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Abstract

Context: The programming language ecosystem has diversified over the last few decades. Non-trivial programs are
likely to be written in more than a single language to take advantage of various control/data abstractions and legacy
libraries.
Objective: Debugging multilingual bugs is challenging because language interfaces are difficult to use correctly and the
scope of fault localization goes beyond language boundaries. To locate the causes of real-world multilingual bugs, this
article proposes a mutation-based fault localization technique (MUSEUM).
Method: MUSEUM modifies a buggy program systematically with our new mutation operators as well as conventional
mutation operators, observes the dynamic behavioral changes in a test suite, and reports suspicious statements. To
reduce the analysis cost, MUSEUM selects a subset of mutated programs and test cases.
Results: Our empirical evaluation shows that MUSEUM is (i) effective: it identifies the buggy statements as the most
suspicious statements for both resolved and unresolved non-trivial bugs in real-world multilingual programming projects;
and (ii) efficient: it locates the buggy statements in modest amount of time using multiple machines in parallel. Also,
by applying selective mutation analysis (i.e., selecting subsets of mutants and test cases to use), MUSEUM achieves
significant speedup with marginal accuracy loss compared to the full mutation analysis.
Conclusion: It is concluded that MUSEUM locates real-world multilingual bugs accurately. This result shows that
mutation analysis can provide an effective, efficient, and language semantics agnostic analysis on multilingual code. Our
light-weight analysis approach would play important roles as programmers write and debug large and complex programs
in diverse programming languages.
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1. Introduction

Modern software systems are written in multiple pro-
gramming languages to reuse legacy code and leverage the
languages best suited to the developers’ needs such as per-
formance and productivity. A few languages cover the
most use in part due to open source libraries and legacy
code while many languages exist for niche uses [30]. This
ecosystem encourages developers to write a multilingual
program which is a non-trivial program written in multi-
ple languages. Correct multilingual programs are difficult
to write due to the complex language interfaces such as
Java Native Interface (JNI) and Python/C that require
the programs to respect a set of thousands of interface
safety rules over hundreds of application interface func-
tions [22, 26]. Moreover, if a bug exists at interactions of
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code written in different languages, programmers have to
understand the cause-effect chains across language bound-
aries [21].

Despite the advance of automated testing techniques for
complex real-world programs, debugging multilingual bugs
(e.g., a bug whose cause-effect execution chain crosses lan-
guage boundaries) in real-world programs is still challeng-
ing and consumes significant human effort. For instance,
Bug 322222 in the Eclipse bug repository crashes JVMs
with a segmentation fault in C as an effect when the pro-
gram throws an exception in Java as the cause [21]. Lo-
cating and fixing this bug took a heroic debugging effort
for more than a year from 2009 to 2010 with hundreds of
comments from dozens of programmers before the patch
went into Eclipse 3.6.1 in September 2010. The existing
bug detectors targeting multilingual bugs [20, 22, 24, 25,
40, 41, 44] are not effective in debugging this case, be-
cause they can only report violations of predefined inter-
face safety rules, but cannot indicate the location of the
bug, especially when the bug does not involve any known
safety rule violations explicitly. Moreover, these bug detec-
tors do not scale well to a large number of languages and
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various kinds of program bugs since they have to deeply
analyze the semantics of each language for each kind of
bug.

This article proposes MUSEUM, a mutation-based fault
localization technique which locates the cause of a multi-
lingual bug by observing how mutating a multilingual code
feature changes the target program behaviors. Mutation-
based fault localization (MBFL) is an approach recently
proposed for locating code lines that cause a test fail-
ure accurately. An MBFL technique takes target source
code and a test suite including failing test cases as in-
put, and assesses suspiciousness of each statement in terms
of its relevance to the error through mutation analysis of
target code. In more detail, an MBFL technique calcu-
lates suspiciousness scores of statements by observing how
testing results (i.e., pass/fail) change if the statement is
modified/mutated. MUSEUM extends an MBFL tech-
nique MUSE [31] which is limited for targeting monolin-
gual bugs (i.e., bugs in C). MUSEUM applies new muta-
tion operators that systematically modify the multilingual
features/behaviors of a target program (see Section 3.3).

Our empirical evaluation on the eight real-world Java/C
bugs (Sections 4– 7) demonstrates that MUSEUM locates
the bugs in non-trivial real-world multilingual programs
far more accurately than the state-of-the-art spectrum
based fault localization techniques. MUSEUM identifies
the buggy statements as the most suspicious statements for
all eight bugs (Section 4). For example, for Bug 322222 in
the Eclipse bug repository, MUSEUM indicates the state-
ment at which the developer made a fix as the most sus-
picious statement among total 3,494 candidates (Table 2).
Furthermore, one case study on an unresolved Eclipse bug
(i.e., an open bug whose fix is not yet made) clearly demon-
strates that MUSEUM generates effective information for
developers to identify and fix the bug (Section 7).

In summary, this article’s contributions are:

1. An automated fault localization technique (i.e., MU-
SEUM) which is effective to detect multilingual bugs
which are known as notoriously difficult to debug.

2. New mutation operators on multilingual behavior
which are highly effective to locate multilingual bugs
(Section 3.3)

3. Detailed report of the three case studies to figure out
why and how the proposed technique can localize real-
world multilingual bugs accurately (Sections 5–7).

This article extends our prior conference publication [15]
in three ways: (i) Section 3.3 elaborates the program mu-
tation with the four additional mutation operators to in-
crease the accuracy of localizing multilingual bugs (ii) Sec-
tions 5–6 describe the case studies on two additional re-
solved bugs (Bug5 and Bug7).1 Also, Section 7 illustrates
a case study on one unresolved open bug (Bug8) to demon-
strate how MUSEUM can guide developers to debug a

1The full description of all eight case studies is available at http:
//swtv.kaist.ac.kr/publications/museum-techreport.pdf.

complex multilingual bug (iii) Section 8 shows that MU-
SEUM can significantly speedup the fault localization with
marginal accuracy loss by selecting subsets of mutants and
test cases to use.

2. Background and Related Work

2.1. Multilingual Bugs

A multilingual program is composed of several pieces
of code in different languages that execute each others
through language interfaces (e.g., JNI [26] and Python/C).
These multilingual programs introduce new classes of pro-
gramming bugs which obsolete the existing monolingual
debugging tools and require much more debugging efforts
of programmers than monolingual programs [21, 43]. We
classify multilingual bugs into language interface bugs and
cross-language bugs.

2.1.1. Language Interface Bugs

Language interfaces require multilingual programs to
follow safety rules across language boundaries. Lee et
al. [22] classify safety rules in Java/C programs into the
following three classes:

• State constraints ensure that the runtime system of
one language is in a consistent state before transiting
to/from a system of another language. For instance,
JNI requires that the program is not propagating a
Java exception before executing a JNI function from
a native method in C.

• Type constraints ensure that the programs in different
languages exchange valid arguments and return val-
ues of expected types at a language boundary. For
instance, the NewStringUTF function in JNI expects
its arguments not to be NULL in C.

• Resource constraints ensure that the program man-
ages resources correctly. For example, a local refer-
ence l to a Java object obtained in a native method
m1 should not be reused in another native method m2

since l becomes invalid when m1 terminates [26].

For instance, the manuals for JNI [26] and Python/C de-
scribe thousands of safety rules over hundreds of API func-
tions. When a program breaks an interface safety rule, the
program crashes or generates undefined behaviors [22].

2.1.2. Cross-Language Bugs

Cross-language bugs have a cause-effect chain that goes
through language interfaces while respecting all interface
safety rules. For instance, a program would leak a C object
referenced by a Java object that is garbage collected at
some point without violating any safety rules of language
interfaces. In this case, the cause of the memory leak is
in Java at the last reference to this Java object while the
effect is in C (see Section 3.1).
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2.2. Mutation-Based Fault Localization (MBFL)

Fault localization techniques [45] aim to locate the
buggy statement that causes an error in the target pro-
gram by observing test runs. Fault localization has been
extensively studied for monolingual programs both empir-
ically [18, 31, 39] and theoretically [46].

Spectrum-based fault localization (SBFL) techniques in-
fer that a code entity is suspicious for an error if the code
entity is likely executed when the error occurs. Note that
SBFL techniques are language semantics agnostic because
they calculate the suspiciousness scores of target code enti-
ties by using the testing results (i.e., fail/pass) of test cases
and the code coverage of these test cases without complex
semantic analyses. However, the accuracy of SBFL tech-
niques are often too low for large real-world programs.

To improve the accuracy of fault localization, MBFL is
proposed recently, which analyze diverse program behav-
iors by using mutants (i.e., target program versions that
are generated by applying simple syntactic code change
such as replacing if(x>10) with if(x<10)). MBFL tech-
niques are also language semantics agnostic since they uti-
lize only the testing results (i.e., fail/pass) of test cases
on the original target program and its mutants. Moon et
al. [31] demonstrate that their MBFL technique (calling
it MUSE) is 6.5 times more precise than the state-of-the-
art SBFL techniques such as Ochiai and Op2 on the 15
versions of the SIR subjects. The key idea of MUSE is
as follows. Consider a faulty program P whose executions
with some test cases result in error. Let mf be a mu-
tant of P that mutates the faulty statement, and mc be
one that mutates a correct statement. MUSE assesses the
suspiciousness of a statement based on the following two
observations:

• Observation 1: a failing test case on P is more likely
to pass on mf than on mc. Mutation is more likely to
cause the tests that failed on P to pass on mf than on
mc because a faulty program might be partially fixed
by modifying (i.e., mutating) a faulty statement, but
not by mutating a correct one. Therefore, the number
of the test cases whose results change from fail to pass
will be larger for mf than for mc.

• Observation 2: a passing test case on P is more likely
to fail on mc than on mf . A program is more easily
broken by mutating a correct statement than by mu-
tating a faulty statement. Thus, the number of the
test cases whose results change from pass to fail will
be greater for mc than mf .

Our intuition behind Observation 1 is that we can view
a bug at line l as a result of mutation operatorM to l and
there can be another mutation operator M′ among many
ones which works asM−1 (an inverse function ofM) with
some context of l and some test cases. Also, an intuition
of Observation 2 is that a correct statement is more frag-
ile than a faulty statement in terms of pass/fail results.

Note that the aforementioned observations are on multi-
ple statements to compare relative suspiciousness scores
identify more suspicious statements than the others (e.g.,
a statement s1 is more suspicious than s2 and s3). Moon
et al. [31] showed that these observations are valid through
the experiments on the 15 versions of SIR subjects (e.g.,
the number of the failing test cases on P that pass on mf

is 1,435.9 times larger than the number on mc on aver-
age). Also note that Observation 2 is important because
Observation 2 can serve as a tiebreaker by differentiating
statements that are equally suspicious in terms of Obser-
vation 1 (for instance, see the case study results on Bug 7
(Section 5.2)).

There exist a few other MBFL approaches which focus
on different characteristics of various executions caused
by mutants. Papadakis and Traon developed Metallaxis-
FL [37] which evaluates the suspiciousness of code elements
by using the similarity of the behaviors of the mutants
and the faulty program. The intuition of Metallaxis-FL is
that a mutant m1 has higher suspiciousness than another
mutant m2 if more failing tests kill m1 than m2 because m1

is more sensitive to the characteristics of faulty executions
than m2. Metallaxis-FL considers a code element l whose
mutants (i.e., mutants generated by mutating l) have high
suspiciousness as a faulty statement. Zhang et el. [49] use
mutation analysis to find a fault-inducing change between
an old correct program P and a new faulty program P ′ in
regression testing. This approach takes a regression test
suite T , an old and correct program P with respect to T ,
and a new and faulty program P ′. The intuition is that
if a change c made by mutation to P makes test results
similar to those of P ′, the code location changed by c is
highly suspicious because c is similar to the fault in P ′.
Consequently, this technique reports a change between P
and P ′ which is similar to c as a fault-inducing change.

3. Mutation-Based Fault Localization for Real-
World Multilingual Programs

To alleviate the difficulty of debugging multilingual pro-
grams, we have developed a MUtation-baSEd fault lo-
calization technique for real-world mUltilingual prograMs
(MUSEUM).

3.1. Motivating Example

This section illustrates how MUSEUM locates the cause
of a non-trivial bug in a target multilingual program with
passing and failing test cases.

3.1.1. Target Program

Figure 1 presents a target Java/C program with a mem-
ory leak bug failing the assertion at Line 71. The program
is composed of source files in C and Java defining three
Java classes: CPtr, Client, and ClientTest.
CPtr (Lines 2–31) characterizes the peer class idiom [26,

p. 123] of wrapping native data structures, which is widely
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used in language bindings for legacy C libraries. The peer

field (Line 4) is an opaque pointer from Java to C to point
to a dynamically allocated integer object in C. The CPtr

constructor (Line 9) executes the nAlloc native method

1 : /* CPtr.java */
2 : public class CPtr {
3 : static {System.loadLibrary("CPtr");}
4 : private final long peer;
5 : private native long nAlloc();
6 : private native void nFree(long pointer);
7 : private native int nGet(long pointer);
8 : private native void nPut(long pointer, int x);
9 : public CPtr(){peer = nAlloc();}
10: public int get(){return nGet(peer);}
11: public void put(int x){nPut(peer, x);}
12: public void dispose(){nFree(peer);} }
13:
14: /* CPtr.c */
15: #include <jni.h>
16: #include <stdlib.h>
17: jlong Java_CPtr_nAlloc(JNIEnv *env,jobject o){
18: jint *p;
19: p =(jint *)malloc(sizeof (jint)); /*Mutant m1*/
20: return (jlong)p;
21: }
22: void Java_CPtr_nFree(JNIEnv *env,jobject o,jlong p){
23: free((void *)p);
24: }
25: jint Java_CPtr_nGet(JNIEnv *env,jobject o,jlong p){
26: return *(jint *)p;
27: }
28: void Java_CPtr_nPut(JNIEnv *env,jobject o,jlong p,
29 jint x){
30: *((jint *)p) = x;
31: }
32:
33: /* Client.java*/
34: public class Client {
35: CPtr m = null;
36: void add(int x){
37: m = new CPtr(); /*Mutant m2*/
38: m.put(x);
39: }
40: int remove(){
41: int x = m.get();
42: m.dispose();
43: m = null;
44: return x; /*Mutant m3*/
45: } }
46:
47: /* ClientTest.java */
48: import java.util.*;
49: public class ClientTest {
50: static final List pinnedObj=new LinkedList();
51: public static Object pinObject(Object o){
52: pinnedObj.add(o);
53: return o;
54: }
55: void passingTest(){ // passing test case
56: try {
57: Client d = new Client() ;
58: d.add(1) ;
59: assert d.remove() == 1;
60: } catch(VirtualMachineError e) {
61: assert false; /*potential memory leak in C*/
62: }
63: }
64: void failingTest(){ // failing test case
65: try {
66: Client d = new Client() ;
67: d.add(1) ;
68: d.add(2) ;
69: assert d.remove() == 2;
70: } catch (VirtualMachineError e) {
71: assert false; /*potential memory leak in C*/
72: }
73: } }

Figure 1: A Java/C program leaking memory in C after garbage
collection in Java

(Lines 17–21) to allocate an integer object in C and stores
the address of the integer object in peer. While JVMs au-
tomatically reclaim a CPtr object once the object becomes
unreachable in the Java heap, the clients of CPtr are re-
quired to dispose manually the integer object by executing
dispose (Line 12) on the CPtr object. If the client does
not dispose an CPtr object before it becomes unreachable,
the peer integer object becomes a unreachable memory
leak in C.
Client (Lines 34–45) is a client Java class of using CPtr.

The m field (Line 35) holds a reference to a CPtr object.
add (Lines 36–39) and remove (Lines 40–45) write/read a
value to/from the CPtr object respectively. add instanti-
ates a CPtr object, assigns the reference of the new object
to m, and then writes a value to the object. remove reads
the value of the CPtr object pointed by m, disposes the
CPtr object, deletes the reference to the object, and re-
turns the value of the CPtr object.
ClientTest (Lines 48–73) is a Java class of driving test

cases directly for Client and indirectly for CPtr. It con-
tains one passing test passingTest (Lines 55–63) and one
failing test failingTest (Lines 64-73). The testing or-
acle validates a program execution by using (1) the as-
sertion statements (Lines 59 and 69) and (2) the excep-
tion handler statements (Lines 61 and 71). The assertion
statements at Line 59 and Line 69 validate the program
state after executing a sequence of add and remove by
checking if remove correctly returns the last value given
by add. On the other hand, the exception handler state-
ments at Lines 60 and 70 detect failures at arbitrary loca-
tions. For instance, runtime monitors such as QVM [28]
would take a user-specified typestate specification of dis-
posing native resources of a Java object before it becomes
unreachable, detect a failure to dispose these native re-
sources during garbage collection, and throw an asyn-
chronous OutOfMemoryError exception at a GC safe point.

3.1.2. Passing Test

passingTest executes successfully. It satisfies the as-
sertion statement at Line 59 because both the CPtr object
and the peer integer object in Java and C are reachable,
and remove at Line 59 returns 1 stored at Line 58. The
runtime monitor does not throw any Java exception in-
dicating a memory leak in C because the native integer
object is released in the call to remove.

3.1.3. Failing Test

failingTest fails at Line 71 because the runtime mon-
itor throws an exception due to a memory leak in C. The
test case creates one Client object (Line 66) and two CPtr

objects (Lines 67–68), and two native integer objects. The
first native peer integer object is a leak in C heap while all
the other objects are reclaimed automatically by garbage
collectors and manually by C memory deallocator (i.e.,
dispose). The first CPtr object and its peer integer object
are created in a call to add at Line 67. Both become un-
reachable after the second call to add at Line 68. The CPtr
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object would be garbage collected while the program does
not manually execute dispose on the unreachable native
integer peer object. The runtime monitor would perform
a garbage collection and find out the native integer peer
object is an unreachable memory leak (e.g., QVM [28],
Jinn [22]). This memory leak bug appears because add

does not call dispose if m already points to a CPtr object.
Thus, we indicate Line 37 as the buggy statement.

3.1.4. Our Approach

MUSEUM generates mutants each of which is obtained
by mutating one statement of the target code. Then, MU-
SEUM checks the testing results of the mutants to localize
buggy statements. For example, suppose that MUSEUM
generates the following three mutants m1, m2, and m3 by
mutating each of Lines 19, 37, and 44.

m1, a mutant obtained by removing Line 19
This mutation resolves the memory leak as the mutant
will not allocate any native memory. However, both
test cases fail with the mutant because an access to
p raises an invalid memory access (at nGet/nPut of
CPtr).

m2, a mutant obtained by inserting a statement of pin-
ning the Java reference before Line 37
This mutation inserts a statement of pinning the ob-
ject: ClientTest.pinObject(m); before Line 37,
where pinObject stores the Java reference m

into a global data structure pinnedObjects (see
Pin-Java-Object mutation operator in Section 3.3).

This mutation intends to prolong the lifetime of the
Java object referenced by m to the end of the pro-
gram run. This mutation resolves the memory leak
in failingTest because the first CPtr object will not
be reclaimed and, thus, will not leak its peer native
integer object. The two test cases pass with the mu-
tant because the mutation does not introduce any new
bug.

m3, a mutant obtained by replacing the return value
with 0 in Line 44
This mutation replaces the variable x with an inte-
ger constant 0 at Line 44. This mutation fails the
assertion at Lines 59 and 69 since the return value of
remove is always 0.

From these testing results, MUSEUM concludes that
Line 37 is more suspicious than Line 19 and Line 44 be-
cause the failing test case passes only on m2 and the pass-
ing test case fails on m1 and m3 (see Step 4 of Section 3.2).

Locating the root cause of this memory leak poses chal-
lenges in runtime monitoring and fault localization tech-
niques. Memory leak detectors [19, 48] locate memory
leaks and their allocation sites, not the cause of the leaks
in general. While some leak chasers [28, 17, 47] locate the

cause of memory leak, they do not scale well across lan-
guage boundaries since they do not track opaque point-
ers and their staleness values across languages. SBFL
cannot localize the bug because both passingTest and
failingTest cover the same branches/statements in their
executions (i.e., SBFL cannot indicate any code element
that is more correlated with the failure than the others).

3.2. Fault Localization Process of MUSEUM

MUSEUM takes the target source code and the test
cases as input, and returns the suspiciousness scores of
the target code lines as output. MUSEUM has the follow-
ing basic assumptions on a target program P and a test
suite

1. Existence of test oracles
A target program has test oracle mechanism (i.e.,
user-specified assert, runtime failure such as null-
pointer dereference, and/or runtime monitor such as
Jinn [22]) which can detect errors clearly.

2. Existence of a failing test case
A target program has test cases, at least one of which
violates a test oracle.

MUSEUM operates in the following four steps:

• Step 1: MUSEUM receives P and T and selects tar-
get statements St and test cases TS . St is the set of
the statements of P that are executed by at least one
failing test case in T . MUSEUM selects St as target
statements for bug candidates. Also, MUSEUM se-
lects and utilizes a set of test cases TS , each of which
covers at least one target statement because the other
test cases may not be as informative as test cases in TS

for fault localization. To select St and TS , MUSEUM
first runs P with T while storing the test results and
the test coverage for each test case. Testing results
are obtained from the user given assert statements,
runtime failures, and multilingual bug checkers such
as CheckJNI, Jinn [22], and QVM [28].

• Step 2: MUSEUM generates mutant versions of P
(i.e., m1,m2, ...mk) each of which is generated by mu-
tating each of the target statements. MUSEUM may
generate multiple mutants from a single statement
since one statement may contain multiple mutation
points [11]. MUSEUM can localize a bug spanning on
multiple statements (not limited for locating a single-
line bug). This is because mutating a part of a bug
(i.e., one statement among multiple statements that
constitute a bug) can still change a failing test case
into passing one, which will increase the suspicious-
ness of the statement constituting the bug [31].

To reduce the runtime cost, MUSEUM generates only
one mutant for every applicable operator at each mu-
tation point. For example, if(x+2>y+1) has one mu-
tation point (>) for ORRN (mutation operator on re-
lational operator) and two points (2 and 1) for CCCR
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(mutation operator for constant to constant replace-
ment) [11]. MUSEUM generates only one mutant
like if(x+2<y+1) using ORRN and only if(x+0>y+1)

and if(x+2>y+0) using CCCR.

• Step 3: MUSEUM tests all generated mutants with
TS and records the testing results. MUSEUM runs a
mutant with a passing test case only if the test case
covers the mutated statement. We consider a test fails
if the testing time exceeds a given time limit since a
mutation may induce an infinite loop. Note that this
step can be parallelized on multiple machines for fast
fault localization.

• Step 4: MUSEUM compares the test results of TS on
P with the test results of TS on all mutants. Based on
these results, MUSEUM calculates the suspiciousness
scores of the target statements of P as follows.

For a statement s of P , let f(s) be the set of tests that
covers s and fails on P , and p(s) the set of tests that
covers s and passes on P . Let mut(s) = {m1, . . .mk}
be the set of all mutants of P that mutates s. For each
mutant mi ∈ mut(s), let fmi

and pmi
be the set of

failing and passing tests on mi respectively. And let
f2p and p2f be the numbers of changed test result
from fail to pass and vice versa between P and all
mutants of P . The suspiciousness metric of MUSEUM
is defined as follows:

Susp(s) = 1
|mut(s)|

∑
mi∈mut(s)(

|f(s)∩pmi
|

f2p − |p(s)∩fmi
|

p2f )

The first term,
|f(s)∩pmi

|
f2p , reflects the first observa-

tion: it is the proportion of the number of tests that
failed on P but now pass on a mutant mi that mutates
s over the total number of all failing tests that pass
on a some mutant (the suspiciousness of s increases if
mutating s causes failing tests to pass). Similarly, the

second term,
|p(s)∩fmi

|
p2f , reflects the second observa-

tion, being the proportion of the number of tests that
passed on P but now fail on a mutant mi that mutates
s over the total number of all passing tests that fail
on a some mutant (the suspiciousness of s decreases if
mutating s causes passing tests to fail). After divid-
ing the sum of the first term and the second term by
|mut(s)|, Susp(s) indicates the probability of s to be
a faulty statement based on the changes of test results
on P and mut(s). If a target statement has no mutant
(i.e., |mut(s)|=0), Susp(s) is defined as 0. MUSEUM
defines the first term as 0 if f2p is 0. Similarly, the
second term is defined as 0 if p2f is 0.

3.3. New Mutation Operators for Multilingual Behavior

In addition to the conventional mutation operators
which targets monolingual features of C [11] or Java [1],
MUSEUM utilizes new mutation operators to directly mu-
tate interactions at language interfaces and effectively lo-
calize multilingual bugs. We introduce 15 new mutation

operators which change the semantics of a target program
regarding the JNI constraints based on the language in-
terface specifications [10, 26] and the previous bug stud-
ies [5, 29, 13, 22, 42].

3.3.1. New Mutation Operators for State Constraints

1–3. The Clear-pending-exceptions mutation op-
erator clears a pending exception in a native
method to ensure the JVM state constraints.
Similarly, Propagate-pending-exception and
Throw-new-exceptions propagate or generate a
pending exception in a native method. Targets of
these three mutation operators are all JNI function
calls (i.e., (*env)->< JNIFunction >(...);).
For example, Clear-pending-exceptions clears a
pending exception in a current thread by inserting

(*env)->ExceptionClear(env);

immediately before a JNI function call and immedi-
ately after a JNI function call that may throw a Java
exception.2 Propagate-pending-exceptions propa-
gates a pending exception to the caller by inserting

if((*env)->ExceptionOccurred(env)) return;

immediately before a JNI function call and imme-
diately after a JNI function call that may throw a
Java exception. Throw-new-exceptions creates a
new Java exception by inserting

Throw New Java Exception(env,

"java/lang/Exception");

immediately before a JNI function call and immedi-
ately after a JNI function call that may throw a Java
exception. As exception handling is a regular fea-
ture of the Java control-flow, a native function is ob-
ligated to create, modify, or eliminate Java exceptions
depending on execution paths. The suggested muta-
tion operators intend to alter an exception-related JNI
function call to check if the JNI function call is related
to the multilingual bug. The first and the second mu-
tation operators are defined based on a best practice
in JNI programming [29] and general solutions for JNI
exception bugs [23]. The third mutation operator is
motivated by a case of a real-world multilingual bug
regarding exception handling across language bound-
aries [8].

3.3.2. New Mutation Operators for Type Constraints

4. Type-cast-to-jboolean explicitly converts an inte-
ger expression to JNI TRUE or JNI FALSE when the ex-
pression is assigned to a jboolean variable. In other
words, Type-cast-to-jboolean changes an assign-
ment jbool var = int expr; with

2154 among total 229 JNI functions may throw an exception [26].
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jbool var=int expr?JNI TRUE:JNI FALSE;

jboolean is an 8 bit integer type. If a 32 bit integer
value is assigned to a jboolean variable, the vari-
able can have an unintended Boolean value due to
the truncation (e.g., jboolean var = 256 will make
jboolean var as false). This mutation operation is
motivated by the common pitfall of JNI program-
ming [26, pp.132–133].

5. Type-cast-to-superclass changes a JNI call
that gets the reference of a class of a given
object to get the reference of the super-
class of the class by mutating jclass cls =

(*env)->GetObjectClass(env,obj); with

jclass cls=(*env)->GetSuperclass(env,

((*env)->GetObjectClass(env,obj)));

This mutation operator would generate interesting
mutants for fault localization if the target bug is re-
lated with an incorrect casting. This mutation opera-
tor is motivated by a report of a real-world bug found
in Eclipse 3.4 [22].

6. Replace-array-elements-with-constants replaces
a Java array reference with another constant
Java array. This mutation operator changes
a Java array reference used at a JNI func-
tion call to the reference to the predefined con-
stant array. For example, this mutation operator
change (*env)->GetIntArrayElements(env, arr,

null); into

(*env)->GetIntArrayElements(env,

IntConstArr, null);

This mutation operator intends to mutate the values
in an array copied from Java to C. This mutation is
inspired by a real-world bug with an incorrect array
data transfer from Java to C [2].

7. Replace-target-Java-member replaces a target field
in a class member access with the field of a different
class member with the same type, by mutating
(*env)->GetFieldID(env, class, NAME1, SIG);

with

(*env)->GetFieldID(env, class,

NAME2, SIG);

where NAME1, NAME2, and SIG are the strings of the
original and the changed field names and their type
signature, respectively. This mutation operator is mo-
tivated by a common pitfall in JNI programming [26,
pp.131–132].

3.3.3. New Mutation Operators for Resource Constraints

8–13. There are six mutation operators,
Make-global-reference, Remove-global

-reference, Make-weak-global-reference,
Remove-weak-global-reference, Make-local-

reference and Remove-local-reference, each
of which increases or decreases the life time of a
reference to a Java object (and probably the life time
of the referenced Java object too). For example,
Make-global-reference increases the life time of
a local reference l by making the reference as a
global one. In other words, Make-global-reference
inserts the following statement after an assignment
statement to a local reference l (i.e., l = expr):

l = (*env)->NewGlobalRef(env,l);

In contrast, Remove-global-reference decreases the
life time of a global reference g (and probably the
referenced Java object too) by inserting the following
statement for a global reference g:

(*env)->DeleteGlobalRef(env,g);

We have developed four other mutation operators for
local references and weak global references. These
mutation operators are related to a bug fix pattern
regarding reference errors in native code [5].

14. Pin-Java-object prevents garbage collectors from
reclaiming a Java object by placing a Java reference to
the object into a class variable in Java before a refer-
ence to the object is removed by an assignment state-
ment. Before an assignment statement x = obj;, the
mutation operator inserts a statement:

Test.pinnedObjects.add(x) ;

where Test.pinnedObjects is a Java class variable of
a list container type. The Java object pointed by x is
transitively reachable from a class variable, and Java
garbage collectors cannot reclaim the object. This
mutation operator intends to extend the lifetime of
Java objects in a target program and influence in-
teractions of Java and native memory management.
This mutation operator is inspired by a safe memory
management scheme of SafeJNI [42].

15. Switch-array-release-mode alternates the release
mode of a Java array access. The release mode
decides whether an updated native array will be
copied back to the Java array or discarded. For
every (*env)->Release<Type>ArrayElements(env,

arr, elems, mode), this mutation operator changes
the mode value from 0 to JNI ABORT, or vice versa.
This mutation operator is motivated by a best prac-
tice in JNI programming [29].
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3.4. Implementation

We have implemented MUSEUM targeting programs
written in Java and C (support for other languages will be
added later). MUSEUM is composed of the existing mu-
tation testing tools for C and Java, together with the fault
localization module that analyzes testing results and com-
putes suspiciousness scores. MUSEUM consists of 1,500
lines of C/C++ code and 1,802 lines of Java code. MU-
SEUM uses gcov and PIT to obtain the coverage infor-
mation on C code and Java code of a target program,
respectively.

MUSEUM uses the mutation tools Proteum/IM 2.0 [27]
for C and PIT version 0.33 for Java bytecode [1] together
with the 15 new mutation operators for multilingual be-
haviors (Section 3.3). Proteum/IM implements 107 muta-
tion operators defined in Agrawal et al. [11]. Among the
107 mutation operators, MUSEUM uses 75 mutation op-
erators that change only one statement. PIT implements
14 mutation operators all of which are used by MUSEUM.
Among the 15 new mutation operators, 14 new mutation
operators for C code are implemented with Clang version
3.4, and the one new mutation operator for Java (i.e.,
Pin-Java-object) is built with the ASM bytecode en-
gineering tool version 3.3.1.

4. Experiment Setup and Result

We have evaluated the effectiveness of MUSEUM on
the eight bugs in four real-world multilingual software
projects. The full experiment data and the target pro-
gram code are available at http://swtv.kaist.ac.kr/

data/museum.zip.

4.1. Experiment Setup

4.1.1. Real-world Multilingual Program Bugs

Table 1 presents the eight multilingual bugs in four real-
world software projects with their programs, symptoms,
line of code (LOC) in Java and C, the number of the
test cases used to localize the fault, and bug reports or
bug-fixing revisions of the target programs. Azureus is
a popular P2P file-sharing application. Sqlite-jdbc is a
Java Database Connectivity (JDBC) library to access the
SQLite relational database management system written in
C. Java-gnome is a set of language bindings for the Java
programming language for use in the GNOME desktop en-
vironment. SWT (Standard Widget Toolkit) is an Eclipse
widget toolkit for Java to provide user-interface facilities.
We selected these projects as target projects because these
projects have multilingual bugs that had been analyzed by
other practitioners and researchers.

The bug reports/commit logs in the last column describe
the symptoms of the target bugs. A corresponding bug re-
port indicates both buggy version and its fixed version. All
target programs are written in Java and C (except Azureus
which is a pure Java program but triggers a memory leak
in C when it misuses the application program interface of
the Eclipse SWT library written in Java and C).

4.1.2. Test Cases

We used the test cases maintained by the developers of
the target programs. We utilize the test cases of the fixed
version, at least one of which reveals the target bug in
the buggy version. If the fixed version has no test case
that fails on the buggy version, we create a failing test
case based on the bug report. For Bug1, since Azureus
code repository has no test case, we created one failing
test case and seven passing test cases to cover reasonable
fraction of the source files. In addition, for those test cases
which require manual operations, we carefully encoded the
operations described in the bug reports. 3

To localize a fault accurately, we focus to localize one
bug at a time by building a new test suite out of the orig-
inal test suite. The new test suite consists of one failing
test case and all passing test cases that cover at least one
statement executed by the failing test case.

4.1.3. System Platform

The experiments were performed on the 30 machines
equipped with Intel i5 3.4 GHz with 8 GB memory (we
performed experiment on one core per machine). All ma-
chines run Ubuntu 8.10 32-bits, gcc 4.3.2, and OpenJDK
1.6.0. MUSEUM distributes tasks of testing each mutant
to the 30 machines. We set the time limit (10 seconds) for
each test run on a mutant to avoid the infinite loop prob-
lem caused by mutation. Time taken to execute a test run
was less than one second on the eight subjects on average.

4.2. Experiment Results

Table 2 reports the experiment data on the eight bugs.
The second row shows the number of the target source
lines executed by the failing test case (see Step 1 of Sec-
tion 3.2). The third row shows the total number of the
mutants generated by MUSEUM, and the fourth row de-
scribes the total number of the target lines on which at
least one mutant is generated. The fifth and sixth rows
show the number of the mutants on which testing results
have changed. The last row describes the runtime cost.

For example, to localize Bug4, we built a test suite con-
taining one failing test case and 169 passing test cases out
of the original test suite (see the eighth column of the fifth
row of Table 1). MUSEUM generated 718 mutants (at
least one mutant for 71% of the target lines (=132/186)).
Among the 718 mutants, there are two mutants on which
the failing test case passes (see the sixth row of Table 2). 4

We call such mutants as “partial fix” because the failing
test case passes on the mutant (but passing test cases may
fail on these mutants). The table shows that only 0.28%
of the mutants are partial fixes (=2/718). Note that par-
tial fix mutants at s can largely increase the suspiciousness

3We tried to make only unavoidable changes at the original test
cases. All edit records are found at the experiment data on the web.

4The number of mutants that make the failing test case pass is
equal to f2p since the test suite contains only one failing test case
in our experiments.
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Table 1: Target multilingual Java/C bugs, their symptoms, sizes of the target code, the number of test cases used, and references

Size of target program # of
Bug report or bug-fixing revisionBug Target program Symptom Java NativeC TC

Files LOC Files LOC used

Bug1 Azureus 3.0.4.2 Memory leak in C 2,705 340.6K N/A N/A 8 Rev. 1.64 of ListView.java [3]
Bug2 sqlite-jdbc 3.7.8 Assertion violation in Java 20 4.6K 3 1.8K 150 Issue 16 [6]
Bug3 sqlite-jdbc 3.7.15 Assertion violation in Java 19 4.2K 2 1.7K 159 Issue 36 [7]
Bug4 java-gnome 4.0.10 Invalid JNI reference in C 1,097 64.2K 496 65.6K 170 Bug 576111
Bug5 java-gnome r-658 Segmentation fault in C 1,134 67.1K 514 69.2K 184 Subversion revision 659 [4]
Bug6 SWT 3.7.0.3 Segmentation fault in C 582 118.7K 29 43.3K 50 Bug 322222 [21]
Bug7 sqlite-jdbc 3.6.0 Exception state violation in C 25 4.9K 2 0.6K 112 UDFTest bug [21]
Bug8 SWT 4.3.0 Segmentation fault in C 591 126.6K 29 48.5K 204 Bug 419729 [9]

Table 2: Overview of the experiment data

Bug1 Bug2 Bug3 Bug4 Bug5 Bug6 Bug7 Bug8

# of the target lines 1,939 299 443 186 186 3,494 294 4,998

# of mutants 2,861 691 965 718 369 9,479 844 14,490

# of lines which
1,575 219 327 132 103 2,524 226 3,855

have a mutant

# of mutants that make a
305 462 681 364 311 3,044 542 8,766

passing test case fails

# of mutants that make a
1 3 7 2 51 32 3 1

a failing test case passes

Time cost (in minutes) 12 60 45 25 23 175 50 511

score of s since partial fix mutants increase the numerator
of the first term of the suspiciousness formula whose de-
nominator f2p is usually small (e.g., 2 for Bug4) (see the
formula in the Step 4 of Section 3.2). MUSEUM takes 25
minutes to localize Bug4 using 30 machines.

Table 3 compares the fault localization results of MU-
SEUM and the cutting-edge SBFL techniques including
Jaccard [16], Ochiai [33], and Op2 [32]. Each entry re-
ports the suspiciousness ranking which is the maximum
number of the statements to examine until finding the
faulty statement described in the bug report. The per-
centage number in the parentheses indicates the normal-
ized ranking of the faulty statement out of the total target
statements (i.e., ranking

# of the target statements ). The second row
of the table clearly shows that MUSEUM accurately iden-
tifies the buggy statement. MUSEUM ranks the buggy
statements in Bug1, Bug3, Bug4, Bug7, and Bug8 as the
most suspicious statements (i.e., the first ranking). Even
for Bug2, Bug5, and Bug6, MUSEUM identifies the buggy
statement as the most suspicious statement with the other
one, seven, and two statements together (e.g., for Bug5,
the suspiciousness scores of the eight statements including
the buggy statement are equal). Thus, we conclude that
MUSEUM localizes a multilingual bug accurately.

In contrast, SBFL techniques fail to localize multilin-
gual bugs accurately. For example, Op2 ranks the buggy
statement of Bug6 as the 3,494nd among the 3,494 tar-

get statements (see the fifth row of Table 2), which means
that a developer has to examine all target statements to
identify the faulty statement.

4.3. Threats to Validity

A major external threat to validity is that the experi-
ment uses a limited number of target programs. To limit
this threat, we chose the target subjects that include both
language interface bugs and cross-language bugs, and have
different symptoms and various related language features.
Also, we collected these target programs from various real-
world projects used by the related work.

Another threat is that the test cases used in the exper-
iments are limited. To limit this threat, we utilized all
available test cases in the real-world target subjects (ex-
cept Azureus that has no test cases for Bug1).

A construct threat is that there may be statements that
can be recognized as buggy statements other than the ones
indicated by the bug reports/fixes used in the studies. Al-
though there might be other buggy statements, we believe
that the conclusions still hold because MUSEUM localized
the buggy statements reported by the bug reports/fixes as
most suspicious ones.

Possible internal threats are that the target programs
may have unidentified nondeterminism and/or the MU-
SEUM tool may have faults. To limit these threats, we
carefully reviewed the target programs, the MUSEUM
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Table 3: The ranking of the buggy line identified by MUSEUM and the SBFL techniques

Bug1 Bug2 Bug3 Bug4 Bug5 Bug6 Bug7 Bug8

MUSEUM
1 2 1 1 8 3 1 1

(0.1%) (0.7%) (0.2%) (0.1%) (4.3%) (0.2%) (0.2%) (0.02%)

Jaccard
80 4 5 83 61 3,494 84 574

(4.1%) (1.3%) (1.1%) (44.6%) (32.8%) (100.0%) (17.5%) (10.2%)

Ochiai
80 4 5 83 61 3,494 84 574

(4.1%) (1.3%) (1.1%) (44.6%) (32.8%) (100.0%) (17.5%) (10.2%)

Op2
80 4 5 83 61 3,494 84 574

(4.1%) (1.3%) (1.1%) (44.6%) (32.8%) (100.0%) (17.5%) (10.2%)

tools, and the experiment results. For further analysis, full
experiment data and the target program code are available
at http://swtv.kaist.ac.kr/data/museum.zip.

5. Case Study with Language Interface Bug
(Bug7)

Language interface bugs violate one of the three classes
of the safety rules on language interfaces [22]: state con-
straints, type constraints, and resource constraints. This
section presents the case study of Bug7 to illustrate how
MUSEUM locates the causes of the bugs of violating state
constraints.

5.1. Bug Overview

Bug7 violates a safety rule on a language interface that
the native code must not invoke a JNI function while the
current thread is propagating a pending Java exception.
For instance, consider Lines 183 and 184 of NativeDB.c in
the sqlite-jdbc 3.6.0 source release:

/* sqlite/src/main/java/org/sqlite/NativeDB.c */

154: static xCall(...) {

..

183: (*env)->CallVoidMethod(env, func, method) ;

184: (*env)->SetLongField(env, func, ...) ;

In an erroneous run, the native code at Line 183 invokes
a Java method identified by the method argument, which
throws a Java exception and abruptly returns to the native
code. Then, the current thread is propagating the pend-
ing Java exception, and the call statement at Line 184
executes the SetLongField JNI function. These event se-
ries of throwing Java exception and calling a JNI func-
tion violate the exception state rule. The semantics of the
SetLongField JNI function is left undefined, and JVMs
may crash [21].

The bug fix checks and clears explicitly the pending Java
exception before calling the SetLongField JNI function
with the following updates:

/* sqlite/src/main/java/org/sqlite/NativeDB.c */

154: static xCall(...) {

..

183: (*env)->CallVoidMethod(env, func, method) ;

+++ if((*env)->ExceptionCheck(env))

+++ xFunc_error(context,env);

184: (*env)->SetLongField(env, func, ...) ;

The conditional part of the inserted statement examines
if a Java exception is pending. When a Java exception is
pending, xFunc error clears the pending Java exception
and records this error state. Then, the native code ex-
ecutes the SetLongField JNI function without violating
the JNI exception state rule.

5.2. Detailed Experiment Result

We use the 112 tests cases in the Xerial SQLite JDBC
regression test suite. MUSEUM successfully finds the lo-
cation where the developer inserts the new code to fix
the bug as the most suspicious statement. Table 4 shows
the mutants generated from the top four most suspicious
statements. Line 184 of NativeDB.c has the highest sus-
piciousness score because it has two fail-to-pass test runs.
Line 183 of NativeDB.c is ranked as the second most sus-
picious statement because it has one fail-to-pass test run.
The other statements have no fail-to-pass test run (see the
sixth row of Table 2). Note that the three partial fix mu-
tants on Lines 183–184 do not call an JNI function with a
pending exception on the failing test case. The statements
of the fourth and the fifth rows of Table 4 are ranked as the
114th together with other 110 statements on which their
test results do not change at all.

6. Case Study with Cross-Language Bug (Bug5)

Cross-language bugs have their cause-effect chains
across a language boundary while respecting all safety
rules on language interfaces. To demonstrate how MU-
SEUM locates the causes of these cross-language bugs, this
section presents the case study of Bug5. Bug5 has its effect
of a segmentation fault in C while the cause is an attempt
to access the freed native peer resource from Java.

6.1. Bug Overview

Bug5 crashes JVMs due to a segmentation fault at
Line 738 of gtkspell.c in Revision 658 of Java-gnome
because the spell pointer parameter is dangling:

10



Table 4: Four most suspicious statements of the Xerial SQLite JDBC target code (Bug7)

Rank
Susp.

Statement Mutant |f(s) ∩ pm| |p(s) ∩ fm|score

1 0.111

if ((*env)->ExceptionOccured(env))

1 16return;

/* NativeDB.c:184 */ (*env)->SetLongField(env,...);

(*env)->SetLongField(env,...);

return ; 1 16

2 0.055
/* NativeDB.c:183 */

return ; 1 64
(*env)->CallVoidMethod(env,...);

114 0.0
/* Conn.java:81 */ Test.pinnedObjects.add(url);

0 0
this.url = url; this.url = url;

114 0.0
/* Conn.java:188 */

; // remove a statement at Line 188 0 0
checkCursor(rst, rsc, rsh);

/* gtkspell/gtkspell.c */

727: gtkspell_detach(GtkSpell *spell) {

...

738: g_object_set_data(G_OBJECT(spell->view),

GTKSPELL_OBJECT_KEY,NULL);

739: gtkspell_free(spell);

740: }

Detailed description of Bug5 is as follows. The
TextView class of Java-gnome creates a text editor
by creating a native peer GtkTextView object. The
TextView class may contain a Spell object that pro-
vides a spell-checking feature by creating a native peer
GtkSpell object. In such case, Java-gnome deallocates
the GtkSpell object by calling gtkspell detach when the
corresponding GtkTextView object is deallocated. Also,
when a Spell object is reclaimed, the Spell.finalize

method calls Spell.release method which eventually
calls gtkspell detach to deallocate the GtkSpell ob-
ject of the Spell object. Thus, a segmentation fault oc-
curs when JVM garbage collector reclaims a TextView

object (and consequently deallocating GtkTextView and
GtkSpell objects), and then the Spell object contained
in the TextView object.

The bug fix removes Line 57 in the release method to
avoid the failure:

/* Spell.java */

31: public class Spell {

...

56: protected void release() {

57: GtkSpell.detach(this) ;

Although the fix looks simple, analyzing the buggy state-
ment is challenging because the execution path involves
complicated features such as garbage collection, finaliza-
tion, and reference counting memory management in the
external library execution (e.g., glib signal mechanism).

6.2. Detailed Experiment Result

We make one failing test case that reveals Bug5 based on
the bug report, and used 183 passing test cases in the Java-

gnome regression test suite (revision 659). Our test envi-
ronment triggers garbage collection at the end of test runs
to trigger finalization activities for reclaimed Java objects.
To handle the non-deterministic behaviors of garbage col-
lection, we repeatedly execute the failing test case 3 times
per mutant, and our test oracle reports that a test run
fails if at least one execution with the test case fails.

Table 5 presents the four most suspicious statements.
Line 57 of Spell.java gets the highest suspiciousness
score. The mutant at Line 57 is identical to the bug
fix. The other seven statements have the same suspi-
ciousness score because the mutants of these statements
also deactivate gtkspell detach in the Java finaliza-
tion context. For example, Line 68 of Pointer.java

and Line 42 of Proxy.java (the third and the fourth
rows of Table 5) belong to the call sequence from
Spell.finalize to gtkspell detach; the mutation at
Line 48 of GtkSpell.java changes the GtkSpell.detach

method not to call gtkspell detach.

7. Case Study of Debugging Open Bug in Eclipse
SWT (Bug8)

This section demonstrates how MUSEUM supports de-
bugging open bugs in real-world software projects. Specif-
ically, our qualitative evaluation demonstrates how to uti-
lize partial fix mutants and the suspicious rankings in diag-
nosing the cause of bug and suggesting a bug patch. Note
that an Eclipse maintainer acknowledged our debugging
analysis and patch posted at the Eclipse Bugzilla [9].

7.1. Methodology

Bug Description. Bug 419729 (Bug8) in the Eclipse bug
repository for Standard Widget Toolkit (SWT) was re-
ported first on October 17, 2013, and it was open and
unresolved since this case study. This bug is chosen for
the case study because it appears to be critical for devel-
opers and nontrivial to diagnose. First, this bug crashes a
JVM and the “Importance” field of the report is marked
as “P3 critical” based on the votes by more than dozens of
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Table 5: Four most suspicious statements of Java-gnome r-695 (Bug5)

Rank
Susp.

Statement Mutant |f(s) ∩ pm| |p(s) ∩ fm|score

8 0.020
/*Spell.java:57*/

; //the statement is removed. 1 0
GtkSpell.detach(this);

8 0.020
/*Pointer.java:68*/

; //the statement is removed. 1 0
release();

8 0.020
/*Proxy.java:42*/

; //the statement is removed. 1 0
super.finalize();

8 0.020
/*GtkSpell.java:48*/

if(self != null){ 1 0
if (self == null){

developers. Second, this bug is difficult to debug because
this bug had not been resolved for more than 22 months
(at the time when this case study begins). Bug 419729 is
related to the Eclipse SWT module, especially to a sub-
component that binds the SWT interface with the Ubuntu
Unity graphics library.

Participants. Two graduate students with little back-
ground on the target project (i.e., Eclipse SWT and
Ubuntu Unity) used debugging tools, diagnosed the causes
of bugs, produced bug fixing patches, and reported their
analysis to the bug report database.

Debugging Process. First, MUSEUM was run to identify a
suspected bug location and obtain a partial fix mutant that
makes the failing test case pass. Based on these results, the
participants refined the partial fix mutant into a complete
patch for the failure.

Debugging Tools. MUSEUM (version 1.3.21) and
Blink [21] (version 2.4.0) are used to locate buggy state-
ments, examined the partial fix mutant, and compared
the program states after applying these mutants.

7.2. Debugging the Open Bug Using MUSEUM

Our debugging process consists of fault localization, re-
fining a partial fix mutant, validating the refined mutant,
and suggesting a bug patch from the refined mutant.

7.2.1. Fault Localization

Bug 419729 triggers a segmentation fault by deref-
erencing the NULL value in the state name vari-
able at Line 921 of unity-gtk-action-group.c.
This NULL value is assigned to state name by
unity gtk action group get state name at Line 920.

/* unity-gtk-action-group.c */

858: void unity_gtk_action_group_connect_item(

UnityGtkActionGroup *group,

859: UnityGtkMenuItem *item) {

...

920: state_name =

unity_gtk_action_group_get_state_name(

group,item);

921: g_hash_table_insert(action->items_by_name,

state_name, g_object_ref(item));

To reproduce this bug and localize the buggy statements,
one failing test case is created based on the bug report.
Since the original code snippet in the bug report is not
a fully self-contained automated test case, the following
two features are added to the original code snippet. First,
the user scenario (e.g., mouse-click) in the bug report is
encoded as automatic GUI events to eliminate human in-
teraction at the test case executions. Second, the test case
is maded to fail when any GUI event in the user scenario is
not activated at the test case execution. Also, 203 passing
test cases related to the Eclipse SWT are selected from
whole Eclipse regression test suite.

MUSEUM generated 14,490 mutants on the 3,855 out
of the 4,998 target source lines covered by the failing test
case. Only one mutant makes the failing test case pass
(i.e., a partial fix mutant) and the 8,766 mutants make
some of the 203 passing test cases fail. MUSEUM gen-
erated the partial fix mutant by mutating Line 39339 of
os.c and reported that line the as most suspicious one:

/* os.c */

38334: jlong Java_gtk_radio_menu_item_with_label(...,

jbyteArray arg1) {

...

39339: if ((lparg1=(*env)->GetByteArrayElements(env,

arg1,NULL))==0)

39340: goto fail;

39341: rc = gtk_radio_menu_item_with_label(...,

lparg1) ;

Line 39339 calls the JNI function GetByteArrayElements

to copy a Java array indicated by arg1 into a new na-
tive array, and the address of the new array is stored in
lparg1. If the copy operation successes, the address value
in lparg1 flows into gtk radio menu with label as an
argument (Line 39341).

MUSEUM generated the following partial fix mutant at
Line 39339 using Replace-array-elements-with-constants

mutation operator that replaces the arg1 with a predefined
constant byte array ByteConst.

39339--: if ((lparg1=(*env)->GetByteArrayElements(env,

arg1, NULL))==0)

39339++: if ((lparg1=(*env)->GetByteArrayElements(env,

ByteConst, NULL))==0)
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This mutation changes the flow of values such that
the NULL value at the failure site (i.e., Line 921 of
unity-gtk-action-group.c) with the failing test case
is replaced with a pointer to a C string derived from
ByteConst. This mutation does not change the results
of the passing test cases.

7.2.2. Refining the Partial Fix Mutant with Failure-
inducing Condition

The participants manually refine the partial fix mutant
by figuring out a failure-inducing condition and applying
the partial fix only when the condition is true (i.e., the
partial fix mutant is refined to execute the mutated source
line (i.e., 39339++) if the condition holds; the original
source line (i.e., 39339–) otherwise).

To identify the failure-inducing condition, the partic-
ipants monitored and compared the program states at
Line 39339 when running both failing and passing test
cases. In the failing executing, the byte array pointed by
lparg1 has its first element as ’\0’ while the first ele-
ment in the passing executions is not ’\0’. Thus, the
participants guess that the failure-inducing condition is
lparg1[0]==’\0’. Using this condition, the participants
refine the partial fix mutant into the following one:

if (lparg1[0] == ’\0’)

lparg1=(*env)->GetByteArrayElements(env,ByteConst,

NULL);

else

lparg1=(*env)->GetByteArrayElements(env,arg1,NULL);

7.2.3. Validating the Refined Partial Fix Mutant

The participants validate the refined partial fix mu-
tant by checking if the obtained failure-inducing condition
(i.e.,lparg1[0]==’\0’) is general to trigger the failure.
For that purpose, the participants compared the execu-
tion paths of the original program (i.e., failing execution
path) and the refined mutant (i.e., passing execution path)
with the same failing test case because the participants
guess that the diversing point between the two execution
paths indicates the general condition to trigger the failure.
The participants found that the these executions diverse at
Line 766 of unity-gtk-action-group.c in the following
code snippet:

After code review, the participants found that the then-
branch of Line 766 never makes name as NULL, which
makes unity gtk action group get state name return
non-NULL-value and avoids the segmentation fault at
Line 921. But the else-branch can assign NULL to name.
With the failing test case, the original program execution
takes the else-branch while the refined mutant execution
takes the then-branch.

As the branch decision at Line 766 depends on label,
the label values are monitored in the aforementioned
two executions (i.e., the executions on the original pro-
gram and the refined fixing mutant with the failing test
case) and the executions with all passing test cases that

/* unity-gtk-action-group.c */

753: static gchar *

754: unity_gtk_action_group_get_state_name(

UnityGtkActionGroup *group,

755: UnityGtkMenuItem *item) {

756: gchar *name = NULL ;

...

765: gchar *label =

unity_gtk_menu_item_get_label(item) ;

766: if (label != NULL && label[0] != ’\0’) {

...

800: else {

...}

854: return name ; }

cover Line 766. The monitoring result shows that, in
every test case execution, the array pointed by label

at Line 766 has the same value as the array pointed by
lparg1 at Line 39339 of os.c. For the failing execution,
lparg1[0] at Line 39339 has ’\0’ value. Meanwhile,
in the passing executions, the array pointed by lparg1

has a non-NULL-value and avoids the crash. Thus, the
participants conclude that the failure-inducing condition
lparg1[0]==’\0’ is general to trigger the failure and the
refined partial fix mutant can fix Bug8.

7.2.4. Suggesting a Bug Fixing Patch

Finally, the participants revised the refined mutant and
designed a bug fixing patch. For readability, instead of
modifying the second argument of GetByteArrayElement,
the participants replaced the byte array lparg1 given
to gtk radio menu item with label with " " (a string
literal containing one space character) if lparg1[0] ==

’\0’. We posted our analysis on the fault and the follow-
ing patch to the Eclipse Bugzilla and an Eclipse maintainer
acknowledged our analysis and patch [9]:

39339: if (lparg1=(*env)->GetByteArrayElements(env,

arg1,NULL)==0)

39340: goto fail;

+++ if (lparg1[0] == ’\0’)

+++ rc=gtk_radio_menu_item_with_label(..., " ");

+++ else

39341: rc=gtk_radio_menu_item_with_label(...,lparg1);

8. Selective Mutation Analyses for Runtime Cost
Reduction

8.1. Overview

Although MUSEUM consumes modest amount of time
to localize a fault accurately (i.e., 112.6 minutes using 30
machines on average over the eight bugs (Table 2)), we can
reduce the runtime cost further with marginal accuracy
loss by carefully selecting mutants and test cases to utilize.
Also, by selecting mutants and test cases in various ways,
we can control the time cost of fault localization, which is
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desirable for real-world projects where testing/debugging
time budget is tightly given.

We present selective use of mutants and test cases and
report the effects of various selection strategies on the ac-
curacy and the cost of fault localization. We have designed
total 184 selection strategies based on how to select mu-
tants (23) and how to select test cases (8) and their com-
binations. If a selection strategy involves randomness, we
repeated the selection 30 times to obtain statistical confi-
dences of the result. We found that, with selected mutants
and test cases, MUSEUM can reduce 96% of the time cost
for the eight target programs on average (see Table 10)
while still locating the buggy statements as the most sus-
picious statements.

There exist related works that selectively use mutation
operators to reduce computational cost of mutation-based
fault localization. Papadakis et al. [36] present a mutation-
based fault localization tool that uses a small number of
mutation operators to avoid heavy cost of mutant execu-
tions. Subsequently, Papadakis and Le Traon [38] suggest
four sets of selected mutation operators, based on their em-
pirical study of different mutation operator uses and the
fault localization results. While the earlier work concen-
trated on selecting mutation operators, our study explores
different chances of selective mutation analyses. For ex-
ample, our study uses different test case selection criteria
and their combinations with new mutant selection criteria.

8.2. Selection Strategies

We have examined 184 (=23×8) selection strategies
based on the 23 mutant selection strategies (Section 8.2.1)
and the eight test case selection strategies (Section 8.2.2).

8.2.1. Mutant Selection Strategies

We have developed total 23 mutant selection strate-
gies based on the following four criteria where MR(x)
and MP(p) are from the existing mutation testing re-
search [35, 12, 34] while MS(n) and MPS(p, n) are de-
veloped by the authors:

• MR(x): this strategy randomly selects x% of all gen-
erated mutants [35] where x ∈ {10, 20, 30}.

• MS(n): it randomly selects n mutants per target line
where n ∈ {1, 2, 3}. If a target line has only m mu-
tants (m < n), MS(n) selects m mutants.

• MP(p): it selects the mutants generated by a muta-
tion operator p in the three sets of mutation operators
(i.e., SD, CR, and SM) and the set that includes all
mutation operators of the three sets:

– MP(SD): it uses the statement deletion muta-
tion operator [12] together with the 15 new mu-
tation operators for multilingual behavior.

– MP(CR): it uses the constant replacement mu-
tation operators [35] together with the 15 new
mutation operators for multilingual behavior.

– MP(SM): it uses the five mutation opera-
tors [34] (i.e., ‘replace a constant value with its
absolute value’, ‘replace an arithmetic operator
with another arithmetic operator’, ‘change a log-
ical connector’, ‘change a relational operator’,
and ‘insert an unary operator’) with the 15 new
mutation operators. Offutt et al. [34] claim that
mutants generated by these five mutation oper-
ators are consistent with the mutants generated
by more mutation operators.

– MP(All): it uses all mutants selected by
MP(SD), MP(CR), and MP(SM).

• MPS(p,n): this strategy is a combined strategy of
MP(p) and MS(n). Among the mutants selected by
MP(p), MPS(p,n) randomly selects n mutants per a
target line. If a target line has only m mutants se-
lected by MP(p) (m < n), MPS(p,n) randomly selects
more mutants generated by other mutation operators
to make the target line has n mutants. In this study,
we used 12 strategies by combining p = {SD, CR, SM,
All} and n = {1, 2, 3}.

• MA: it selects all generated mutants.

8.2.2. Test Case Selection Strategies

We have developed eight test case selection strategies
based on the random selection and coverage based selec-
tion as motivated by the test case selection work [14]. All
test case selection strategies select the failing test case in
the test suite.

• TR(x): it randomly selects x% of the passing test
cases where x ∈ {10, 20, 30}.

• TC(x): it selects x% of the passing test cases that
achieve high coverage of the target lines (i.e., the
source code lines covered by the failing test case)
where x ∈ {10, 20, 30}. TC(x) uses a greedy algo-
rithm which repeats to select a passing test case that
covers a largest number of uncovered target lines. If
there are multiple such passing test cases, the algo-
rithm selects one among the choices.

• TM: it selects a small number of passing test cases
that cover all target lines. TM uses a greedy algorithm
which repeats to select a test case that covers a largest
number of uncovered target lines until the selected
test cases cover all target lines (the algorithm stops
selection when no passing test case can increase the
coverage).

• TA: TA uses all given passing test cases.

8.2.3. Reduction in Mutants and Test Cases

Table 6 shows that our mutant selection strategies ex-
cept MA reduce the generated mutants. Each entry re-
ports the ratio of the number of the selected mutants to the
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Table 6: Ratio of the number of the selected mutants to the number of all mutants (%)

Strategy Bug1 Bug2 Bug3 Bug4 Bug5 Bug6 Bug7 Bug8 Average

MR(10) 10.0 10.0 10.0 9.8 10.0 9.9 10.0 10.0 10.0
MR(20) 20.0 20.0 19.9 19.8 19.4 20.0 20.0 20.0 19.9
MR(30) 30.0 30.0 29.9 30.1 30.1 30.0 30.1 30.0 30.0

MS(1) 55.5 31.8 32.7 27.1 29.4 25.0 29.7 25.6 32.1
MS(2) 76.9 55.1 56.3 46.8 50.0 44.7 53.6 44.9 53.5
MS(3) 89.2 68.8 69.7 60.1 63.0 60.5 69.1 60.3 67.6

MP(SD) 10.4 22.9 21.2 26.1 28.6 20.0 24.9 22.3 22.1
MP(CR) 56.0 38.5 35.3 19.3 20.9 30.0 35.7 33.6 33.7
MP(SM) 18.5 21.3 20.0 13.7 15.9 11.9 21.5 16.1 17.4
MP(All) 74.7 56.3 53.6 43.1 45.7 51.0 53.5 55.8 54.2

MPS(SD,1) 57.6 41.2 40.8 35.1 39.2 29.5 40.8 33.2 39.7
MPS(SD,2) 77.5 62.3 62.5 52.8 57.4 46.9 61.9 49.4 58.8
MPS(SD,3) 89.3 74.2 74.3 64.2 68.1 61.7 74.8 63.2 71.2

MPS(CR,1) 66.2 49.9 47.6 36.8 40.2 39.1 46.2 41.8 46.0
MPS(CR,2) 79.5 65.7 65.1 52.3 56.7 52.0 63.1 53.4 61.0
MPS(CR,3) 90.3 75.3 74.9 62.9 66.6 63.4 74.5 64.3 71.5

MPS(SM,1) 60.9 40.4 40.3 33.1 36.9 29.7 38.5 33.2 39.1
MPS(SM,2) 78.4 60.7 61.2 50.8 55.1 46.7 59.3 48.7 57.6
MPS(SM,3) 89.8 72.5 72.8 62.9 66.6 61.2 72.5 62.0 70.0

MPS(All,1) 77.6 60.0 57.9 48.1 51.5 51.7 56.6 56.7 57.5
MPS(All,2) 84.9 70.7 69.5 58.1 62.5 58.2 67.5 61.8 66.7
MPS(All,3) 92.7 79.0 77.9 66.4 70.5 66.3 77.9 68.7 74.9

number of all generated mutants. For example, MP(All)
selects 2,137 mutants (= 2,861 mutants × 74.7%) for the
target code of Bug1 (see the second column of the 11th
row of the table).

Table 7 shows that our test case selection strategies ex-
cept TA reduce test cases significantly while reducing tar-
get line coverage modestly. Table 7(a) presents the ratio
of the reduced test set size to the original test set size.
For example, TM selects 2.3 test cases (=150×1.5%) for
Bug2 on average (see the third column of the eighth row
of Table 7(a)). TM selects less test cases than TR(x) and
TC(x) for all bugs except Bug1 with x = 10 or 20 and
Bug6 with x = 10. Table 7(b) presents the target line
coverage achieved by the passing test cases selected by the
test case selection strategies. For example, TR(20) cov-
ers the 96% of the target lines for Bug1 on average (see
the second column of the third row of Table 7(b)). TC(x)
achieves the highest target line coverage in all cases except
TC(10) on Bug1. TM also achieves the highest coverage
with the smallest number of selected test cases among the
all strategies that achieve the highest coverage for all tar-
get programs (see Table 6(a)). The test case selection
strategies do not achieve the 100% coverage if a target
line is not covered by any passing test case.

8.3. Effects of the Selection Strategies on Fault Localiza-
tion

8.3.1. Effect on the Fault Localization Accuracy

Table 8 shows how much the ranking of the faulty line
improves with the selection strategies. Table 8(a) presents
the improved ranking of the faulty line with the mutant

selection strategies (except MA) with all test cases. Ta-
ble 8(b) presents the improved ranking of the faulty line
with the test case selection strategies (except TA) with all
mutants. Table 8(c) presents the improved ranking with
12 combined strategies of the four mutant selection strate-
gies (i.e., MPS(p,1) with p ∈ {SD,CR,SM,All}) and the
three test case selection strategies (i.e., TR(10), TC(10),
and TM). Note that 0 in the table indicates that the rank-
ing of the faulty statement does not change with a given
selection strategy (i.e., keeping the same fault localization
accuracy).

Table 8(a) shows that all 12 MPS strategies do not im-
prove the ranking of the faulty statement in all target bugs
except Bug5, Bug6 and Bug7. Note that even for Bug5,
Bug6, and Bug7, MUSEUM still reports the faulty line as
the most suspicious one (i.e., MPS increases the number
of the most suspicious lines whose suspiciousness scores
are all equal to that of the faulty statement). For exam-
ple, MUSEUM with MPS(SD,1) reports the suspiciousness
ranking of the faulty statement in Bug6 as 5.0 (=3+2.0)
on average, but still reports the faulty statement as the
most suspicious one with other 4.0 statements. However,
the other selection strategies in Table 8(a) improves the
ranking significantly. For example, MR and MS improve
the ranking at least by 853.6 and 148.6 on average.

Table 8(b) shows that the test case selection with all mu-
tants do not improve the ranking of the faulty statement
in all target bugs except Bug2 and Bug5 (these strategies
still report the faulty statement of Bug2 and Bug5 as the
most suspicious statement with other statements in a tie).

Table 8(c) presents the improved ranking of the faulty
statements with the 12 balanced combinations of the four
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Table 7: Results of the test cases selection strategies

(a) Ratio of the number of the selected test cases to the number of all test cases (%)

Strategy Bug1 Bug2 Bug3 Bug4 Bug5 Bug6 Bug7 Bug8 Average

TR(10) 12.9 10.0 11.0 11.9 11.0 11.0 9.8 10.9 10.1
TR(20) 25.2 19.7 18.9 20.3 22.0 24.7 20.9 20.0 20.1
TR(30) 38.8 29.1 31.3 32.3 32.0 31.6 30.9 30.7 30.0

TC(10) 12.9 10.2 10.6 13.9 12.4 13.3 10.6 11.4 10.1
TC(20) 25.9 20.4 20.6 23.6 21.5 23.0 20.8 21.2 20.1
TC(30) 38.3 30.2 30.5 32.3 31.1 32.5 30.8 30.8 30.0

TM 25.9 1.5 2.4 6.0 3.7 13.3 3.6 7.6 3.3

(b) Target line coverage achieved by the passing test cases selected by the selection strategies
(%)

Strategy Bug1 Bug2 Bug3 Bug4 Bug5 Bug6 Bug7 Bug8 Average

TR(10) 0 100 100 55 69 50 93 86 69.1
TR(20) 96 100 98 55 92 81 93 88 87.9
TR(30) 100 100 100 90 94 82 93 95 94.3

TC(10) 0 100 100 90 94 82 93 99 82.3
TC(20) 100 100 100 90 94 82 93 99 94.8
TC(30) 100 100 100 90 94 82 93 99 94.8

TM 100 100 100 90 94 82 93 99 94.8

MPS(p,1) strategies where p ∈ {SD,CR,SM,All} and the
three test case selection strategies TR(10), TC(10) and
TM. These 12 selection strategies improve the ranking by
1.3 on average over all eight target programs. More impor-
tantly, these 12 strategies still report the faulty statement
as the most suspicious statement with other statements
in a tie. For Bug5 and Bug6, the improved ranking is
larger than the other target programs because the num-
ber of mutants that change the test case execution results
is reduced significantly for Bug5 and Bug6. For example,
the MPS(SD,1) and TM selection strategy decreases the
number of mutants that make the failing test case pass
from 51 to 26 for Bug5 and from 32 to 7 for Bug6; conse-
quently, more lines have the same numbers of the fail-to-
pass mutant executions and pass-to-fail mutant executions
after the mutant and test case selections. For the other
six mutants, the number of mutants that make the failing
test case pass is decreased by 0 to 2. We do not present
the results of the other selection strategies because they
are worse than these 12 presented strategies. For exam-
ple, as shown in Table 8(a), MR, MP, and MS degrade
the fault localization accuracy significantly. We do not
present MPS(p,2) and MPS(p,3) because they are similar
to MPS(p,1) in terms of the accuracy but they select much
more mutants than MPS(p,1) (Table 6). For the similar
reason, we present the results with TR(10), TC(10) and
TM, not the other test case selection strategies.

8.3.2. Effect on the Fault Localization Time Cost

Table 9 presents the ratio of the number of the selective
mutant executions (i.e., the number of all pairs (mi, tij)
where mi is a selected mutant and tij is a selected test

case that covers the mutated line of mi) to that of the
full mutant executions (i.e., mutant executions with all
mutants and all test cases). The 12 strategies execute
only 3.5%–6.8% of the full mutant executions for the eight
target bugs on average. MPS(SD,1) with TM executes
the smallest number of mutant executions on average (i.e.,
MPS(SD,1) with TM removes 99.4% (=100%-0.6%) of the
full mutant executions for Bug2).

Figure 2 visualizes the accuracy-cost trade-offs in the
12 selection strategies. The x axis represents the average
ratio of the cost of the selective mutant testing to the full
mutant testing. The y axis represents the average ranking
improvement of the faulty statement. Each data point rep-
resents the cost and accuracy of a selection strategy. For
example, MPS(SD,1) with TM reduces the number of the
mutant executions to 3.5% of the full mutant executions on
average (the last column of the fourth row of Table 9) and
improvements the ranking by 1.4 on average (the last col-
umn of the fourth row of Table 8(c)). In general, more
mutant testing achieves higher accuracy. For example,
MPS(SD,1) with TC(10) is represented by ‘×’ located at
x=4.7 and y=1.1, which indicates that MPS(SD,1) with
TC(10) executes more mutant testing than MPS(SD,1)
with TM (4.7% v.s. 3.5%) but it improves the ranking
less than MPS(SD,1) with TM (1.1 v.s. 1.4). Note that
these 12 strategies achieve both high accuracy (i.e., the
average ranking improvement is less than 2.0) and high
cost reduction (i.e., the number of the selective mutant
executions is reduced to less than 7% of the full mutant
executions).

Finally, Table 10 shows the overall time cost of the fault
localization with all mutants and all test cases (the second
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Table 8: Ranking improvements of the faulty statements with various selection strategies

(a) Strategies that reduce the mutants only

Strategy Bug1 Bug2 Bug3 Bug4 Bug5 Bug6 Bug7 Bug8 Average

MR(10) 1,590.7 218.5 340.2 140.3 135.3 2,867.8 207.6 3,760.8 1,157.7
MR(20) 1,571.3 192.0 232.7 97.5 112.6 1,968.3 110.5 3,226.0 938.9
MR(30) 1,368.5 166.8 201.0 62.2 82.6 2,039.8 94.5 2,813.4 853.6

MS(1) 1,141.0 0.0 0.0 103.2 1.9 2.2 118.0 2,257.8 453.0
MS(2) 824.9 0.0 0.0 85.6 0.4 0.4 60.7 1,879.3 356.4
MS(3) 409.3 0.0 0.0 73.8 0.0 0.0 32.0 673.4 148.6

MP(SD) 0.0 238.0 367.0 0.0 -1.0 0.0 0.0 0.0 75.5
MP(CR) 0.0 -1.0 0.0 0.0 153.0 2,960.0 1.0 0.0 389.1
MP(SM) 0.0 244.0 358.0 0.0 162.0 3,213.0 1.0 0.0 497.3
MP(All) 0.0 -1.0 0.0 0.0 1.0 2.0 0.0 0.0 0.3

MPS(SD,1) 0.0 0.0 0.0 0.0 2.7 2.0 0.0 0.0 0.6
MPS(SD,2) 0.0 0.0 0.0 0.0 0.3 1.0 0.0 0.0 0.2
MPS(SD,3) 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0

MPS(CR,1) 0.0 0.0 0.0 0.0 0.6 3.3 1.0 0.0 0.6
MPS(CR,2) 0.0 0.0 0.0 0.0 0.0 0.9 1.0 0.0 0.2
MPS(CR,3) 0.0 0.0 0.0 0.0 0.0 0.1 1.0 0.0 0.1

MPS(SM,1) 0.0 0.0 0.0 0.0 2.1 2.2 1.0 0.0 0.7
MPS(SM,2) 0.0 0.0 0.0 0.0 0.4 0.7 1.0 0.0 0.3
MPS(SM,3) 0.0 0.0 0.0 0.0 0.0 0.2 1.0 0.0 0.2

MPS(All,1) 0.0 0.0 0.0 0.0 1.0 2.0 0.0 0.0 0.4
MPS(All,2) 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.2
MPS(All,3) 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.1

(b) Strategies that reduce the test cases only

Strategy Bug1 Bug2 Bug3 Bug4 Bug5 Bug6 Bug7 Bug8 Average

TR(10) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TR(20) 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.4
TR(30) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TC(10) 0.0 0.0 0.0 0.0 1.8 0.0 0.0 0.0 0.2
TC(20) 0.0 0.0 0.0 0.0 1.6 0.0 0.0 0.0 0.2
TC(30) 0.0 0.0 0.0 0.0 1.1 0.0 0.0 0.0 0.1

TM 0.0 0.4 0.0 0.0 3.0 0.0 0.0 0.0 0.4

(c) Strategies that reduce both mutants and test cases

Strategy
Bug1 Bug2 Bug3 Bug4 Bug5 Bug6 Bug7 Bug8 Average

Mutant Test case

MPS(SD,1) TR(10) 0.0 0.0 0.2 0.0 8.7 2.2 0.3 0.0 1.4
MPS(SD,1) TC(10) 0.0 0.0 0.0 0.0 6.6 2.1 0.0 0.0 1.1
MPS(SD,1) TM 0.0 0.5 0.0 0.0 8.5 2.2 0.0 0.0 1.4

MPS(CR,1) TR(10) 0.0 0.0 0.1 0.0 7.6 3.6 1.0 0.0 1.5
MPS(CR,1) TC(10) 0.0 0.0 0.0 0.0 4.4 3.3 1.0 0.0 1.1
MPS(CR,1) TM 0.0 0.4 0.0 0.0 5.0 3.4 1.0 0.0 1.2

MPS(SM,1) TR(10) 0.0 0.1 0.0 0.0 9.2 1.9 1.0 0.0 1.5
MPS(SM,1) TC(10) 0.0 0.0 0.0 0.0 6.6 1.9 1.0 0.0 1.2
MPS(SM,1) TM 0.0 0.4 0.0 0.0 7.8 1.9 1.0 0.0 1.4

MPS(All,1) TR(10) 0.0 0.0 0.2 0.0 7.6 2.0 0.0 0.0 1.2
MPS(All,1) TC(10) 0.0 0.0 0.0 0.0 5.0 2.0 0.0 0.0 0.9
MPS(All,1) TM 0.0 0.3 0.0 0.0 6.0 2.0 0.0 0.0 1.0

row) and that of the fault localization with MPS(SD,1)
and TM (the third row) on one machine. The numbers in
the second row are calculated by multiplying 30 to the time
cost in Table 2. MUSEUM with the MPS(SD,1) and TM
selection strategies consumes only 3.8% of the time cost
with all mutants and all test cases for the eight target bugs
on average (see the last column of the last row). Thus, this
result confirms that the selection strategy can effectively
reduce the time cost of MUSEUM as the number of the
mutant executions is reduced. 5

5The ratio in Table 10 can be different from the ratio in Table 6

9. Discussions

9.1. Advantages of the Mutation-based Fault Localization
for Real-world Multilingual Programs

For large real-world programs, it is challenging to build
test cases that exercise diverse execution paths because

because the time cost of MUSEUM involves mutant generations, data
processing and other operational steps in addition to mutant execu-
tions (also execution time of a mutant can be different depending on
the mutant and the test case used).
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Table 9: Ratio of the number of the selective mutant executions to the full mutant executions (%)

Strategy
Bug1 Bug2 Bug3 Bug4 Bug5 Bug6 Bug7 Bug8 Average

Mutant Test case

MPS(SD,1) TR(10) 7.4 4.2 4.2 3.9 4.4 3.6 4.3 3.6 4.5
MPS(SD,1) TC(10) 7.4 4.1 4.3 4.4 4.7 4.2 4.4 3.8 4.7
MPS(SD,1) TM 14.8 0.6 1.0 1.6 1.4 4.2 1.5 2.5 3.5

MPS(CR,1) TR(10) 8.5 5.0 4.9 4.3 4.5 4.6 4.8 4.5 5.1
MPS(CR,1) TC(10) 8.5 5.0 5.0 4.8 4.8 5.3 5.0 4.8 5.4
MPS(CR,1) TM 17.0 0.7 1.1 1.8 1.4 5.3 1.6 3.2 4.0

MPS(SM,1) TR(10) 7.8 4.1 4.1 3.8 4.2 3.6 4.0 3.6 4.4
MPS(SM,1) TC(10) 7.8 4.2 4.1 4.1 4.5 4.2 4.2 3.8 4.6
MPS(SM,1) TM 15.7 0.6 1.0 1.5 1.3 4.2 1.4 2.6 3.5

MPS(All,1) TR(10) 10.0 6.0 5.8 5.6 5.7 6.2 5.9 6.1 6.4
MPS(All,1) TC(10) 10.0 6.0 6.1 6.3 6.3 7.1 6.0 6.6 6.8
MPS(All,1) TM 20.0 0.9 1.4 2.5 1.8 7.1 2.0 4.4 6.5

Table 10: Overall time cost of fault localization (in minutes)

Bug1 Bug2 Bug3 Bug4 Bug5 Bug6 Bug7 Bug8 Average

MUSEUM with all mutants
360 1,785 1,346 738 682 5,262 1,501 15,334 3,376.0

and all test cases

MUSEUM with
29 21 34 10 10 186 63 1,166 189.9

MPS(SD,1) and TM

Ratio 8.1% 1.2% 2.5% 1.4% 1.5% 3.5% 4.2% 7.6% 3.8%

Figure 2: Ranking improvement of the faulty statements and the ratio of the number of selective mutant executions to the full mutant
executions

it is non-trivial to understand and control a target pro-
gram. Also, generating diverse test cases for multilingual
programs has additional burden to learn and satisfy safety
rules on language interfaces. Thus, multilingual programs
are often developed with only simple test cases, which
makes the SBFL techniques fail to accurately localize the
eight real-world multilingual bugs (Table 3).

For example, the statement coverages of the test suites
used for Bug2 and Bug3 are around 85% and 86% and the
SBFL techniques localize these bugs somehow precisely
(i.e., the suspiciousness rank of Bug2 and Bug3 are 4 and
5, respectively). However, the statement coverages of the
test suites used for Bug1, Bug4, Bug5, Bug6, and Bug8
are around 1%, 22%, 24%, 19%, and 11% and the accuracy
of the SBFL techniques for these bugs are very low (Ta-
ble 3). In contrast, MUSEUM can alleviate this limitation
by achieving the effect of diverse test cases through the

diverse mutants with limited test cases. Thus, MUSEUM
can be a promising technique for debugging complex real-
world multilingual programs.

9.2. Effectiveness of the New Mutation Operators for Lo-
calizing Multilingual Bugs

The experiment results show that the new mutation op-
erators are effective to generate informative mutants (i.e.,
partial fix mutants) to localize multilingual bugs. For
Bug1, Bug4, and Bug8, only the new mutation operators
generate partial fix mutants. For Bug5 and Bug7, the new
mutation operators and the existing ones generate partial
fix mutants. For Bug2, Bug3 and Bug6, only existing mu-
tation operators generate partial fix mutants.

To assess the impact of the new mutation operators on
fault localization, we ran MUSEUM for Bug1, Bug4, Bug8,
Bug5 and Bug7 without the new mutation operators. For
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Bug1, Bug4 and Bug8, the suspiciousness ranking of the
faulty line becomes significantly low (1,737 (89.6%) for
Bug1, 117 (62.9%) for Bug4, and 3,061 (61.2%) for Bug8).
For Bug5, the ranking of the faulty line changes from the
eighth to the ninth and the faulty line is not anymore the
most suspicious statement. For Bug7, the ranking of the
faulty line remains unchanged.

9.3. High Accuracy with Low Runtime Cost through Selec-
tive Mutation Analysis

The selective mutation analysis for MUSEUM can
achieve high fault localization accuracy with significantly
reduced runtime cost (e.g., MPS(SD,1) and TM can re-
duce the runtime cost up to 96% and identifies the faulty
statements as the most suspicious ones) (Section 8.3.1).
Also, more mutants and test cases can increase the fault
localization accuracy with the selective mutation analysis
(Figure 2).

Thus, MUSEUM should start with the mutants and test
cases selected by a selection strategy (e.g., MPS(SD,1) and
TM). Then, MUSEUM can add more mutants and test
cases by relaxing the parameter of the selection strategy or
changing the selection strategy. In this way, MUSEUM can
achieve high fault localization accuracy with low runtime
cost first and then increase the fault localization accuracy
gradually within the given time budget.

10. Conclusion and Future Work

We have presented MUSEUM which localizes bugs in
complex real-world multilingual programs in a language se-
mantics agnostic manner through mutation analyses. The
experiments and the case studies show that MUSEUM ac-
curately locates the faulty statements for all non-trivial
Java/C bugs. Also, we show that the accuracy of fault
localization for multilingual programs can be increased by
adding new mutation operators relevant with language in-
terface constraints. Finally, our selection strategies over
mutants and test cases significantly reduce the analysis
time with marginal accuracy loss.

As future work, we will add more mutation operators
targeting multilingual features and higher-order mutation
operators to reduce equivalent mutants and generate useful
mutants. Also, we will apply MUSEUM to an interactive
debugger such as Blink [21] to maximize the debugging
effectiveness. Finally, we will investigate how to utilize
MUSEUM to improve program repair and search-based
program analysis for multilingual programs.
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