. The use of
specially designed testing environment for the given prop-
erty also plays an important role for the high performance
testing; Spin is a general purpose model checker which
is designed to handle temporal logic properties in general,
and, thus, cannot win over a specialized tool. However, if a
violation occurs, Spin can provide step-by-step counter ex-
amples, which are invaluable in helping to find a bug, at the
cost of slower execution.

# of PUs 5 10 15 20
Time (seconds) 1 62 1496 14277

Table 3. Time complexity for exhaustive test-
ing

Finally, we have performed randomized testing on 1011

randomly chosen cases over 1000 physical units: this takes
8 hours 20 minutes. For this large size flash, we cannot
perform exhaustive testing since even 1011 chosen cases
covered only 1

3.9×1011 among all possible cases. Consid-
ering that a 1 gigabyte flash memory has more than a half
million physical units (= 219 units × 4 sector/unit × 512
byte/sector), randomized testings cannot provide sufficient
coverage ever.

7 Lessons Learned

This section presents lessons learned from this project.

7.1 Model Checking as Pre-testing

Through this project, we found that an integrated analy-
sis framework using both model checking and testing is ef-
fective and also efficient. In particular, we found that a for-
mal model used for model checking can provide a good base
for setting up a testbed and abstraction in the target program
under testing. This is because a formal model contains an
explicit environment model that is equivalent to the testing
environment and the target program is abstractly modeled to
minimize unnecessary details and the computational over-
head of the verification process. Thus, efforts to make a
formal model can enhance the reliability of the target pro-
gram through model checking and, at the same time, reduce
testing costs. Therefore, we believe that model checking
can be used as an effective pre-testing task.

Our approach is opposite to that of [9] which performs
randomized testing as a prelude to formal verification in or-
der to establish a quicker path to finding many bugs at the
early stage of development. Our case is different since we
analyzed a stable code that had previously been tested ex-
tensively by Samsung. Thus, our aim was to detect subtle
hidden bugs, if any, not to make a quicker path to find many
initial bugs. However, the two studies similarly imply that
both model checking and testing are necessary for ensur-
ing high reliability of the target program and that a well-
designed abstract model can provide much more confidence
in correctness than can random exploration.

8



7.2 Benefits of C-like Modeling Language

In this project, NuSMV and Spin show major differ-
ences in both modeling effort and verification performance.
Promela uses a C-like syntax and semantics, and thus trans-
lation from C to Promela is not difficult. A close relation-
ship between the target program and the formal model is
important, because there is always a possibility of mistrans-
lation. If a mapping between the target program and the
formal model is not clear, it will be difficult to check the
soundness of the formal model and thus an incorrect verifi-
cation result could be obtained.

Another benefit of C-like modeling language is that a
formal model can be conveniently used to build a testbed
as well as an abstracted version of the target program un-
der testing. Finally, the embedded C feature of Promela
can be used as a powerful data abstraction technique (see
Section 5.2). Therefore, for verification of C programs, es-
pecially those using a large data structure, Spin has a clear
advantage over NuSMV.

7.3 Inadequacy of Randomized Testing

We could observe that randomized testing alone does
not provide enough confidence on the correctness of multi-
sector read operation since even hundred billions of testings
for 8 hours covers only 1

3.9×1011 of possible cases. Consid-
ering that Samsung relied on randomized testings only, it is
no wonder that multi-sector read operation has a notorious
history of bugs. Therefore, we need to perform exhaustive
analysis on a small model through model checking and ran-
domized testing on a large model together.

The scalability issue brought about by a large scale data
structure can be addressed using an alternative approach,
theorem proving, when it is required. Theorem proving is
based on modeling a system in mathematical logic and per-
forming logical computations (called a decision procedure),
such as mathematical induction, skolemization, and resolu-
tion, to verify a system property. This approach has a clear
benefit: the complexity of verification depends on the num-
ber of logical rules to be resolved, which is independent of
the size of data. In other words, the time and space com-
plexity for verifying MSR() using theorem proving will be
independent of the number of physical units.

7.4 Why Use Model Checking

Samsung had performed the majority of testing for One-
NAND software randomly at a file system level. Testing
through a file system does not provide direct control over
logical-to-physical mapping, and thus opportunities to de-
tect bugs are missed. Also, even a huge number of ran-
domized testings does not provide sufficient coverage for

detecting bugs, as can be seen in the present experiments.
Although results of these exhaustive analyses confirm the
correctness of the multi-sector read operation for a small
flash only, exhaustive exploration through model checking
and testing can provide high confidence in the correctness
of the multi-sector read function. Therefore, we believe that
an exhaustive analysis of sector mappings for a small num-
ber of units through model checking is needed. This should
then be followed by the establishment of a testbed using a
formal model and randomized testing on a large number of
units to simplify the testbed setup and increase debugging
efficiency.

8 Conclusion and Future Work

In this project, we have successfully verified the cor-
rectness of a multi-sector read operation of Samsung
OneNANDTM flash device driver with exhaustive explo-
ration of model checking and scalability of testing. Through
the project, we found that exhaustive analysis on a small
flash by model checking can be helpful for the verification
task and observed that a formal model can be effectively
used to set up a testbed and test an abstract version of target
software. We will extend our analyses of MSR() by aug-
menting the current Spin model to allow multiple threads
to execute MSR() concurrently and verify the concurrency
properties such as absence of deadlock/livelock as well as
the correctness property we have verified.

Samsung highly valued the verification results and, as a
next project, we plan to analyze a flash file system to check
data consistency at the events of random power-off. This
issue is very important because flash memory is widely used
in mobile devices, which frequently experience unexpected
power-off in daily usage. For this topic, we will also apply
runtime verification techniques similar to [13] to analyze
subtle details of a C program which are hard to model.
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