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Abstract—The importance of automotive software has been
rapidly increasing because software now controls many compo-
nents in motor vehicles such as window controller, smart-key
system, and tire pressure monitoring system. Consequently, the
automotive industry spends a large amount of human effort
testing automotive software and is interested in automated soft-
ware testing techniques that can ensure high-quality automotive
software with reduced human effort.

In this paper, we report our industrial experience applying
concolic testing to automotive software developed by Hyundai
Mobis. We have developed an automated testing framework
MAIST that automatically generates the test driver, stubs, and
test inputs to a target task by applying concolic testing. As a
result, MAIST has achieved 90.5% branch coverage and 77.8%
MC/DC coverage on the integrated body unit (IBU) software.
Furthermore, it reduced the cost of IBU coverage testing by
reducing the manual testing effort for coverage testing by 53.3%.

Keywords-Automated test generation, concolic testing, automo-
tive software, coverage testing

I. INTRODUCTION

The automotive industry has developed automotive software
to control various components in the motor vehicle, for ex-
ample, the body control module (BCM), smart-key system
(SMK), and tire pressure monitoring system (TPMS) [1], [2].
As automotive software becomes larger and more complex
with the addition of newly introduced automated features (e.g.,
advanced driver assistance systems) and more sophisticated
functionality (e.g., driving mode systems) [3], [4], the cost
of testing automotive software is rapidly increasing. Also,
it is difficult for human engineers to develop test inputs
that can ensure high-quality automotive software within tight
software development schedules and budgets. To resolve these
problems, the automotive industry is trying to apply automated
software testing techniques to achieve high code coverage with
reduced human effort.

Concolic testing [5] (a.k.a. dynamic symbolic execution [6])
has been applied to automatically generate test inputs for
software in various industries. Concolic testing combines
dynamic concrete execution and static symbolic execution
to explore all possible execution paths of a target program,
which can achieve high code coverage. Concolic testing has
been applied to various industrial projects (e.g., flash memory
device driver [7], mobile phone software [8], [9], and large-

scale embedded software [10]) and has effectively improved
the quality of industrial software by increasing test coverage
and detecting corner-case bugs with modest human effort.

While we were working to apply concolic testing to automo-
tive software developed by Mobis, we observed the following
technical challenges to resolve to successfully apply automated
test generation techniques:

1) We need to generate test drivers and stubs carefully to
achieve high unit test coverage while avoiding gener-
ating test cases corresponding to the executions that
are not feasible at the system-level. Otherwise (e.g.,
generating naive test drivers and stubs that provide
unconstrained symbolic inputs to every function in a
target program), we will waste human effort to manually
filter out infeasible tests that lead to misleading high
coverage and false alarms.

2) Current concolic testing tools do not support symbolic
bit-fields in C which are frequently used for automotive
software.1 For example, automotive software uses bit-
fields in message packets in the controller area network
(CAN) bus to save memory and bus bandwidth. How-
ever, most concolic testing tools do not support symbolic
bit-fields since a bit-field does not have a memory
address (Sect. III-D) and most programs running on PCs
rarely use bit-fields.

3) Although automotive software uses function pointers
to simplify code to dynamically select a function to
execute, concolic testing techniques and tools do not
support symbolic function pointers due to the limitation
of SMT (Satisfiability Modulo Theories) solvers.

To address the above challenges, we have developed an
automated testing framework MAIST. MAIST automatically
generates the test driver, stubs, and test inputs for a target
unit using concolic testing. MAIST achieved 90.5% branch
coverage and 77.8% MC/DC coverage of the IBU software
(Sect. V-A). Also, MAIST reduced the manual testing effort
by 53.3% for coverage testing of IBU (Sect. V-C). 2

The main contributions of this paper are as follows:

1A bit-field x:m is an integer variable in a struct variable which has
only m bits. For example, unsigned int x:3 can represent only 0 to 7.

2Several newspapers reported these successful results [11]–[13].
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1) We have developed MAIST which automatically gener-
ates the test driver, stubs, and test inputs achieving high
coverage for automotive software (MAIST generates test
input by using a concolic testing tool CROWN [14]).

2) We have identified the technical challenges in appli-
cations of concolic testing to automotive software and
describe how MAIST resolves them (i.e., task-oriented
driver/stub generation (Sect. III-C1), symbolic bit-field
supports (Sect. III-D), and symbolic setting for function
pointers (Sect. III-C3)). Thus, this paper can support
field engineers in the automotive industry to adopt
automated test generation with less trial-and-error.

3) To the authors’ best knowledge, this is the first industrial
study that concretely demonstrates reduced human effort
(i.e., human effort reduced by 53.3%) by applying
concolic testing in the automotive industry (Sect. V-C).
Thus, this study can promote the adoption of concolic
testing in the automotive industry.

4) This paper shares lessons learned and valuable infor-
mation for both field engineers in the automotive in-
dustry and researchers who develop automated testing
techniques (Sect. VI).

The rest of the paper is organized as follows. Sect. II
explains the target project (i.e., IBU). Sect. III describes the
MAIST framework. Sect. IV explains how we have applied
MAIST to IBU. Sect. V describes the experiment results.
Sect. VI presents lessons learned from this industrial study.
Sect. VII discusses related work. Finally, Sect. VIII concludes
this paper with future work.

II. TARGET PROJECT: CONTROLLER SOFTWARE FOR
INTEGRATED BODY UNIT

A. Overview

Integrated body unit (IBU) is the first AUTOSAR-compliant
electronic control unit (ECU) developed by Mobis. IBU in-
tegrates the three ECUs (i.e., body control module (BCM),
smart key system (SMK), and tire pressure monitoring system
(TPMS)) into one ECU to reduce the physical unit size and
production cost. Mobis has developed more than 10 different
versions of IBUs targeting various motor vehicle models.

We chose the IBU software as our target project because
IBU is essential to drive motor vehicles safely. For example,
SMK has an automotive safety integrity level (ASIL) of B and
the handle controller in SMK has ASIL D. Mobis spends a
considerable amount of test engineer resource to test the IBU
software (from now on, IBU software will be referred to as
IBU).

B. Target Project Statistics

Table I shows that IBU consists of total 254 source files
and 3,479 functions having 17,858 branches. Maximum and
average cyclomatic complexity of the functions are 24 and 4.9,
respectively. IBU consists of tasks which are mostly minimal
independent units. A task t consists of

1) an entry function te which is defined as a non-static
function in a target source file s, and

TABLE I
THE CODE STATISTICS OF IBU

Module #files #functions LoC #branches Cyclomatic comp.
non- static total min max avg
static

BCM 27 145 511 656 52690 2873 1 15 4.3
SMK 198 554 1967 2521 134877 13768 1 24 5.8
TPMS 29 68 234 302 15951 1217 1 12 4.1

Total 254 767 2712 3479 203518 17858 1 24 4.9

01:int rpm_FL,rpm_FR,rpm_RL,rpm_RR;
02:int angle_FL,angle_FR;
03:int press_FL,press_FR,press_RL,press_RR;
04:int mode,dir,speed;
05:void drive_mode_check(){
06: ...
07: if (mode==DRIVE && speed > 0 &&
08: ((dir==LEFT && angle_FL<0 && angle_FR<0 &&
09: rpm_FL <= rpm_FR && rpm_RL <= rpm_RR) ||
10: (dir==RIGHT && angle_FL>0 && angle_FR>0 &&
11: rpm_FL >= rpm_FR && rpm_RL >= rpm_RR) ||
12: (dir==STRAIGHT && angle_FL==0 && angle_FR==0 &&
13: rpm_FL==rpm_FR && rpm_RL==rpm_RR)) &&
14: (L_PRESSURE<press_FL && press_FL<H_PRESSURE) &&
15: (L_PRESSURE<press_FR && press_FR<H_PRESSURE) &&
16: (L_PRESSURE<press_RL && press_RL<H_PRESSURE) &&
17: (L_PRESSURE<press_RR && press_RR<H_PRESSURE))
18: {...}}

Fig. 1. A code example of IBU that reads a large number of input variables
and evaluates a complex branch condition

2) the callee functions that are directly or transitively
invoked by the entry function te and defined in the same
source file s.

IBU has a total of 767 tasks (i.e., 767 non-static functions
as their entry functions). Each source file contains 3.0 tasks
(=767/254) on average. Each task consists of 6.3 functions on
average.

C. Challenges for Manual Testing IBU

Manual derivation of test inputs for IBU has the following
obstacles:

1) A large number of input variables: Most functions of
IBU take a large number of inputs through parameters
and global variables because IBU checks a various status
of a motor vehicle such as speed, wheel angles, tire
pressure, etc.

2) Complex branch conditions: The branch conditions of
IBU are complex in terms of the number of the logical
operators (e.g., &&, ||) used in a branch condition. This
is because IBU checks complex conditions on compli-
cated status data obtained from various components of
a motor vehicle.

Fig. 1 is a code example that reads a large number of input
variables and evaluates a complex branch condition. The
function drive_mode_check (Lines 5–18) reads a total of
13 input variables (Lines 1–4) to evaluate the branch condition
which has 24 logical operators (Lines 7–17).

Also, we compare the number of the input variables and the
complexity of the branch conditions of IBU with the five most
popular open-source C projects in OpenHub [15]: Apache,

2



01:#define M_MAX 10
02:int model[M_MAX];
03:void f(int x){
04: ...
05: g(x % M_MAX);}
06:#define TM9 9
07:static void g(int idx){
08: ...
09: for (int i=0; i<idx; i++){
10: // FALSE ALARM
11: if (model[i] == TM9){ ... }
12: ...}}
13:void driver_g(){
14: int param1;
15: SYM_int(param1);
16: g(param1);}

Fig. 2. An example of false alarms raised by a naive test driver

MySQL, Subversion, PHP and Bash. 3 Each function of IBU
has 52.9% larger number of input variables (i.e., 10.4) than the
open-source programs (i.e., 6.8) on average. Similarly, IBU’s
branch conditions have 2.2 times more number (i.e., 2.8) of
&& and || than the open-source programs (i.e., 1.3).

However, concolic testing can effectively resolve the above
challenges for manual testing because concolic testing can
automatically generate input values that exercise all combina-
tions of both outcomes of the complex branching conditions
one by one.

D. Challenges for Concolic Testing IBU

Achieving high coverage of IBU is still challenging for
concolic testing for the following reasons:

1) Infeasible unit test executions generated: Concolic test-
ing may generate an infeasible unit test execution (i.e., a
test that is not feasible at system-level) which can report
misleading coverage results and waste human engineers’ effort
to filter out false alarms (e.g., crashes caused by infeasible test
executions).

Fig. 2 is a code example that shows that a naive function-
oriented test driver raises a false alarm. Suppose that only f
invokes g. f calls g with an argument (x % M_MAX) which
is always less than 10 (i.e., Line 11 is always safe since model
has 10 elements (Lines 1–2)). However, a naive test driver
driver_g (Lines 13–16) directly calls g with a symbolic
argument value and raises access out-of-bound alarms (i.e.,
false alarms) at Line 11 because idx can be larger than 10.

2) No support for symbolic bit-fields: IBU uses bit-fields
to save memory space and CAN bus bandwidth. The existing
concolic testing tools do not support symbolic bit-field 4 and
may not achieve high coverage of IBU because they cannot
guide symbolic executions to cover branches whose conditions
depend on bit-fields.

Fig. 3 shows a code example where concolic testing may
not cover the branch at Line 12. This is because the branching

3We exclude Linux Kernel because our Clang-based analysis tool fails to
analyze GCC-specific code of Linux Kernel.

4A concolic testing tool maintains a symbolic memory which maps a
memory address to a corresponding symbolic variable. A concolic testing tool
cannot get a memory address of a bit-field because the address-of operator
(i.e., &) in C does not take a bit-field as an operand.

01: struct ST{
02: int b0:1;
03: ...
04: int b7:1;}
05: union U{
06: struct ST s;
07: char c;};
08: void f(char c){
09: union U u;
10: u.c = c;
11: if(u.s.b7 == 1){ // concretized
12: /* not covered */...}}
13: void driver_f(){
14: char param1;
15: SYM_char(param1);
16: f(param1);}

Fig. 3. An example showing that the branch at Line 12 is not covered due
to the lack of symbolic bit-field support

condition depends on a bit-field u.s.b7 (Line 11) which
cannot have a symbolic value due to the lack of symbolic
bit-field support.

One naive solution can be to transform all bit-fields into
integer variables. However, this approach changes the seman-
tics of a target program when an integer overflow occurs to a
bit-field or union is used with bit-fields. In Fig. 3, union
U has two fields, struct ST s and char c which are
located in the same memory space. Since u.s and u.c share
the same memory space, the assignment of a value to u.c
(Line 10) also updates all bit-fields b0, ..., b7 in u.s at
the same time. 5 Suppose that we transform the bit-fields in
struct ST into integer variables. Then, the assignment of a
(symbolic) value to u.c (Line 10) does not update u.s.b7
because u.s.b7 is not located in the same memory space
of u.c anymore. Consequently, concolic testing may fail to
reach Line 12 because u.s.b7 is not symbolic.

3) No support for symbolic function pointers: IBU uses
function pointers to make compact code. Current concolic
testing tools, however, do not support symbolic function
pointers due to the limitation of SMT solvers and fail to cover
branches whose conditions depend on a function pointed by
a function pointer pf (i.e., concolic testing fails to generate
various execution scenarios enforced by assigning different
functions to pf ).

III. MOBIS AUTOMATED TESTING FRAMEWORK

A. Overview

Fig. 4 overviews MAIST, which takes C source code files
as inputs. MAIST consists of the three components: test
harness generator, converter, and test input generator. First
MAIST harness generator analyzes the input C source files
and generates test driver and stub functions for every task in
the source files (Sect. III-C). MAIST converter transforms the
C code that uses bit-fields into semantically equivalent one that
does not use bit-fields (Sec. III-D). Finally, MAIST test input
generator performs concolic testing using CROWN (Concolic

5IBU often uses this code pattern to update multiple bit-fields at once.
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Fig. 4. The overview of MAIST

Fig. 5. Test driver and stubs generated for tasks t1 and t2 in file1.c

testing for Real-wOrld softWare aNalysis) [14] 6 to generate
test inputs obtained by applying various symbolic search
strategies (Sect. III-E).

B. MAIST Implementation

The development team of MAIST consists of two Mobis
engineers (one senior and one junior engineer) and three re-
searchers of KAIST. The team spent four months to implement
MAIST. MAIST test harness generator is implemented in
3,500 lines of code (LoC) in C++ using Clang/LLVM 4.0 [16].
MAIST converter is implemented in 1,100 LoC in OCaml
using CIL (C Intermediate Language) 1.7.3 [17]. We chose
CIL for MAIST bit-field transformer because the canonical C
code generated by CIL makes implementation of the bit-field
transformer easy. MAIST test input generator is implemented
in 200 LoC in Bash shell script. MAIST test input generator
uses CROWN [14] because CROWN (and its predecessor
CREST) has been successfully applied to various industrial
projects (Sect. VII-C) and two of the authors are involved in
developing CROWN.

C. MAIST Test Harness Generator

1) Task-Oriented Driver and Stub: Fig. 5 shows an example
of generating test drivers and stubs for two tasks t1 and t2.
Suppose that a target program p consists of file1.c and
file2.c. file1.c has two non-static functions f and g
and four static functions s1 to s4. t1 consists of the entry

6CROWN: Concolic testing for real-world software analysis, http://github.
com/swtv-kaist/CROWN, accessed: 2018-10-01.

function f and its callee functions s1, s2 and s3 defined in
the same file (i.e., file1.c). The function h invoked by s3
is not included in t1 because h is defined in another source file
(i.e., file2.c). Similarly, t2 consists of the entry function g
and its callee function s4. MAIST targets a task t as a testing
target unit and generates a test driver to invoke a task entry
function te and test stubs to replace the callee functions of the
task t located in other source files.

2) Automated Generation of Test Drivers and Stubs:
MAIST automatically generates a test driver that invokes the
entry function te of each task. The test driver assigns symbolic
values to the arguments of te and to the global variables used
in the task t for concolic testing and invokes te. Also, MAIST
generates test stubs for the functions that are not included in
the task (e.g., h for t1) which return unconstrained symbolic
values.

In Fig. 5, MAIST generates harness_file1.c that con-
tains test drivers and a stub function for t1 and t2 in file1.c.
driver_f and driver_g are test driver functions that call
the entry functions f and g of t1 and t2, respectively. s3 in t1
invokes h which is not defined in file1.c. Thus, MAIST
generates a stub function stub_h in harness_file1.c
and modifies s3 to call stub_h instead of h.

MAIST specifies a variable as a symbolic input according
to its type as follows:
• Primitive types: MAIST specifies a primitive variable x

as a symbolic input by using SYM_<T>(x) where <T>
is a type of x.

• Array types: MAIST specifies each array element as a
symbolic input according to the type of the element.

• Pointer types: For a pointer p pointing to a memory of
a type T, MAIST allocates memory in sizeof(T)*n
bytes where n is a user-given bound (i.e., MAIST con-
siders p to point to an array which has n elements and
whose element type is T).

• Structure types: For a struct variable s, MAIST spec-
ifies each field of s as a symbolic input according to
the field type recursively. To prevent infinite recursive
dereference (e.g., a linked list forming a cycle), MAIST
follows a pointer to s within a user-given bound k and
assigns NULL to a pointer that is not reachable within the
bound.

• Bit-field types: MAIST specifies a bit-field b as a sym-
bolic input by using SYM_bitfield(b).

3) Symbolic Setting for Function Pointers: MAIST gener-
ates a test driver which assigns various functions to a function
pointer pf used in a target task. First, MAIST statically ex-
amines all target source files and identifies functions f1, ...fn
that are assigned to pf . Then, it adds code cpf

to a test driver
such that cpf

assigns each of f1, ..., fn to pf using a symbolic
variable choice which selects each of f1, ..., fn to assign to
pf .

For example, Fig. 6 has do_chk (Lines 8–13) which has
branches whose conditions depend on ret (Lines 11–13).
ret value is determined by the return value of the function
pointed to by pChk (Line 10). After MAIST identifies that
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Fig. 6. Example of symbolic setting for function pointer pChk

Fig. 7. An example of bit-field transformation

pChk may point to chk_A or chk_B at Line 5 or Line 7
respectively, it adds code cpf

to a test driver drv_do_chk
which assigns chk_A and chk_B to pChk depending on a
symbolic variable choice (Lines 25–31), as shown in the
right part of Fig. 6.

4) Test Driver Generation for a Task with Internal States:
Some IBU functions use static local variables to keep the
execution results of the previous invocation as its internal state.
For a task containing such a function, MAIST generates a test
driver to call a target task multiple times with fresh symbolic
inputs.

D. MAIST Converter

Automotive software uses bit-fields to minimize the data
size. Unlike other primitive types in C which occupy multiples
of 8 bits, the size of a bit-field does not have to be in multiples
of 8 bits and can be smaller than 8. Currently, concolic
testing tools for C programs such as CREST [18], CUTE [5],
KLEE [19], and PathCrawler [20] do not support symbolic
declaration of bit-fields and fail to achieve high coverage of
automotive software that uses bit-fields (Sect. II-D2).

To solve this problem, MAIST transforms a target program
p into p′ that is semantically equivalent to p but does not
use bit-fields. In other words, MAIST replaces bit-fields with
a data array of a byte type and also replaces all arithmetic
expressions on the bit-fields with semantically equivalent
ones without the bit-fields using the data array with bit-wise
operators as follows:
• struct definition: For a struct definition S1 which

has bit-fields, MAIST transforms S1 to struct S2

whose size is same to S1. All fields in S1 including bit-
fields are represented by a data array unsigned char
bits[sz] in S2 (sz is a byte size of S1) as follows.
A field b in S1 whose bit-offset is m bits and size is
s bits is mapped to a sequence of bits from (m%8)th

bit of S2.bits[m/8] to ((m + s − 1)%8)th bit of
S2.bits[(m + s − 1)/8] where % is the modulo
operator.
For example, the middle column of Fig. 7 shows an
original target program p that has bit-fields a:2, b:3,
and c:3 in s1 (e.g., a bit-field b in s1 has a bit-offset
m = 2 and a bit-size s = 3). The rightmost column
of Fig. 7 shows a transformed version p′ which does
not have bit-fields but a data array bits representing
all fields of s1.

• Bit-field read: MAIST transforms an expression on a bit-
field b into an equivalent one using the data array bits,
b’s bit-offset m and size s, and bit-wise operators. For
example, a value of b can be obtained by a transformed
expression ((s2.bits[0] & 0b00011100)>>2).

• Bit-field write: MAIST transforms a bit-field write state-
ment on a bit-field b into an equivalent one using
s2.bits, b’s bit-offset m and size s, and bit-wise
operators as follows.
First, MAIST obtains the sequence of the updated bits
that ranges from (m%8)th bit of s2.bits[m/8] to
((m + s − 1)%8)th bit of s2.bits[(m + n − 1)/8].
Then, it stores those bits into a temporary byte array
changed. Second, MAIST obtains the two sequences of
the remaining unchanged bits - one ranging from 0th to
(m%8−1)th bits of s2.bits[m/8] and another rang-
ing from ((m+n−1)%8+1)th bit of s2.bits[(m+n−
1)/8] to the last bits of s2.bits. Then, it stores those
bits into another temporary byte array, unchanged.
Finally, MAIST updates the data array bits by merging
changed and unchanged arrays using the bitwise-
or operator (i.e., for all i, bits[i]=changed[i] |
unchanged[i]).
For example, in Fig. 7, where p has s1.b = 6, (6 <<
2) & 0b00011100 is assigned to changed[0] in p′.
Similarly, s2.bits[0] & 0b11100011 is assigned
to unchanged[0] in p′. Then, s2.bits[0] is up-
dated as changed[0] | unchanged[0].

E. MAIST Input Generator

MAIST input generator utilizes various symbolic search
strategies to increase test coverage. Although there are dozens
of symbolic search strategies [21] to increase coverage within
a given time budget, no single strategy outperforms all others
because they are heuristics by their nature.

MAIST search strategy coordinator utilizes the four search
strategies (i.e., depth-first-search (DFS), reverse-DFS, random
negation, and control-flow-graph based one (CFG)) to increase
test coverage and reduce execution time. MAIST search strat-
egy coordinator applies DFS as the first search strategy to
explore all possible paths. This is because DFS stops concolic
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testing when it has explored all possible execution paths. If
DFS has explored all possible execution paths, MAIST stops
concolic testing for the target task. Otherwise, the search
strategy coordinator applies reverse-DFS and random negation.
Lastly, MAIST search strategy coordinator applies CFG to
the remaining uncovered branches where CFG tries to guide
concolic testing to reach the uncovered branches [22].

IV. INDUSTRIAL CASE STUDY: APPLICATION OF MAIST
TO INTEGRATED BODY UNIT

We have developed and applied MAIST to IBU from
October 2017 to July 2018 as explained in the following
subsections.

A. Research Questions

RQ1 to RQ3 evaluate the experiment results of applying
MAIST to IBU.
RQ1. Effectiveness of the automated test generation: How
much test coverage does MAIST achieve for IBU in terms of
branch and MC/DC coverage?
RQ2. Analysis of the uncovered branches: What are the
major reasons for MAIST to fail to reach uncovered branches?
RQ3. Benefit of MAIST over the manual testing: How much
human effort does MAIST reduce in terms of the test engineer
man-month spent for IBU?

RQ4 to RQ6 evaluate how effectively MAIST addresses the
technical challenges described in Sect. II-D.
RQ4. Effect of the task-oriented automated test generation:
Compared to a function-oriented technique, how much test
coverage does MAIST achieve for IBU in terms of branch
and MC/DC coverage and how many false crash alarms does
MAIST raise?
RQ5. Effect of the symbolic bit-field support: How much
does the symbolic bit-field support of MAIST increase the
branch and MC/DC coverage?
RQ6. Effect of the symbolic setting for function pointer:
How much does the symbolic setting provided by MAIST
increase the branch and MC/DC coverage?

B. Test Generation Techniques Used

To evaluate the strengths and weaknesses of the test gener-
ation ability of MAIST, we have compared MAIST with the
following test generation techniques:
• MAIST using function-oriented concolic unit testing
(MAISTFO): This variant of MAIST is the same as MAIST
but generates test drivers and stubs in a function-oriented
manner. MAISTFO generates a test driver for each target
function and replaces all the functions invoked by the target
function with the stub functions. We compare MAIST to
MAISTFO for RQ4.
• MAIST without symbolic bit-field support (MAIST−SBF ):

This variant of MAIST is the same as MAIST but does
not support symbolic bit-fields (Sect. III-D). We compare
MAIST to MAIST−SBF for RQ5.

• MAIST without symbolic setting for function pointers
(MAIST−SFP ): This variant of MAIST is the same as
MAIST but the generated test driver by MAIST−SFP

does not provide symbolic setting for a function pointer
(Sect. III-C3). We compare MAIST to MAIST−SFP for
RQ6.

C. Measurement

To show the test effectiveness of MAIST, we measure
branch coverage and MC/DC coverage by using CTC++ [23].
We measure branch coverage because the manual test gen-
eration of IBU targets 100% of branch coverage in Mobis
and we need to compare the manual test generation and
MAIST for RQ3. Also, we measure MC/DC coverage because
MC/DC coverage is required for safety critical components by
ISO 26262 safety requirement for automotive systems. Also,
to compare the number of false crash alarms generated by
MAIST and MAISTFO, we measure the number of crash
alarms and crash locations by counting the number of test
executions that cause a crash (e.g., segmentation fault) and
the code lines where a crash occurs, respectively.

D. Test Configuration

For each target task, we set MAIST, MAISTFO,
MAIST−SBF , and MAIST−SFP to run until they each satisfy
one of the following conditions:

1) All possible execution paths are explored, or
2) The automated test generation technique reaches 20

minutes timeout.
Since MAIST applies the four search strategies (Sect. III-E),
each search strategy has five minutes as a timeout. For
MAISTFO, we set the timeout as four minutes (=(19.4
hours×60 minutes/hour×4 cores×3 machines)/3479 func-
tions) for each target function to make the total amounts of
testing time of MAISTFO and MAIST same.

For the tasks that have a function with static local
variables, MAIST generates a test driver that invokes the target
task twice with fresh symbolic inputs. We chose the number
of the repeated invocations as two because most tasks use
static local variables to keep the immediately previous
execution results. We set the user-given size bound n for
pointers as 10 and k for struct variables as 4 (Sect. III-C2).

The experiments were performed on three machines, each
of which is equipped with Intel Xeon X5670 (6-cores 2.93
GHz) and 8GB RAM, running 64 bit Ubuntu 16.04. We run
four test generation instances on each machine (i.e., applying
MAIST to 12 tasks (=4 instances×3 machines) in parallel).

V. EXPERIMENT RESULTS

A. RQ1. Effectiveness of the Automated Test Generation

Table II shows a number of the generated test inputs,
execution time, and branch and MC/DC coverage of IBU
achieved by MAIST. MAIST generated 914,023 test inputs
in 19.4 hours on three machines (i.e., on 12 cores), which
achieved 90.5% branch coverage and 77.8% MC/DC coverage
of IBU.
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TABLE II
THE NUMBER OF GENERATED TESTS, EXECUTION TIME, AND BRANCH AND MC/DC COVERAGE OF IBU ACHIEVED BY MAIST

Targets #tests Time Branch # of func. achieving given branch cov. range MC/DC # of func. achieving given MC/DC cov. range
(hour) cov. (%) [0%, [20%, [40%, [60%, [80%, 100% cov. (%) [0%, [20%, [40%, [60%, [80%, 100%

20%) 40%) 60%) 80%) 100%) 20%) 40%) 60%) 80%) 100%)

BCM 77981 3.7 91.4 0 14 52 65 86 439 78.9 0 38 50 122 143 303
SMK 761743 13.9 90.1 0 83 132 242 196 1868 77.3 0 98 246 276 347 1554
TPMS 74299 1.8 91.6 0 11 14 15 56 206 79.5 0 15 17 58 81 131

Total 914023 19.4 90.5 0 108 198 322 338 2513 77.8 0 151 313 456 571 1988

TABLE III
THE NUMBER AND RATIO OF THE UNCOVERED BRANCHES OF THE LARGE

BCM FUNCTIONS (IN TERMS OF THE NUMBER OF BRANCHES) WHOSE
BRANCH COVERAGE IS LESS THAN 60%

Reasons #Uncovered branches Ratio (%)

Unreachable branches 8 7.8
Path explosion 21 20.4
Imprecise driver 10 9.7
Imprecise stub 43 41.7
static local variable 21 20.4

Total 103 100

MAIST achieved 100% branch coverage and 100% MC/DC
coverage of 72.2% (=2513/3479) and 57.1% (=1988/3479)
of all functions in IBU, respectively. Also, MAIST achieved
more than 80% branch and 80% MC/DC coverage for 81.9%
(=(338+2513)/3479) and 73.6% (=(571+1988)/3479) of all
functions in IBU, respectively.

B. RQ2. Analysis of the Uncovered Branches

We manually analyzed the uncovered branches of BCM as
an example. Among the 66 (=0+14+52) functions in BCM
whose branch coverage is less than 60%, we selected the
largest 33 functions in terms of the number of branches.
Table III shows the five reasons why MAIST did not cover
the 103 uncovered branches of these 33 functions as follows:
• Unreachable branches: 8 branches (=7.8% (=8/103)) are
unreachable code because the BCM version used in this
experiment targets a specific motor vehicle model and these
uncovered branches are designed to execute only for another
motor vehicle model.
• Path explosion: 21 branches (=20.4%) are uncovered due

to the path explosion problem of concolic testing. These
branches can be covered if we increase the time limit for
test generation per task (i.e., larger than 20 minutes).
• Imprecise driver: 10 branches (=9.7%) are uncovered be-
cause test drivers generated by MAIST provide only limited
symbolic inputs for complex data structure (i.e., a test driver
provides symbolic inputs for only variables reachable from
a target task within a given pointer link bound (i.e., k = 4)
(Sect. III-C2)). To cover these branches, MAIST has to
increase the pointer link bound (e.g., k > 4). However, an
increased pointer link bound may not increase the coverage
within fixed testing time limit due to enlarged symbolic path
space.
• Imprecise stub: 43 branches (=41.7%) are uncovered be-
cause the stub functions generated by MAIST do not

TABLE IV
BRANCH AND MC/DC COVERAGE ACHIEVED AND CRASH LOCATIONS

REPORTED BY MAISTFO AND MAIST

Module Branch coverage (%) MC/DC coverage (%) #crash alarms
(and # crash lines)

MAISTFO MAIST MAISTFO MAIST MAISTFO MAIST

BCM 95.2 91.4 89.3 78.9 3479 (42) 0 (0)
SMK 95.3 90.1 88.9 77.3 6453 (79) 0 (0)
TPMS 95.1 91.6 87.9 79.5 1992 (25) 0 (0)

Total 95.3 90.5 88.9 77.8 11924 (146) 0 (0)

symbolically set variables pointed by pointer parameters
and global variables which are read by a target task. We
will discuss this issue further in Sect. VI-C.
• static local variable: 21 branches (=20.4%) are un-

covered because MAIST fails to assign diverse values to
static local variables through symbolic input variables
of a target task (Sect. III-C4).

C. RQ3. Benefit of MAIST over the Manual Testing

We show the time cost of the manual testing of IBU and
how much cost MAIST has reduced.

1) Cost of the Manual Testing: Previously, a team of 30 test
engineers at Mobis had written test inputs for coverage testing
of IBU. The test engineers have three years of experience in
testing and QA on average. A test engineer writes function
test inputs targeting 100% branch coverage for 350 LoC in
one business day, on average (i.e., for one month, a test
engineer writes unit test inputs for 7 KLoC (=350 LoC× 20
business days) on average). Thus, writing manual test inputs
for coverage testing of IBU (210K LoC) requires 30 man-
months (MM) (= 210KLoC

7KLoC per month ).

2) Benefit of MAIST: MAIST reduced 53.3% of the manual
testing effort as follows. After applying MAIST, the test
engineers still have to generate test inputs to cover 9.5%
(= 100-90.5) of the IBU branches that were not covered by
MAIST. The test engineers spent five MM to cover those
branches. Also, nine MM were spent to develop MAIST and
train the test engineers to use MAIST. Thus, 30 MM of the
manual testing effort for coverage testing of IBU is reduced to
14 MM, which is equivalent to 53.3% of the previous manual
coverage testing cost of IBU. Note that MAIST will reduce the
manual testing effort much further for the future application
since the cost of the nine MM for the development and training
of MAIST is just one time cost.
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TABLE V
BRANCH AND MC/DC COVERAGE ACHIEVED BY MAIST−SBF AND

MAIST

Target Branch coverage (%) MC/DC coverage (%)
MAIST−SBF MAIST MAIST−SBF MAIST

129 tasks 48.3 89.4 38.2 83.6
using bit-fields

TABLE VI
BRANCH AND MC/DC COVERAGE ACHIEVED BY MAIST−SFP AND

MAIST

Target Branch coverage (%) MC/DC coverage (%)
MAIST−SFP MAIST MAIST−SFP MAIST

88 tasks 68.2 91.3 53.0 80.5
using function pointers

D. RQ4. Effect of the Task-oriented Automated Test Genera-
tion

We compare the branch and MC/DC coverage and the
number of the crashes reported by MAISTFO and MAIST.
Table IV shows that MAISTFO achieves 5.3% (= (95.3 −
90.5)/90.5) and 14.3% higher branch and MC/DC coverage
than MAIST, respectively. This is because MAISTFO directly
controls the executions of each function f by generating test
inputs to f while MAIST controls f indirectly through the
entry function of the task that contains f .

However, MAISTFO generated many infeasible test in-
puts and raised 11,924 false crash alarms. This is because
MAISTFO directly generates inputs for every function f that
violate the context of f provided by the caller and callee
functions of f . We semi-automatically analyzed all 11,924
crash alarms at 146 lines in IBU reported by MAISTFO and
found that all reported crash alarms were false. 7 In contrast,
MAIST did not raise any crash alarm because it provides valid
test inputs to f indirectly through the entry function of the task
of f . Thus, we can conclude that MAIST reports more reliable
coverage information than MAISTFO.

E. RQ5. Effect of the Symbolic Bit-field Support

For the 129 tasks that use bit-fields, we compare the
branch and MC/DC coverage achieved by MAIST−SBF and
MAIST. Table V shows that MAIST achieved 1.9 times
higher branch coverage and 2.2 times higher MC/DC coverage
than MAIST−SBF . Since MAIST−SBF does not generate test
inputs for bit-fields at all, it may not cover the branches whose
conditions depend on bit-fields (Sect. II-D2). Thus, we can
conclude that this support of symbolic bit-fields increases test
coverage for automotive software such as IBU.

F. RQ6. Effect of the Symbolic Setting for Function Pointers

For the 88 tasks that use function pointers, we compare
the branch and MC/DC coverage achieved by MAISTFO

7First, we classified the 11,924 crashing test inputs in 210 groups by
filtering out the input values irrelevant to the crashes at the 146 crash lines.
Then, we manually analyzed 210 test inputs, each of which represents a group
of the crashing test inputs.

and MAIST. Table VI shows that MAIST achieved 33.9%
and 51.9% higher branch and MC/DC coverage than
MAIST−SFP , respectively. Since MAIST−SFP does not set
function pointers, the branches that have control-dependency
on the function invoked through a function pointer may not
be covered by MAIST−SFP . Thus, we can conclude that
symbolic setting for function pointers increases test coverage
for automotive software.

VI. LESSONS LEARNED

A. Practical Benefit of Automated Test Generation in the
Automotive Industry

As we have seen in Sect. V-A and V-C, an automated
test generation technique such as MAIST can improve the
quality of automotive software by both achieving high test
coverage (i.e., more than 90% branch coverage) and saving
the testing cost (i.e., 53.3% man-month per year on coverage
testing of IBU) in practice. Although it is not trivial to
develop an automated test generation framework that resolves
various technical challenges in industrial projects, we believe
that the automotive industry can significantly benefit from an
automated test generation framework like MAIST.

B. Necessity of Customization of Automated Test Generation
Tools for Target Projects

From this industrial study on the automotive software, we
have found that it is essential to identify technical challenges
and customize an automated test generation tool to address
those challenges in a target project. For example, if MAIST
targeted an individual function as a target unit (not a task),
it would generate misleading coverage information and waste
human effort to filter out false alarms due to infeasible test
inputs generated (Sect. V-D), which would reduce the benefits
of MAIST. Or, the proposed task-oriented approach might not
be highly effective for other projects. Also, if MAIST did not
support bit-fields nor symbolic setting for function pointers,
MAIST would not achieve 90% branch coverage, but much
less coverage.

C. Precise Stub Generation for Automated Test Generation

As shown in Sect. V-B (i.e., 41.7% of the uncovered
branches were due to the imprecise stubs), we need to generate
precise stubs that closely represent real contexts of a target
unit. A stub generated by MAIST does not represent a target
task’s context accurately because the stub function sets only
a return value (not global variables nor output parameter
variables) as an unconstrained symbolic input.

This issue is difficult to resolve because a simple solution
such as assigning unconstrained symbolic inputs to all global
variables and output pointer parameters used by a target task
may generate more infeasible test executions and increase
symbolic execution space, which may decrease test effective-
ness within a fixed testing time. Although there has been
progress in resolving this issue (Sect. VII-B), we still need
practical techniques to generate more precise stubs that closely
mimic the real context of a target unit.
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VII. RELATED WORK

A. Concolic Testing Techniques
1) Virtual machine (VM)-based Techniques: These tech-

niques run as a layer on top of a VM to interpret compiled IR
code of a target program p and obtain symbolic path formulas
from p’s executions. This approach can conveniently obtain
all detailed run-time execution information of p available to
a VM. However, test generation speed is slow due to slow
IR interpretation and customizing the tools is non-trivial due
to complex VM infrastructure. PEX [6] targets C# programs
that are compiled to Microsoft .Net binaries (now available
as IntelliTest [24] in Visual Studio). KLEE [19] (and its
distributed version Cloud9 [25]) targets LLVM [16] binaries.
jFuzz [26] and Symbolic PathFinder [27] target Java bytecode
programs on top of Java PathFinder [28].

2) Instrumentation-based Techniques: These techniques in-
sert probes in target source code to obtain dynamic execution
information to build symbolic path formulas. This approach is
lighter and easier-to-customize than the VM-based one. How-
ever, it requires complex source code parsing and instrumenta-
tion. CUTE [5], DART [29], CREST [22] (and its distributed
version SCORE [30]), CROWN [14] target C programs and
jCUTE [31] and CATG [32] target Java programs. MAIST
uses CROWN as its concolic testing engine because CROWN
(and its predecessor CREST) has been successfully applied to
various industrial projects (Sect. VII-C).

B. Automated Test Driver/Stub Generation
DART [29] generates symbolic unit test drivers, but not

symbolic stubs for concolic testing. To avoid the infeasible
test generation issue, DART targets public API functions in
libraries because such functions should accept all possible
inputs. UC-KLEE [33] directly starts symbolic execution from
a target function using lazy initialization [34] and calls all
the functions directly or transitively invoked by the target
function. Thus, DART and UC-KLEE target code of a function
and its all callee functions, which can make concolic test-
ing achieve low coverage within a fixed amount of testing
time because the symbolic execution space can become very
large. Chakrabarti and Godefroid [35] statically divide a static
call graph into partitions using topological information and
consider the partitions as testing targets for concolic testing.
However, the proposed partitioning method does not consider
semantic information on the relation between functions.

CONBOL [10], [36] generates symbolic unit test driver
and stubs for functions in large-scale embedded software.
It replaces all functions invoked by a target function by
symbolic stubs. CONBOL uses target project specific false
alarm reduction heuristics, which may not be effective for
other projects. SmartUnit [37] generates symbolic test drivers
and stubs for target C functions (the authors do not clearly
describe how SmartUnit generates driver and stubs). The paper
reports that SmartUnit achieved high coverage, but it does
not report how many false alarms were raised. We could not
directly compare the performance of MAIST with CONBOL
and SmartUnit since they are not publicly available.

CONBRIO [14] constructs extended units as testing target
units by using highly-relevant callee functions of a target
function. The relevance between functions is computed based
on system-level execution profiles. Targeting the extended
units, CONBRIO achieves high bug detection power with low
false alarm ratio. However, CONBRIO was not applicable to
IBU in this testing project because we could not obtain IBU
execution profiles by driving physical motor vehicles.

C. Industrial Application of Concolic Testing

Microsoft developed SAGE [38], [39] for x86/64 binaries to
detect security vulnerabilities of Windows and Office products.
Bardin and Herrmann [40], [41] developed and applied OS-
MOSE to embedded software. They translated machine code
into an intermediate representation to apply concolic testing.
Intel developed and applied MicroFormal [42] for Intel CPU’s
microcode. Fujitsu developed KLOVER [43] by extending
KLEE targeting C++ programs. Zhang et al. developed and
applied SmartUnit [37] to embedded software to achieve high
branch and MC/DC coverage. Kim et al. applied CREST to
the Samsung flash memory device driver code [7], [44]. They
also compared CREST and KLEE for industrial use of con-
colic testing for the Samsung mobile phone software [9] and
developed a systematic event-sequence generation framework
using CREST for LG electric oven [45].

These industrial case studies focused on increasing the test
effectiveness but did not report how much manual testing
effort was saved. In contrast, this paper reports how much
MAIST saved the manual testing effort (in man-months) in
the automotive company (Sect. V-B). Also, we have shared
the technical challenges and the solutions for the application
of concolic testing to automotive software, which can promote
field engineers to adopt concolic testing in their projects.

VIII. CONCLUSION

We have presented the industrial study of applying concolic
testing to the automotive software developed by Mobis. Af-
ter we identified and addressed the technical challenges of
applying concolic testing to automotive software, we have
developed an automated test generation framework MAIST.
It generates a task-oriented test driver and stubs to reduce
infeasible test executions and supports symbolic bit-fields and
symbolic setting for function pointers that automotive software
uses. MAIST has achieved 90.5% branch coverage and 77.8%
MC/DC coverage on IBU and reduced the manual coverage
testing effort by 53%. As future work, we plan to generate
more precise test driver/stubs to reach uncovered branches.
Also, we will apply MAIST to other automotive software to
increase the economic benefit of MAIST.
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