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ABSTRACT

Reliability of safety critical systems such as nuclear power plants
and automobiles becomes a significant issue to our society. As
more computing systems are utilized in these safety critical sys-
tems, there are high demands for verification and validation (V&V)
techniques to assure the reliability of such complex computing sys-
tems. However, as the complexity of computing systems increases,
conventional V&V techniques such as testing and model checking
have limitations to achieve the reliability of complex safety critical
systems, since such systems often control highly complex continu-
ous dynamics to interact with physical environments. To improve
the reliability of such systems, statistical model checking (SMC)
techniques have been proposed. SMC techniques can check if a
target system satisfies given requirements through statistical meth-
ods. In this paper, we propose a new hybrid SMC technique that
integrates sequential probability ratio test (SPRT) technique and
Bayesian interval estimation testing (BIET) technique to achieve
precise verification result fast. In addition, we demonstrate effec-
tiveness and efficiency of this hybrid SMC technique by applying
the hybrid SMC technique to three safety critical systems on auto-
mobile domain.

1. INTRODUCTION

As computing hardware advances rapidly, various areas of our
life utilize computing systems such as smart phones, medical de-
vices, and automobile controllers. Consequently, the reliability of
computing systems becomes a significant issue to our society and
various international standards are proposed and applied to assure
reliability of such systems. For example, avionics domain has DO-
178C [15] as a standard for reliable software, automobile domain
has a functional safety standard ISO 26262 [7], and medical elec-
trical equipment domain has IEC 60601 [6] as a technical standard
for the safety and effectiveness.

However, as computing power increases, the complexity of com-
puting systems also increases rapidly, which causes many chal-
lenges to assure reliability of computing systems. In particular,
the size and complexity of software in a computing system has
increased quickly. Although software reliability has been studied
actively [14], conventional verification and validation (V&V) tech-
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niques for software such as testing and model checking [2] have
limitations to assure the reliability of complex safety critical com-
puting systems. One reason for this difficulty is that such systems
often control highly complex continuous dynamics to interact with
physical environments. In addition, since safety critical systems
consist of both hardware and software and interact with a physical
environment that often behaves non-deterministically (e.g., condi-
tion of road surface for automobiles or wind speed for airplanes),
we should analyze target hardware and software with its environ-
ment together as a stochastic process [16]. However, conventional
V&V techniques for software are difficult to analyze a target sys-
tem in such contexts.

As a remedy to improve the reliability of safety critical systems,
statistical model checking (SMC) techniques [21, 19, 20, 5, 23, 3,
8] have been proposed. SMC techniques approximately compute
probabilities for a target system to satisfy given requirements based
on randomly sampled execution traces. Thus, SMC techniques can
assure the reliability of a complex target system statistically with-
out analyzing the internal logic of a target system.

In our previous work [9], we empirically evaluated the effec-
tiveness (i.e., precision of verification) and efficiency (i.e., time
cost of verification) of the four state-of-the-art SMC techniques
including single sampling plan (SSP) [19], sequential probability
ratio test (SPRT) [21], Bayesian hypothesis testing (BHT) [8], and
Bayesian interval estimation testing (BIET) [23]. Through the em-
pirical study, we observed that these SMC techniques have different
strong points and weak points so that they can complement one an-
other. From this observation, we develop a new hybrid SMC tech-
nique which combines SPRT which is the fastest SMC technique
and BIET which is the most precise SMC technique among the
four SMC techniques studied. This hybrid SMC technique achieves
precise verification result fast. To demonstrate the effectiveness
and efficiency of this hybrid SMC technique, we have applied this
hybrid SMC technique to three safety critical systems on automo-
bile domain - automatic transmission control system (ATCS), anti-
lock braking system (ABS), and fault-tolerant fuel control system
(FFCS). Through the experiments, we confirm that our hybrid SMC
technique improves effectiveness and efficiency compared to a sin-
gle SMC technique.

The organization of the paper is as follows. Section 2 overviews
related SMC techniques (i.e., SPRT and BIET). Section 3 describes
a new hybrid SMC algorithm. Section 4 explains the three target
systems - ATCS, ABS, and FFCS. Section 5 describes the veri-
fication results by using the single SMC techniques and the hy-
brid technique on Simulink/Stateflow models of ATCS, ABS, and
FFCS. Section 6 discusses issues from the empirical study. Sec-
tion 7 concludes this paper with future work.
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Figure 1: Framework of SMC techniques

2. OVERVIEW OF STATISTICAL MODEL
CHECKING TECHNIQUES

2.1 SMC Framework

Figure 1 illustrates a framework of SMC techniques. There are
two classes of statistical model checking techniques: hypothesis
testing and estimation testing. A hypothesis testing technique re-
ceives a target system M, a probabilistic bounded linear temporal
logic (PBLTL) [23] formula P>¢[¢] with probability threshold 6,
and precision parameters. A hypothesis testing technique produces
an ‘accept’ answer if M |= P>¢[¢] which means that a probability
for M to satisfy ¢ is greater than or equal to 6; a ‘reject’ answer,
otherwise. An estimation testing technique receives a target sys-
tem M and a bounded linear temporal logic (BLTL) [22] formula
¢ with precision parameters and produces an estimated probability
p regarding M = ¢.

To produce an answer, both classes of SMC techniques pick a
random sample path o; by executing M and collect the result of
checking o; = ¢. SMC techniques request a sample path repeat-
edly until the information of sample paths are enough to determine
if M = P>g[¢] or to calculate p for M = ¢ with given precision
parameters. Note that SMC techniques should determine a num-
ber of sample paths n to check if M = Psg[¢] or to calculate p
for M |= ¢ using statistical techniques. Most SMC techniques
calculate n dynamically through iterative sampling.

2.2 Probabilistic Bounded Linear Temporal
Logic

We define a syntax and semantics of bounded linear temporal
logic (BLTL) [22], and then extend BLTL to PBLTL [23]. For a
target model M, SV is a finite set of real-valued state variables.
A Boolean predicate over SV is a constraint of the form y ~ v,
where y € SV, ~€ {>,<,=}, and v € R. The syntax of the
BLTL logic formula ¢ is given by the following grammar:

pu=y~v|(d1Vd2)|(d1Ad2)| 1| (¢1U"¢a),

wherey € SV, ~€ {>,<,=},v € R,and t € R>o.

For other temporal operators, we can define F*¢ as True U'¢
and G'¢ as =F"—¢. We denote a fact that an execution o satisfies
a property ¢ as o = ¢. We use o” to denote a suffix trace of &
starting at step & (o denotes the original execution o). We denote
the value of a state variable y in o at step k by V (o, k,y). We
define t; as a time at step k and ¢ as a time bound. The semantics
of BLTL on a trace o* is defined as follows:

o o =y ~viff V(o k,y) ~v
o o ':¢1\/¢2iff0k E ¢ or o* E o2

o oF = g1 Adaiff o® = ¢y and 0" = o
o oF = ¢y iff oF ¥ ¢

o oF |= $1 Ut ¢y iff there exists ¢ € N such that

1. ZO§Z<7L te+1 < t,
2. o*T = ¢g, and
3. foreach 0 < j < 4,0"" |= ¢4

A probabilistic bounded linear temporal logic (PBLTL) formula
is a formula of the form P>g[¢], where ¢ is a BLTL formula and
6 € (0,1) is a probability threshold. We denote that a model M
satisfies PBLTL property P>q[¢] as M = P>g[¢], which means
that a probability for M to satisfy ¢ is greater than or equal to 6
(see [23] for detailed description).

2.3 Sequential Probability Ratio Test

Sequential probability ratio test (SPRT) which is one of the hy-
pothesis testing techniques was introduced by Younes et al. [21].
SPRT [21, 19, 20, 17] determines a number of required sample
paths dynamically at runtime. A main goal of SPRT is to decide
if M = Psg[¢] with a small number of sample paths. If another
sample path is needed, SPRT generates one more sample path by
executing a target system. If the information from generated sam-
ple paths are enough, SPRT stops executing a target program and
produces an answer regarding M |= P>¢[¢]. SPRT uses precision
parameter inputs error bounds « and 3, and a half size of indiffer-
ence region 0. The detailed description of SPRT is as follows.

Before building a hypothesis for hypothesis testing of SPRT, we
introduce the indifference region. Basically, we build a hypothesis
H : p > 0 against an alternative hypothesis K : p < 6 where 0
is a threshold over (0,1) and p is a true probability that M satisfies
¢. Hypothesis testing checks if H is accepted or not based on the
randomly sampled paths. For testing a hypothesis H, there are two
types of errors such as false negative (also known as a type I error)
which rejects a true hypothesis H and false positive (also known as
a type I error) which accepts a false hypothesis H. We can bound
an error probability of a false negative error within . Similarly,
we can bound an error probability of a false positive error within 3.
We call o and S as error bounds. The left side of Figure 2 presents
the function of probability L, of accepting the hypothesis H as a
function of p with the probability of a type I error and type II error
as exactly a and 5. However, we want to give similar probability
Ly of p = 6 and p = 0 — € for arbitrarily small € > 0 for reality.
To solve this problem, we introduce indifference region (p1,po)
around 6 where po = 6 + 6, p1 = 6 — §, and J is a half size of
indifference region (see right side function in Figure 2). Therefore,
instead of testing H against K, we use the modified hypothesis

Ho:p2po
against the alternative hypothesis
Hi:p<p

If the probability p is in (p1, po), then p is sufficiently close to 6 so
that we do not care which hypothesis is accepted.

Now, we describe the algorithm of SPRT. First, we obtain a sam-
ple path o; of a target system with simulating the target system and
model-check if the sample path o; satisfies the given property ¢
(see Section 2.1). After generating mth sample paths of the test,
we calculate the quantity

~opim (= py)m

pgm (1 _ po)mfdm

Pim _ 77 PrlXi = @ilp = p1]

Pom 3 PriXi = wilp = po]

where drm = 31", @i and x; is ith observation of o; |= ¢. pjm is
the probability of the sequence 1, ..., T with Pr[X; = 1] = p;
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Figure 2: Function of probability L, of accepting the hypothesis H : p > 0 (left side) and function of probability L, of accepting the

hypothesis Hy : p > po with indifference region (right side).

for j=0,1. Therefore, the above quantity makes the ratio of two
probabilities, the probability ratio. The hypothesis Hy is accepted
if

Bim < B,

Pom

and the hypothesis H; is accepted if

Prm 4

Pom
Otherwise, we should generate m + 1th sample path of the test.
A and B are selected to bound error probability a and 3, with
A > B. In practice, we choose A = % and B = %(detailed
description is found in [17, 19]).

Note that SPRT can be imprecise with same indifference region
value § when the threshold 6 is close to 1. The reason for the im-
precise result of SPRT is due to the limited size of indifference re-
gion. For example, if the threshold 6 is 0.99 and § > 0.01, then po
becomes 1, which causes the denominator of the probability ratio
Zé—: to be 0 when one false sample path occurs, which can cause
imprecise result. Therefore, & should be very small when 6 is close
to 1, which requires large number of samples.

2.4 Bayesian Interval Estimation Testing

Bayesian interval estimation testing (BIET) is an estimation test-
ing based SMC technique. Estimation testing can approximately
compute p, the probability that the model M satisfies the given
property ¢ expressed by bounded linear temporal logic (BLTL).
With p, we can determine if the probabilistic bounded linear tempo-
ral logic (PBLTL) is satisfied. For that purpose, we use a following
statistical estimation testing technique.

BIET [23] dynamically determines the number of sample paths
for checking the satisfiability of the model M with the property ¢
during simulation as SPRT does. In Bayes’ theorem, we get prior
probability using current information first. After obtaining new in-
formation, we can obtain posterior probability refining prior prob-
ability. BIET uses the Bayes’ theorem to determine the number of
sample paths of the test.

BIET uses four precision parameter inputs such as a half-size ¢’
of an estimation interval which will contain p with high probability,
the coverage goal c of the estimation interval, and the parameters
o/, 3 of the Beta prior. In fact, BIET estimates interval around the
probability p instead of estimating p, but we regard the mean of the

estimated interval as p, the estimated value of true probability p,
i.e., the estimated interval is (p — &', p + &"). We call the estimated
interval as (o, t1). We have a coverage goal such that the proba-
bility that the probability satisfying M |= ¢ is in (to, t1) should be
over the coverage ¢ € ( %, 1). The exact description of the coverage
goal is as follows:

t1
/ flu|z,...zn)du = ¢
to

where x; is ith observation of o; |: ¢ fori = 1,....,m and n
is the number of sample paths. We call the coverage goal as a
100c percent Bayesian interval estimate of p. Since BIET uses the
Bayes’ theorem, we need prior information, i.e., prior density of
p to obtain prior probability. For simplicity, we focus on the Beta
prior with parameters o, 3’(See [23] for details).

At mth stage of the test, by Beta prior with o', 8’, we can calcu-
late the quantity

. xz+d
m+a + 3
where ¢ = 37" | x; is the number of success sample paths during
m number of sample paths. Next, using to = p — &', t1 = p+ &',
we can calculate the quantity

t1
’Y:/ flu|zi, .oy zm)du
to

where v is the coverage of m number of sample paths for checking
M | ¢. If v > ¢, then BIET stops the simulation and outputs
to, t1, and p. Otherwise, BIET generates m -+ 1th sample path and
repeats.

Note that BIET is fast when the estimated probability p is close
to 0 or 1 [23], whereas BIET is extremely slow (i.e., extremely
larger number of samples is required) when p is close to % With
this advantage of BIET, BIET can easily apply the problem for
safety critical system since the probability standard of satisfiabil-
ity for safety critical system should be usually close to 1 or 0.

3. HYBRID SMC ALGORITHM

We develop a hybrid SMC technique to improve both efficiency
and effectiveness by combining SPRT whose verification speed is
fast (i.e., small number of samples is required) and BIET whose



verification precision is high (i.e., the number of false positive and
false negative results is small) [9]. Algorithm 1 describes how the
hybrid SMC technique checks if a target system model M satis-
fies a given property ¢ in BLTL for a given probability threshold
0 ! with precision parameters pars for SPRT and parp for BIET.
The algorithm first applies SPRT multiple times with dynamically
increasing probability threshold 65 p rr until a verification result is
‘reject’ (lines 15-18) or Osprr becomes larger than or equal to a
user-given threshold thsap where 0.5 < thsap < 6 (lines 5-20).
If Osprr becomes larger than or equal to ths2p, the algorithm
applies BIET to obtain a precise verification result (lines 21-34).

The detail of the algorithm is as follows. First, the algorithm
calls SPRT() ms times (lines 6-10), which applies SPRT to
M with regard to ¢ and Osprr with pars (line 8). A result of
SPRT() is ‘accept’ (i.e., 1) or ‘reject’ (i.e., 0). After mg trials
of SPRT(), the algorithm calculates an average accept decision
value acceptang over the mg trials (line 11). If acceptaqg is less
than a user-given accept decision threshold thqcpt, the algorithm
decides that the verification result of M = P>g(¢) is ‘reject’
(line 16) and terminates (line 18). Otherwise (i.e., acceptovg >
thacpt), the algorithm increases 6sprr from the initial value 0.5
(line 3) to 0.75, 0.875, 0.9375 and so on (line 14) until Osprr
becomes larger than or equal to ths2p through the while loop in
lines 5-20.

If Osprr becomes larger than or equal to a user-given prob-
ability threshold ths2p for applying BIET, the algorithm calls
BIET() for mp times (lines 23-27), which applies BIET to M
for ¢ with precision parameters parg (line 25). Based on the es-
timated probability p obtained from BIFET(), the algorithm cal-
culates an average estimated probability ps.4 over the mp trials
(line 28). If pa.g is greater than or equal to 6, then the algorithm
decides that the verification result is ‘accept’ (lines 29-30); ‘reject’,
otherwise (lines 31-32).

Note that the hybrid SMC algorithm can save a large amount
of time cost compared to BIET, if a probability for M to satisfy
¢ is far from a given probability threshold 6. For example, if the
probability is less than 0.5, the algorithm terminates after execut-
ing SPRT() only once without executing BIET () whose time
cost is very high (see Table 3). The algorithm executes BIET()
if the probability is close to 6 (which is usually close to 1 for re-
quirement properties of safety critical systems), which is necessary
since SPRT becomes imprecise when @ is close to 1 (Section 2.3).

4. TARGET SAFETY CRITICAL SYSTEMS

This section presents an overview of the following three safety
critical systems in automobile domain:

e Automatic transmission control system (ATCS) [13]
e Anti-lock braking system (ABS) [1]
e Fault-tolerant fuel control system (FFCS) [12]

We selected these systems as target systems to apply SPRT, BIET,
and the hybrid statistical model checking (SMC) technique (Sec-
tion 3) for the following reasons:

e These three automobile systems are safety critical systems
whose reliability is very important. Many researchers are
working to address the reliability issues on safety critical sys-
tems [12, 1, 13].

"'We assume that 6 is close to 1, since we develop a hybrid SMC al-
gorithm for safety critical systems whose reliability criteria are very
high and, thus, requirement properties are given with high thresh-
old values.

Input:

M: amodel

¢: BLTL property

6: probability threshold of M = ¢

pars: precision parameters of SPRT

parp: precision parameters of BIET

thacpt: accept decision threshold over [0,1]

thsep: probability threshold to change from SPRT to BIET
mgs: a number of trials for SPRT

mp: a number of trials for BIET

Output:

answer: result of M |= P>g(¢)

Davg: average estimated probability of M |= ¢ by BIET if
BIET is applied; N/A otherwise

1 SMChyp(M, ¢,0,pars, parp, thacpt, thsap, ms, mp){
2 acceptsym = 0; // sum of accept decisions by SPRT
3 Osprr = 0.5;// initial probability threshold for SPRT
4 // SPRT for fast verification
5 while sprr < thsap do
6 fori =1— mgdo
7 // Checks M = P>gg ppp (¢) using SPRT
8 accept = SPRT (M, ¢,0sprr, pars);
9 Add accept to acceptsym;
0 end
11 acceptang = acceptsum/ms;
2 if acceptavg > thacp: then
13 // next probability threshold for SPRT
14 Osprr = O0sprr + (1 — OsprT)/2;
5 else
16 answer = ‘reject’;
17 Davg = N/A;
8 return answer and paug;
9 end
20 end

21 // BIET for precise verification

22 psum = 0;// sum of estimated probabilities by BIET
23 fori =1 — mp do

24 /I Checks M |= ¢ using BIET

5 p = BIET(M, ¢,parg);

26 Add p to psum;

27 end

28 Pavg = psum/mB;

29 if pavg > 0 then

30 ‘ answer = ‘accept’;
31 else

B2 | answer = ‘reject’;
33 end

B4 return answer and paug;
35 }

Algorithm 1: Hybrid SMC algorithm

e The three automobile systems are complex real-world appli-
cations, not a toy example such as ones in probabilistic sym-
bolic model checker (PRISM) [11] benchmarks.

e Simulink/stateflow models of the three automobile systems
are publicly available in Matlab R2010a. Thus, it is conve-
nient to build a prototype tool for the SMC techniques by
using a Simulink/stateflow simulator.

4.1 Automatic Transmission Control System
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An automatic transmission control system (ATCS) is a safety
critical system which changes an engine gear automatically to drive
smoothly. A main task of ATCS is to select a proper engine
gear. As described in Figure 3, ATCS receives inputs regarding
car speed, throttle, brake pressure (and engine RPM as a feedback)
and calculates an engine RPM and a gear state. ATCS consists of
a torque converter and a transmission control unit. The torque con-
verter calculates an impeller torque value to deliver power to con-
trol the engine RPM based on the engine RPM and the gear state
(i.e., if the impeller torque increases/decreases, the engine RPM
increases/decreases). With the sensor inputs on car speed, throt-
tle, and brake pressure, transmission control unit (TCU) selects a
proper gear. Based on throttle and brake pressure values, TCU cal-
culates a up-threshold and a down-threshold of a car speed. If a
current car speed is greater than the up-threshold or less than the
down-threshold, TCU changes the engine gear to keep the engine
RPM in safe range (i.e., less than 6000).

The size and complexity of the Simulink/stateflow ATCS model
in terms of the Halstead metrics [4] are described in Table 1. We
counted each atomic block (i.e., a module of a mathematical func-
tion or control logic) as an operator and each input of an atomic
block as an operand of the Simulink/stateflow ATCS model. The
automatically generated C code from the model has 2353 LOC in
71 functions.

A requirement property for ATCS is that the probability that the
engine RPM is less than 6000 for 30 seconds > should be greater
than or equal to 6. The property is important in real world, because
if the engine RPM is constantly over 6000, the engine becomes
overheated and can be damaged. The property can be expressed in
PBLTL as follows:

Ps[G* (engineRPM < 6000)]

4.2 Anti-lock Braking System

An anti-lock braking system (ABS) is a safety system that re-
peatedly increases and decreases the brake pressure to allow the
wheels of a car to interact with the road surface continuously as
directed by a driver while braking. Thus, ABS can prevent the
wheels from locking up and avoid skidding, which can enhance
the safety of driving by improving vehicle control and decreasing
stopping distances. As described in Figure 4, ABS has the follow-
ing three sensors: a car speed sensor, a wheel speed sensor, and
a brake pedal sensor. ABS receives data from these sensors and
generates the brake pressure and slip as outputs, where slip indi-

2We set the time duration to monitor as 30 seconds, since a default
simulation time of the Simulink model of ATCS included in Matlab
R2010a is 30 seconds.

ABS
Car speed Feedback
sensor e Atk
\'4
Bang- Hydraulic

Wheel speed bang > control Brake

sensor . pressure
controller unit
i

Brake pedal | slip

sensor

Figure 4: Block diagram of ABS

cates how properly a wheel of a car is controlled. ABS consists of
a bang-bang controller and a hydraulic control unit. The bang-bang
controller receives data from the three input sensors and commands
the hydraulic control unit to increase/decrease the brake pressure.
In addition, when the brake pedal is pressed, the bang-bang con-
troller calculates slip as follows:
. wheelspeed
slip=1— ——
carspeed
When the wheel speed is equal to the car speed, slip becomes zero.
When the wheel speed is zero (i.e., the wheel is locked), slip be-
comes one, which means that the driver loses his control of the car.
There is an ideal slip value (which is 0.2) that maximizes the ad-
hesion between the wheel and the road and minimizes the stopping
distance with available friction. The bang-bang controller tries to
adjust slip close to the ideal slip value by controlling the hydraulic
control unit.

The size and complexity of the Simulink/stateflow ABS model
in terms of the Halstead metrics are described in Table 1. The au-
tomatically generated C code from the model has 3443 LOC in 27
functions.

A requirement property for ABS is that the probability that, for
17 seconds *, when the brake pedal is pressed and the car speed is
greater than 5 m/s, slip is less than or equal to 0.9, should be larger
than or equal to 6. The property is important in real world, because
if slip becomes close to 1 when a car is driving, the wheel can be
locked and a driver loses control of the car. The property can be
expressed in PBLTL as follows:

Ps[G"" ((brakepressed A carspeed > 5) — slip < 0.9)]

4.3 Fault-tolerant Fuel Control System

Figure 5 is an overall diagram of a fault-tolerant fuel control sys-
tem (FFCS). FFCS [12] controls a fuel rate to inject fuel based on
sensor data for best performance, detects a sensor fault, and shuts
down an engine for safety in the presence of multiple sensor fail-
ures. FFCS has the following four sensors: throttle angle sensor,
speed sensor, exhaust gas oxygen (EGO) sensor, and manifold ab-
solute pressure (MAP) sensor. FFCS receives these four sensor
inputs and generates a proper fuel rate and an air-fuel ratio. FFCS
consists of the following three components: a fuel rate controller,
an air-fuel ratio calculator, and a sensor failure detector. The fuel
rate controller receives the four sensor data and calculates a proper
fuel rate to make an air-fuel ratio optimal (i.e., 14.6). The air-fuel
ratio calculator receives EGO sensor data and a fuel rate and calcu-
lates the air-fuel ratio. The sensor failure detector receives all four

3We set the time duration to monitor as 17 seconds, since a default
simulation time of the Simulink model of ABS included in Matlab
R2010a is 17 seconds.



Table 1: Size and complexity of the Simulink models of ATCS, ABS, and FFCS in Halstead metrics

Target || Ni:#of | Nao#of | ni#of na:# of N:program | n: program | V': program D: program E': program
system || operators | operands | distinct distinct length vocabulary volume difficulty effort
operators | operands || (= N1+ N2) | (=n1 4+ n2) | (N X logn) | (=n1/2 x N2/n2) | (=D x V)
ATCS 31 46 27 39 7 66 465.4 15.9 7410.9
ABS 27 36 19 36 63 55 364.2 9.5 3460.1
FFCS 65 111 35 94 176 129 1234.0 20.7 25500.0
_____________________ Feedback the engine to the torque converter. * This random delay is
FFCS i- ! modeled by exponential distribution [10]. We selected a
angle sensor f Y | ‘passing maneuver’ scenario from the options of the ATCS
‘ Fuel rate i model, which simulates a situation that a driver opens the
Speed sensor Fuel rate - ! throttle 100% after 15 seconds. We utilize the following four
Exhaust gas | controller A‘r:tfi‘f‘ : i delay rates (i.e., mean delay times of transmission in sec-
oxygen (EGO) |l calculator Air-fuel | onds) A € {0.01,0.02,0.03,0.04}.
sensor A ratio
Manifold absolute Sensor multiple Engine e ABS: we built a stochastic environment of ABS that gener-
pressure (MAP) A dfat‘.lu;e sensor failure shut down ates random delay to the command from the bang-bang con-
sensor sensors Stector troller to the hydraulic control unit. > The random delay of

Figure 5: Block diagram of FFCS

sensor data and controls the fuel rate controller to increase/decrease
the fuel rate in the presence of a single sensor fault or shuts down
the engine if multiple sensors fail, since the air-fuel ratio cannot be
controlled with failures of multiple sensors.

The size and complexity of the Simulink/stateflow FFCS model
in terms of the Halstead metrics are described in Table 1. The auto-
matically generated C code from the model has 8266 LOC in 222
functions.

A requirement property for FFCS is that a probability that the
fuel rate does not become zero for one second in 100 seconds
should be greater than equal to threshold 6. The property is cru-
cial in a real world, because if the fuel rate is zero for one second,
then the engine stops and can cause a serious accident. This prop-
erty can be expressed by PBLTL as follows [23]:

Pso[~(F'°G" (fuelrate = 0))]

S. EXPERIMENTAL STUDY

We have applied SPRT, BIET, and the hybrid SMC technique to
ATCS, ABS, and FFCS with precision parameters as independent
variables to check if these target systems satisfy the given require-
ment properties in PBLTL. In addition, we have compared the re-
sults of the hybrid SMC technique with the results of SPRT and
BIET. We used Simulink/stateflow models of the three systems in-
cluded in the Matlab R2010a example directory.

5.1 Experiment Setup

5.1.1 Environment Setup

We used the input value generation modules provided in the
Simulink/stateflow models of FECS, ATCS, and ABS without mod-
ification. In addition, we built the stochastic environments for the
three automobile systems as follows:

e ATCS: we built a stochastic environment to ATCS by mod-
eling a random delay to transfer the engine RPM value from

the command is modeled by exponential distribution [10].
We use a model of ABS representing a single wheel, which
can be duplicated multiple times to create a model for a
multi-wheel vehicle. We utilize the following four delay
rates (in seconds) A € {0.001,0.003,0.005,0.007}.

e FFCS: we built a stochastic environment model for FFCS
that generates random faults at the EGO, MAP, and speed
sensors as Zuliani et al. [23] did. The random faults are mod-
eled by three independent Poisson processes with different
arrival rates [18]. We assume one fault event remains for
one second. When a fault event occurs in a sensor, FFCS re-
mains in a failure mode in one second and returns to a normal
mode. We utilize the following four inter-arrival fault rates
(i.e., mean inter-arrival times of sensor fault) to the three sen-
sors: (3,7,8), (10,8,9), (20,10,20) and (30,30,30).

5.1.2  Precision Parameter Setup
We use the following precision parameters for SPRT and BIET:

e SPRT:
— ahalf-size of indifference region 6 € {0.01,0.03,0.05}
— error bounds «, 8 € {0.1,0.01,0.001}

e BIET:
— interval coverage ¢ € {0.9,0.99,0.999}

— ahalf-size of estimation interval §’ € {0.01,0.03,0.05}

— parameters of Beta prior o' = 8’ = 1 (since we as-
sume the prior density to be a uniform density over

(0,1))

*This random delay is a real factor, not an artificial one. ATCS has
an electronic circuit to deliver data from one sub-component to an-
other and the data transfer can be delayed non-deterministically due
to non-deterministic scheduling and bus contention among multiple
sub-component.

>This random delay is a real factor for the similar reason of the one
in ATCS.



Table 2: Experiment result of SPRT for ATCS with A=0.03 and 6 = 0.03 for the five trials

threshold 6

o, 0.5 0.7 0.9 0.99
n | acpt | time n | acpt | time n | acpt | time n | acpt | time
0.1 110 1.0 | 69.9 || 215 1.0 | 1439 || 343 | 0.0 | 221.8 || 18 1.0 | 12.6
0.01 270 1.0 | 171.0 || 375 1.0 | 301.1 || 410 | 0.0 | 347.1 | 41 1.0 | 271
0.001 | 395 1.0 | 249.0 || 563 1.0 | 361.1 || 985 | 0.0 | 636.7 || 45 1.0 | 30.2

Table 3: Experiment result of BIET for ATCS with A = 0.03 for the five trials
interval coverage c
& 0.9 0.99 0.999

n | p | time n | P | time n | D | time
0.05 630 | 0.8594 | 416.6 1550 | 0.8654 | 1011.9 2665 | 0.8636 | 1753.2
0.03 1845 | 0.8544 | 1208.6 3340 | 0.9000 | 2181.1 6475 | 0.8805 | 4356.5
0.01 14150 | 0.8810 | 9551.8 || 36540 | 0.8740 | 26281.2 || 58870 | 0.8762 | 42945.1

We performed each experiment five times to obtain average veri-
fication result over [0, 1] regarding if the hypothesis Hy is accepted
where Ho: a probability for M to satisfy ¢ is greater than or equal
to 8+ 4. For the experiments, we used 6 € {0.5,0.7,0.9,0.99}. In
addition, we measured the total verification time and total number
of samples for each experiment.

For the hybrid SMC technique, we set #=0.99. This is because
the hybrid SMC technique targets safety critical systems which re-
quire high reliability, which can be specified with PBLTL with high
0 values. We use the following precision parameters which are sim-
ilar to those of the SPRT and BIET experiments:

e precision parameters for SPRT pars: § € {0.01,0.03,0.05},
a, B € {0.1,0.01,0.001}.

e precision parameters for BIET parps: ¢ € {0.9,0.99,0.999},
§ € {0.01,0.03,0.05}, 0/ = ' = 1.

e threshold for accept decision over [0, 1] thae.=0.5

o the probability threshold to apply BIET instead of SPRT
ths2p=0.95

e the number of trials for SPRT mg = 5

e the number of trials for BIET mp = 5

5.1.3 Experiment Platform

We built a statistical model checker as a Matlab module, which
executes the Simulink/stateflow models for FFCS, ATCS, and ABS
and monitors inputs and outputs of the models to check if ¢ is satis-
fied on a current sample path. After each execution of the models,
the SMC module calculates a required number of samples dynam-
ically based on the precision parameters and the number of suc-
cess/fail samples generated so far. If a number of the generated
samples reaches the required number, the SMC module generates
a verification result. The SMC module for SPRT is around 80 lines
long. The SMC module for BIET is around 70 lines long. The

hybrid SMC module is around 200 lines long. We used Matlab
R2010a for the experiments. All experiments were performed on
64 bit Windows 7 Professional equipped with a 3 GHz Intel pro-
cessor and 16 gigabytes of memory.

5.2 Results of SPRT and BIET

Tables 2 and 3 describe the experiment results of applying SPRT
with § = 0.03 and BIET to ATCS respectively when the delay rate
A=0.03. ® In Tables 2 and 3, n is a total number of required sample
execution paths for the five trials and t¢me is total verification time
taken for the five trials in seconds. acpt in Table 2 is an average
result over [0, 1] regarding the hypothesis Ho where 0 is ‘reject’
and 1 is ‘accept’. p in Table 3 is an estimated probability for M =

¢.

Table 2 shows that the probability for ATCS with A\=0.03
and § = 0.03 to satisfy the requirement property ¢
(=G* (engineRPM < 6000)) is between 0.7 and 0.9. This is
because acpts are 1.0 when 6 < 0.7 while acpts are 0.0 when
6 = 0.9 in Table 2 (the verification result of SPRT with a high 6
value like 0.99 should not be trusted due to the characteristics of
SPRT [21]).

In addition, we can conclude that the probability is close to 0.9,
since n of SPRT increases as 6 increases from 0.5 to 0.9 and de-
creases sharply from 0.9 to 0.99. For example, Table 2 shows that n
becomes 110, 215, 343, and 18 as 6 becomes 0.5, 0.7, 0.9, and 0.99
with a=£=0.1. This tendency of n indicates that the true probabil-
ity for ATCS with A\=0.03 to satisfy ¢ is close to 0.9, since SPRT
requires a large number of sample paths to check a given hypoth-
esis Hy if a true probability is close to 6 [21]. Furthermore, the
verification result of BIET coincides with that of SPRT, since Ta-
ble 3 shows that the estimated probability p is between 0.8544 (with
c=0.9and 6’ = 0.03) and 0.9000 (with ¢ = 0.99 and 5’ = 0.03).

®Due to page limit, we cannot describe full experiment data in the
paper. Full experiment data of applying SPRT and BIET to ATCS,
ABS, and FFCS is available at http://pswlab.kaist.ac.
kr/data/issre201l2-expr-results.zip



For the verification speed, Tables 2 and 3 show that SPRT is
much faster than BIET. For example, the maximum time spent by
SPRT in Table 2 is 636.7 seconds with § = 0.9 and a=3=0.001,
which is less than time costs of BIET in Table 3 except when BIET
is applied with low precision parameters §' = 0.05 and ¢ = 0.9
(416.6 seconds).

Thus, if a given PBLTL formula has a high € value like 0.99, it
is a good idea to apply SPRT first with low 6 values (SPRT result
with high 6 value should not be trusted) in hope to eliminate the
necessity of applying BIET. For example, suppose that we should
check Pso[G*(engineRPM < 6000)] for ATCS with A=0.03
and = 0.99. With a=£=0.1, SPRT takes 435.6 seconds in total
(=69.9+143.9+221.8) to conclude that ATCS does not satisty the
given PBLTL formula with § = 0.99 by checking cases with 6
as 0.5, 0.7, and 0.9 in order (Table 2); the verification result with
0 = 0.9is ‘reject’, which makes the result with § = 0.99 as ‘reject’
consequently. However, if we apply BIET, we will obtain the same
verification result with higher time cost except a case with §' =
0.05 and ¢ = 0.9 (416.6 seconds (Table 3)). The hybrid SMC
technique (Algorithm 1) is developed to utilize this observation for
precise and fast verification.

5.3 Results of the Hybrid SMC Technique

Tables 4-6 present the experiment results of the hybrid SMC
technique on ATCS, ABS, and FFCS for § = 0.99 with § = 0.03,
§’ = 0.01, and ¢ = 0.99, respectively. n is a total number of sam-
ple paths required by SPRT and BIET in the hybrid algorithm for
each experiment. p is an estimated probability obtained by BIET
for each experiment. If BIET is not applied because SPRT rejects
a hypothesis Hy before reaching thsop, then p is N/A. acpt is a
result over [0,1] regarding the hypothesis Hy where 0 is ‘reject’
and 1 is ‘accept’. time is total verification time taken for each
experiment in seconds.

5.3.1 Verification Results

For ATCS, Table 4 shows that the corresponding hypothesis Hy
with 8 = 0.99 is accepted for two delay rates A € {0.01,0.02}
(e, M | P>4[G* (engineRPM < 6000)] and rejected for
delay rates A € {0.03,0.04}. For the experiments with A €
{0.03,0.04}, SPRT rejected Ho and BI ET was not applied; thus,
corresponding ps are marked as ‘N/A’. This result coincides with
the results of SPRT and BIET, since SPRT concludes that ATCS
with A=0.03 does not satisty the PBLTL formula with § = 0.9 (i.e.,
acpts are all 0.0 in Table 2) and BIET concludes that the probabil-
ity for ATCS with A\=0.03 to satisfy G*°(engineRPM < 6000)
is between 0.8544 and 0.9000 (Section 5.2).

An interpretation of this result is that ATCS may not operate
correctly if an engine RPM value is transferred from the engine
to the torque converter with long delay (i.e., delay rate A in expo-
nential distribution is larger than or equal to 0.03 seconds), since
long delay of the data transfer can prevent ATCS from operating
promptly. In addition, we can obtain a practical implication that, to
achieve required high reliability specified by the PBLTL formula
with & = 0.99, ATCS should use a data-transfer component that
transfers data from the engine to the torque converter with delay
rate A < 0.02 or revise the ATCS design to satisfy the PBLTL
formula with 6 = 0.99 even with long delay of the data transfer.

Similarly, for ABS, Table 5 shows that the corresponding hy-
pothesis Hy with & = 0.99 is accepted for delay rate A=0.001
(e, M | Pso[GY((brakepressed A carspeed > 5) —
slip < 0.9)]), and is rejected for larger delay rates. For FFCS,
Table 6 shows that the corresponding hypothesis Ho with § = 0.99
is accepted for fault ratios (20,10,20) (except a=£=0.001) and

(30,30,30) (i.e., M |= Pso[~(F'°G*(fuelrate = 0))]), and
is rejected for more frequent fault ratios (3,7,8) and (10,8,9).

5.3.2  Verification Speeds

The hybrid SMC technique shows an order of magnitude faster
verification speed compared to BIET for the experiments where
the probability for M |= ¢ is less than thgap.  For example,
for ATCS with A\=0.03, the hybrid technique spent 698.9 seconds
(with a=8=0.1, §=0.03, &' = 0.01, and ¢=0.99) to 6020.4 sec-
onds (with a=3=0.001, § = 0.03, ' = 0.01, and ¢=0.99) (Ta-
ble 4), while BIET spent 26281.2 seconds for the same precision
parameters (i.e., & = 0.01,¢ = 0.99) (Table 3). The hybrid
technique is much faster than BIET for ATCS with A=0.03, since
SPRT of the hybrid technique concludes that ATCS with A=0.03
does not satisfy the PBLTL formula with sprr = 0.9375. Since
Osprr = 0.9375 < thsep = 0.95, the hybrid technique does
not apply BIET and conclude that ATCS with A = 0.03 does not
satisfy the given PBLTL formula with 6 = 0.99. As BIET takes an
order of magnitude larger time cost than SPRT (Tables 2-3), the hy-
brid technique can reduce a large amount of time cost by removing
the time cost of BIET.

However, for the experiments where the probability for M =
¢ is larger than thgsp, the hybrid technique shows slower
verification speed compared to BIET. For example, for ATCS
with A=0.02, the hybrid technique spent 1173.7 seconds (with
a=B=0.1, §=0.03, §'=0.01, and ¢=0.99) to 2102.7 seconds (with
a=£=0.001, 6=0.03, §'=0.01, and ¢=0.99) (Table 4), while BIET
spent 820.1 seconds for the same precision parameters (i.e.,
0’=0.01 and ¢=0.99) (see http://pswlab.kaist.ac.kr/
data/issre20l2-expr—results.zip). This larger time
cost of the hybrid technique is due to the additional applications of
SPRT for 8sprr € {0.5,0.75,0.875,0.9375}.

For ABS and FFCS, we make similar observations to the exper-
iments for ATCS. For the cases where the probability for M = ¢
is less than thgop, the hybrid technique is much faster than BIET.
For the other cases, the hybrid technique is slower than BIET.

6. DISCUSSION

6.1 Effective and Efficient Hybrid SMC Tech-
nique

Through the empirical evaluation of the hybrid statistical model
checking technique on ATCS, ABS, and FFCS, we found that the
hybrid technique is faster and more accurate than a single SMC
technique (Section 5.3). This improvement is achieved by utilizing
the different advantages of SPRT and BIET selectively, namely fast
verification speed of SPRT and precise verification result of BIET
(Section 5.2).

The hybrid SMC technique applies SPRT and BIET selectively,
because significance of verification speed and that of verification
precision do vary depending on a probability p for M to satisfy a
requirement property ¢. Suppose that if p is distant from 6 (e.g.,
|0 — p| > 0.1), precision may not be very important, because small
error (e.g. +0.01 or -0.01) in an estimated probability does not af-
fect an accept/reject decision on Hy. In this case, the hybrid tech-
nique applies SPRT for fast verification without concern to preci-
sion much. If p is close to €, however, precision becomes impor-
tant, because a small error (e.g. +0.01 or -0.01) may affect an ac-
cept/reject decision on Hy easily. In this case, the hybrid technique

"Comparison between the verification speed of the hybrid tech-
nique and that of SPRT is not meaningful, since SPRT result is
imprecise for a large 6 value like 0.99.



Table 4: Experiment result of the hybrid SMC for ATCS with = 0.99, § = 0.03, ' = 0.01, ¢ = 0.99

delay rate X\ from engine to torque convertor

a, B 0.01 0.02 0.03 0.04

n p | acpt time n p | acpt time n P | acpt time n p | acpt time
0.1 1710 | 0.9956 1 | 1256.1 || 1710 | 0.9956 1| 1173.7 || 1066 | N/A 0 698.9 || 1334 | N/A 0 858.9
0.01 2315 | 0.9956 1 | 1740.8 || 2315 | 0.9956 1| 1642.6 || 4795 | N/A 0 | 3081.9 || 2946 | N/A 0 | 1884.6
0.001 2905 | 0.9956 1 | 2320.2 || 2905 | 0.9956 1| 2102.7 || 7804 | N/A 0 | 6020.4 || 3833 | N/A 0 | 29524

Table 5: Experiment result of hybrid SMC for ABS with = 0.99, § = 0.03, 6" = 0.01, ¢ = 0.99
delay rate A from bang-bang controller to hydraulic control unit

a, B 0.001 0.003 0.005 0.07

n p | acpt time n p | acpt time n D | acpt time n P | acpt time
0.1 1814 | 0.9953 1 986.5 || 6511 | 0.9826 0 | 2905.9 || 8247 | 0.9773 0 | 3854.4 952 | N/A 0 382.4
0.01 2417 | 0.9953 1 | 1344.8 || 8006 | 0.9806 0 | 3619.4 || 9151 | 0.9770 0 | 4290.1 || 2238 | N/A 0 890.2
0.001 3179 | 0.9950 1 | 1815.3 || 8541 | 0.9810 0 | 3906.1 || 9326 | 0.9791 0 | 4334.0 || 3684 | N/A 0 | 1465.5

Table 6: Experiment result of hybrid SMC for FFCS with 6§ = 0.99, 5 = 0.03, ' = 0.01, ¢ = 0.99
sensor fault rates

o, B (3,7,8) (10,8,9) (20, 10, 20) (30, 30, 30)

n D | acpt time n D | acpt time n P | acpt time n p | acpt time
0.1 1299 | N/A 0 3359.6 || 14442 | 0.9575 0 | 36399.3 || 3180 | 0.9920 1 7990.0 || 2121 | 0.9944 1 | 5362.0
0.01 5369 | N/A 0 | 13893.4 | 14130 | 0.9620 0 | 35894.1 || 4651 | 0.9906 1| 11786.0 || 3747 | 0.9926 1 | 9556.4
0.001 7320 | N/A 0 | 19059.9 || 16010 | 0.9592 0 | 41014.6 || 5809 | 0.9895 0 | 14792.1 || 3512 | 0.9939 1| 9017.2

applies BIET for precise verification result.

Since we are targeting safety critical systems where PBLTL re-
quirements often have 6 values close to 1 (e.g., 0.99 or 0.999) for
high reliability, the hybrid SMC technique can apply SPRT for rel-
atively low Osprr values first (e.g., 0.5, 0.75, etc.) in hope to
conclude a ‘reject’ decision fast with little concern to precision (a
case where p is distant from 6). If SPRT concludes ‘accept’ deci-
sions for the relatively low sprrs (i.e., a case where p is close to
0), the hybrid SMC algorithm applies BIET for precise verification
result. Therefore, the hybrid SMC technique can produce a final
verification result (i.e., accept/reject of Hy) fast and precisely.

6.2 Independence between Complexity of
Target System and SMC Cost

Through the empirical study on ATCS, ABS, and FFCS whose
complexities are different, we found that the complexity of a target
system does not affect the cost of the hybrid SMC technique. For
example, although FFCS is more complex than the other systems
(e.g., program effort £ of FFCS is 25500.0, while those of ATCS
and ABS are 7410.9 and 3460.1 respectively (Table 1)), for simi-
lar estimated probability p with the same precision parameters, a
number of sample execution paths n for FFCS is similar to those
for ATCS and ABS. 8 For example, for the five experiments with
a=£=0.1 in Tables 4-6 whose p > 0.99, the numbers of execution
paths ns for these experiments are similar.

e ATCS with A=0.01 or 0.02: p = 0.9956 and n = 1710

8For different target systems, we should use n as a measure of the
SMC cost, not time, since time varies depending on the execution
time of a target system.

e ABS with A=0.001: p = 0.9953 and n = 1814

e FFCS with the sensor fault rates (30,30,30): p = 0.9944 and
n = 2121

e FFCS with the sensor fault rates (20,10,20): p = 0.9920 and
n = 3180

As shown above, although the complexities of ATCS, ABS, and
FFCS are different, the costs of the hybrid SMC technique for these
target systems do not change much for similar p (i.e., 0.9920-
0.9956). A slightly increasing number of n from 1710 to 3180
for decreasing p from 0.9956 to 0.9920 is due to the characteristics
of BIET; BIET requires a more number of sample paths as p de-
creases from 1 (Section 2.4). Therefore, we can expect that SMC
techniques can be applied to large complex safety critical systems
to assure their reliability.

6.3 SMC Techniques to Obtain a Certificate
of Safety Standards

There are various international standards (e.g., DO-178C [15]
for avionics domain, ISO-26262 [7] for automobile domain, IEC-
60601 [6] for medical electrical equipment domain, etc.) to assure
reliability of safety critical systems. Since products with a certifi-
cate can have a strong competitive power in market, manufacturers
spend a large amount of man power and project time to acquire
a high-level certificate for safety standards. For example, automo-
bile manufacturers such as BMW and GM start to apply ISO 26262
standard for safety critical components. To obtain a high-level cer-
tificate, vendors should provide strong cases or ‘proof” that their
products achieve high reliability. For example, [ISO-26262 requires



that a vendor of automobile components should apply formal veri-
fication techniques to the components to obtain a certificate of au-
tomotive software integrity level (ASIL) D. However, conventional
formal verification techniques such as state model checking and
theorem proving are difficult to apply for the purpose due to the
state space explosion problem and lack of field engineers who are
proficient in deductive proof.

From our experience of applying various SMC techniques for
safety critical systems on automobile domain such as ATCS, ABS,
and FFCS, we expect that the hybrid SMC technique can be applied
successfully to obtain a high-level certificate of ISO 26262. A main
reason is that the hybrid SMC technique is reasonably fast and pre-
cise (Section 6.1). For example, it takes less than 12 hours to verify
FFCS with most precise parameters with regard to the PBLTL for-
mula. Since most of the time cost is due to the simulation cost,
SMC itself will take much less time to check other PBLTL formu-
las if any by utilizing saved sample traces. Second reason is that
the cost of the SMC techniques is independent of the complexity of
a target system (Section 6.2), since SMC techniques do not analyze
the complex internal logic of a target system.

7. CONCLUSION AND FUTURE WORK

We have developed a new hybrid SMC technique which inte-
grates SPRT and BIET which have different advantages and weak-
nesses depending on the range of a probability for a target system to
satisfy a given requirement. By applying this new hybrid technique
to three safety critical systems on automobile domain (i.e., ATCS,
ABS, and FFCS), we have demonstrated that the hybrid SMC tech-
nique achieves precise verification results fast compared to a single
SMC technique - SPRT or BIET.

As future work, we will collaborate with Hyundai motor com-
pany to apply the hybrid SMC technique to real control components
of automobiles. We believe that the hybrid technique can provide
more scientific assurance about the reliability of components than
conventional testing techniques. In addition, we plan to use this
hybrid technique in a process to obtain an ISO-26262 certificate.
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