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Abstract—C++ is popular in many application domains for
its extensibility, flexibility, and high performance. At the same
time, however, C++ is infamous for its complex syntax and
semantics. Thus, it is challenging to write correct C++ programs
and the need to automatically test C++ programs has been
high. Unfortunately, due to the high complexity of C++ (e.g.,
template instantiation, complex STL types, etc.), there are almost
no automated unit testing tool publicly available for real-world
C++ programs.

We have developed a new automated unit testing tool CITRUS
that resolves the aforementioned complexity of C++ programs.
After analyzing the source code of a target C++ program
P , CITRUS automatically generates test driver files for P ,
each of which consists of various method calls of P . Then,
to improve the test coverage of P , it generates more diverse
test drivers by mutating the test driver code. Also, CITRUS
increases the test coverage of P further by applying libfuzzer to
alternate P ’s state by mutating arguments of the methods. We
have demonstrated the testing effectiveness and the efficiency
of CITRUS through the experiments on the real-world C++
programs, on which CITRUS achieves up to 95% statement and
79% branch coverage.

Index Terms—Automated test generation, C++ unit testing,
random method sequence generation, code mutation, dynamic
analysis

I. INTRODUCTION

C++ programming language is famous for its extensibil-
ity, flexibility, and high performance. Thus, it is popular in
many application domains that requires significant develop-
ment efforts such as database engines, operating systems,
web browsers, video games, and so on. However, due to the
notoriously high complexity of the syntax and semantics of
C++, it is technically challenging to develop reliable C++
programs. Even worse, although the need to automatically
test C++ programs has been high, there are almost no au-
tomated unit testing tool publicly available for real-world
C++ programs due to the high complexity of C++ language
features (e.g., template instantiation, complex STL types, and
so on). Although fuzzing tools [1], [2], [3], [4] generate and
mutate input bytes to C++ target programs (without analyzing
complex C++ program code), testing effectiveness of such
system-level fuzzing is not high within limited time budget
because of the huge search space of an entire target program.

To resolve the aforementioned difficulties of C++ programs,
we have developed a new automated unit testing tool CIT-
RUS (C++ unIt Testing for Reliable and Usable Software)

(Section III-B describes how CITRUS handles template in-
stantiation and Section III-C shows how it manages complex
STL types). CITRUS receives the source code of a target
C++ program P and it automatically generates test driver
files for P , each of which consists of various method calls
of P . Then, CITRUS generates more diverse test drivers by
mutating the test driver code to increase the test coverage
of P . In other words, CITRUS explores diverse states of P
by executing various method sequences of functions in P . In
addition, CITRUS improves the test coverage of P further
by applying libfuzzer [5] to change P ’s state by mutating
arguments of the methods.

We have demonstrated the testing effectiveness and the
efficiency of CITRUS through the experiments on the eight
real-world C++ programs (jsonbox, hjson, tinyxml2, jvar,
jsoncpp, json-voorhees, yaml-cpp, and re2) ranging from
1.5 KLoC to 20 KLoC. On these target programs, CITRUS
achieves up to 95% statement (on jsoncpp) and 79% branch
(on jsonbox) coverage.

The contributions of CITRUS are as follows:

1) CITRUS is one of the very few tools that can automati-
cally generate test cases to test complex real-world C++
programs in a unit-level. 1 2

2) CITRUS generates test cases that achieve high testing ef-
fectiveness on real-world C++ programs (Section V-B).

3) We have performed experiments on the eight real-world
C++ programs to evaluate the testing effectiveness and
efficiency of CITRUS (Section V).

The remaining paper consists of the following sections.
Section II describes the design of CITRUS regarding how it
generates various test cases. Section III describes the detailed
implementation of CITRUS. Section IV describes our experi-
ment setup. Section V shows the experiment results to evaluate
the testing effectiveness and efficiency of CITRUS. Section VI
reports the case study on how CITRUS detects crashes on
real-world C++ programs. Section VII explains related work
to CITRUS. Finally, Section VIII summarizes the paper with
future work.

1CITRUS is available at https://github.com/swtv-kaist/CITRUS.
2CITRUS demo video is available at https://youtu.be/rrS8Eg%5fKQh8.



II. CITRUS: C++ UNIT TESTING FOR RELIABLE AND
USABLE SOFTWARE

A. Overview

CITRUS adopts random method call sequence generation to
generate test suites that extensively exercise the target program
in unit-level testing. A method call sequence that either: (1)
contributes to the test coverage, or (2) induces crash on the
target program; will be kept as interesting test cases. Then,
CITRUS generates libfuzzer harness drivers from the non-
crashing test cases to continue traversing the target program.

B. Test Cases Generated by CITRUS

A test case generated by CITRUS has the following char-
acteristics. A CITRUS test case tc is defined as a sequence of
method invocation statements and the statements to construct
arguments of the method calls.

tc
def
= ⟨s1, s2, ..., sn⟩ (1)

For simplicity, a CITRUS test case has a linear execution flow
with no branching (i.e., it does not have any control statement
(e.g., if, for, while)). Consequently, each statement si can
either

1) declare a variable of a primitive type with initialization
(e.g., int intVar1 = 7;), or

2) invoke a method (e.g., const ClassA &objA1 =
ClassA(intVar1); or objA1.method1(objB1);).

Thus, si has the following characteristics:

1) Each statement has a particular type with zero or more
type modifiers.

2) Each statement (except a method call whose return type
is void) has a variable with a unique name within a
CITRUS test case.

3) Every variable is assigned exactly once (i.e., static single
assignment (SSA)).

For example, the following CITRUS test case (lines 1–4)
executes a target method method1 on an instance of ClassA
at the line 4, after constructing an object objA1 of ClassA
(lines 1–2) and an argument objB1 for method1 (line 3).

1: int intVar1 = 7;
2: ClassA objA1 = ClassA(intVar1);
3: const ClassB objB1 = ClassB();
4: objA1.method1(objB1); // return type is void

The statement at the line 3 has ClassB as its type and const as
its type modifier. It also has a variable whose name is ‘objB1’.

C. Process of CITRUS

CITRUS operates in the following three stages as depicted
in Figure 1:

1) Creating the program representation of a target program.
2) Executing the method call sequence generation.
3) Post-processing CITRUS test suite.

1) Creating Program Representation
First, CITRUS collects the following information from a

target program source files (i.e., .cpp) through traversing
abstract syntax trees (AST) of a target program:

• Lists of classes, structs, enums, and global functions
declared in the target program.

• A list of header files (i.e., .h, .hpp).
Then, CITRUS mines type information from the information

obtained at the AST Traversal stage. CITRUS builds a type
system TS for classes, structs, enums, and member/global
functions of the target program. Algorithm 1 describes how
CITRUS builds the type system TS. Also, CITRUS constructs
an inheritance tree model (ITM) (L3–L6, L16). The ITM
supports CITRUS to construct only the relevant type z ∈
{C} ∪ Subclass(C) while resolving for a class C.

Algorithm 1: Creating Program Representation
Input: classes, enums, glob fns from AST traversal
Output: Inheritance tree model ITM and initialized

type system TS
1 TS← ∅; ITM← ∅;
2 foreach cls in classes do
3 if cls has parent then
4 par ← Parent(cls);
5 ITM← ITM ∪ {cls, par}
6 end
7 TS.RegisterClass(cls);
8 foreach m in Methods(cls) do
9 if m has public access then

10 TS.RegisterFunc(m)
11 end
12 end
13 end
14 foreach e in enums do TS.RegisterEnum(e);
15 foreach fn in glob fns do TS.RegisterFunc(fn);
16 TS.RegisterInheritanceTreeModel(ITM);
17 repeat
18 TS.ExcludeUnsatisfiableFunctions();
19 until All fn in TS have satisfiable arguments;

CITRUS (RegisterFunc at L10) distinguishes “object cre-
ators” from the regular functions (other method sequence
generation techniques [6], [7] apply a similar approach).
Any function f that returns a non-primitive type C where
C /∈ ArgTypes(f) is recognized as object creator of class C.
Constructors and static factory methods are two most-common
object creators in object-oriented programming. Also, CITRUS
(RegisterClass at L7) registers implicit object creators for
applicable classes and structs, such as implicitly-declared
default constructors [8] and struct initialization list [9].

At L17–L19, CITRUS excludes all unsatisfiable functions
from the list of functions. We define a function f as an
unsatisfiable function if there exists a type t ∈ ArgTypes(f),
where t is unconstructable by CITRUS (similarly, a method
m of a class C is unsatisfiable if CITRUS cannot construct



Fig. 1: Overview of CITRUS’s process

an instance of C). Some examples of unconstructable types:
(1) classes with no recognized object creators (e.g., class Y
that requires function pointers for construction, which are
unsupported by CITRUS) and (2) unhandled STL classes by
CITRUS (e.g., thread, mutex, function).

2) Method Call Sequence Generation
Algorithm 2 describes the method call sequence genera-

tion (i.e., randomly generating CITRUS test cases formed
by random method call sequences) to create various CIT-
RUS test cases. The sequence is obtained by calling
LoadOrGenerateTestCase (L4) followed by MutateTC (L5).
If a method call sequence tc is generated, CITRUS builds tc as
an executable file exe (L6) through compilation and linking
with the target program’s object files (.o). If the build was
successful, CITRUS executes exe as follows:

• If exe’s execution terminates normally, CITRUS will
store tc into the valid queue Qvalid in a case that exe
increases coverage.

• Otherwise, CITRUS re-executes exe in gdb environment
to collect the crash information such as a stack trace.
Then, it puts tc into Qcrash if the stack trace has not been
generated previously (i.e., a new crash error occurs).

The process is continued until the given time budget TMAX

is completely consumed (L3–L25).
Algorithm 3 (LoadOrGenerateTestCase) describes how

CITRUS reuses test cases from Qvalid during the random
method call sequence generation (i.e., L4 in Algorithm 2).
LoadOrGenerateTestCase performs either

• generating a new sequence from scratch (L3–L5), or
• reusing the existing tcs from Qvalid in a round robin

manner (L7).
We further elaborate the following core processes of gener-

ating test cases in the following subsections:

Algorithm 2: Method Call Sequence Generation
Input: Initialized type system TS and time budget

TMAX

Output: Qvalid and Qcrash: queues of valid and
crashing test cases, respectively

1 Qvalid ← ∅;Qcrash ← ∅;Cov← ∅;STraces← ∅;
2 Tstart ← Now();
3 while ElapsedTime(Tstart) < TMAX do
4 tc← LoadOrGenerateTestCase(TS, Qvalid);
5 tc← MutateTC(tc);
6 exe, err ← BuildTempExe(tc);
7 if err = ∅ then /* Build successful */
8 retcode ← Execute(exe);
9 if retcode = 0 then /* Exited normally */

10 covtc ← MeasureCoverage(tc);
11 covnew ← covtc − Cov;
12 if covnew ̸= ∅ then
13 Cov← Cov ∪ covtc;
14 Qvalid ← Qvalid ∪ {tc};
15 end
16 else /* Crash detected */
17 outgdb ← ExecuteInGDB(tc);
18 sttrace ← ParseStackTrace(outgdb);
19 if sttrace not in STraces then
20 STraces← STraces ∪ {sttrace};
21 Qcrash ← Qcrash ∪ {tc};
22 end
23 end
24 end
25 end



Algorithm 3: LoadOrGenerateTestCase
Input: Type system TS and queue of valid TCs Qvalid

Output: A candidate test case tc to be executed
1 bgen new ← RandInt(0, 1); /* 50% prob */
2 if Qvalid is empty or bgen new == 0 then
3 funcs← AllFunctions(TS);
4 ftarget ← random function selected from funcs;
5 tc← GenTCForMethod(ftarget);
6 else
7 tc← RoundRobinSelection(Qvalid);
8 end
9 return tc

• How CITRUS generates a test case from scratch
(GenTCForMethod at L5 in Algorithm 3).

• How CITRUS generates diverse test cases by mutating a
test case (MutateTC at L5 in Algorithm 2).

a) Test Case Generation from Scratch
Algorithm 4 (GenTCForMethod) describes the process of

test case generation from scratch (L5 in Algorithm 3). For
a randomly selected target function f (L4 in Algorithm 3),
CITRUS generates statements to construct f ’s arguments as
described at L1–L5. Note that function ResolveType at L3
returns a variable oparg (L3) that is obtained from either

1) an existing statement s ∈ stmts where Type(s) =
typearg, or

2) constructing another sequence of method calls (and
statements to provide primitive arguments) that con-
structs a new statement s′ where Type(s′) = typearg
and appending the sequence to stmts.

When the target function f is a non-static member func-
tion of a particular class (L6–L9), CITRUS resolves the target
object (denoted by opinv at L8), on which f to be invoked.
Finally, CITRUS constructs a call statement scall (L9 and L11)
and appends scall to stmts.

b) Test Case Mutation
Algorithm 5 (MutateTC) describes how CITRUS mutates a

CITRUS test case. CITRUS ensures every test case mutations
to preserve the type validity in the sequence generated.

CITRUS performs three types of test case mutations: inser-
tion, deletion, and modification as described at L5–L10. For
statement modification, it performs the following six statement
mutation operators as follows (we use the same mnemonic
names of mutation in Agrawal et al. [10]): CGCR (Constant
Replacement using Global Constant), VLSR (Mutate Scalar
References using Local Scalar References), VLTR (Mutate
Structure References using only Local Structure References),
CLSR (Constant for Scalar Replacement using Local Con-
stants), OAAN (Arithmetic Operator Mutation), and OANG
(Arithmetic Operator Negation).

3) Post-processing a CITRUS Test Suite
Finally, CITRUS stores CITRUS test cases in Qvalid (Al-

gorithm 2) in the following two different formats:

Algorithm 4: GenTCForMethod
Input: A target function f
Output: A test case tc that calls f

1 stmts← ⟨⟩; args← ⟨⟩;
2 foreach typearg in ArgTypes(f) do
3 oparg ← ResolveType(typearg, stmts);
4 args← args · ⟨oparg⟩;
5 end
6 if f needs invoking object then
7 clsf ← ClassOwner(f);
8 opinv ← ResolveType(clsf , stmts);
9 scall ← CallWithInvokingObj(f, opinv, args);

10 else
11 scall ← Call(f, args);
12 end
13 stmts← stmts · ⟨scall⟩;
14 return MakeTC(stmts)

Algorithm 5: MutateTC
Input: A CITRUS test case tc to mutate, MAX: a

maximum number of mutations to tc
Output: The mutated test case tc′

1 tc′ ← tc;
2 n← RandInt(0,MAX);
3 for i← 1 to n do
4 switch RandInt(0, 2) do
5 case 0 do
6 tc′ ← Randomly insert a random method

call at a random position in tc′

7 case 1 do
8 tc′ ← Randomly mutate a statement in tc′

9 case 2 do
10 tc′ ← Delete unused variables in tc′

11 end
12 end
13 return tc′

1) libfuzzer-compatible test cases:
CITRUS applies libfuzzer to the CITRUS test cases to
increase test coverage further. In contrast to the method
call sequence generation of CITRUS (i.e., diversifying a
state of a target program P through various sequences
of the method calls), libfuzzer alters the states of P
by randomly generating various inputs to P .

2) Google Test-compatible test cases:
CITRUS also provides test cases in GTest-format to
integrate the CITRUS test cases with an existing Google
test suite (if any).

Additionally, CITRUS outputs the de-duplicated crashing
test cases stored in Qcrash. Crashing test cases generated by
CITRUS are annotated with: (1) gdb stack trace output and (2)
a comment to point at the crashing line. By these additional
information, CITRUS helps a user identify the root cause of



the crash (see Section VI for Case Study).

III. IMPLEMENTATION

A. Overview

We have implemented CITRUS in 8.9 KLoC using modern
C++. CITRUS utilizes LLVM’s LibTooling framework to
preprocess and parse C++ source code files. We have tested
CITRUS working on Ubuntu 16.04 and later LTS versions with
LLVM 11.0.1. At the time of writing, CITRUS supports the
C++14 standard and we are working to support the C++17
and C++20 language features. Note that CITRUS targets
programs/libraries that generate object files (.o) and GCOV
log files (.gcno) during the build process. These files are
necessary to build executables and measure the coverage of
the target program during the testing process.

To begin testing, CITRUS requires the following items:

1) A C++ source code file ucpp.
2) A compilation database (compile command.json)

emitted by C++ build tools (e.g., CMake, Bear) while
building the target program.

3) A linking configuration to generate an executable file.

The compilation database helps CITRUS extract the com-
pilation flags used for preprocessing and compiling ucpp.
However, such compilation databases provide no information
about the necessary object files to build an executable file.
To mitigate this, the current version of CITRUS requires the
user to specify the linking configuration, which covers: (1) the
directory where the target program’s object files (.o) exist, and
(2) additional external libraries linking flags (if any, e.g. -lz
to use the zlib library). 3

CITRUS uses LCOV to measure the testing coverage. To
support this, CITRUS requires the target program’s binaries
to be instrumented for coverage analysis (i.e., compiled using
--coverage flag). However, due to the C++ exception feature,
coverage instrumentation on C++ programs generates too
many (almost) unreachable throw branches (e.g., during C++
object construction) that are (almost) never executed. CITRUS
utilizes a modified version of LCOV [11] to exclude such
virtually unreachable branches.

B. Testing C++ Template Classes/Functions

Testing template classes in C++ is challenging because it
is almost impossible to instantiate template classes with all
possible types. In addition, inappropriate type instantiation
of template classes may generate many uncompilable test
cases. Listing 1 demonstrates a simple scenario in which
inappropriate type instantiation produces test case that cannot
be compiled. At L10, Outer<char> can be compiled because
Inner(char*) is defined. Instantiating Outer<int> at L11,
however, causes a compilation error because Inner(int*) is
not defined.

3A future version of CITRUS will automatically capture the linking
configuration by using a wrapper of a linker during the build process of a
target program

Listing 1: Challenge in Instantiating Template Classes in C++
1:class Inner {
2: public: Inner(char *a) {}};
3:
4:template <typename T> class Outer {
5: public: Outer(T* t) {
6: const Inner &tmp = Inner(t); } };
7:
8:void Decode(Outer <char > &arg) { ... }
9:

10:Outer <char > ok((char*) nullptr); /* OK */
11:Outer <int > err((int*) nullptr); /* FAIL */

To reduce the number of uncompilable test cases generated,
CITRUS conservatively binds a free type variable T to a con-
crete type according to the existing type bindings in the target
program. For example, CITRUS binds T to char (denoted as
{T →| char}) when it generates a method call sequence for
Decode at L8 because the argument requires Outer<char>&
type. However, such type hinting may not always be available,
such as when CITRUS targets the constructor of Outer<T> at
L5. In this case, CITRUS randomly selects either {T →| int}
or {T →| double}.

C. Handling C++ STL Classes

C++ supports various useful STL classes and most C++ pro-
grams utilize the STL classes. However, testing C++ programs
that heavily use STL classes has several technical challenges,
such as:

1) Some STL classes have more indirect ways of con-
struction, rather than by simply calling constructors. For
example, unique ptr and tuple should be constructed
through make unique and make tuple API respec-
tively, instead of their constructors.

2) Most STL classes contain many member functions, and
including all of such functions in method sequence
generation may not contribute to exploring diverse pro-
gram states. For example, CITRUS may generate vector
objects (with arbitrary sizes and elements) by using
the push back API only. Thus, generating random
sequences of method calls with resize and erase
operators on vectors is ineffective towards exploring
new executions (i.e., just enlarging the search space).

CITRUS mitigates such technical challenges by putting ad-
ditional engineering efforts to handle the construction of each
STL class without performing random sequence generation.
When a function f requires an object of a STL class tSTL as an
argument, CITRUS constructs an initialized tSTL-typed object
oSTL by using a single-line STL construction statement. For
example, CITRUS uses C++ initializer lists [12] to construct
objects of STL containers.

Currently, CITRUS handles 23 STL classes in the four
categories as follows 4:

• Containers (e.g., vector, set, map, forward list).

4The complete list of the STL classes that CITRUS supports can be found
at include/type.hpp header file.



TABLE I: Target Subjects

Name Size
(LoC)

Commit
Hash URL

jsonbox 1,477 6f86f81 github.com/anhero/JsonBox.git
hjson 2,911 0c40199 github.com/hjson/hjson-cpp.git
tinyxml2 3,606 1dee28e github.com/leethomason/tinyxml2.git
jvar 4,860 e2a6a43 github.com/YasserAsmi/jvar
jsoncpp 5,420 c39fbda github.com/open-source-parsers/jsoncpp.git
json-voorhees 8,614 046083c github.com/tgockel/json-voorhees.git
yaml-cpp 8,800 b591d8a github.com/jbeder/yaml-cpp.git
re2 20,373 bc42365 github.com/google/re2.git

• Utility (e.g., pair and tuple).
• Strings (e.g., basic string, string, wstring).
• Memory (e.g., unique ptr and shared ptr).

D. Crash De-duplication in CITRUS

Since crash de-duplication task is essential to reduce the
effort of the time-consuming manual bug analysis, CITRUS
uses stack hashes to triage crashes [13]. To generate stack
hashes, CITRUS extracts a sequence of source locations (i.e.,
file names + line numbers) in the function call stack parsed
from the gdb stack trace output. CITRUS uses source code
locations (instead of binary code locations) because the binary
code locations may be inconsistent among different runs
due to constantly changing executable file during method
call sequence generation. Note that CITRUS considers only
the source locations in the target project directory to avoid
duplicate crashes caused by uncontrolled behaviors of external
library function calls.

IV. EXPERIMENT SETUP

A. Research Questions

We have developed the following two research questions to
evaluate CITRUS:

RQ1: How effective is CITRUS in terms of branch cov-
erage? To what extent does CITRUS achieve test coverage
on the eight target subjects in Table I? We allocated 12 hours
to perform method call sequence generation and two minutes
libfuzzer fuzzing time for each test case generated.

RQ2: How effective and efficient is CITRUS compared to
the other CITRUS variants? In which configuration does
CITRUS achieve the highest test coverage? To answer RQ2,
we introduced four CITRUS variants by assigning different
time budgets for the method call sequence generation stage
and libfuzzer fuzzing stage.

B. Target Subjects

We applied CITRUS on the eight popular real-world C++
programs in Table I ranging from 1.5KLoC (jsonbox) to
20KLoC (re2). Those programs contain complex C++ lan-
guage features, such as polymorphism, template classes, STL
types, and so on.

Table II summarizes the statistics of accessible functions
in each of the target subjects. Note that we only consider
the number of accessible functions since CITRUS does not

TABLE II: Accessible Function Statistics in Target Subjects

Subject #Total Public
Func. (TF)

#Unsatisfiable
Func. (UF)

%UF
(#UF/#TF)

jsonbox 89 16 17.98
hjson 181 12 6.63
tinyxml2 345 166 48.12
jvar 344 28 8.14
jsoncpp 211 11 5.21
json-voorhees 654 233 35.63
yaml-cpp 535 95 17.76
re2 427 63 14.75

directly invoke private methods. As mentioned in Sec-
tion II-C, some unsatisfiable functions were excluded due to
unconstructible argument types (see the 3rd and 4th column).
We noticed that there were larger number of unsatisfiable
functions in tinyxml2 and json-voorhees, and we have
investigated the reasons of such unsatisfiable functions in these
two subjects:

• For tinyxml2, 158 functions were unsatisfiable because
CITRUS failed to recognize the non-static member func-
tions (that returns a particular class) for constructing one
of its argument types 5.

• For json-voorhees, 111 functions were due to ar-
gument dependency to one of unhandled STL classes
(e.g., std::type index, std::type info); 83 func-
tions were due to type aliasing [14] within template
classes, which are still unhandled by CITRUS; and 28
functions were due to dependency with other unsatisfiable
functions (which had been excluded).

• The remaining unsatisfiable functions (8 in tinyxml2 and
11 in json-voorhees) were mostly caused by unhandled
argument types by CITRUS, such as: multi-dimensional
pointers, opaque pointers (void*), and FILE.

C. CITRUS Variants

To answer RQ2, we make four CITRUS variants to compare.
The four CITRUS variants are as follows:

• C12+LF2, which generates sequences of method calls for
12 hours and applies libfuzzer for two minutes for each
test case generated. This is the main configuration of
CITRUS.

• C6+LF1, which generates sequences of method calls for
six hours and applies libfuzzer for one minute for each
test case generated.

• C6+LF3, which generates sequences of method calls for
six hours and applies libfuzzer for three minutes for
each test case generated.

• C24, which generates sequences of method calls for 24
hours.

5We did not utilize such non-static functions as object creators as they do
not always perform object construction. For instance, it is common to write
a setter method that returns this reference for method chaining, such as:
“Point *SetX(int x) { x = x; return this; }”



TABLE III: Statistics of the Test Cases Generated by C12+LF2

on the Target Subjects

Subject # Test Cases Length of a Test Case (LoC)
avg min max avg stdev min max

jsonbox 116.2 101 125 33.6 21.2 3 132
hjson 237.6 219 254 26.3 15.7 3 118
tinyxml2 136.5 125 145 41.7 25.0 4 156
jvar 209.9 200 219 30.9 20.0 2 137
jsoncpp 283.2 274 291 29.8 19.6 2 133
json-voorhees 240.5 224 263 21.8 14.1 2 116
yaml-cpp 141.1 132 155 25.0 16.1 3 85
re2 303.6 292 322 39.5 27.8 3 174

D. Environment Setup

We conducted our experiments in our cluster in which
each node is equipped with Intel Core i5-4670K CPU (3.4
GHz) and 16GB RAM, running Ubuntu 16.04 64-bit version.
We reported the result of our experiments collected from ten
repeated runs to reduce the random variance caused by the
randomized algorithm. We used MAX = 20 as the maximum
number of mutation operations.

E. Threats to Validity

The possible threat to external validity is the generality of
our subject selection. To reduce the risk, our target subjects
consist of C++ open-source programs of varying sizes. The
threat to internal validity is a bug in CITRUS implementation.
To reduce the risk, we carefully wrote and extensively tested
our CITRUS implementation.

V. EXPERIMENT RESULTS

A. Statistics on CITRUS Test Cases

Table III shows the statistics of test cases generated by
C12+LF2 on the eight target subjects. For example, for jsonbox,
CITRUS (C12+LF2) generated 116.2 test cases each of which
is 33.6 lines long on average over the ten repeated experiment
runs (see the second row of the table).

B. RQ1: How effective is CITRUS (C12+LF2) applied on the
target programs?

The experiment result shows that the test cases generated
by CITRUS achieved high statement coverage and branch
coverage. Figure 2 shows the statement coverage and the
branch coverage obtained by the test cases generated by CIT-
RUS (C12+LF2) on the eight target subjects. CITRUS achieved
roughly 80% or higher statement coverage in 87.5% (=7/8) of
all target subjects (i.e., in all target subjects except tinyxml2).
For jsonbox and jsoncpp subjects, it even achieved >90%
statement coverage. For branch coverage, CITRUS achieved
roughly 60% or higher in the majority of the target sub-
jects (=6/8) (i.e., in all target subjects except tinyxml2 and
json-voorhees).

Answer to RQ1: On the eight real-world C++ target
programs, CITRUS shows high testing effectiveness in
terms of both statement and branch coverage (i.e., it
achieved 50% to 95% statement coverage and 40% to
79% branch coverage).

C. RQ2: How effective and efficient is CITRUS compared with
other CITRUS variants?

Table IV shows the coverage achieved by the four CITRUS
variants (i.e., C24, C6+LF1, C6+LF3, and C12+LF2). The highest
coverage values achieved are shown in bold font. Note that the
running time of each variant (except C24) may vary depending
on how many test cases were constructed during the method
call sequence generation part of CITRUS. The running time
of each variant is summarized at Table V.

The table shows that, among the four CITRUS variants,
C12+LF2 (the main configuration of CITRUS) achieved the
highest statement coverage (80.6%), the highest branch cov-
erage (61.7%), and the highest function coverage (75.4%) on
average over the eight target programs (see the last row of the
table). For example, C12+LF2 achieved the highest statement
coverage on the five out of the eight target programs (i.e.,
all the target programs except jsonbox, tinyxml2, and jvar)
(see the fifth column of the table), the highest branch coverage
on the six out of the eight target program (i.e., all except
tinyxml2 and jvar), and the highest function coverage on
the five out of the eight target programs.

Table V shows the time cost consumed by the four CITRUS
variants. All three CITRUS variants that utilize libfuzzer
spent less time than that of C24. In particular, C12+LF2 spent
19%(=(24-19.4)/24) less time than C24, but achieved 12%
higher (=(80.6-72.0)/72.0) statement coverage, 13% higher
(=(61.7-54.6)/54.6) branch coverage, and 5% higher (=(75.4-
72.1)/72.1) function coverage on average over all target pro-
grams (see the last row of Table IV).

As a result, from Table IV and Table V, we can confirm that
the idea of integrating libfuzzer into CITRUS is effective
and efficient to increase test coverage. This is because since the
CITRUS variants that utilize libfuzzer (i.e., C6+LF1, C6+LF3,
and C12+LF2) achieved higher statement and branch coverage
than C24 and the time costs of the CITRUS variants that utilize
libfuzzer were lower than that of C24.

Answer to RQ2: In most subjects, CITRUS vari-
ant C12+LF2 produced the best result. Also, applying
libfuzzer helps CITRUS improve the coverage score
and time cost, compared to the technique that uses only
method call sequence generation (C24 variant).

VI. CASE STUDY OF CRASH DETECTION

We have conducted a case study to show how CITRUS
detects crash bugs in a real-world C++ program. We selected
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Fig. 2: Statement and Branch Coverage Achieved by CITRUS (C12+LF2) on the Target Programs

TABLE IV: Coverage Achieved by CITRUS Variants

Subject Avg. Statement Coverage (%) Avg. Branch Coverage (%) Avg. Function Coverage (%)
C24 C6+LF1 C6+LF3 C12+LF2 C24 C6+LF1 C6+LF3 C12+LF2 C24 C6+LF1 C6+LF3 C12+LF2

jsonbox 93.6 93.7 94.2 93.9 75.8 78.6 79.1 78.9 93.3 92.6 92.6 92.6
hjson 70.2 78.8 79.7 80.2 57.6 68.5 69.8 70.2 36.8 37.5 37.6 38.1
tinyxml2 59.5 52.9 53.2 56.6 49.1 41.5 42.1 45.5 63.8 59.0 59.3 61.2
jvar 84.5 80.6 80.8 81.2 69.7 63.7 64.0 64.5 89.5 86.9 86.9 87.0
jsoncpp 60.3 59.7 60.1 95.4 45.3 46.9 47.2 60.7 74.2 72.7 72.8 95.0
json-voorhees 69.3 74.7 75.6 76.7 41.8 48.9 50.3 48.3 59.9 61.3 61.7 64.3
yaml-cpp 67.2 78.4 79.0 80.6 45.9 60.9 61.6 63.0 77.2 79.3 79.5 80.8
re2 71.1 77.4 79.1 80.2 51.3 59.3 61.2 62.4 82.0 82.4 83.3 84.2

Average 72.0 74.5 75.2 80.6 54.6 58.5 59.4 61.7 72.1 71.5 71.7 75.4

TABLE V: Time Cost for CITRUS Variants

Subject ttotal (h)
C24 C6+LF1 C6+LF3 C12+LF2

jsonbox 24 8.0 12.1 16.2
hjson 24 9.8 17.5 20.5
tinyxml2 24 8.2 12.5 16.8
jvar 24 9.6 16.7 19.3
jsoncpp 24 10.5 19.5 21.7
json-voorhees 24 10.0 18.1 20.8
yaml-cpp 24 8.2 12.7 17.2
re2 24 10.6 19.9 22.7

Average 24 9.4 16.1 19.4

five target crash bugs on the eight target subjects with the
following criteria:

1) The target crash bug was reported in the git commit
message that contains one of the following keywords:
“crash”, “segmentation fault”, “SIG”, and “SEGV”.

2) The fixed code is still available (i.e., not removed since
the patch date) in the latest version of a target program.

3) The crash bug resides in the target program source code.
4) The crash occurs due to internal logic problems, not ex-

ternal environment-related problems (e.g., OS, external
files, environment variables, etc.).

5) The crash bug can be understood without deep domain
expertise. Otherwise, we are unable to check if a unit-
level crashing execution of a CITRUS test case really
conforms to that of the reported crash bug. 6

Table VI shows the five target crash bugs selected by the
above criteria. For each target crash bug, we manually set
up the unit-level crash replication environment to check if a
crashing execution of a CITRUS test case really conforms to
that of the reported crash bug. We ran CITRUS three times
with 12 hours of method sequence generation per each run.
As a result, CITRUS detected 80% (4/5) of the target crash
bugs.

We explain the detail of how CITRUS detects the following
crash bug in hjson (see the second line in Table VI). The root

6A crash bug report usually provides a system-level test input to replay the
target crash in system-level. To check if a unit-level test execution matches
that of the crashing system-level execution, we have to check if the unit-level
test execution satisfies necessary conditions of the target crash, which requires
detailed understanding of the crash and the target program.



TABLE VI: Five Target Crash Bugs for the Crash Detection Study

Subject Commit Hash Patch Date Commit Message Detected

hjson e8f8693 2018-10-07 Fix segfault in deep equal comparison of empty vectors (#8) ✓
tinyxml2 e8f4a8b 2017-09-15 Fix crash when element is being inserted “after itself” ✓
jsoncpp f6d785f 2016-09-25 Fix poss SEGV −
jsoncpp f251f15 2017-01-17 Fix crash issue due to NULL value. ✓
yaml-cpp 396a970 2014-03-22 Fix SEGV in ostream wrapper ✓

Fig. 3: Crash Fix in hjson e8f8693 commit

cause of the fix e8f8693 in hjson is an off-by-one error in
deep equal comparison on empty vectors (or empty maps).
As shown in Figure 3, prior to e8f8693, deep equal used
do...while to compare the elements, causing the loop body
to be still executed on empty vectors (or maps); the patch
avoids the loop body execution for empty vectors (or maps)
by changing do {...} while(c) to while(c) {...}.

Listing 2 shows a crashing CITRUS test case that de-
tects the crash bug in hjson. At L17, CITRUS points to
the crashing line that invoke deep equal. Since value5 of
value5.deep equal(value3) at L18 is an empty map (see
L13 and L16 where char2 is an empty string “”), the test
case triggers the crashing bug and crashes. Also, CITRUS
annotates the crashing test case with additional gdb backtrace
information (L2–L10)

For jsoncpp f6d785f, CITRUS failed to discover the crash
bug because the bug was located inside a method with private
modifier and a CITRUS test case does not directly invoke
private methods.

VII. RELATED WORK

A. C/C++ Unit-level Testing Tools

Automated unit test case generation for object-oriented
programming languages (e.g., C++) is well-known to be a
challenging task due to the its large search space. To achieve
a high coverage in a target program, testing tools must be
able to: (1) generate diverse test harnesses (a.k.a., drivers) to
represent realistic contexts to a target unit in the target pro-
gram; and (2) generate the suitable inputs to increase the test
coverage. Most state-of-the-art techniques, such as symbolic
executions (e.g., CUTE [15], KLEE [16], DeepState [17]) and
coverage-guided fuzzing (e.g., AFL++ [3], libfuzzer [5])
require manual efforts by human testers on writing the unit-
level test harnesses before starting the input generation. Such
manual interventions are indeed costly and ineffective [18] on
achieving high test coverage 7. Even though several techniques
(e.g., CONBRIO [19], FOCAL [20], MAIST [21]) have been
developed to reduce the manual efforts of generating unit-test
harnesses by automatically generating unit test harnesses, they
do not support C++ programs because of the high complexity
of C++ language features. Meanwhile, in contrast to C++ unit
testing frameworks (e.g., Google Test [22], CppUnit [23]) that
do not automatically generate test cases (i.e., purposefully only
for running unit test cases), CITRUS generates C++ unit tests
automatically which can be later incorporated to be run on
these C++ testing frameworks.

The later approaches on automated unit testing for C++
programs started to incorporate the harness generation pro-
cess inside the testing process. KLOVER [24] automatically
generates static drivers which is later incorporated with its own
C++ symbolic execution engines to generate inputs. FSX [25]
introduces incremental driver refinement and relevant input
analysis to improve the effectiveness of static drivers in
symbolic executions. However, utilization of such static drivers
may have limitation in triggering behaviors caused by the
different ordering of method calls. CITRUS generates test
cases through the random method call sequence generation
to execute diverse program behaviors.

Recent techniques focus to synthesize fuzz drivers to
achieve high test effectiveness. For example, FUDGE [26]
and FuzzGen [27] synthesize fuzz drivers by scanning an

7We were not able to perform experiment to achieve apple-to-apple com-
parison between CITRUS and existing tools (such as DeepState and AFL)
because most tools do not automatically generate test drivers, while CITRUS
generates the test drivers end-to-end.



Listing 2: CITRUS Test Case that Detects The Crash Reported in hjson e8f8693 commit
1: TEST(CITRUS_TestSuite , tc_id_129) {
2: // gdb output: ...
3: // hjson/src/hjson_value.cpp :536:
4: // bool Hjson::Value:: deep_equal(const Hjson::Value &) const:
5: // ...
6: //
7: // Program received signal SIGABRT , Aborted.
8: // #0 __GI_raise (sig=sig@entry =6) at .../ raise.c:50
9: // #1 0x00007ffff7a59859 in __GI_abort () at abort.c:79

10: // ... */
11: Hjson::Value value0 {0.251040};
12: bool bool1 = value0.operator !=(0.666285);
13: char char2 [1] = "";
14: Hjson::Value value3 = Hjson:: Unmarshal(char2);
15: char char4 [5] = "h6yA";
16: Hjson::Value value5 = Hjson:: Unmarshal(char2);
17: /* PROGRAM CRASHED AT THE EXACT LINE BELOW */
18: bool bool6 = value5.deep_equal(value3);
19: Hjson::Value value7 = Hjson:: Unmarshal(nullptr , 50);
20: ... }

existing external library consumer project to collect candi-
date entry functions. CITRUS works in a more flexible way
as it does not require any external project to perform the
method sequence call generation. IntelliGen [18] synthesizes
fuzz drivers for functions with most potential vulnerable
statements (e.g., pointer dereferencing). However, we could
not check if IntelliGen supports C++ language features since
their implementation is not publicly available. CITRUS was
developed to test complex C++ programs and CITRUS is
publicly available. Moreover, compared to the three driver
synthesis techniques mentioned above, CITRUS adopts both
generative and mutational strategy to improve the diversity of
the test cases generated.

B. Method Call Sequence Generation

Method call sequence-based test case generation has been
widely applied to programming languages other than C++,
such as Java [6], [28] and Python [29]. EvoSuite [6] con-
structs test suites through evolutionary algorithm to maximize
the coverage goals (e.g., line, branch, weak mutation) while
still minimizing the test suite size. Randoop [28] performs
random sequence generation while utilizing contract checkers
to find any violations within the code executions. Meanwhile,
Garg et al. [30] ported a C++ version of Randoop but its
implementation is not publicly available.

Bach et al. [7] conducted a large-scale survey on seven large
C++ projects to confirm the importance of Object Creation
Problem (OCP) while writing unit tests. While they have
suggested an approach to robustly construct a valid solution
for most classes, the survey did not discuss how such method
call sequences should be utilized to increase the diversity of
object states generated. Meanwhile, CITRUS not only focuses

on object creation, but also extensively mutates test cases to
construct diverse object states.

VIII. CONCLUSION AND FUTURE WORK

This paper presents CITRUS which is a new automated
C++ unit-level testing tool to generate random method call
sequences to produce a test suite achieving high test coverage.
To test complex real-world C++ programs, CITRUS handles
challenging technical issues such as template instantiation,
complex STL classes, and so on. On the eight real-world C++
target programs, we have demonstrated that CITRUS achieved
high statement coverage (up to 95%) and high branch coverage
(up to 79%). CITRUS is publicly available at

https://github.com/swtv-kaist/CITRUS

For future works, we plan to enhance our CITRUS imple-
mentation to handle more complex C++ features, such as STL
classes from the more recent C++ language features. Also, to
improve the testing effectiveness and efficiency of CITRUS,
we will develop new heuristics that utlize mutant execution
results to increase test coverage [31], [32] and to reduce the
number of mutants [33]. Finally, we will study a method to
identify/generate test oracles for C++ test cases as future work
since test oracle problem is also an important feature in test
case generation.
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