
MUSEUM: Debugging Real-World Multilingual Programs Using Mutation Analysis

Shin Hong1, Taehoon Kwak2, Byeongcheol Lee3,∗, Yiru Jeon2, Bongseok Ko3, Yunho Kim2, Moonzoo Kim2

Abstract

Context: The programming language ecosystem has diversified over the last few decades. Non-trivial programs are
likely to be written in more than a single language to take advantage of various control/data abstractions and legacy
libraries.
Objective: Debugging multilingual bugs is challenging because language interfaces are difficult to use correctly and the
scope of fault localization goes beyond language boundaries. To locate the causes of real-world multilingual bugs, this
article proposes a mutation-based fault localization technique (MUSEUM).
Method: MUSEUM modifies a buggy program systematically with our new mutation operators as well as conventional
mutation operators, observes the dynamic behavioral changes in a test suite, and reports suspicious statements. To
reduce the analysis cost, MUSEUM selects a subset of mutated programs and test cases.
Results: Our empirical evaluation shows that MUSEUM is (i) effective: it identifies the buggy statements as the most
suspicious statements for both resolved and unresolved non-trivial bugs in real-world multilingual programming projects;
and (ii) efficient: it locates the buggy statements in modest amount of time using multiple machines in parallel. Also,
by applying selective mutation analysis (i.e., selecting subsets of mutants and test cases to use), MUSEUM achieves
significant speedup at the cost of marginal accuracy loss compared to the full mutation analysis.
Conclusion: MUSEUM locates the causes of real-world multilingual bugs accurately and efficiently in a language agnos-
tic manner through mutation analyses. Our light-weight analysis approach would play important roles as programmers
write and debug large and complex programs in diverse programming languages.

Keywords: language interoperability, foreign function interface, mutation analysis, debugging

1. Introduction

Modern software systems are written in multiple pro-
gramming languages to reuse legacy code and leverage the
languages best suited to the developers’ needs such as per-
formance and productivity. In other words, the feasibility
of a single general-purpose language for an entire program
becomes low in developing modern complex software for
diverse tasks. Over the last few decades, language de-
signers have made a variety of choices in designing the
syntax and semantics of their languages. The result is a
robust ecosystem where a few languages cover the most
use in part due to open source libraries and legacy code
while many languages exist for niche uses [1]. This ecosys-
tem encourages developers to write a multilingual program
which is a non-trivial program written in more than a sin-
gle language. High-level languages such as Java, Python,
and OCaml provide standard libraries, which typically call
legacy code written in low-level languages (e.g., C) to inter-
face with the operating system. A number of the projects

∗Corresponding author.
1Handong Global University, hongshin@handong.edu
2KAIST, {thkwak, podray, kimyunho}@kaist.ac.kr, moon-

zoo@cs.kaist.ac.kr
3GIST, {byeong, bsk}@gist.ac.kr

for the legacy libraries that have evolved for decades pro-
vide language bindings for multiple different languages. A
large scale software project employs a number of libraries
written in multiple languages.

Correct multilingual programs are difficult to write in
general due to the complex language interfaces such as
Java Native Interface (JNI) and Python/C that require the
programs to respect a set of thousands of interface safety
rules over hundreds of application interface functions [2, 3].
Moreover, if a bug exists at interactions of code written in
different languages, programmers are required to under-
stand the cause-effect chains across language boundaries.
Despite the advance of automated testing techniques for
complex real-world programs [4, 5, 6, 7, 8], debugging mul-
tilingual bugs (e.g., a bug whose cause-effect execution
chain crosses language boundaries) in real-world programs
is still challenging and consumes significant human effort.
For instance, Bug 322222 in the Eclipse bug repository
crashes JVMs with a segmentation fault in C as an ef-
fect when the program throws an exception in Java as the
cause (Section 6.5). Locating and fixing this bug took a
heroic debugging effort for more than a year from 2009 to
2010 with hundreds of comments from dozens of program-
mers before the patch went into Eclipse 3.6.1 in September
2010.

The existing bug detectors targeting multilingual

Preprint submitted to Elsevier Thursday 11th August, 2016

bugs [2, 9, 10, 11, 12, 13, 14, 15, 16] are not effective in
debugging this case, because they can only report viola-
tions of predefined interface safety rules, but cannot in-
dicate the location of the bug, especially when the bug
does not involve any known safety rule violations explic-
itly. Moreover, these bug detectors do not scale well to a
large number of languages and various kinds of program
bugs since they have to deeply analyze the semantics of
each language for each kind of bug.

This article proposes MUSEUM, a mutation-based fault
localization (MBFL) technique for locating multilingual
bugs in real-world programs. Mutation-based fault local-
ization (MBFL) is an approach recently proposed for lo-
cating a code lines that causes a test failure accurately.
An MBFL technique takes target source code and a test
suite including failing test cases as input, and assesses sus-
piciousness of each statement in terms of its relevance to
the error. To calculate suspiciousness scores, it observes
how testing results (i.e., pass/fail) change if the statement
is modified/mutated. MUSEUM extends an MBFL tech-
nique MUSE [17] which is limited for targeting monolin-
gual bugs (i.e., bugs in C). In contrast to MUSE which
mutates only C code in a simple syntactic way, MUSEUM
applies new mutation operators that systematically mod-
ify the multilingual features/behaviors of a target program
(see Section 3.3) and traditional mutation operators to-
gether to localize multilingual faults accurately.

Our empirical evaluation on the eight real-world Java/C
bugs (Sections 5– 7) demonstrates that MUSEUM locates
the bugs in non-trivial real-world multilingual programs
far more accurately than the state-of-the-art spectrum
based fault localization (SBFL) techniques. MUSEUM
identifies the buggy statements as the most suspicious
statements for all eight bugs (Section 4). For example,
for Bug 322222 in the Eclipse bug repository, MUSEUM
indicates the statement at which the developer made a fix
as the most suspicious statement among total 3494 can-
didates (Section 6.5). Furthermore, one case study on an
unresolved Eclipse bug (i.e., an open bug whose fix is not
yet made) clearly demonstrates that MUSEUM generates
effective information for developers to identify and fix the
bug (Section 7).

In summary, this paper’s contributions are:

1. An automated fault localization technique (i.e., MU-
SEUM) which is effective to detect multilingual bugs
which are known as notoriously difficult to debug.

2. New mutation operators on multilingual behavior
which are highly effective to locate multilingual bugs
(Section 3.3)

3. Detailed report of the eight case studies to figure out
why and how the proposed technique can localize real-
world multilingual bugs accurately (Sections 5–7).

This article extends our prior publication [18] in three
ways: (i) Section 3.3 elaborates the program mutation
with the four additional mutation operators to increase the
accuracy of localizing multilingual bugs (ii) Sections 5–6

describe the case studies on the five additional resolved
bugs (Bug1,2,3,5,7). Also, Section 7 illustrates a case
study on one unresolved open bug (Bug8) to demonstrate
how MUSEUM can guide developers to debug a complex
multilingual bug (iii) Section 8 shows that MUSEUM can
speedup the fault localization process significantly at the
cost of marginal accuracy loss by applying selective mu-
tation analysis (i.e., selecting subsets of mutants and test
cases to use).

The rest of the paper is organized as follows. Section 2
describes background on multilingual debugging and fault
localization techniques. Section 3 presents MUSEUM in
detail. Section 4 overviews the empirical study on the
eight real-world multilingual bugs. Sections 5 presents the
case studies on the bugs that violate the safety rules of
language interfaces. Section 6 describes the case studies
on general multilingual bugs. Section 7 shows a case study
where MUSEUM successfully helped a developer identify
a faulty statement to fix an unresolved real-world open
bug. Section 8 shows how to reduce the runtime cost of
MUSEUM while maintaining high fault localization accu-
racy by applying selective mutation analysis. Section 9
discusses the observations made through the experiment.
Section 10 concludes this paper with future work.

2. Background and Related Work

2.1. Multilingual Bugs

A multilingual program is composed of several pieces
of code in different languages that execute each others
through language interfaces (e.g., JNI [3] and Python/C).
These multilingual programs introduce new classes of pro-
gramming bugs which obsolete the existing monolingual
debugging tools and require much more debugging efforts
of programmers than monolingual programs. We classify
multilingual bugs into language interface bugs and cross-
language bugs.

2.1.1. Language Interface Bugs

Language interfaces require multilingual programs to
follow safety rules across language boundaries. Lee et
al. [2] classify safety rules in Java/C programs into three
classes: (1) state constraints (2) type constraints (3) re-
source constraints :

• State constraints ensure that the runtime system of
one language is in a consistent state before transiting
to/from a system of another language. For instance,
JNI requires that the program is not propagating a
Java exception before executing a JNI function from
a native method in C.

• Type constraints ensure that the programs in different
languages exchange valid arguments and return val-
ues of expected types at a language boundary. For
instance, the NewStringUTF function in JNI expects
its arguments not to be NULL in C.

2

• Resource constraints ensure that the program man-
ages resources correctly. These resource constraints
are comparable to the contracts of calling the free

function for dynamically allocated memory in C. For
example, a local reference l to an Java object obtained
in a native method m1 should not be reused in another
native method m2 since l becomes invalid when m1

terminates [3] (see Section 5.1 as an example of a mul-
tilingual bug that violates this resource constraint).

For instance, the manuals for JNI [3] and Python/C de-
scribe thousands of safety rules over hundreds of API func-
tions. When a program breaks an interface safety rule, the
program crashes or generates undefined behaviors. For in-
stance, a bug of mishandling a Java exception in a native
method crashes J9 JVM while HotSpot JVM ignores the
propagating exception [2].

2.1.2. Cross-Language Bugs

Cross-language bugs have a cause-effect chain that goes
through language interfaces while respecting all interface
safety rules. For instance, a program would leak a C object
referenced by a Java object that is garbage collected at
some point. In this case, the cause of the memory leak is
in Java at the last reference to this Java object while the
effect is in C (see Section 3.1). On the other hand, the
same program would respect all safety rules of language
interfaces.

2.2. Debugging Multilingual Bugs

Debugging a program bug consists of the following three
steps: (1) detecting an error (2) locating buggy statements
(i.e., the code lines responsible for the error) (3) creating
a fix on the buggy statements. These three steps are more
challenging for multilingual programs than monolingual
programs because interfaces and interactions among dif-
ferent languages should be considered, which increases the
complexity of debugging.

For the first step (i.e., detecting a multilingual error),
there exist dozens of static and dynamic analysis tech-
niques [2, 9, 10, 11, 12, 15, 16]. Some of these techniques
provide bug-checkers that detect/predict interface safety
rule violations (for example, CheckJNI which is a built-in
dynamic JNI checkers in JVMs such as HotSpot and J9).

Unfortunately, few techniques support the second step
(i.e., fault localization of multilingual bugs). Although
the aforementioned static and dynamic analysis techniques
can detect/predict multilingual errors, locating the buggy
statements that cause the multilingual errors is still chal-
lenging because the root cause of multilingual errors is
often non-trivial and located far from the error sites (see
Sections 5–6). Although multilingual debuggers may sup-
port programmers to locate the causes of the bugs manu-
ally [19], it still consumes a considerable amount of time
to localize a complex multilingual bug (e.g., Bug 322222
of the Eclipse bug repository).

2.3. Mutation-Based Fault Localization

Fault localization techniques [20, 21] aim to locate the
buggy statement that causes an error in the target pro-
gram (i.e., the second step of debugging) by observing
test runs. Fault localization has been extensively studied
for monolingual programs both empirically [17, 22, 23]and
theoretically [24, 25].

Spectrum-based fault localization (SBFL) techniques in-
fer that a code entity is suspicious for an error if the code
entity is likely executed when the error occurs. Note that
SBFL techniques are language agnostic because they calcu-
late the suspiciousness scores of target code entities by us-
ing the testing results (i.e., fail/pass) of test cases and the
code coverage of these test cases without complex seman-
tic analyses. However, the accuracy of SBFL techniques
are often too low to localize faults in large real-world pro-
grams.

To improve the accuracy of fault localization, mutation-
based fault localization techniques (MBFL) are proposed
recently, which analyze diverse program behaviors by using
mutants (i.e., target program versions that are generated
by applying simple syntactic code change such as replac-
ing if(x>10) with if(x<10)). MBFL techniques are also
language agnostic since they utilize only the testing results
(i.e., fail/pass) of test cases on the original target pro-
gram and its mutants. Moon et al. [17] demonstrate that
their MBFL technique (calling it MUSE) is 6.5 times more
precise than the state-of-the-art SBFL techniques such as
Ochiai and Op2 on the 15 versions of the SIR subjects.
The key idea of MUSE is as follows. Consider a faulty
program P whose executions with some test cases result
in error. Let mf be a mutant of P that mutates the faulty
statement, and mc be one that mutates a correct state-
ment. MUSE assesses the suspiciousness of a statement
based on the following two observations:

• Observation 1: a failing test case on P is more likely
to pass on mf than on mc. Mutation is more likely to
cause the tests that failed on P to pass on mf than on
mc because a faulty program might be partially fixed
by modifying (i.e., mutating) a faulty statement, but
not by mutating a correct one. Therefore, the number
of the test cases whose results change from fail to pass
will be larger for mf than for mc.

• Observation 2: a passing test case on P is more likely
to fail on mc than on mf . A program is more easily
broken by mutating a correct statement than by mu-
tating a faulty statement. Thus, the number of the
test cases whose results change from pass to fail will
be greater for mc than mf .

Note that the aforementioned observations are on multi-
ple statements to compare relative suspiciousness of state-
ments among target statements to identify more suspicious
statements than the others (e.g., a statement s1 is more
suspicious than s2 and s3). Moon et al. [17] showed that

3

these observations are valid through the experiments on
the 15 versions of SIR subjects (e.g., the number of the
failing test cases on P that pass on mf is 1435.9 times
larger than the number on mc on average). Also note that
the observation 2 is important because the observation
2 can serve as a tiebreaker by differentiating statements
that are equally suspicious in terms of the observation 1
(see the case study results on Bug 7 (Sect. 5.2.2), Bug 2
(Sect. 6.2.2), Bug 3 (Sect. 6.3.2), and Bug 6 (Sect. 6.5.2)).

There exist a few other MBFL approaches. To localize
faults precisely, Zhang et al. [26] measure fault-inducing
change in regression testing and Papadakis et al. [27, 28]
measure mutant similarities. In contrast, MUSE utilizes
the differences introduced by mutants for fault localiza-
tion.

3. Mutation-Based Fault Localization for Real-
World Multilingual Programs

To alleviate the difficulty of debugging multilingual pro-
grams, we have developed a MUtation-baSEd fault lo-
calization technique for real-world mUltilingual prograMs
(MUSEUM). Section 3.1 shows an motivating example of
mutation-based fault localization for a multilingual bug.
Section 3.2 describes the fault localization process of MU-
SEUM. Section 3.3 explains new mutation operators of
MUSEUM designed for directly mutating interactions at
language interfaces. Section 3.4 overviews the prototype
implementation of MUSEUM.

3.1. Motivating Example

3.1.1. Target Program

Figure 1 presents a target Java/C program with a mem-
ory leak bug failing the assertion at Line 71 (this example
is a simplified version of a real-world bug found in Azureus
3.0.4.2 (Bug1 in Table 2)). The program is composed of
source files in C and Java defining three Java classes: CPtr,
Client, and ClientTest.
CPtr (Lines 2–31) characterizes the peer class idiom [3,

p. 123] of wrapping native data structures, which is widely
used in language bindings for legacy C libraries. The peer

field (Line 4) is an opaque pointer from Java to C to point
to a dynamically allocated integer object in C. The CPtr

constructor (Line 9) executes the nAlloc native method
(Lines 17–21) to allocate an integer object in C and stores
the address of the integer object in peer. While JVMs au-
tomatically reclaim a CPtr object once the object becomes
unreachable in the Java heap, the clients of CPtr are re-
quired to dispose manually the integer object by executing
dispose (Line 12) on the CPtr object. If the client does
not dispose an CPtr object before it becomes unreachable,
the peer integer object becomes a unreachable memory
leak in C.
Client (Lines 34–45) is a client Java class of using CPtr.

The m field (Line 35) holds a reference to a CPtr object.
add (Lines 36–39) and remove (Lines 40–45) write/read a

value to/from the CPtr object respectively. add instanti-
ates a CPtr object, assigns the reference of the new object
to m, and then writes a value to the object. remove reads
the value of the CPtr object pointed by m, disposes the

1 : /* CPtr.java */
2 : public class CPtr {
3 : static {System.loadLibrary("CPtr");}
4 : private final long peer;
5 : private native long nAlloc();
6 : private native void nFree(long pointer);
7 : private native int nGet(long pointer);
8 : private native void nPut(long pointer, int x);
9 : public CPtr(){peer = nAlloc();}
10: public int get(){return nGet(peer);}
11: public void put(int x){nPut(peer, x);}
12: public void dispose(){nFree(peer);} }
13:
14: /* CPtr.c */
15: #include <jni.h>
16: #include <stdlib.h>
17: jlong Java_CPtr_nAlloc(JNIEnv *env,jobject o){
18: jint *p;
19: p =(jint *)malloc(sizeof (jint)); /*Mutant m1*/
20: return (jlong)p;
21: }
22: void Java_CPtr_nFree(JNIEnv *env,jobject o,jlong p){
23: free((void *)p);
24: }
25: jint Java_CPtr_nGet(JNIEnv *env,jobject o,jlong p){
26: return *(jint *)p;
27: }
28: void Java_CPtr_nPut(JNIEnv *env,jobject o,jlong p,
29 jint x){
30: *((jint *)p) = x;
31: }
32:
33: /* Client.java*/
34: public class Client {
35: CPtr m = null;
36: void add(int x){
37: m = new CPtr(); /*Mutant m2*/
38: m.put(x);
39: }
40: int remove(){
41: int x = m.get();
42: m.dispose();
43: m = null;
44: return x; /*Mutant m3*/
45: } }
46:
47: /* ClientTest.java */
48: import java.util.*;
49: public class ClientTest {
50: static final List pinnedObj=new LinkedList();
51: public static Object pinObject(Object o){
52: pinnedObj.add(o);
53: return o;
54: }
55: void passingTest(){ // passing test case
56: try {
57: Client d = new Client() ;
58: d.add(1) ;
59: assert d.remove() == 1;
60: } catch(VirtualMachineError e) {
61: assert false; /*potential memory leak in C*/
62: }
63: }
64: void failingTest(){ // failing test case
65: try {
66: Client d = new Client() ;
67: d.add(1) ;
68: d.add(2) ;
69: assert d.remove() == 2;
70: } catch (VirtualMachineError e) {
71: assert false; /*potential memory leak in C*/
72: }
73: } }

Figure 1: A Java/C program leaking memory in C after garbage
collection in Java

4

CPtr object, deletes the reference to the object, and re-
turns the value of the CPtr object.
ClientTest (Lines 48–73) is a Java class of driving test

cases directly for Client and indirectly for CPtr. It con-
tains one passing test passingTest (Lines 55–63) and one
failing test failingTest (Lines 64-73). The testing oracle
validates a program execution by using (1) the assertion
statements (Lines 59 and 69) and (2) the exception han-
dler statements (Lines 61 and 71). The assertion state-
ments at Line 59 and Line 69 validate the program state
after executing a sequence of add and remove by check-
ing if remove correctly returns the last value given by
add. On the other hand, the exception handler statements
at Line 60 and Line 70 detect failures at arbitrary loca-
tions. For instance, runtime monitors such as QVM [29]
and Jinn [2] would throw an asynchronous Java exception
either at GC safe points or at language transitions.

3.1.2. Passing Test

passingTest executes successfully. It satisfies the as-
sertion statement at Line 59 because both the CPtr object
and the peer integer object in Java and C are reachable,
and remove at Line 59 returns 1 stored at Line 58. The
runtime monitor does not throw any Java exception in-
dicating a memory leak in C because the native integer
object is released in the call to remove.

3.1.3. Failing Test

failingTest fails at Line 71 because the runtime mon-
itor throws an exception due to a memory leak in C. The
test case creates one Client object (Line 66) and two CPtr

objects (Lines 67–68), and two native integer objects. The
first native peer integer object is a leak in C heap while all
the other objects are reclaimed automatically by garbage
collectors and manually by C memory deallocator (i.e.,
dispose). The first CPtr object and its peer integer object
are created in a call to add at Line 67. Both become un-
reachable after the second call to add at Line 68. The CPtr
object would be garbage collected while the program does
not manually execute dispose on the unreachable native
integer peer object. The runtime monitor would perform
a garbage collection and find out the native integer peer
object is an unreachable memory leak. This memory leak
bug appears because add does not call dispose if m already
points to a CPtr object. Thus, we indicate Line 37 as the
buggy statement.

3.1.4. Our Approach

MUSEUM generates mutants each of which is obtained
by mutating one statement of the target code. Then, MU-
SEUM checks the testing results of the mutants to localize
buggy statements. For example, suppose that MUSEUM
generates the following three mutants m1, m2, and m3 by
mutating each of Lines 19, 37, and 44.

m1, a mutant obtained by removing Line 19
This mutation resolves the memory leak as the mutant

will not allocate any native memory. However, both
test cases fail with the mutant because an access to
p raises an invalid memory access (at nGet/nPut of
CPtr).

m2, a mutant obtained by inserting a statement of pin-
ning the Java reference before Line 37
This mutation inserts a statement of pinning the ob-
ject: ClientTest.pinObject(m); before Line 37,
where pinObject stores the Java reference m

into a global data structure pinnedObjects (see
Pin-Java-Object mutation operator in Table 1).

This mutation intends to prolong the lifetime of the
Java object referenced by m to the end of the pro-
gram run. This mutation resolves the memory leak
in failingTest because the first CPtr object will not
be reclaimed and, thus, will not leak its peer native
integer object. The two test cases pass with the mu-
tant because the mutation does not introduce any new
bug.

m3, a mutant obtained by replacing the return value
with 0 in Line 44
This mutation replaces the variable x with an inte-
ger constant 0 at Line 44. This mutation fails the
assertion at Lines 59 and 69 since the return value of
remove is always 0.

From these testing results, MUSEUM concludes that
Line 37 is more suspicious than Line 19 and Line 44 be-
cause the failing test case passes only on m2 and the pass-
ing test case fails on m1 and m3 (see Step 4 of Section 3.2).

Locating the root cause of this memory leak poses chal-
lenges in runtime monitoring and fault localization tech-
niques. Memory leak detectors [30, 31] locate memory
leaks and their allocation sites, not the cause of the leaks
in general. While some leak chasers [29, 32, 33] locate the
cause of memory leak, they do not scale well across lan-
guage boundaries since they do not track opaque pointers
and their staleness values across languages. SBFL tech-
niques cannot localize the bug because both passingTest

and failingTest cover the same branches/statements in
their executions. Consequently, SBFL techniques cannot
indicate any code element that is more correlated with the
failure than the others.

3.2. Fault Localization Process of MUSEUM

Figure 2 describes how MUSEUM localizes faults. MU-
SEUM takes the target source code and the test cases of
the target program as input, and returns the suspicious-
ness scores of the target code lines as output. MUSEUM
has the following basic assumptions on a target program
P and a test suite T :

1. Existence of test oracles
A target program has explicit or implicit test ora-
cle mechanism (i.e., user-specified assert, runtime

5

Mutant
generator

Cov. measure
Target
program

P

Testing

Language interface
rule checker

(e.g. CheckJNI, JINN)

Test
suite

T

Selected
test cases

TS

Target
stmts.

St

Mutant
generation

C module

Java module

Program
mutants

m1, m2,….mK

Selected
test cases

TS

Mutant
testing

Susp. score
& ranking

computation

Test
results of
TS on the
mutants

Susp.
score,
ranking

Step 1 Step 2 Step 3 Step 4

C module

Java module

Other languages

Other language
Test results
of TS on P

Figure 2: Fault localization process of MUSEUM

failure such as null-pointer dereference, and/or run-
time monitor such as Jinn [2]) which can detect errors
clearly.

2. Existence of a failing test case
A target program has test cases, at least one of which
violates a test oracle.

MUSEUM operates in the following four steps:

• Step 1: MUSEUM receives P and T and selects tar-
get statements St and test cases TS . St is the set of
the statements of P that are executed by at least one
failing test case in T . MUSEUM selects St as target
statements for bug candidates. Also, MUSEUM se-
lects and utilizes a set of test cases TS , each of which
covers at least one target statement because the other
test cases may not be as informative as test cases in TS

for fault localization. To select St and TS , MUSEUM
first runs P with T while storing the test results and
the test coverage for each test case. Testing results
are obtained from the user given assert statements,
runtime failures, and multilingual bug checkers such
as CheckJNI, Jinn [2], and QVM [29] (Section 2.1).

• Step 2: MUSEUM generates mutant versions of P
(i.e., m1,m2, ...mk) each of which is generated by mu-
tating each of the target statements. MUSEUM may
generate multiple mutants from a single statement
since one statement may contain multiple mutation
points [34]. MUSEUM can localize a bug spanning on
multiple statements (not limited for locating a single-
line bug). This is because mutating a part of a bug
(i.e., one statement among multiple statements that
constitute a bug) can still change a failing test case
into passing one, which will increase the suspicious-
ness of the statement constituting the bug [17].

To reduce the runtime cost, MUSEUM generates only
one mutant for every applicable operator at each mu-
tation point. For example, if(x+2>y+1) has one mu-
tation point (>) for ORRN (mutation operator on re-
lational operator) and two points (2 and 1) for CCCR
(mutation operator for constant to constant replace-
ment) [34]. MUSEUM generates only one mutant
like if(x+2<y+1) using ORRN and only if(x+0>y+1)

and if(x+2>y+0) using CCCR.

• Step 3: MUSEUM tests all generated mutants with
TS and records the testing results. MUSEUM runs a
mutant with a passing test case only if the test case
covers the mutated statement. Otherwise, it is obvi-
ous that the testing result is the same as the original
program. We consider a test fails if the testing time
exceeds a given time limit since a mutation may in-
duce an infinite loop. Note that this step can be paral-
lelized on multiple machines for fast fault localization
by distributing mutant testing tasks to the multiple
machines.

• Step 4: MUSEUM compares the test results of TS on
P with the test results of TS on all mutants. Based on
these results, MUSEUM calculates the suspiciousness
scores of the target statements of P as follows.

For a statement s of P , let f(s) be the set of tests that
covers s and fails on P , and p(s) the set of tests that
covers s and passes on P . Let mut(s) = {m1, . . .mk}
be the set of all mutants of P that mutates s. For each
mutant mi ∈ mut(s), let fmi

and pmi
be the set of

failing and passing tests on mi respectively. And let
f2p and p2f be the numbers of changed test result
from fail to pass and vice versa between P and all
mutants of P . The suspiciousness metric of MUSEUM
is defined as follows:

Susp(s) = 1
|mut(s)|

∑
mi∈mut(s)(

|f(s)∩pmi
|

f2p − |p(s)∩fmi
|

p2f)

The first term,
|f(s)∩pmi

|
f2p , reflects the first observa-

tion: it is the proportion of the number of tests that
failed on P but now pass on a mutant mi that mutates
s over the total number of all failing tests that pass
on a some mutant (the suspiciousness of s increases if
mutating s causes failing tests to pass). Similarly, the

second term,
|p(s)∩fmi

|
p2f , reflects the second observa-

tion, being the proportion of the number of tests that
passed on P but now fail on a mutant mi that mutates
s over the total number of all passing tests that fail
on a some mutant (the suspiciousness of s decreases if
mutating s causes passing tests to fail). After divid-
ing the sum of the first term and the second term by
|mut(s)|, Susp(s) indicates the probability of s to be
a faulty statement based on the changes of test results

6

Table 1: New mutation operators of MUSEUM

No. Mutation operator

Corresponding
language
interface rule
(Section 2.1)

1 Clear-pending-exceptions State
2 Propagate-pending-exceptions constraints
3 Throw-new-exceptions

4 Type-cast-to-jboolean Type
5 Type-cast-to-superclass constraints
6 Replace-array-elements-with-constants

7 Replace-target-Java-member

8 Make-global-reference Resource
9 Remove-global-reference constraints
10 Make-weak-global-reference

11 Remove-weak-global-reference

12 Make-local-reference

13 Remove-local-reference

14 Pin-Java-object

15 Switch-array-release-mode

on P and mut(s). If a target statement has no mutant
(i.e., |mut(s)|=0), Susp(s) is defined as 0. MUSEUM
defines the first term as 0 if f2p is 0. Similarly, the
second term is defined as 0 if p2f is 0. For a concrete
example of how to calculate the suspiciousness score
of MBFL, see Section II.C of Moon et al. [17].

3.3. New Mutation Operators for Multilingual Behavior

In addition to the conventional mutation operators, MU-
SEUM utilizes new mutation operators to directly mutate
interactions at language interfaces and effectively localize
multilingual bugs. Specifically, we introduce 15 new muta-
tion operators in Table 1, which change the semantics of a
target program regarding the JNI constraints based on the
language interface specifications [3, 35] and the previous
bug studies [2, 36, 37, 38, 39, 40].

3.3.1. New Mutation Operators for State Constraints

1–3. These mutation operators clear, propagate, or gener-
ate a pending exception in a native method to en-
sure the JVM state constraints. Targets of the three
mutation operators are all JNI function calls (i.e.,
(*env)->< JNIFunction >(...);). For example,
Clear-pending-exceptions clears a pending excep-
tion in a current thread by inserting

(*env)->ExceptionClear(env);

immediately before a JNI function call and immedi-
ately after a JNI function call that may throw a Java
exception.4 Propagate-pending-exceptions propa-
gates a pending exception to the caller by inserting

if((*env)->ExceptionOccurred(env)) return;

4154 among total 229 JNI functions may throw an exception [3].

immediately before a JNI function call and imme-
diately after a JNI function call that may throw a
Java exception. Throw-new-exceptions creates a
new Java exception by inserting

Throw New Java Exception(env,

"java/lang/Exception");

immediately before a JNI function call and immedi-
ately after a JNI function call that may throw a Java
exception. The first and the second mutation opera-
tors are defined based on a best practice in JNI pro-
gramming [38] and general solutions for JNI exception
bugs [10]. The third mutation operator is motivated
by a case of a real-world multilingual bug regarding
exception handling across language boundaries [41].

3.3.2. New Mutation Operators for Type Constraints

4. Type-cast-to-jboolean explicitly converts an inte-
ger expression to JNI TRUE or JNI FALSE when the
expression is assigned to a jboolean variable. 5 In
other words, Type-cast-to-jboolean changes an as-
signment jbool var = int expr; with

jbool var=int expr?JNI TRUE:JNI FALSE;

This mutation operation is motivated by the common
pitfall of JNI programming [3, pp.132–133].

5. Type-cast-to-superclass changes a JNI call
that gets the reference of a class of a given
object to get the reference of the super-
class of the class by mutating jclass cls =

(*env)->GetObjectClass(env,obj); with

jclass cls=(*env)->GetSuperclass(env,

((*env)->GetObjectClass(env,obj)));

This mutation operator is motivated by a report of a
real-world bug found in Eclipse 3.4 [2].

6. Replace-array-elements-with-constants replaces
a Java array reference with another constant
Java array. This mutation operator changes
a Java array reference used at a JNI func-
tion call to the reference to the predefined con-
stant array. For example, this mutation operator
change (*env)->GetIntArrayElements(env, arr,

null); into

(*env)->GetIntArrayElements(env,

IntConstArr, null);

This mutation is inspired by a real-world bug with an
incorrect array data transfer from Java to C [42].

5jboolean is an 8 bit integer type. If a 32 bit integer value is
assigned to a jboolean variable, the variable can have an unintended
Boolean value due to the truncation (e.g., jboolean var = 256 will
make jboolean var as false).

7

7. Replace-target-Java-member replaces a target field
in a class member access with the field of a different
class member with the same type, by mutating
(*env)->GetFieldID(env, class, NAME1, SIG);

with

(*env)->GetFieldID(env, class,

NAME2, SIG);

where NAME1, NAME2, and SIG are the strings of the
original and the changed field names and their type
signature, respectively. This mutation operator is mo-
tivated by a common pitfall in JNI programming [3,
pp.131–132].

3.3.3. New Mutation Operators for Resource Constraints

8–13. These mutation operators increase or decrease the life
time of a reference to a Java object (and probably
the life time of the referenced Java object too). For
example, Make-global-reference increases the life
time of a local reference l by making the reference as a
global one. In other words, Make-global-reference
inserts the following statement after an assignment
statement to a local reference l (i.e., l = expr):

l = (*env)->NewGlobalRef(env,l);

In contrast, Remove-global-reference decreases the
life time of a global reference g (and probably the
referenced Java object too) by inserting the following
statement for a global reference g:

(*env)->DeleteGlobalRef(env,g);

We have developed four other mutation operators for
local references and weak global references. These
mutation operators are related to a bug fix pattern
regarding reference errors in native code [39].

14. Pin-Java-object prevents garbage collectors from
reclaiming a Java object by placing a Java reference to
the object into a class variable in Java before a refer-
ence to the object is removed by an assignment state-
ment. Before an assignment statement x = obj;, the
mutation operator inserts a statement:

Test.pinnedObjects.add(x) ;

where Test.pinnedObjects is a Java class variable
of a list container type. The Java object pointed
by x is transitively reachable from the class variable,
and Java garbage collectors cannot reclaim the object.
This mutation operator intends to extend the lifetime
of Java objects in a target program and influence in-
teractions of Java and native memory management.
This mutation operator is inspired by a safe memory
management scheme of SafeJNI [40].

15. Switch-array-release-mode alternates the release
mode of a Java array access. The release mode
decides whether an updated native array will be
copied back to the Java array or discarded. For
every (*env)->Release<Type>ArrayElements(env,

arr, elems, mode), this mutation operator changes
the mode value from 0 to JNI ABORT, or vice versa.
This mutation operator is motivated by a best prac-
tice in JNI programming [38].

3.4. Implementation

We have implemented MUSEUM targeting programs
written in Java and C (support for other languages will be
added later). MUSEUM is composed of the existing mu-
tation testing tools for C and Java, together with the fault
localization module that analyzes testing results and com-
putes suspiciousness scores. MUSEUM consists of 1,500
lines of C/C++ code and 1,802 lines of Java code. MU-
SEUM uses gcov and PIT [43] to obtain the coverage in-
formation on C code and Java code of a target program,
respectively.

MUSEUM uses the existing mutation tools Proteum/IM
2.0 [44] for C and PIT version 0.33 for Java bytecode to-
gether with the 15 new mutation operators for multilingual
behaviors (Section 3.3). Proteum/IM implements 107 mu-
tation operators defined in Agrawal et al. [34]. Among the
107 mutation operators, MUSEUM uses 75 mutation op-
erators that change only one statement. PIT implements
14 mutation operators all of which are used by MUSEUM.
Among the 15 new mutation operators, 14 new mutation
operators for C code are implemented with Clang version
3.4 [45], and the one new mutation operator for Java (i.e.,
Pin-Java-object) is built with the ASM bytecode engi-
neering tool version 3.3.1 [46].

4. Experiment Setup and Result

We have evaluated the effectiveness of MUSEUM on
the eight bugs in four real-world multilingual software
projects. Section 4.1 describes the experiment setup and
Section 4.2 presents the fault localization results. The full
experiment data and the target program code are available
at http://swtv.kaist.ac.kr/data/museum.zip.

4.1. Experiment Setup

4.1.1. Real-world Multilingual Program Bugs

Table 2 presents the eight multilingual bugs in four real-
world software projects with their programs, symptoms,
line of code (LOC) in Java and C, the number of the
test cases used to localize the fault, and bug reports or
bug-fixing revisions of the target programs. Azureus is
a popular P2P file-sharing application. Sqlite-jdbc is a
Java Database Connectivity (JDBC) library to access the
SQLite relational database management system written in
C. Java-gnome is a set of language bindings for the Java

8

Table 2: Target multilingual Java/C bugs, their symptoms, sizes of the target code, the number of test cases used, and references

Size of target program # of
Bug report or bug-fixing revisionBug Target program Symptom Java NativeC TC

Files LOC Files LOC used

Bug1 Azureus 3.0.4.2 Memory leak in C 2,705 340.6K N/A N/A 8 Rev. 1.64 of ListView.java [47]
Bug2 sqlite-jdbc 3.7.8 Assertion violation in Java 20 4.6K 3 1.8K 150 Issue 16 [48]
Bug3 sqlite-jdbc 3.7.15 Assertion violation in Java 19 4.2K 2 1.7K 159 Issue 36 [49]
Bug4 java-gnome 4.0.10 Invalid JNI reference in C 1,097 64.2K 496 65.6K 170 Bug 576111
Bug5 java-gnome r-658 Segmentation fault in C 1,134 67.1K 514 69.2K 184 Subversion revision 659 [50]
Bug6 SWT 3.7.0.3 Segmentation fault in C 582 118.7K 29 43.3K 50 Bug 322222
Bug7 sqlite-jdbc 3.6.0 Exception state violation in C 25 4.9K 2 0.6K 112 UDFTest bug in Blink [51]
Bug8 SWT 4.3.0 Segmentation fault in C 591 126.6K 29 48.5K 204 Bug 419729 [52]

programming language for use in the GNOME desktop en-
vironment. SWT (Standard Widget Toolkit) is an Eclipse
widget toolkit for Java to provide user-interface facilities.
We selected these projects as target projects because these
projects have multilingual bugs that had been analyzed by
other practitioners and researchers.

As described in the assumption 1 for fault localization
(Section 3.2), the bug reports and commit logs in the last
column describe the symptoms of the target bugs so that
our test oracle detects test failures. A corresponding bug
report indicates both buggy version and its fixed version.
All target programs are written in Java and C except
Azureus. While Azureus is a pure Java program, it trig-
gers a memory leak in C when it misuses the application
program interface of the Eclipse SWT library written in
Java and C.

4.1.2. Test Cases

Regarding test cases, we have used the test cases main-
tained by the developers of the target programs. We utilize
the test cases of the fixed version, at least one of which
reveals the target bug in the buggy version (see the as-
sumption 2 in Section 3.2). If the fixed version does not
have a test case that fails on the buggy version, we create
a failing test case based on the bug report. In addition, to
localize a fault accurately, we focus to localize one bug at
a time by building a new test suite out of the original test
suite. The new test suite consists of one failing test case
and all passing test cases that cover at least one statement
executed by the failing test case.

4.1.3. System Platform

The experiments were performed on the 30 machines
equipped with Intel i5 3.4 GHz with 8 GB main memory
(we performed experiment on one core per machine). All
machines run Ubuntu 8.10 32-bits, gcc 4.3.2, and Open-
JDK 1.6.0. MUSEUM distributes tasks of testing each
mutant to the 30 machines. We set the time limit (10 sec-
onds) for each test run on a mutant to avoid the infinite
loop problem caused by mutation. Time taken to execute
a test run was less than one second on the eight subjects
on average.

4.2. Experiment Results

Table 3 reports the experiment data on the eight bugs.
The second row shows the number of the source target
lines executed by the failing test case (see Step 1 of Sec-
tion 3.2). The third row shows the total number of the
mutants generated by MUSEUM, and the fourth row de-
scribes the total number of the target lines on which at
least one mutant is generated. The fifth and sixth rows
show the number of the mutants on which testing results
have changed. The last row describes the runtime cost.

For example, to localize Bug4, we built a test suite con-
taining one failing test case and 169 passing test cases out
of the original test suite (see the eighth column of the fifth
row of Table 2). MUSEUM generated 718 mutants (at
least one mutant for 71% of the target lines (=132/186)).
Among the 718 mutants, there are two mutants on which
the failing test case passes (see the sixth row of Table 3). 6

We call such mutants as “partial fix” because the failing
test case passes on the mutant (but passing test cases may
fail on these mutants). The table shows that only 0.28%
of the mutants are partial fixes (=2/718). Note that par-
tial fix mutants at s can largely increase the suspiciousness
score of s since partial fix mutants increase the numerator
of the first term of the suspiciousness formula whose de-
nominator f2p is usually small (e.g., 2 for Bug4) (see the
formula in the Step 4 of Section 3.2). Regarding the time
cost, MUSEUM takes 25 minutes to localize Bug4 using
30 machines.

Table 4 compares the fault localization results of MU-
SEUM and the cutting-edge SBFL techniques including
Jaccard [53], Ochiai [54], and Op2 [55]. Each entry re-
ports the suspiciousness ranking which is the maximum
number of the statements to examine until finding the
faulty statement described in the bug report. The per-
centage number in the parentheses indicates the normal-
ized ranking of the faulty statement out of the total target
statements (i.e., ranking

of the target statements). The second row
of the table clearly shows that MUSEUM accurately iden-
tifies the buggy statement. MUSEUM ranks the buggy
statements in Bug1, Bug3, Bug4, Bug7, and Bug8 as the

6The number of mutants that make the failing test case pass is
equal to f2p since the test suite contains only one failing test case
in our experiments.

9

Table 3: Overview of the experiment data

Bug1 Bug2 Bug3 Bug4 Bug5 Bug6 Bug7 Bug8

of the target lines 1,939 299 443 186 186 3,494 294 4,998

of mutants 2,861 691 965 718 369 9,479 844 14,490

of lines which
1,575 219 327 132 103 2,524 226 3,855

have a mutant

of mutants that make a
305 462 681 364 311 3,044 542 8,766

passing test case fails

of mutants that make a
1 3 7 2 51 32 3 1

a failing test case passes

Time cost (in minutes) 12 60 45 25 23 175 50 511

most suspicious statements (i.e., the first ranking). Even
for Bug2, Bug5, and Bug6, MUSEUM identifies the buggy
statement as the most suspicious statement with the other
one, seven, and two statements together (e.g., for Bug5,
the suspiciousness scores of the eight statements including
the buggy statement are equal). Thus, from these experi-
ments, we conclude that MUSEUM localizes a multilingual
bug accurately.

In contrast, SBFL techniques fail to localize multilin-
gual bugs accurately. For Bug6, Op2 ranks the buggy
statement as the 3,494nd among the 3,494 target state-
ments (see the fifth row of Table 3), which means that a
developer has to examine all target statements to identify
the faulty statement.

4.3. Threats to Validity

A major external threat to validity is that the experi-
ment uses a limited number of target programs. To limit
this threat, we chose the target subjects that include both
language interface bugs and cross-language bugs, and have
different symptoms and various related language features.
Also, we collected these target programs from various real-
world projects used by the related work.

Another threat is that the test cases used in the exper-
iments are limited. To limit this threat, we utilized all
available test cases in the real-world target subjects (ex-
cept Azureus that has no test cases for Bug 1).

A construct threat is that there may be statements that
can be recognized as buggy statements other than the ones
indicated by the bug reports/fixes used in the studies. Al-
though there might be other buggy statements, we believe
that the conclusions still hold because MUSEUM localized
the buggy statements reported by the bug reports/fixes as
most suspicious ones.

Possible internal threats are that the target programs
may have unidentified nondeterminism and/or the MU-
SEUM tool may have faults. To limit these threats, we
carefully reviewed the target programs, the MUSEUM
tools, and the experiment results. For further analysis, we

have released the full experiment data and the target pro-
gram code at http://swtv.kaist.ac.kr/data/museum.zip.

5. Case Studies with Language Interface Bugs

Language interface bugs violate one of the three classes
of safety rules on language interface [2]: state constraints,
type constraints, and resource constraints. We perform
two case studies to illustrate how MUSEUM locates the
causes of the bugs of violating resource constraints in Sec-
tion 5.1 and state constraints in Section 5.2. We do not
include a case study on a type constraint bug since flow-
insensitive multilingual type inference systems [37] can be
more suitable to validate type constraints.

5.1. Bug4: Invalid JNI Reference in Java-gnome

This case study illustrates how MUSEUM localizes the
cause of dangling JNI references (Bug4) accurately by us-
ing the new mutation operators (Table 1).

5.1.1. Bug Overview

Dynamic error detectors [2] detect Bug4 and report the
calling context at the failure using the dangling JNI ref-
erence as an argument to a JNI function. However, they
cannot report the cause location where the JNI reference
was stored into a callback object in C heap, which occurs
at Line 524 of binding java signal.c as indicated as the
buggy statement in the bug report:

387: GClosure* bindings(JNIEnv *env,

jobject handler, jclass receiver, ...) {

...

524: bjc->rec = receiver;

... }

When bindings at Line 387 is invoked, the receiver pa-
rameter is assigned with a local JNI reference. Line 524
stores the local reference in a data structure in the C heap
pointed by bjc. However, once bindings returns back to

10

Table 4: The ranking of the buggy line identified by MUSEUM and the SBFL techniques

Bug1 Bug2 Bug3 Bug4 Bug5 Bug6 Bug7 Bug8

MUSEUM
1 2 1 1 8 3 1 1

(0.1%) (0.7%) (0.2%) (0.1%) (4.3%) (0.2%) (0.2%) (0.02%)

Jaccard
80 4 5 83 61 3,494 84 574

(4.1%) (1.3%) (1.1%) (44.6%) (32.8%) (100.0%) (17.5%) (10.2%)

Ochiai
80 4 5 83 61 3,494 84 574

(4.1%) (1.3%) (1.1%) (44.6%) (32.8%) (100.0%) (17.5%) (10.2%)

Op2
80 4 5 83 61 3,494 84 574

(4.1%) (1.3%) (1.1%) (44.6%) (32.8%) (100.0%) (17.5%) (10.2%)

Java, the local reference stored in bjc->rec is not valid
anymore (i.e., becoming a dangling reference, see the re-
source constraints in Section 2.1). Later, when the pro-
gram calls a JNI function with an argument containing
the dangling reference, the program crashes with a JNI
invalid argument error.

5.1.2. Detailed Experiment Result

MUSEUM localizes the faulty statement accurately by
ranking Line 524 as the most suspicious statement (i.e., the
first rank without a tie). Table 5 describes the nine mu-
tants (m1 to m9) that are generated by mutating Line 524.
The second column shows the changed statement of each
mutant. The third and the forth columns report the num-
ber of tests that covered Line 524 and failed on the original
program but pass on the mutant (i.e., |f(s)∩pm|), and the
number of tests that covered Line 524 and passed on the
original program but fail on the mutant (i.e., |p(s)∩ fm|),
respectively (Section 3.2). m1, m2, m4, m6, m8, and m9
are generated by applying our new multilingual mutation
operators in Table 1. These mutants are generated by in-
serting the statements of changing the life time of JNI ref-
erences right after the target statement. m3, m5 and m7
obtained by applying Proteum terminate the control flow
at the level of procedure, statement, and whole program.

In the testing runs, our new mutation operators pre-
vent mutated programs m1 and m4 from crashing with the
failing test case (i.e., Make-weak-global-reference and
Make-global-reference in Table 1, respectively). m1
and m4 change the failing test case into a passing one
(the third column) because they keep bjc->rec to store a
weak global reference and a global reference respectively
and eliminate the dead reference problem caused by the
short-lived local reference. On the other hand, the conven-
tional mutation operators (i.e., m3, m5, and m7) do not
affect the test results. m1 and m4 make the first term of
the MUSEUM suspiciousness metric large and increase the
suspiciousness score of Line 524 significantly because the
denominator of the first term is small (i.e.,f2p=2) (Sec-
tion 3.2). In contrast, each of the mutants m5 to m9 make
two passing test cases fail (the fourth column), which in-
creases the second term but in only limited degree due to
the large denominator (i.e., p2f=6053).

Among the 186 target statements, only Line 524 has
partial fix mutants with regard to the given test cases and
the given test oracle. Consequently, Line 524 has the high-
est suspiciousness score due to the new mutation operators
which generate partial fixes. Thus, through the case study
on Bug4, we confirm that the new mutation operators such
as Make-global-reference can increase the accuracy of
MUSEUM.

In contrast, the SBFL techniques rank the buggy state-
ment as the 83rd suspicious one among the 186 target
statements. Such poor result is due to the two coinciden-
tally correct test cases (CCTs) that execute Line 524 but
pass because the target program does not use bjc->rec

as an argument to a JNI function call later with these test
cases. Thus, the SBFL techniques consider that Line 524
has low correlation with the failure and assign low suspi-
ciousness score to Line 524.

Note that these CCTs do not make adverse effect to
MUSEUM. This is because the mutants (i.e., m1 to m9)
obtained by mutating the buggy statement (i.e., Line 524)
do not make these CCTs fail because the mutants and the
target program do not use bjc->rec as an argument to
a JNI function call later with these CCTs. Thus, these
CCTs do not increase the second term of the MUSEUM
suspiciousness metric (Section 3.2) and do not lower the
suspiciousness score of the buggy statement.

5.2. Bug7: JNI Exception State Violation in Sqlite-jdbc

This case study illustrates how MUSEUM localizes the
cause of violating exception state constraints (Bug7) ac-
curately by using the new mutation operators (Table 1).

5.2.1. Bug Overview

Bug7 violates a safety rule on language interface that
the native code must not invoke a JNI function while the
current thread is propagating a pending Java exception.
Specifically, consider Lines 183 and 184 of NativeDB.c in
the sqlite-jdbc 3.6.0 source release:

/* sqlite/src/main/java/org/sqlite/NativeDB.c */

154: static xCall(...) {

..

183: (*env)->CallVoidMethod(env, func, method) ;

184: (*env)->SetLongField(env, func, ...) ;

11

Table 5: The nine mutants generated by mutating the buggy statement of Bug4

No.
Mutant generated by mutating Line 524 of |f(s) ∩ pm| |p(s) ∩ fm|bindings java signal.c

m1
bjc->rec=receiver;

1 0
bjc->rec=(*env)->NewWeakGlobalRef(env,bjc->rec);

m2
bjc->rec=receiver;

0 0
bjc->rec=(*env)->NewLocalRef(env,bjc->rec);

m3 return; // return back to the caller. 0 0

m4
bjc->rec=receiver;

1 0
bjc->rec=(*env)->NewGlobalRef(env,bjc->rec);

m5 ; // remove a statement at Line 524 0 2

m6
bjc->rec=receiver;

0 2
(*env)->DeleteGlobalRef(env, bjc->rec);

m7 kill(getpid(), 9); //terminate the process 0 2

m8
bjc->rec=receiver;

0 2
(*env)->DeleteLocalRef(env, bjc->rec);

m9
bjc->rec=receiver;

0 2
(*env)->DeleteWeakGlobalRef(env,bjc->rec);

In an erroneous run, the native code at Line 183 in-
vokes a Java method identified by the method argument,
which throws a Java exception and abruptly returns to
the native code. Then, the current thread is propagat-
ing a pending Java exception, and the call statement at
Line 184 executes the SetLongField JNI function. These
event series of throwing Java exception and calling a JNI
function violate the exception state rule. The semantics
of the SetLongField JNI function is left undefined, and
JVMs exhibit a variety of undesirable behaviors such as
crash [51].

The bug fix checks and clears explicitly the pending Java
exception before calling the SetLongField JNI function
with the following updates:

/* sqlite/src/main/java/org/sqlite/NativeDB.c */

154: static xCall(...) {

..

183: (*env)->CallVoidMethod(env, func, method) ;

+++ if((*env)->ExceptionCheck(env))

+++ xFunc_error(context,env);

184: (*env)->SetLongField(env, func, ...) ;

The conditional part of the inserted statement examines
whether or not a Java exception is pending. When a
Java exception is pending, the true branch statement ac-
tivates the auxiliary routine xFunc error, which calls the
ExceptionClear JNI function to clear the pending Java
exception and records this error state. Then, the native
code executes the SetLongField JNI function without vi-
olating the JNI exception state rule.

5.2.2. Detailed Experiment Result

We use the 112 tests cases in the Xerial SQLite JDBC
regression test suite. Our test oracle passes 111 test cases
and fails one test case due to Bug7. MUSEUM success-
fully finds the location at which the developer inserts the
new code to fix the bug as the most suspicious statement.
Table 6 shows the mutants generated from the top four
most suspicious statements in order of their suspicious-
ness ranking. Line 184 of NativeDB.c has the highest sus-
piciousness score because it has two fail-to-pass test runs.
Similarly, Line 183 of NativeDB.c is ranked as the second
most suspicious statement because it has one fail-to-pass
test run. No other statements have a fail-to-pass test run
(see the sixth row of Table 3). Note that the three partial
fix mutants on Lines 183–184 do not fail with the failing
test case because the executions of the failing test case do
not call an JNI function with a pending exception. The
statements of the fourth and the fifth rows of Table 6 are
ranked as the 114th together with other 110 statements on
which their test results do not change at all.

6. Case Studies with Cross-Language Bugs

Cross-language bugs have their cause-effect chains
across a language boundary while respecting all safety
rules on language interface. To demonstrate how MU-
SEUM locates the causes of these cross-language bugs, this
section presents case studies for the following five bugs:
Bug1 in Section 6.1, Bug2 in Section 6.2, Bug3 in Sec-
tion 6.3, Bug5 in Section 6.4, and Bug6 in Section 6.5.

12

Table 6: Four most suspicious statements of the Xerial SQLite JDBC target code (Bug7)

Rank
Susp.

Statement Mutant |f(s) ∩ pm| |p(s) ∩ fm|score

1 0.111

if ((*env)->ExceptionOccured(env))

1 16return;

/* NativeDB.c:184 */ (*env)->SetLongField(env,...);

(*env)->SetLongField(env,...);

return ; 1 16

2 0.055
/* NativeDB.c:183 */

return ; 1 64
(*env)->CallVoidMethod(env,...);

114 0.0
/* Conn.java:81 */ Test.pinnedObjects.add(url);

0 0
this.url = url; this.url = url;

114 0.0
/* Conn.java:188 */

; // remove a statement at Line 188 0 0
checkCursor(rst, rsc, rsh);

6.1. Bug1: Memory Leak Bug in Azureus

Bug1 has its effect of leaking memory in C while the
cause is due to missing calls to the routines of releasing
resources in Java.

6.1.1. Bug Overview

Azureus 3.0.4.2 has a memory leak bug that Azureus
may allocate native memory (i.e., heap objects in C) for
an Image object in Java, but never de-allocate the native
memory. In more detail, Image class uses native C meth-
ods to allocate/de-allocate native memory for its member
objects. Such allocated native memory should be explic-
itly freed by calling dispose of an Image object before the
object is garbage collected.

To fix this memory leak bug, CVS Revision 1.64
of ListView.java inserts a call to the Image.dispose

method into the Image.handleResize method to release
the native objects referenced from the imgView instance
field before Line 523 from which the old Image object ref-
erenced by imgView is not referenced/used anymore:

496:public void handleResize(boolean bForce) {

...

508: if (imgView == null || bForce){

...

523: imgView = new Image(...) ;

Locating the cause of this bug is non-trivial because the
cause and effect of this bug appear in different languages,
and the incoming references to the leaking native memory
are implicitly eliminated after the owner Image objects are
garbage collected [29].

6.1.2. Detailed Experiment Result

Since Azureus code has no test case, we created one
failing test case to exercise the memory leak bug and
seven passing test cases to cover reasonable fraction of
the source files. To detect the memory leak failure, our
test oracle calls the Image.isDisposed method and vali-
dates the native objects are released after the Image ob-
jects are garbage-collected. Specifically, our test oracle

instruments the Object.finalize method to place our
validation checks:

public final class Image ... {

protected void finalize() throws Throwable {

if(!isDisposed()) reportLeak();

super.finalize();}}

To ensure that JVMs perform garbage collections and re-
port memory leaks before terminating each test run, our
test cases invokes the System.gc method of triggering
garbage collections manually.

MUSEUM identifies Line 523 of ListView.java as the
most suspicious statement (i.e., the first rank). The second
column of Table 7 shows that Line 523 has four mutants:
m1, m2 and m3, and m4. m1, m2 and m3 are obtained
from the conventional mutation operators of PIT which
replace the target statement with the statements in the
table. m4 is obtained from our new mutation operator
Add-Java-reference designed for multilingual bugs (par-
ticularly targeting resource constraints, see Table 1) to
extend the life time of Java objects.

m4 turns the failing test case into a passing one (the
third column) because it adds an extra reference to the
old object pointed by imgView, which prevents the old
object from being garbage collected. As a result, the native
memory leak does not occur. m4 makes the first term of
the MUSEUM suspiciousness metric large and significantly
increases the suspiciousness score of Line 523. In contrast,
m1 and m3 make two and four passing test cases as failing
ones (the fourth column), which increases the second term
but in only limited degree due to the large denominator
(i.e., p2f=1961).

Among the 1939 target statements, only Line 523 has a
partial fix mutant (i.e., m4) with regard to the given test
cases and the given test oracle. Consequently, the line 523
has the highest suspiciousness score. Thus, through the
case study on Bug1, we confirm that the new mutation
operators such as Add-Java-reference can increase the
accuracy of MUSEUM.

13

Table 7: The four mutants generated at the buggy statement of Bug1

No.
Mutant generated from “imgView = new Image(

|f(s) ∩ pm| |p(s) ∩ fm|listCanvas.getDisplay(), clientArea);”
at Line 523 of ListView.java

m1 imgView = null; 0 2
m2 imgView = new Image(null, clientArea); 0 0
m3 new Image(listCanvas.getDispaly(),clientArea); 0 4
m4 global ref list.add(imgView); 1 0

6.2. Bug2: Incorrect Call to Java Native Methods in
Sqlite-jdbc

Bug2 has its cause-effect chain across Java and C and
fails the Java assertion statements. Bug2 is a nontrivial
semantic bug to track down its cause since testers must
follow the flow of data values along multilingual execution
paths and examine their impacts on the test case output.

6.2.1. Bug Overview

Bug2 causes the Stmt.executeUpdate method in
sqlite-jdbc 3.7.8 to return an incorrect value.
Stmt.executeUpdate is a JDBC API method that takes
an SQL statement, executes the SQL statement in the
database management system, and returns an integer
value. This API method returns the number of updated
tuples if the input SQL statement is a table-updating
statement. This API method has to return zero when the
input SQL statement is a table-dropping statement. The
cause of the problem is that the call to NativeDB.changes

native method at Line 187 of Stmt.java returns a wrong
value (i.e., the previous return value for the most re-
cent table-updating input SQL statement) if the input
SQL statement at Line 183 is a table-dropping statement.
NativeDB.changes returns the number of updated tuples
if the last input SQL statement is a table-updating state-
ment.

/* Stmt.java */

169: public int executeUpdate(String sql) {

...

183: statusCode = db._exec(sql) ;

...

187: changes = db.changes() ;

...

193: return changes ;

194: }

The bug fix inserts two calls to the
NativeDB.total changes native method written in
C before and after Line 183 and updates changes at
Line 187 with the difference between the return values
of the total changes methods. This bug fix solves
the problem because a table-dropping SQL statement
does not change the return value of total changes and
executeUpdate returns zero.

6.2.2. Detailed Experiment Result

We make one failing test case manually based on the bug
report and take 149 passing test cases in the regression
test suite from sqlite-jdbc 3.7.8 since the regression
test suite has no failing test case.

Table 8 presents the top four most suspicious statements
reported by MUSEUM. Lines 187 and 193 of Stmt.java
tie for the highest suspiciousness rank. These two state-
ments have only one mutant each which sets the return
value of the Stmt.executeUpdate method as zero. As a re-
sult, each of these mutants makes the failing test case pass
(and make the two passing test cases fail) and increases
the suspiciousness score of the corresponding statement
significantly.

Line 183 of Stmt.java is ranked as the third most sus-
picious statement. It has only one mutant that does not
execute any SQL query since the NativeDB. exec function
call is removed by the mutation. This mutant does not fail
with the failing test case as Stmt.executeUpdate always
returns zero when db. exec(sql) is not invoked (i.e., the
return value of db.changes is zero because no SQL query
is executed). Meanwhile, the mutant makes 44 passing
test cases fail since the mutant does not actually execute
the given SQL query. Thus, it increases the second term
of the MUSEUM suspiciousness formula.

Line 263 of Conn.java is the fourth most suspicious
statement together with other 122 statements; it has no
mutant that changes the testing result.

6.3. Bug3: Calling a Wrong Native Method in Sqlite-jdbc

Bug3 causes a JDBC API method to return an unex-
pected value and its cause-effect chain cross Java and C.
Bug3 requires testers to follow the flow of data values along
multilingual execution paths, which is a challenging and
time consuming task.

6.3.1. Bug Overview

Bug3 in sqlite-jdbc 3.7.15 causes the following er-
roneous event sequence because the original developers
might be confused with the semantics of the reset and
clear binding native methods in NativeDB class:

1. The program creates a PrepStmt object in Java, allo-
cates its peer SQLite object in C, initializes the peer
object with a number of parameters, and executes the
peer SQL statement object in C.

14

Table 8: The four most suspicious statements of Sqlite-jdbc (Bug2)

Rank
Susp.

Statement Mutant |f(s) ∩ pm| |p(s) ∩ fm|score

2 0.333
/* Stmt.java:187 */

changes = 0 ; 1 2
changes = db.changes() ;

2 0.333
/* Stmt.java:193 */

return 0 ; 1 2
return changes ;

3 0.332
/* Stmt.java:183 */

statusCode = 0 ; 1 44
statusCode = db. exec(sql) ;

126 0.000
/* Conn.java:263 */

timeout = 0 ; 0 0
timeout = ms ;

2. The program calls the PrepStmt.clearParameters

method, which in turn calls the NativeDB.reset na-
tive method and resets both input query parameters
and output query result.

3. The program calls a JDBC method (RS.next) to ob-
tain the output query result which has an unexpected
value.

The bug fix calls the NativeDB.clear binding native
method instead of the NativeDB.reset native method
at Line 64 in the clearParameters method because
clear binding clears only the input query parameters
in the native peer object but reset removes both input
query parameters and output query results (see the fol-
lowing code):

/* PrepStmt.java*/

60: public void clearParameters() throws

SQLException {

...

64--- db.reset(pointer);

64+++ db.clear_binding(pointer);

...

6.3.2. Detailed Experiment Result

We used 159 test cases which consist of one failing test
case in the bug report and 158 passing test cases in the re-
gression test suite. MUSEUM successfully locates Line 64
of PrepStmt.java as the most suspicious statement. Ta-
ble 9 presents the three most suspicious statements and
their mutants. The mutant at Line 64 erases the reset

method call and make both the failing test case and the
other 158 passing test cases pass. The next two most sus-
picious statements (Lines 180 and 131 of RS.java) have
one partial fix mutant each. These statements have lower
suspiciousness scores than Line 64 of PrepStmt.java be-
cause the partial fix mutants of these statements make 38
and 71 passing test cases fail respectively.

6.4. Bug5: Dangling Pointer to a Native Peer Object in
Java-gnome

Bug5 has its effect of a segmentation fault in C while
the cause is an attempt to access the freed native peer
resource from Java.

6.4.1. Bug Overview

Bug5 crashes JVMs due to a segmentation fault at
Line 738 of gtkspell.c in Revision 658 of Java-gnome
because the spell pointer parameter is dangling:

/* gtkspell/gtkspell.c */

727: gtkspell_detach(GtkSpell *spell) {

...

738: g_object_set_data(G_OBJECT(spell->view),

GTKSPELL_OBJECT_KEY,NULL);

739: gtkspell_free(spell);

740: }

Detailed description of Bug5 is as follows. The
TextView class of Java-gnome creates a text editor
by creating a native peer GtkTextView object. The
TextView class may contain a Spell object that pro-
vides a spell-checking feature by creating a native peer
GtkSpell object. In such case, Java-gnome deallocates
the GtkSpell object by calling gtkspell detach when the
corresponding GtkTextView object is deallocated. Also,
when a Spell object is reclaimed, the Spell.finalize

method calls Spell.release method which eventually
calls gtkspell detach to deallocate the GtkSpell ob-
ject of the Spell object. Thus, a segmentation fault oc-
curs when JVM garbage collector reclaims a TextView

object (and consequently deallocating GtkTextView and
GtkSpell objects), and then the Spell object contained
in the TextView object.

The bug fix removes Line 57 in the release method to
avoid the failure:

/* Spell.java */

31: public class Spell {

...

56: protected void release() {

57: GtkSpell.detach(this) ;

Although the fix looks simple, analyzing the buggy state-
ment of Bug5 is challenging because the execution path
involves complicated features such as garbage collection,
finalization, and reference counting memory management
in the external library execution (e.g., glib signal mecha-
nism).

15

Table 9: Three most suspicious statements of Sqlite-jdbc (Bug3)

Rank
Susp.

Statement Mutant |f(s) ∩ pm| |p(s) ∩ fm|score

1 0.1429
/* PrepStmt.java:64 */

; // the statement is removed. 1 0
db.reset(pointer)

2 0.0710
/* RS.java:180 */ row = 1 ; 1 38
row = 0; ; // the statement is removed. 0 15

3 0.0706
/* RS.java:131 */ if (row != 0) 1 71
if (row == 0); if (1) 0 28

Table 10: Three most suspicious statements of Java-gnome r-695 (Bug5)

Rank
Susp.

Statement Mutant |f(s) ∩ pm| |p(s) ∩ fm|score

7 0.020
/*Spell.java:57*/

; //the statement is removed. 1 0
GtkSpell.detach(this);

7 0.020
/*Pointer.java:68*/

; //the statement is removed. 1 0
release();

7 0.020
/*Proxy.java:42*/

; //the statement is removed. 1 0
super.finalize();

7 0.020
/*GtkSpell.java:48*/

if(self != null){ 1 0
if (self == null){

6.4.2. Detailed Experiment Result

We make one failing test case that reveals Bug5 based on
the bug report, and used 183 passing test cases in the Java-
gnome regression test suite (revision 659). Our test envi-
ronment triggers garbage collection at the end of test runs
to trigger finalization activities for reclaimed Java objects.
To handle the non-deterministic behaviors of garbage col-
lection, we repeat to execute the failing test case 3 times
per mutant, and our test oracle reports that a test run fails
if at least one out of the three executions with the failing
test case fails.

Table 10 presents the four most suspicious statements.
Line 57 of Spell.java gets the highest suspiciousness
score. The mutant at Line 57 is identical to the bug
fix. The other six statements have the same suspi-
ciousness score because the mutants of these statements
also deactivate gtkspell detach in the Java finaliza-
tion context. For example, Line 68 of Pointer.java

and Line 42 of Proxy.java (the third and the fourth
rows of Table 10) belong to the call sequence from
Spell.finalize to gtkspell detach; the mutation at
Line 48 of GtkSpell.java changes the GtkSpell.detach

method not to call gtkspell detach.

6.5. Bug6: Null Pointer Dereference in Eclipse SWT

Bug6 has a segmentation fault in C while the cause (im-
mature implementation of a callback handler in Eclipse
SWT) is in Java.

6.5.1. Bug Overview

Bug 322222 (Bug6) crashes JVMs with a segmen-
tation fault by dereferencing NULL at Line 271 of
pango-layout.c:

262: PangoLayout *

263: pango_layout_new (PangoContext *context)

264: {

...

271: layout->context = context;

...

275: }

The origin of NULL is the native C function (callback)
that acts as a gateway from C to Java in the SWT library.
callback returns NULL when a Java exception is pending
in the current thread. While the detection of this bug
is trivial, debugging Bug6 took a heroic human effort for
more than a year with hundreds of comments from dozens
of programmers. This bug was difficult for experts to de-
bug since the cause-effect chain goes through Java excep-
tion propagation and language transitions. Although the
multilingual debuggers [51] aid programmers to locate the
origin of NULL, they do not locate the buggy statements.

The root cause is an immature implementation of a call-
back handler at Line 2602 of Display.java (the bug re-
port does not describe the root cause but only its symp-
tom, which is often the case for real-world applications.
Thus, we had to identify the buggy statement by analyz-
ing the bug patch).

// Simplified patch for Bug6

2595 :if(OS.GTK_VERSION>= OS.VERSION(2,4,0)) {

...

2601--: OS.G_OBJ_CONSTRUCTOR(PLClass);

2602--: OS.G_OBJ_SET_CONSTRUCTOR(PLClass, newProc);

2601++: p = OS.G_OBJ_CONSTRUCTOR(PLClass);

2602++: OS.G_OBJ_SET_CONSTRUCTOR(PLClass,new NewProcCB(p));

16

This patch replaces the newProc object that calls
callback at Line 2602 with a new NewProcCB(p) ob-
ject that calls another callback function that never returns
NULL in the presence of a pending exception. Although the
location of the segmentation fault is far from the callback
handler in Java, MUSEUM indicuate the buggy location
of the failure accurately (i.e., the suspiciousness rank of
Line 2602 is 3 with other two statements).

6.5.2. Detailed Experiment Result

We utilize a test suite consisting of one failing test case
and 49 passing test cases. We selected these 49 passing
test cases that cover the display module of SWT because
all error traces in the bug report contain a method in the
display module.

Table 11 presents the four most suspicious statements
and their mutants which increase the suspiciousness scores
of the corresponding statements (the four statements have
only one mutant each). The three most suspicious state-
ments have their ranking as 3 (i.e., MUSEUM reports these
three statements as the most suspicious ones) including
Line 2602 which causes the failure. The mutants for the
three statements change the failing test case into passing
one without changing passing test cases (see the fifth and
the sixth columns).

These mutants disable the immature callback handler
that transitively calls callback. The first mutant elimi-
nates Line 2602 that registers the immature callback han-
dler. The second and the third mutants change the re-
turn value with zero, which in turn reverses the control
flow decision at Line 2595 of Display.java, deactivates
transitively Line 2602 of registering the immature callback
handler, and avoids the segmentation fault. The fourth
mutant disables the immature callback handler at the cost
of turning one passing test case into a failing one, which
decreases the suspiciousness of Line 2392 and lowers the
ranking of Line 2392 to 4.

7. Case Study of Debugging Open Bug in Eclipse
SWT (Bug8)

While the in-laboratory case studies in Sections 5–6 val-
idate the fault localization accuracy of MUSEUM with re-
spect to the bug reports and their bug fixing revisions,
this section demonstrates the usability of MUSEUM in the
process of debugging open bugs in real-world open-source
software projects. Specifically, our qualitative evaluation
demonstrates how to exploit the partial fix mutants from
mutation-based analysis as well as the suspicious rank-
ings in diagnosing the exact cause of bugs and suggesting
bug fixing patches. Note that an Eclipse maintainer ac-
knowledged our debugging analysis and patch posted at
the Eclipse Bugzilla [52].

7.1. Methodology

Bug Description. Bug 419729 (Bug8) in the Eclipse bug
repository for Standard Widget Toolkit (SWT) is reported

first on October 17, 2013, and it is open and unresolved
since we started this case study. We choose this bug for the
case study because it appears to be critical for developers
and nontrivial to diagnose. First, the “Importance” field of
the report is marked as “P3 critical” based on the vote by
more than dozens of developers. In addition, the symptom
of this bug is a JVM crash, which is obviously undesired
in practice. Second, this bug seems to be nontrivial to
debug in that this bug had not been resolved for more than
22 months (at the time when we began the case study).
Within these 22 months, more than 40 comments from
dozens of developers in a few duplicated bug reports did
not pinpoint the root cause of this bug nor suggest bug
fixing patches.

Bug 419729 is related to the Eclipse SWT module, es-
pecially to a subcomponent that binds the SWT interface
with the Ubuntu Unity graphics library. Eclipse SWT pro-
vides high-level GUI programming interfaces and it uses
low-level graphic libraries including Ubuntu Unity to cre-
ate and manage low-level graphic entities. The subcompo-
nent that binds Eclipse SWT to Ubuntu Unity has native
C code as the original interface of Ubuntu Unity is written
as C functions.

Participants. Two graduate students among the authors
with little background on the target project (i.e., Eclipse
SWT and Ubuntu Unity) use debugging tools, diagnose
the causes of bugs, produce bug fixing patches, and report
their analysis to the bug report database.

Debugging Process. We first run MUSEUM to identify a
suspected bug location and obtain a partial fix mutant that
makes the failing test case pass. Based on these results,
the participants refine the partial fix mutant into a precise
and complete patch for the failure.

Debugging Tools. We use the state-of-the-arts research de-
bugging tools including MUSEUM (version 1.3.21) and
Blink [19] (version 2.4.0) to locate buggy statements, ex-
amine the partial fix mutant, and compare the program
states after applying these mutants.

7.2. Debugging the Open Bug Using MUSEUM

Our debugging process consists of fault localization
(Section 7.2.1), refining a partial fix mutant (Sec-
tion 7.2.2), validating the refined mutant (Section 7.2.3),
and suggesting a bug patch from the refined mutant (Sec-
tion 7.2.4).

7.2.1. Fault Localization

Bug 419729 triggers a segmentation fault by deref-
erencing the NULL value in the state name vari-
able at Line 921 of unity-gtk-action-group.c.
This NULL value is assigned to state name by
unity gtk action group get state name at Line 920.

17

Table 11: Four most suspicious statements of the SWT target code (Bug6)

Rank
Susp.

Statement Mutant |f(s) ∩ pm| |p(s) ∩ fm|score

/*Display.java:2602*/ ; /* the function

3 0.0313 OS.G OBJ SET CONSTRUCTOR call is removed */ 1 0
(PLClass,NewProc);

3
0.0313 /*OS.java:8115*/ return 0;

1 0
return major version;

3
0.0313 /*OS.java:8125*/ return 0;

1 0
return minor version;

4
0.0306 /*Display.java:2392*/ ; /* the function

1 1
initializeSubclasses(); call is removed */

/* unity-gtk-action-group.c */

858: void unity_gtk_action_group_connect_item(

UnityGtkActionGroup *group,

859: UnityGtkMenuItem *item) {

...

920: state_name =

unity_gtk_action_group_get_state_name(

group,item);

921: g_hash_table_insert(action->items_by_name,

state_name, g_object_ref(item));

To reproduce this bug and localize the buggy statements
using MUSEUM, we create one failing test case based on
the bug report. Since the original code snippet in the bug
report is not a fully self-contained automated test case, we
added the following two features to the original code snip-
pet. First, we encoded the user scenario (e.g., mouse-click)
in the bug report as automatic GUI events to eliminate
human interaction at the test case executions. Second, we
made the test case fail when any GUI event in the user
scenario is not activated at the test case execution. In
addition, we selected 203 passing test cases related to the
Eclipse SWT from whole Eclipse regression test suite be-
cause the bug report and discussions show that the bug is
related to the Ubuntu Unity binding of Eclipse SWT.

Using the one failing and 203 passing test cases, MU-
SEUM generates 14,490 mutants on the 3,855 out of the
4,998 target source lines covered by the failing test case.
Only one mutant makes the failing test case pass (i.e., a
partial fix mutant) and the 8,766 mutants make some of
the 203 passing test cases fail. MUSEUM generates the
partial fix mutant by mutating Line 39339 of os.c and
reports that line the as most suspicious one:

/* os.c */

38334: jlong Java_gtk_radio_menu_item_with_label(...,

jbyteArray arg1) {

...

39339: if ((lparg1=(*env)->GetByteArrayElements(env,

arg1,NULL))==0)

39340: goto fail;

39341: rc = gtk_radio_menu_item_with_label(...,

lparg1) ;

Line 39339 calls the JNI function GetByteArrayElements

to copy a Java array indicated by arg1 into a new na-
tive array, and the address of the new array is stored in
lparg1. If the copy operation successes, the address value
in lparg1 flows into gtk radio menu with label as an
argument (at Line 39341).

MUSEUM generates the following partial fix mutant at
Line 39339 using Replace-array-elements-with-constants

mutation operator that replaces the arg1 with a predefined
constant byte array ByteConst.

39339--: if ((lparg1=(*env)->GetByteArrayElements(env,

arg1, NULL))==0)

39339++: if ((lparg1=(*env)->GetByteArrayElements(env,

ByteConst, NULL))==0)

This mutation changes the flow of values such that
the NULL value at the failure site (i.e., Line 921 of
unity-gtk-action-group.c) with the failing test case
is replaced with a pointer to a C string derived from
ByteConst. This mutation does not change the results
of the passing test cases.

7.2.2. Refining the Partial Fix Mutant with Failure-
inducing Condition

We manually refine the partial fix mutant to make it
more accurate by figuring out a failure-inducing condition
and applying the partial fix only when the condition is
true. In other words, we refine the partial mutant to ex-
ecute the new source line (i.e., 39339++) if the identified
failure-inducing condition holds; otherwise, the old source
line (i.e., 39339–) is executed.

To identify the failure-inducing condition, we monitored
and compared the program states at Line 39339 when run-
ning both failing and passing test cases. In the failing ex-
ecuting, the byte array pointed by lparg1 has its first ele-
ment as ’\0’ while the first element in the passing execu-
tions is not ’\0’. Thus, we guess that the failure-inducing
condition is lparg1[0]==’\0’. Using this failure-inducing
condition, we refine the partial fix mutant into the follow-
ing one:

18

if (lparg1[0] == ’\0’)

lparg1=(*env)->GetByteArrayElements(env,ByteConst,

NULL);

else

lparg1=(*env)->GetByteArrayElements(env,arg1,NULL);

7.2.3. Validating the Refined Partial Fix Mutant

We validate the refined partial fix mutant by
checking if the obtained failure-inducing condition
(i.e.,lparg1[0]==’\0’) is a general condition to trigger
the failure. For that purpose, we compared the execu-
tion paths of the original program (i.e., failing execution
path) and the refined mutant (i.e., passing execution path)
with the same failing test case because we guess that
the diversing point between the two execution paths in-
dicates the general condition to trigger the failure. We
found that the these executions diverse at Line 766 of
unity-gtk-action-group.c in the following code snip-
pet:

/* unity-gtk-action-group.c */

753: static gchar *

754: unity_gtk_action_group_get_state_name(

UnityGtkActionGroup *group,

755: UnityGtkMenuItem *item) {

756: gchar *name = NULL ;

...

765: gchar *label =

unity_gtk_menu_item_get_label(item) ;

766: if (label != NULL && label[0] != ’\0’) {

...

800: else {

...}

854: return name ; }

After code review, we found that the then-branch
of Line 766 never makes name as NULL, which
makes unity gtk action group get state name return
non-NULL-value and avoids the segmentation fault at
Line 921. But the else-branch can assign NULL to name.
The original program execution takes the else-branch while
the refined mutant execution takes the then-branch with
the failing test case.

As the branch decision at Line 766 depends on the value
in label, we consider that the value of label at Line
766 determines whether the segmentation fault occurs or
not. To find which label value causes the failure, we
monitored the label values in the aforementioned two
executions (i.e., the executions on the original program
and the refined fixing mutant with the failing test case)
and the executions with all passing test cases that cover
Line 766. The monitoring result shows that, in every test
case execution, the array pointed by label at Line 766
of unity-gtk-action-group.c has the same value as the
array pointed by lparg1 at Line 39339 of os.c. For the
failing execution, lparg1[0] at Line 39339 has ’\0’ value.
Meanwhile, in the passing executions, the array pointed
by lparg1 has a non-NULL-value and avoids the crash.

Thus, we can conclude that the failure-inducing condition
lparg1[0]==’\0’ is a general condition to trigger the fail-
ure and the refined partial fix mutant can fix Bug8.

7.2.4. Suggesting a Bug Fixing Patch

Based on the aforementioned examination of the cause-
effect chain, we revised the refined mutant and de-
signed a bug fixing patch. To improve readabil-
ity, instead of modifying the second argument of
GetByteArrayElement, we replaced the byte array lparg1

given to gtk radio menu item with label with " " (a
string literal containing one space character) if lparg1[0]
== ’\0’. We posted our analysis on the fault and the fol-
lowing patch to the Eclipse Bugzilla and an Eclipse main-
tainer acknowledged our analysis and patch [52]:

39339: if (lparg1=(*env)->GetByteArrayElements(env,

arg1,NULL)==0)

39340: goto fail;

+++ if (lparg1[0] == ’\0’)

+++ rc=gtk_radio_menu_item_with_label(..., " ");

+++ else

39341: rc=gtk_radio_menu_item_with_label(...,lparg1);

8. Selective Mutation Analyses for Runtime Cost
Reduction

8.1. Overview

Although MUSEUM consumes modest amount of time
to localize a fault accurately (i.e., 112.6 minutes using 30
machines on average over the eight bugs (Table 3)), we can
reduce the runtime cost further at the cost of marginal ac-
curacy loss by carefully selecting mutants and test cases
to utilize. Also, by selecting mutants and test cases in
various ways, we can control the time cost of fault local-
ization, which is desirable for real-world projects where
testing/debugging time budget is tightly given.

We present selective use of mutants and test cases and
report the effects of various selection strategies on the ac-
curacy and the cost of fault localization. We have de-
signed total 184 selection strategies based on how to select
mutants (23) and how to select test cases (8) and their
combinations. For this study, we did not re-execute all tar-
get programs and their selected mutants with selected test
cases, which would consume unreasonably large amount of
time for all 184 selection strategies. Instead, we collected
a subset of mutants and a subset of test cases selected by
each selection strategy and then compute suspiciousness
scores and count the number of mutant executions. If a
selection strategy involves randomness, we repeated the
selection 30 times to obtain statistical confidences of the
result.

Through the study with various selection strategies, we
observe that MUSEUM can reduce 96% of the time cost on
a single machine for the eight target programs on average
(see Table 16) while still locating the buggy statements

19

as the most suspicious statements compared to the full
mutation analysis with all mutants and all test cases.

There exist related work that selectively use muta-
tion operators to reduce computational cost of mutation-
based fault localization. Papadakis et al. [56] presents a
mutation-based fault localization tool that uses a small
number of mutation operators to avoid heavy cost of
mutant executions. Subsequently, Papadakis and Le
Traon [57] suggests four sets of selected mutation oper-
ators, based on their empirical study of different mutation
operator uses and the fault localization results. While the
earlier work concentraed on selecting mutation operators,
our study explore different chances of selective mutation
analyses. For example, our study uses different test case
selection criteria and their combinations with mutant se-
lection criteria. In addition, for mutant selection, our stud-
iese includes other criteria than selective uses of mutation
operators.

8.2. Selection Strategies

We have studied total 184 (=23×8) selection strategies
based on the 23 mutant selection strategies (Section 8.2.1)
and the eight test case selection strategies (Section 8.2.2).

8.2.1. Mutant Selection Strategies

We have developed total 23 mutant selection strate-
gies based on the following four criteria where MR(x)
and MP(p) are from the existing mutation testing re-
search [58, 59, 60] while MS(n) and MPS(p, n) are de-
veloped by the authors:

• MR(x): this strategy randomly selects x% of all gen-
erated mutants [58] where x ∈ {10, 20, 30}.

• MS(n): it randomly selects n mutants per target line
where n ∈ {1, 2, 3}. If a target line has only m mu-
tants (m < n), MS(n) selects m mutants.

• MP(p): it selects mutants generated by only a certain
set of mutation operators p among the following four
sets of mutation operators. These four sets consist of
the three sets of mutation operators (i.e., SD, CR, and
SM) and the set that includes all mutation operators
of the three sets:

– MP(SD): it uses the statement deletion muta-
tion operator [59] together with the 15 new mu-
tation operators for multilingual behavior (Sec-
tion 3.3).

– MP(CR): it uses the constant replacement mu-
tation operators [58] together with the 15 new
mutation operators for multilingual behavior.

– MP(SM): it uses the five mutation opera-
tors [60] (i.e., ‘replace a constant value with its
absolute value’, ‘replace an arithmetic operator
with another arithmetic operator’, ‘change a log-
ical connector’, ‘change a relational operator’,

and ‘insert an unary operator’) with the 15 new
mutation operators. Offutt et al. [60] claim that
mutants generated by these five mutation oper-
ators are consistent with the mutants generated
by more mutation operators.

– MP(All): it uses all mutants selected by
MP(SD), MP(CR), and MP(SM).

• MPS(p,n): this strategy is a combined strategy of
MP(p) and MS(n). Among the mutants selected by
MP(p), MPS(p,n) randomly selects n mutants per a
target line. If a target line has only m mutants se-
lected by MP(p) (m < n), MPS(p,n) randomly selects
more mutants generated by other mutation operators
to make the target line has n mutants. In this study,
we used total 12 strategies by combining p = {SD,
CR, SM, All} and n = {1, 2, 3}.

• MA: it selects all generated mutants.

8.2.2. Test Case Selection Strategies

We have developed total eight test case selection strate-
gies based on the random selection and coverage based
selection as motivated by the test case selection work [61].
In addition, all test case selection strategies select the fail-
ing test case in the test suite.

• TR(x): it randomly selects x% of the passing test
cases where x ∈ {10, 20, 30}.

• TC(x): it selects x% of the passing test cases that
achieve high coverage of the target lines (i.e., the
source code lines covered by the failing test case)
where x ∈ {10, 20, 30}. TC(x) uses a greedy algo-
rithm which repeats to select a passing test case that
covers a largest number of uncovered target lines. If
there are multiple such passing test cases, the algo-
rithm selects one among the choices.

• TM: it selects a small number of passing test cases
that cover all target lines. TM uses a greedy algorithm
which repeats to select a test case that covers a largest
number of uncovered target lines until the selected
test cases cover all target lines (the algorithm stops
selection when no passing test case can increase the
coverage).

• TA: TA uses all given passing test cases.

8.2.3. Data Collection

Table 12 shows the results of the mutant selection strate-
gies except MA. Each cell represents the ratio of the num-
ber of the selected mutants to the number of all generated
mutants. For example, MP(All) selects 2,137 mutants (=
2,861 mutants × 74.7%) for the target code of Bug1 (see
the second column of the 11th row of the table).

Table 13 shows the results of the test case selections
strategies except TA. Table 13(a) presents the ratio of the

20

Table 12: Ratio of the number of the selected mutants to the number of all mutants (%)

Strategy Bug1 Bug2 Bug3 Bug4 Bug5 Bug6 Bug7 Bug8 Average

MR(10) 10.0 10.0 10.0 9.8 10.0 9.9 10.0 10.0 10.0
MR(20) 20.0 20.0 19.9 19.8 19.4 20.0 20.0 20.0 19.9
MR(30) 30.0 30.0 29.9 30.1 30.1 30.0 30.1 30.0 30.0

MS(1) 55.5 31.8 32.7 27.1 29.4 25.0 29.7 25.6 32.1
MS(2) 76.9 55.1 56.3 46.8 50.0 44.7 53.6 44.9 53.5
MS(3) 89.2 68.8 69.7 60.1 63.0 60.5 69.1 60.3 67.6

MP(SD) 10.4 22.9 21.2 26.1 28.6 20.0 24.9 22.3 22.1
MP(CR) 56.0 38.5 35.3 19.3 20.9 30.0 35.7 33.6 33.7
MP(SM) 18.5 21.3 20.0 13.7 15.9 11.9 21.5 16.1 17.4
MP(All) 74.7 56.3 53.6 43.1 45.7 51.0 53.5 55.8 54.2

MPS(SD,1) 57.6 41.2 40.8 35.1 39.2 29.5 40.8 33.2 39.7
MPS(SD,2) 77.5 62.3 62.5 52.8 57.4 46.9 61.9 49.4 58.8
MPS(SD,3) 89.3 74.2 74.3 64.2 68.1 61.7 74.8 63.2 71.2

MPS(CR,1) 66.2 49.9 47.6 36.8 40.2 39.1 46.2 41.8 46.0
MPS(CR,2) 79.5 65.7 65.1 52.3 56.7 52.0 63.1 53.4 61.0
MPS(CR,3) 90.3 75.3 74.9 62.9 66.6 63.4 74.5 64.3 71.5

MPS(SM,1) 60.9 40.4 40.3 33.1 36.9 29.7 38.5 33.2 39.1
MPS(SM,2) 78.4 60.7 61.2 50.8 55.1 46.7 59.3 48.7 57.6
MPS(SM,3) 89.8 72.5 72.8 62.9 66.6 61.2 72.5 62.0 70.0

MPS(All,1) 77.6 60.0 57.9 48.1 51.5 51.7 56.6 56.7 57.5
MPS(All,2) 84.9 70.7 69.5 58.1 62.5 58.2 67.5 61.8 66.7
MPS(All,3) 92.7 79.0 77.9 66.4 70.5 66.3 77.9 68.7 74.9

reduced test set size to the original test set size. For ex-
ample, TM selects 2.3 test cases (=150×1.5%) for Bug2
on average (see the third column of the eighth row of Ta-
ble 13(a)). TM selects less test cases than TR(x) and
TC(x) for all bugs except Bug1 with x = 10 or 20 and
Bug6 with x = 10. Table 13(b) presents the target line
coverage achieved by the passing test cases selected by the
test case selection strategies. For example, TR(20) cov-
ers the 96% of the target lines for Bug1 on average (see
the second column of the third row of Table 13(b)). TC(x)
achieves the highest target line coverage in all cases except
TC(10) on Bug1. TM also achieves the highest coverage
with the smallest number of selected test cases among the
all strategies that achieve the highest coverage for all tar-
get programs (see Table 12(a)). The test case selection
strategies do not achieve the 100% coverage if a target
line is not covered by any passing test case.

8.3. Effects of the Selection Strategies on Fault Localiza-
tion

8.3.1. Effect on the Fault Localization Accuracy

Table 14 shows how much the ranking of the faulty
line increases with the selection strategies. Table 14(a)
presents the increased ranking of the faulty line with the
mutant selection strategies (except MA) with all test cases.
Table 14(b) presents the increased ranking of the faulty
line with the test case selection strategies (except TA)
with all mutants. Table 14(c) presents the increased rank-
ing with 12 combined strategies of the four mutant selec-
tion strategies (i.e., MPS(p,1) with p ∈ {SD,CR,SM,All})
and the three test case selection strategies (i.e., TR(10),
TC(10), and TM). Note that 0 in the table indicates that

the ranking of the faulty statement does not change with
a given selection strategy (i.e., keeping the same fault lo-
calization accuracy).

Table 14(a) shows that all 12 MPS strategies do not in-
crease the ranking of the faulty statement in all target bugs
except Bug5, Bug6 and Bug7. Note that even for Bug5,
Bug6, and Bug7, MUSEUM still reports the faulty line as
the most suspicious one (i.e., MPS increases the number
of the most suspicious lines whose suspiciousness scores
are all equal to that of the faulty statement). For exam-
ple, MUSEUM with MPS(SD,1) reports the suspiciousness
ranking of the faulty statement in Bug6 as 5.0 (=3+2.0) on
average, but still reports the faulty statement as the most
suspicious one with other 4.0 statements. However, the
other selection strategies in Table 14(a) increase the rank-
ing much. For example, MR and MS increase the ranking
much for Bug1, Bug4, Bug7 and Bug8.

Table 14(b) shows that the test case selection strategies
with all mutants do not increase the ranking of the faulty
statement in all target bugs except Bug2 and Bug5. Even
for Bug2 and Bug5, these strategies report the faulty state-
ment as the most suspicious statement with other state-
ments in a tie.

Table 14(c) presents the increased ranking of the faulty
statements with the 12 combinations of the four MPS(p,1)
strategies where p ∈ {SD,CR,SM,All} and the three test
case selection strategies TR(10), TC(10) and TM. The ta-
ble shows that these 12 selection strategies increase the
ranking by 1.3 on average over all eight target programs.
More importantly, these 12 strategies still report the faulty
statement as the most suspicious statement with other
statements in a tie. For Bug5 and Bug6, the increased

21

Table 13: Results of the test cases selection strategies

(a) Ratio of the number of the selected test cases to the number of all test cases (%)

Strategy Bug1 Bug2 Bug3 Bug4 Bug5 Bug6 Bug7 Bug8 Average

TR(10) 12.9 10.0 11.0 11.9 11.0 11.0 9.8 10.9 10.1
TR(20) 25.2 19.7 18.9 20.3 22.0 24.7 20.9 20.0 20.1
TR(30) 38.8 29.1 31.3 32.3 32.0 31.6 30.9 30.7 30.0

TC(10) 12.9 10.2 10.6 13.9 12.4 13.3 10.6 11.4 10.1
TC(20) 25.9 20.4 20.6 23.6 21.5 23.0 20.8 21.2 20.1
TC(30) 38.3 30.2 30.5 32.3 31.1 32.5 30.8 30.8 30.0

TM 25.9 1.5 2.4 6.0 3.7 13.3 3.6 7.6 3.3

(b) Target line coverage achieved by the passing test cases selected by the selection strategies
(%)

Strategy Bug1 Bug2 Bug3 Bug4 Bug5 Bug6 Bug7 Bug8 Average

TR(10) 0 100 100 55 69 50 93 86 69.1
TR(20) 96 100 98 55 92 81 93 88 87.9
TR(30) 100 100 100 90 94 82 93 95 94.3

TC(10) 0 100 100 90 94 82 93 99 82.3
TC(20) 100 100 100 90 94 82 93 99 94.8
TC(30) 100 100 100 90 94 82 93 99 94.8

TM 100 100 100 90 94 82 93 99 94.8

ranking is larger than the other target programs because
the number of mutants that change the test case execu-
tion results is reduced significantly for Bug5 and Bug6.
For example, the MPS(SD,1) and TM selection strategy
decreases the number of mutants that make the failing
test case pass from 51 to 26 for Bug5 and from 32 to 7 for
Bug6; consequently, more lines have the same numbers of
the fail-to-pass mutant executions and pass-to-fail mutant
executions as the faulty line after the mutant and test case
selections. For the other six mutants, the number of mu-
tants that make the failing test case pass is decreased by
0 to 2. We do not present the results of the other selec-
tion strategies because they are worse than these 12 pre-
sented strategies. For example, as shown in Table 14(a),
MR, MP, and MS degrade the fault localization accuracy
significantly. We do not present MPS(p,2) and MPS(p,3)
because they are similar to MPS(p,1) in terms of the ac-
curacy but they select much more mutants than MPS(p,1)
(Table 12). For the similar reason, we present the results
with TR(10), TC(10) and TM, not the other test case se-
lection strategies.

8.3.2. Effect on the Fault Localization Cost with Marginal
Accuracy Loss

Table 15 presents the ratio of the reduced number of
the mutant executions with a selection strategy (i.e., the
number of all pairs (mi, tij) where mi is a selected mutant
and tij is a selected test case that covers the mutated line
of mi) to that of the full mutant executions (i.e., mutant
executions with all mutants and all test cases). Table 15
shows that the 12 strategies reduce the number of the mu-
tant executions to 3.5%–6.8% of the full mutant executions

for the eight target bugs on average. MPS(SD,1) with TM
shows the smallest number of mutant executions on aver-
age. For example, MPS(SD,1) with TM reduces the num-
ber of the mutant executions to 0.6% on Bug3 (i.e., 99.4%
reduction of the number of the full mutant executions).

Figure 3 visualizes the relation between the cost reduc-
tion (x-axis) and the decreased accuracy (y-axis) of the
12 selection strategies. Each data point corresponds to
a selection strategy. The x-value represents the average
ratio of the reduced cost of the mutant testing (i.e., the
reduced number of the mutant executions) to the cost of
the full mutant testing with all mutants and all test cases.
The y-value represents the average ranking increase of the
faulty statement. For example, MPS(SD,1) with TM re-
duces the number of the mutant executions to 3.5% of
that of the full mutant executions on average (the last
column of the fourth row of Table 15) and increases the
ranking by 1.4 on average (the last column of the fourth
row of Table 14(c)); MPS(SD,1) with TM is represented
by ‘×’ located at x=3.5 and y=1.4 in the figure. This fig-
ure shows a tendency that more mutant testing achieves
higher accuracy. For example, MPS(SD,1) with TC(10) is
represented by ‘×’ located at x=4.7 and y=1.1, which indi-
cates that MPS(SD,1) with TC(10) executes more mutant
testing than MPS(SD,1) with TM (4.7% v.s. 3.5%) but it
increases the ranking less than MPS(SD,1) with TM (1.1
v.s. 1.4). Note that these 12 strategies achieve both high
accuracy (i.e., the average ranking increase is less than
2.0) and high cost reduction (i.e., the reduced number of
the mutant executions is less than 10% of that of the full
mutant executions).

Finally, Table 16 shows the overall time cost of the fault

22

Table 14: Ranking increase of the faulty statements with various selection strategies

(a) Strategies that reduce the mutants only

Strategy Bug1 Bug2 Bug3 Bug4 Bug5 Bug6 Bug7 Bug8 Average

MR(10) 1,590.7 218.5 340.2 140.3 135.3 2,867.8 207.6 3,760.8 1,157.7
MR(20) 1,571.3 192.0 232.7 97.5 112.6 1,968.3 110.5 3,226.0 938.9
MR(30) 1,368.5 166.8 201.0 62.2 82.6 2,039.8 94.5 2,813.4 853.6

MS(1) 1,141.0 0.0 0.0 103.2 1.9 2.2 118.0 2,257.8 453.0
MS(2) 824.9 0.0 0.0 85.6 0.4 0.4 60.7 1,879.3 356.4
MS(3) 409.3 0.0 0.0 73.8 0.0 0.0 32.0 673.4 148.6

MP(SD) 0.0 238.0 367.0 0.0 -1.0 0.0 0.0 0.0 75.5
MP(CR) 0.0 -1.0 0.0 0.0 153.0 2,960.0 1.0 0.0 389.1
MP(SM) 0.0 244.0 358.0 0.0 162.0 3,213.0 1.0 0.0 497.3
MP(All) 0.0 -1.0 0.0 0.0 1.0 2.0 0.0 0.0 0.3

MPS(SD,1) 0.0 0.0 0.0 0.0 2.7 2.0 0.0 0.0 0.6
MPS(SD,2) 0.0 0.0 0.0 0.0 0.3 1.0 0.0 0.0 0.2
MPS(SD,3) 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0

MPS(CR,1) 0.0 0.0 0.0 0.0 0.6 3.3 1.0 0.0 0.6
MPS(CR,2) 0.0 0.0 0.0 0.0 0.0 0.9 1.0 0.0 0.2
MPS(CR,3) 0.0 0.0 0.0 0.0 0.0 0.1 1.0 0.0 0.1

MPS(SM,1) 0.0 0.0 0.0 0.0 2.1 2.2 1.0 0.0 0.7
MPS(SM,2) 0.0 0.0 0.0 0.0 0.4 0.7 1.0 0.0 0.3
MPS(SM,3) 0.0 0.0 0.0 0.0 0.0 0.2 1.0 0.0 0.2

MPS(All,1) 0.0 0.0 0.0 0.0 1.0 2.0 0.0 0.0 0.4
MPS(All,2) 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.2
MPS(All,3) 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.1

(b) Strategies that reduce the test cases only

Strategy Bug1 Bug2 Bug3 Bug4 Bug5 Bug6 Bug7 Bug8 Average

TR(10) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TR(20) 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.4
TR(30) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TC(10) 0.0 0.0 0.0 0.0 1.8 0.0 0.0 0.0 0.2
TC(20) 0.0 0.0 0.0 0.0 1.6 0.0 0.0 0.0 0.2
TC(30) 0.0 0.0 0.0 0.0 1.1 0.0 0.0 0.0 0.1

TM 0.0 0.4 0.0 0.0 3.0 0.0 0.0 0.0 0.4

(c) Strategies that reduce both mutants and test cases

Strategy
Bug1 Bug2 Bug3 Bug4 Bug5 Bug6 Bug7 Bug8 Average

Mutant Test case

MPS(SD,1) TR(10) 0.0 0.0 0.2 0.0 8.7 2.2 0.3 0.0 1.4
MPS(SD,1) TC(10) 0.0 0.0 0.0 0.0 6.6 2.1 0.0 0.0 1.1
MPS(SD,1) TM 0.0 0.5 0.0 0.0 8.5 2.2 0.0 0.0 1.4

MPS(CR,1) TR(10) 0.0 0.0 0.1 0.0 7.6 3.6 1.0 0.0 1.5
MPS(CR,1) TC(10) 0.0 0.0 0.0 0.0 4.4 3.3 1.0 0.0 1.1
MPS(CR,1) TM 0.0 0.4 0.0 0.0 5.0 3.4 1.0 0.0 1.2

MPS(SM,1) TR(10) 0.0 0.1 0.0 0.0 9.2 1.9 1.0 0.0 1.5
MPS(SM,1) TC(10) 0.0 0.0 0.0 0.0 6.6 1.9 1.0 0.0 1.2
MPS(SM,1) TM 0.0 0.4 0.0 0.0 7.8 1.9 1.0 0.0 1.4

MPS(All,1) TR(10) 0.0 0.0 0.2 0.0 7.6 2.0 0.0 0.0 1.2
MPS(All,1) TC(10) 0.0 0.0 0.0 0.0 5.0 2.0 0.0 0.0 0.9
MPS(All,1) TM 0.0 0.3 0.0 0.0 6.0 2.0 0.0 0.0 1.0

localization with all mutants and all test cases (the second
row) and that of the fault localization with MPS(SD,1)
and TM (the third row) on one machine. The numbers in
the second row are calculated by multiplying 30 to the time
cost in Table 3. MUSEUM with the MPS(SD,1) and TM
selection strategies consumes only 3.8% of the time cost
with all mutants and all test cases for the eight target bugs
on average (see the last column of the last row). Thus, this
result confirms that the selection strategy can effectively
reduce the time cost of MUSEUM as the number of the

mutant executions is reduced. 7

7The ratio in Table 16 can be different from the ratio in Table 12
because the time cost of MUSEUM involves mutant generations, data
processing and other operational steps in addition to mutant execu-
tions (also execution time of a mutant can be different depending on
the mutant and the test case used).

23

Table 15: The ratio of the reduced number of the mutant executions to that of the full mutant executions (%)

Strategy
Bug1 Bug2 Bug3 Bug4 Bug5 Bug6 Bug7 Bug8 Average

Mutant Test case

MPS(SD,1) TR(10) 7.4 4.2 4.2 3.9 4.4 3.6 4.3 3.6 4.5
MPS(SD,1) TC(10) 7.4 4.1 4.3 4.4 4.7 4.2 4.4 3.8 4.7
MPS(SD,1) TM 14.8 0.6 1.0 1.6 1.4 4.2 1.5 2.5 3.5

MPS(CR,1) TR(10) 8.5 5.0 4.9 4.3 4.5 4.6 4.8 4.5 5.1
MPS(CR,1) TC(10) 8.5 5.0 5.0 4.8 4.8 5.3 5.0 4.8 5.4
MPS(CR,1) TM 17.0 0.7 1.1 1.8 1.4 5.3 1.6 3.2 4.0

MPS(SM,1) TR(10) 7.8 4.1 4.1 3.8 4.2 3.6 4.0 3.6 4.4
MPS(SM,1) TC(10) 7.8 4.2 4.1 4.1 4.5 4.2 4.2 3.8 4.6
MPS(SM,1) TM 15.7 0.6 1.0 1.5 1.3 4.2 1.4 2.6 3.5

MPS(All,1) TR(10) 10.0 6.0 5.8 5.6 5.7 6.2 5.9 6.1 6.4
MPS(All,1) TC(10) 10.0 6.0 6.1 6.3 6.3 7.1 6.0 6.6 6.8
MPS(All,1) TM 20.0 0.9 1.4 2.5 1.8 7.1 2.0 4.4 6.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 1 2 3 4 5 6 7 8

R
an

ki
ng

 in
cr

ea
se

of the reduced mutant executions / # of the full mutant executions (%)

 MPS(SD,1)

 MPS(CR,1)

 MPS(SM,1)

 MPS(All,1)

Figure 3: Rank increase and the ratio of the reduced number of mutant executions to that of the full mutant executions

9. Discussions

9.1. Advantages of the Mutation-based Fault Localization
for Real-world Multilingual Programs

One of the reasons that make debugging real-world pro-
grams difficult is the poor quality of a test suite because
fault localization can be more accurate if a test suite covers
more diverse execution paths. For large real-world pro-
grams, it is challenging to build test cases that exercise
diverse execution paths because it is non-trivial to under-
stand and control a target program. In addition, generat-
ing diverse test cases for multilingual programs has addi-
tional burden to learn and satisfy safety rules on language
interface such as JNI constraints. Thus, multilingual pro-
grams are often developed with only simple test cases. As
a result, as shown in Table 4, the SBFL techniques fail to
accurately localize the eight real-world multilingual pro-
grams.

For example, the statement coverages of the test suites
used for Bug2 and Bug3 are around 85% and 86% and the
SBFL techniques localize these bugs somehow precisely
(i.e., the suspiciousness rank of Bug2 and Bug3 are 4 and
5, respectively). However, the statement coverages of the
test suites used for Bug1, Bug4, Bug5, Bug6, and Bug8

are around 1%, 22%, 24%, 19%, and 11% and the accuracy
of the SBFL techniques for these bugs are very low (Ta-
ble 4). In contrast, MUSEUM can alleviate this limitation
by achieving the effect of diverse test cases through the
diverse mutants with limited test cases. Thus, MUSEUM
can be a promising technique for debugging complex real-
world multilingual programs.

9.2. Effectiveness of the New Mutation Operators for Lo-
calizing Multilingual Bugs

Table 17 presents the information on the mutation
operators that generate mutants on which the failing
test case passes (i.e., partial fix mutants). The second
and the third rows present the number of all mutation
operators and that of the new mutation operators for
multilingual behaviors (Section 3.3) that generate partial
fixes, respectively. Table 17 shows that the new mutation
operators are effective to generate informative mutants
(i.e., partial fix mutants) to localize multilingual bugs. In
other words, the table shows that only the new mutation
operators generate partial fix mutants for Bug1, Bug4
and Bug8 (i.e., since the numbers in the second row
and the third row are the same). For Bug1, only the
Pin-Java-Object mutation operator generates the partial

24

Table 16: Overall time cost of fault localization (in minutes)

Bug1 Bug2 Bug3 Bug4 Bug5 Bug6 Bug7 Bug8 Average

MUSEUM with all mutants
360 1,785 1,346 738 682 5,262 1,501 15,334 3,376.0

and all test cases

MUSEUM with
29 21 34 10 10 186 63 1,166 189.9

MPS(SD,1) and TM

Ratio 8.1% 1.2% 2.5% 1.4% 1.5% 3.5% 4.2% 7.6% 3.8%

Table 17: Statistics on the mutation operators that generate mutants in the experiments

Bug1 Bug2 Bug3 Bug4 Bug5 Bug6 Bug7 Bug8

of mutation operators that
1 3 6 2 12 14 2 1

generate a partial fix mutant

of the new mutation operators
1 0 0 2 1 0 1 1

that generate a partial fix mutant

fix mutant. For Bug4, only Make-global-reference

and Make-weak-global-reference generate the
partial fix mutants. Similarly, for Bug8, only
Replace-array-elements-with-constants generates
one.

To assess the impact of the new mutation operators on
fault localization, we ran MUSEUM for Bug1, Bug4, Bug5,
Bug7 and Bug8 (which have partial fix mutants by the new
mutation operators) without the new mutation operators.
For Bug1, Bug4 and Bug8 which have partial fix mutants
generated by only the new mutation operators, the suspi-
ciousness ranking of the faulty line becomes significantly
low (1737 for Bug1 (89.6%), 117 (62.9%) for Bug4, and
3061 (61.2%) for Bug8). For Bug5 which has also the par-
tial fix mutants generated by the conventional mutation
operators, the ranking of the faulty line changes from the
eighth to the ninth and the faulty line is not anymore the
most suspicious statement. For Bug7, the ranking of the
faulty line remains unchanged.

9.3. High Accuracy with Low Runtime Cost through Selec-
tive Mutation Analysis

The result of the selective mutation analysis shows that
MUSEUM can achieve high fault localization accuracy
with significantly reduced runtime cost compared to that
of the full mutant executions (e.g., MPS(SD,1) and TM
can reduce the runtime cost up to 96% and identifies
the faulty statements as the most suspicious ones) (Sec-
tion 8.3.1). Also, we observe that there is a tendency
that more mutants and test cases can increase the fault
localization accuracy with the selective mutation analysis
(Figure 3).

A practical implication from these observations is as fol-
lows. MUSEUM should start with the mutants and test
cases selected by a selection strategy that reduces the run-
time cost in a large degree but decreases the fault local-
ization accuracy marginally, such as MPS(SD,1) and TM.
Then, MUSEUM can add more mutants and test cases

by gradually relaxing the parameter of the selection strat-
egy (e.g, selecting the test cases of TC(10) to TC(100))
or changing the selection strategy. MUSEUM generates
additional mutant executions of the added mutants and
the added test cases and re-calculates the suspiciousness
scores based on the updated mutant testing result, which
consumes little computing power. In this way, MUSEUM
can achieve high fault localization accuracy with the small
amount of the runtime cost first and then increase the fault
localization accuracy gradually within the given time bud-
get.

10. Conclusion and Future Work

We have presented MUSEUM which localizes bugs in
complex real-world multilingual programs in a language
agnostic manner through mutation analyses. The experi-
ments on the eight real-world multilingual programs show
that MUSEUM precisely locates the faulty statement for
all non-trivial Java/C bugs. In addition, we show that the
accuracy of fault localization for multilingual programs can
be increased by adding new mutation operators relevant
with language interface constraints.

As future work, we will add more mutation operators
targeting features in multilingual programs and modify
existing mutation operators to reduce equivalent mutants.
Also, we will apply MUSEUM to an interactive debug-
ger such as Blink [51] and/or advanced automated test-
ing techniques [62, 63] to maximize the debugging effec-
tiveness. Finally, we will investigate effective methods to
utilize MUSEUM to improve automated program repair
and/or search-based program analysis for multilingual pro-
grams.

Acknowledgement

This work is supported by the ITRC support program

(IITP-2015-H8501-15-1012), and the NRF grants (NRF-

2014K1A3A1A09063167, NRF-2015R1C1A1A01055259, and

25

NRF-2015R1C1A1A01052876) funded by the Korea govern-

ment (MSIP), and the IITP grant programs funded by the

MSIP (Research and Development of Dual Operating System

Architecture with High-Reliable RTOS and High-Performance

OS [No. R0101-15-0081]; High Performance Big Data Analytics

Platform Performance Acceleration Technologies Development

[No. R0190-15-2012]).

References

[1] Meyerovich LA, Rabkin AS. Empirical analysis of program-
ming language adoption. ACM SIGPLAN Conference on Ob-
ject Oriented Programming Systems Languages and Applica-
tions (OOPSLA), 2013.

[2] Lee B, Wiedermann B, Hirzel M, Grimm R, McKinley K. Jinn:
Synthesizing dynamic bug detectors for foreign language inter-
faces. ACM Conference on Program Language Design and Im-
plementation (PLDI), 2000.

[3] Liang S. The Java Native Interface: Programmer’s Guide and
Specification. Addison-Wesley, 1999.

[4] Godefroid P, Klarlund N, Sen K. DART: Directed automated
random testing. ACM Conference on Program Language Design
and Implementation (PLDI), 2005.

[5] Kim M, Kim Y, Choi Y. Concolic testing of the multi-sector read
operation for flash storage platform software. Formal Aspects of
Computing (FAC) 2012; 24(2):355–374.

[6] Kim M, Kim Y, Kim Y. Industrial application of concolic test-
ing approach: A case study on libexif by using CREST-BV
and KLEE. International Conference on Software Engineering
(ICSE) Software Engineering in Practice track, 2012.

[7] Kim Y, Kim Y, Kim T, Lee G, Jang Y, Kim M. Automated
unit testing of large industrial embedded software using concolic
testing. IEEE/ACM Automated Software Engineering (ASE)
Experience track, 2013.

[8] Park Y, Hong S, Kim M, Lee D, Cho J, Kim M, Kim Y, Kim Y.
Systematic testing of reactive software with non-deterministic
events: A case study on LG electric oven. International Con-
ference on Software Engineering (ICSE) Software Engineering
in Practice track, 2015.

[9] Kondoh G, Onodera T. Finding bugs in Java Native Interface
programs. International Symposium on Software Testing and
Analysis (ISSTA), 2008.

[10] Li S, Tan G. Finding bugs in exceptional situations of JNI pro-
grams. ACM Conference on Computer and Communications
Security (CCS), 2009.

[11] Li S, Tan G. Finding reference-counting errors in Python/C
programs with affine analysis. European Conference on Object-
Oriented Programming (ECOOP), 2014.

[12] Li S, Tan G. JET: exception checking in the java native inter-
face. ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems Languages and Applications (OOPSLA), 2011.

[13] Ravitch T, Jackson S, Aderhold E, Liblit B. Automatic gen-
eration of library bindings using static analysis. ACM Confer-
ence on Programming Language Design and Implementation
(PLDI), 2009.

[14] Ravitch T, Liblit B. Analyzing memory ownership patterns in
C libraries. International Symposium on Memory Management
(ISMM), 2013.

[15] Siefers J, Tan G, Morrisett G. Robusta: taming the native beast
of the JVM. ACM Conference on Computer and Communica-
tions Security (CCS), 2010.

[16] Tan G, Morrisett G. Ilea: inter-language analysis across Java
and C. ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA),
2007.

[17] Moon S, Kim Y, Kim M, Yoo S. Ask the mutants: Mutat-
ing faulty programs for fault localization. IEEE International
Conference on Software Testing, Verification and Validation
(ICST), 2014.

[18] Hong S, Lee B, Kwak T, Jeon Y, Ko B, Kim Y, Kim M.
Mutation-based fault localization for real-world multilingual
programs. IEEE/ACM International Conference on. Auto-
mated Software Engineering (ASE), 2015.

[19] Lee B, Hirzel M, Grimm R, McKinley KS. Debug all your code:
Portable mixed-environment debugging. ACM SIGPLAN Con-
ference on Object Oriented Programming Systems Languages
and Applications (OOPSLA), 2009.

[20] MAAlipour. Automated fault localization techniques: a survey.
Technical Report, Oregon State University 2012.

[21] Wong E, Debroy V. A survey of software fault localization. Tech-
nical Report UTDCS-45-09, University of Texas at Dallas 2009.

[22] Jones JA, Harrold MJ. Empirical evaluation of the Tarantula
automatic fault-localization technique. IEEE/ACM Interna-
tional Conference on. Automated Software Engineering (ASE),
2005.

[23] RAbreu, PZoeteweij, Gemund A. An evaluation of similarity
coefficients for software fault localization. Pacific Rim Interna-
tional Symposium on Dependable Computing (PRDC), 2006.

[24] Xie X, Chen TY, Kuo FC, Xu B. A theoretical analysis of the
risk evaluation formulas for spectrum-based fault localization.
ACM Transactions on Software Engineering and Methodology
(TOSEM) 2013; 22(4):31:1–31:40.

[25] Yoo S, Xie X, Kuo FC, Chen TY, Harman M. No pot of gold at
the end of program spectrum rainbow: Greatest risk evaluation
formula does not exist. RN/14/14, Department of Computer
Science, University College London 2014.

[26] Zhang L, Zhang L, Khurshid S. Injecting mechanical faults to
localize developer faults for evolving software. ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), 2013.

[27] Papadakis M, Le-Traon Y. Using mutants to locate “unknown”
faults. IEEE International Conference on Software Testing,
Verification and Validation (ICST), Mutation Workshop, 2012.

[28] Papadakis M, Le-Traon Y. Metallaxis-FL: mutation-based fault
localization. Software Testing, Verification and Reliability 2015;
25:605–628.

[29] Arnold M, Vechev M, Yahav E. QVM: An efficient runtime
for detecting defects in deployed systems. ACM Transactions
on Software Engineering and Methodology (TOSEM) 2011;
21(1):2:1–2:35.

[30] Jung C, Lee S, Raman E, Pande S. Automated memory leak
detection for production use. International Conference on Soft-
ware Engineering (ICSE), 2014.

[31] Xu G, Rountev A. Precise memory leak detection for java
software using container profiling. International Conference on
Software Engineering (ICSE), 2008.

[32] Clause J, Orso A. LEAKPOINT: Pinpointing the causes of
memory leaks. International Conference on Software Engineer-
ing (ICSE), 2010.

[33] Xu G, Bond MD, Qin F, Rountev A. LeakChaser: Help-
ing programmers narrow down causes of memory leaks. ACM
Conference on Program Language Design and Implementation
(PLDI), 2011.

[34] Agrawal H, DeMillo RA, Hathaway B, Hsu W, Hsu W, Krauser
EW, Martin RJ, Mathur AP, Spafford E. Design of mutant
operators for the C programming language. Technical Report
SERC-TR-120-P, Purdue University 1989.

[35] JNI APIs and developer guides. http://docs.oracle.com/

javase/8/docs/technotes/guides/jni 2015.
[36] Tan G, Croft J. An empirical security study of the native code

in the JDK. USENIX Security Symposium (SS), 2008.
[37] Furr M, Foster JS. Checking type safety of foreign function calls.

ACM Transactions on Programming Languages and Systems
2008; 30(4):1–63.

[38] Dawson M, Johnson G, Low A. Best practices for using the Java
Native Interface. IBM developerWorks 2009.

[39] JNI Local Reference Changes in ICS. Android Develop-
ers Blog. http://android-developers.blogspot.com/2011/11/
jni-local-reference-changes-in-ics.html 2011.

[40] Tan G, Appel A, Chakradhar S, Raghunathan A, Ravi S, Wang

26

D. Safe Java Native Interface. IEEE International Symposium
on Secure Software Engineering (ISSSE), 2006.

[41] Firefox Bug 958706 - Dont́ hide JNI exceptions. https://

bugzilla.mozilla.org/show_bug.cgi?id=958706 2014.
[42] JDK-4804447: JNI get〈type〉arrayelements fail with zero length

arrays. https://bugs.openjdk.java.net/browse/JDK-4804447

2003.
[43] PIT v0.33 - mutation testing tool for Java. http://pitest.org.
[44] Maldonado JC, Delamaro ME, Fabbri SC, da Silva Simão A,

Sugeta T, Vincenzi AMR, Masiero PC. Proteum: A family of
tools to support specification and program testing based on mu-
tation. Mutation testing for the new century. Kluwer Academic
Publishers, 2001.

[45] clang: a c language family fronted for LLVM. http://clang.

llvm.org/.
[46] Bruneton E, Lenglet R, Coupaye T. ASM: a code manipulation

tool to implement adaptable systems. Adaptable and Extensible
Component Systems 2002; 30.

[47] Azureus-commitlog: ListView.java. http://sourceforge.net/

p/azureus/mailman/message/18318135/ 2008.
[48] Xerial SQLite-JDBC, Issue 16: DDL statements return result

other than 0. https://bitbucket.org/xerial/sqlite-jdbc/

issue/16 2012.
[49] Xerial SQLite-JDBC, Issue 36: Calling PreparedState-

ment.clearParameters() after a ResultSet is opened, causes
subsequent calls to the ResultSet to return null. https://

bitbucket.org/xerial/sqlite-jdbc/issue/36 2013.
[50] Java-GNOME Avoid segfault lurking in GtkSpell library.

https://openhub.net/p/java-gnome-gstreamer/commits/

167384488 2009.
[51] Lee B, Hirzel M, Grimm R, McKinley KS. Debugging mixed-

environment programs with blink. Software: Practice and Ex-
perience 2014; 45(9):1277–1306.

[52] Eclipse SWT bug419729: Native crash in
org.eclipse.swt.internal.gtk.OS. gtk widget show. https:

//bugs.eclipse.org/bugs/show_bug.cgi?id=419729 2015.
[53] Jaccard P. Étude comparative de la distribution florale dans une

portion des Alpes et des Jura. Bull. Soc. vaud. Sci. nat 1901;
37:547–579.

[54] Ochiai A. Zoogeographic studies on the soleoid fishes found in
Japan and its neighbouring regions. Bull. Jpn. Soc. Sci. Fish.
1957; 22(9):526–530.

[55] Naish L, Lee HJ, Ramamohanarao K. A model for spectra-based
software diagnosis. ACM Transactions on Software Engineering
and Methodology (TOSEM) August 2011; 20(3):11:1–11:32.

[56] Papadakis M, Delamaro ME, Traon YL. Proteum/FL: a tool for
localizing faults using mutation analysis. Proceeding of IEEE
International Working Conference on Source Code Analysis
and Manipulation (SCAM), 2013.

[57] Papadakis M, Traon YL. Effective fault localization via muta-
tion analysis: Selective mutation approach. Proceedings of ACM
Symposium on Applied Computing (SAC), 2014.

[58] Ammann P, Delamaro ME, Offutt J. Establishing theoretical
minimal sets of mutants. IEEE International Conference on
Software Testing, Verification, and Validation (ICST), 2014.

[59] Deng L, Offutt J, Li N. Empirical evaluation of the statement
deletion mutation operator. International Conference on Soft-
ware Testing, Verification, and Validation (ICST), 2013.

[60] Offutt J, Rothermel G, Zapf C. An experimental evaluation of
selective mutation. International Conference on Software En-
gineering (ICSE), 1993.

[61] Graves T, Harrold MJ, Kim JM, Porter A, Rothermel G. An em-
pirical study of regression test selection techniques. Proceedings
of the 20th International Conference on Software Engineering
(ICSE), 1998.

[62] Hong S, Ahn J, Park S, Kim M, Harrold MJ. Testing concurrent
programs to achieve high synchronization coverage. Interna-
tional Symposium on Software Testing and Analysis (ISSTA),
2012.

[63] Kim Y, Xu Z, Kim M, Cohen M, Rothermel G. Hybrid directed
test suite augmentation: An interleaving framework. IEEE In-
ternational Conference on Software Testing, Verification and
Validation (ICST), 2014.

27

