
MUSIC: Mutation Analysis Tool with High Configurability and Extensibility

Loc Duy Phan, Yunho Kim and Moonzoo Kim
School of Computing, KAIST

South Korea
Email: duyloc 1503@kaist.ac.kr, yunho.kim03@gmail.com, moonzoo@cs.kaist.ac.kr

Abstract—Although mutation analysis is important for various
software analysis tasks, there exist few practical mutation
tools for C programs. We have developed MUSIC (MUtation
analySIs tool with high Configurability and extensibility) which
generates mutants for modern complex real-world C programs.
MUSIC provides various mutation operators including 10 new
mutation operators such as string and function call mutation
operators as well as 63 conventional mutation operators. Also,
MUSIC supports a user to create a new mutation operator
easily. Furthermore, MUSIC can select a domain and a range
of a mutation operator for various purposes.

We have applied Milu, Proteum, and MUSIC to Siemens
benchmark programs and a modern real-world C program
cURL, and compared them in terms of applicability and a
number of stillborn (i.e., syntactically illegal) mutants gener-
ated. In the experiment, MUSIC successfully generates mutants
without any stillborn mutants.

Index Terms—Mutation analysis, Practical mutation tool, C
programs

1. Introduction

Mutation analysis is important for various software anal-
ysis tasks such as evaluating quality of a test suite, fault
localization [1]–[4], and test generation [5], [6]. However,
there exist few practical mutation tools for C programs.
Existing mutation tools for C programs often fail to generate
useful mutants of a modern real-world C program. For
example, Proteum [7] often fails to generate mutants for
a modern C program because it does not support a recent
C standard later than C89. For another example, Milu [8]
generates many stillborn (i.e., syntactically illegal) mutants
due to incorrect handling of types including typedef,
enum, const type qualifier and an array type.

We have developed MUSIC (MUtation analySIs tool
with high Configurability and extensibility) to generate
mutants for modern complex real-world C programs that
consist of multiple source files with complex compilation
commands. MUSIC implements 63 mutation operators de-
fined by Agrawal et al. [9] and 10 new mutation operators
for strings and function calls to generate diverse mutants.
MUSIC is designed to be extensible for a user to easily
make a new mutation operator.

One salient feature of MUSIC is its fine-grained con-
figuration of mutant generation, which can satisfy various
purposes of mutation analysis. In other words, MUSIC
allows a user to specify a target domain and a range of
a mutation operator and a target scope of mutation. For
example, MUSIC can apply arithmetic mutation operator
(OAAN) to only one of {+,-} and mutate it to only *
between Line 100 and Line 200 of target.c.

We have applied Milu, Proteum, and MUSIC to Siemens
benchmark programs [10] and a modern large program
cURL [11]. We evaluate these tools in terms of applica-
bility and a number of stillborn mutants generated. For
both Siemens benchmarks and cURL, MUSIC successfully
generates mutants without any manual modification of the
target programs and it generates no stillborn mutant. In
contrast, Proteum requires manual source code modification
to generate mutants for Siemens benchmarks and fails to
generate mutants for cURL. Milu generates many stillborn
mutants (34.18% and 75.31% of the mutants for Siemens
benchmarks and cURL were syntactically illegal, respec-
tively).

Our contributions are as follows:

1) We have developed MUSIC which is highly con-
figurable and easy to extend for various mutation
analysis purposes targeting modern complex real-
world C programs.

2) MUSIC provides an extensive set of 73 mutation
operators including 63 existing operators defined
in Agrawal et al. [9] and 10 new operators which
do not generate stillborn mutants.

3) We have performed an experiment to evaluate Milu,
Proteum and MUSIC on Siemens benchmarks and
a modern real-world C program cURL and demon-
strated that MUSIC has high applicability and gen-
erates no stillborn mutant.

Sect. 2 explains MUSIC. Sect. 3 reports the experiment
result on Siemens benchmarks and cURL. Sect. 4 concludes
this paper with future work.

2. MUSIC Technique

We have implemented MUSIC based on the modern
compiler framework Clang/LLVM 4.0 [12]. MUSIC is writ-
ten in 9,000 lines of C++ code, which consists of 178 header



Figure 1. Simplified UML diagram of MUSIC

and source files, and 88 classes. MUSIC is available at
https://github.com/swtv-kaist/MUSIC.

Sect. 2.1 describes how a user applies MUSIC to a large
complex project conveniently. Sect. 2.2 explains high con-
figurability of MUSIC. Sect. 2.3 shows that a user can create
his/her own new mutation operators easily with support of
MUSIC. Sect. 2.4 explains how MUSIC avoids generating
stillborn mutants. The component architecture of MUSIC
referred through the subsections is shown in Fig. 1.

2.1. Applicability

To generate mutants for a large complex project consist-
ing of many directories and files with file-specific compi-
lation commands, MUSIC utilizes a compilation database.
This is because mutant generation often depends on specific
compilation commands.

For example, util.c in the left code of Fig. 2 il-
lustrates such situation. Without compilation information,
a mutation tool assumes that a flag UTIL is not defined and
generates an AST of the code as shown in the right part in
Fig. 2, which fails to generate mutants on Line 4 even if a
user actually compiles util.c with a flag UTIL as true.
MUSIC can utilize all such compilation information from a
given compilation database and a user can apply MUSIC to

Figure 2. Example of code without proper compilation information

complex large projects conveniently 1.
A compilation database is a collection of compilation

commands for a set of files. MUSIC receives compilation
database in a JSON format. Each entry in a compilation
database has three fields:

• a file to which the compilation applies to
• compilation commands used
• a directory in which this command is executed

1. A user can easily generate a compilation database for a project by
running CMake with the -DCMAKE_EXPORT_COMPILE_COMMANDS flag.
Also, Gyp/Ninja or BEAR can be used for the purpose.



2.2. Configurability

MUSIC provides mainly four options to selectively gen-
erate mutants for multiple C source files as follows:

1) -m mut op[:A[:B]]: to select a mutation operator
to apply (e.g., OAAN) and, optionally, a set of
target token(s) to replace (e.g., A can be {+,*})
and a set of new token(s) to use (e.g., B can be
{-,/}).

mut op can be one of the 73 pre-defined mutation
operators as follows:

a) 63 mutation operators defined in Agrawal
et al. [9]

b) the following three new string literal muta-
tion operators:
• SRWS (String Remove White Space)
• SANL (String Add New Line)
• SCSR (String Constant for String con-

stant Replacement)
c) the following seven new function call mu-

tation operators
• FGSR (Function call returning scalar for

Global Scalar variable Replacement)
• FLSR (Function call returning scalar for

Local Scalar variable Replacement)
• FGTR (Function call returning structure

for Global Structure variable Replace-
ment)

• FLTR (Function call returning structure
for Local Structure variable Replace-
ment)

• FGPR (Function call returning pointer
for Global Pointer variable Replacement)

• FLPR (Function call returning pointer
for Local Pointer variable Replacement)

• FTWD (Function Call Twiddle Muta-
tions)

For example, OAAN mutates arithmetic operators
(+, -, *, /, %) to other arithmetic operators. A user
can specify a target domain of OAAN as {+} and
a target range as {*, /} as shown in Fig. 3. Note
that specified domain and range of -m must be type-
compatible to a mutation operator (e.g., for OAAN,
target domain and range cannot contain < or >>). 2

2) -rs mut range start: to specify a starting posi-
tion of a target mutation range (i.e., a triple of a
target file name, a line number, a column number)

3) -re mut range end: to specify an ending posi-
tion of a target mutation range

4) -l max num: to limit a maximum number of
mutants generated per mutation point and mutation
operator

2. MUSIC provides pre-defined values that a user can use to
specify a target domain and range conveniently. For example -m
CCCR:{1,2}:{MEDIAN,MAX} where MEDIAN is a median value and
MAX is a maximum value among constants in a target program.

Figure 3. Usage of option -m to mutate + to * and / by modifying OAAN
domain and range

Some mutation operators may generate many mu-
tants. For example, CCCR mutates constant literals
to another constant literals in a target program,
which can generate many mutants. If -l 10 is
given, for each mutation point of CCCR, MUSIC
arbitrarily generates at most 10 mutants of CCCR.

2.3. Extensibility

One advantage of MUSIC is that it supports a user to
create his/her own new mutation operators conveniently. A
mutation operator of MUSIC is defined as a rule to modify
a target source file. Such rule specifies a target domain and
a range of a mutation operator as a set of tokens such that
a mutation operator replaces tokens in a target domain with
ones in a target range.

A mutation operator of MUSIC extends
ExprMutantOperator which mutates C expressions
or StmtMutantOperator which mutates C statements
(see the bottom right part of Fig. 1). These two classes
extend an abstract class MutantOperatorTemplate
which has a mutation operator name, its domain and range,
and four utility functions (two for validating domain and
range and two setter functions for domain and range). Also
each mutation operator implements the following two core
functions:

• IsMutationTarget function to check whether a
current statement/expression should be mutated

• Mutate function to actually apply mutation

For example, suppose that we would like to make a new
mutation operator SANL (String mutation operator to Add
a New Line character) which mutates StringLiteral
expressions by adding a newline character ‘\n’ at the end
of a target string. The domain of SANL is a set of strings



1: bool
2: IsMutationTarget(Expr *e, ...) {
3: if (!isa<StringLiteral>(e))
4: return false;
5:
6: if (!user_given_domain_.empty()) {
7: return user_given_domain_.find(
8: ConvertToString(e));
9: }

10: else true; // all strings are targeted
11: }

Figure 4. IsMutationTarget function for SANL

1:void
2:Mutate(Expr *e, MusicContext *context) {
3: CompilerInstance *CI = \
4: context->comp_inst_;
5: SourceLocation start_loc = \
6: e->getLocStart();
7: SourceLocation end_loc = \
8: GetEndLocOfExpr(e, CI);
9:

10: string token = ConvertToString(e);
11: string new_token = \
12: token.substr(token.size()-1)+"\\n\"";
13:
14: context->mutant_database_.AddMutantEntry(
15: mutation_op_name_, start_loc, end_loc,
16: token, new_token);
17:}

Figure 5. Mutate function for SANL

in a target source file to mutate. Fig. 4 shows how function
SANL::IsMutationTarget is defined.

For Mutate function, a goal is to add a new
MutantEntry to MutantDatabase. MutantEntry
contains a mutation operator name, start and end locations
of target a statement/expression, target token(s) to mutate
and new tokens to replace target token(s). Figure 5 shows
how function SANL::Mutate can be implemented.

In addition, MUSIC provides several utility classes
to help a user build his/her own mutation operators
conveniently. For example, suppose that a user wants
to make a new mutation operator SCSR which mu-
tates a string to another string in a target program.
MUSIC provides SymbolTable class that contains
categorized lists of statements/expressions of an en-
tire target source file. For SCSR, a user can utilize
SymbolTable::stringliteral_list_ which is a
list of StringLiteral expressions in the target source
code file (i.e., a user can obtain strings to replace a target
string by calling ConvertToString on each element of
stringliteral_list_).

2.4. No Stillborn Mutants

MUSIC does not generate stillborn mutants by utiliz-
ing type information. First, MUSIC avoids stillborn mutant

1: int foo() {
2: float f = -1.0; int a = 1; int arr[2];
3: arr[0] = a;
4: scanf("%d", &arr[a]);
5: int sum = arr[1] + f;
6:
7: if (arr[1] < 0) {
8: done:
9: return (int) f;
10: }
11:
12: if (sum < 0)
13: goto done;
14:
15: return sum;
16: }

Figure 6. Example source code to show how to avoid stillborn mutants

generation by utilizing type information of operands of
target C operators. For example, Fig. 6 shows how MUSIC
prohibits generating stillborn mutants. Applying OAAN to
mutate + to % on Line 5 will generate a stillborn mutant
because % should take only integer operands but the second
operand of % (i.e., f) is a floating number. MUSIC prevents
this mutation by analyzing types of operands in a target
expression (i.e., arr[1]+f).

Second, MUSIC avoids stillborn mutant generation by
utilizing type information of target variables (including con-
texts of target variables which are stored in StmtContext
class). For example, while parsing an expression contain-
ing a target variable a with unary increment (i.e., a++),
decrement (i.e., a--), address-of (i.e., &a) or dereference
operator (i.e., *a), MUSIC does not mutate a target variable
a to a constant. For another example, if VSRR (Scalar
Variable Replacement) mutates an integer variable a (used
as an index of an array) to a floating variable f at Line 4
of Fig. 6, the generated mutant will be syntactically illegal,
because an array index must be a integer type. Thus, MUSIC
does not mutate a to f.

Third, MUSIC utilizes information about goto,
switch statements to prevent stillborn mutants violating
C syntax. For example, SSDL (Statement Deletion) should
not be applied to if-statement on Line 7 of Fig. 6 because
removal of Line 8 will cause a compile error due to missing
target label statement of goto at Line 13. For switch
statements, MUSIC checks all case labels’ values to pre-
vent stillborn mutants caused by a duplicated case label
error.

3. Case Study: Siemens Benchmarks and
cURL

We evaluate applicability and efficiency (i.e., a number
of stillborn mutants generated) of MUSIC by applying MU-
SIC to the seven Siemens benchmark programs in Software-
artifact Infrastructure Repository (SIR) [10] and a large real-
world modern C program cURL [11]. Also, we compare



Figure 7. Source code modification of tot info to apply Proteum

MUSIC with Milu and Proteum which are popular mutation
tools for C programs.

We target Siemens benchmark programs because they
have various C language constructs including integer and
floating-point arithmetic, structs, pointers, memory al-
locations, loops, switch statements and complex condi-
tional expressions. For this reason, these programs have been
widely studied in testing and debugging literature. Siemens
benchmark programs are 312.6 LoC long on average (see
the second column of Table 1).

cURL is a command line tool and library for transferring
data through various network protocols including HTTP,
FTP, IMAP, etc. We choose cURL because cURL is a
very popular open-source project which has 6,700 stars in
GitHub. To maintain mutant generation time reasonably, we
build cURL to support only HTTP protocol and perform
mutant generation on only the cURL command line tool, not
library. cURL with only HTTP protocol support is 12,753
LoC long.

3.1. Applicability

MUSIC clearly shows better applicability than Milu and
Proteum. We could apply MUSIC to cURL easily because
it takes multiple preprocessed or unpreprocessed C files as
input using compilation database (Sect. 2.1). In contrast,
Milu and Proteum take only a single preprocessed C source
file as input. In other words, to apply Milu and Proteum,
a user has to manually handle complex compilation infor-
mation (including macro definitions, header files in separate
directories, and so on) for each C file one by one, which
causes significant manual overhead for a large project.

Moreover, Proteum often fails to generate mutants for C
programs compatible with recent C99 or C11 standards (for
example, the system header files of Siemens benchmarks are
compatible with C99 standards). A manual workaround for
this problem is as follows:

1) A user identifies statement(s) sf of a target program
that make Proteum fail.

2) A user modifies sf to s′ so that Proteum can
process a target program without failure.

TABLE 1. NUMBER OF MUTANTS GENERATED BY MILU, PROTEUM
AND MUSIC ON SIEMENS C BENCHMARK PROGRAMS

Target LOC Mutation #Gen. #Stillborn %Stillborn
Program Tool Mutants Mutants Mutants

printtokens 343
Milu 3077 995 32.34
Proteum 4273 200 4.68
MUSIC 11274 0 0.00

printtokens2 355
Milu 2424 523 21.58
Proteum 4680 162 3.46
MUSIC 4791 0 0.00

replace 513
Milu 3927 353 8.99
Proteum 10872 509 4.68
MUSIC 9925 0 0.00

schedule 296
Milu 1310 640 48.85
Proteum 2241 103 4.60
MUSIC 2365 0 0.00

schedule2 263
Milu 1919 915 47.68
Proteum 2950 114 3.86
MUSIC 3033 0 0.00

tcas 137
Milu 874 271 31.01
Proteum 2872 74 2.58
MUSIC 3415 0 0.00

totinfo 281
Milu 2381 996 41.83
Proteum 6390 122 1.91
MUSIC 10486 0 0.00

Average 312.6
Milu 2273.1 670.4 33.18
Proteum 4896.9 183.4 3.68
MUSIC 6469.9 0 0.00

3) A user generates mutants and then revert s′ of every
mutant to sf .

We had to modify five lines for each of printtokens,
printtokens2, totinfo, and one line for each of the
remaining four Siemens benchmark programs. As an exam-
ple, Fig. 7 shows how we modify the preprocessed source
file of totinfo. The five lines colored with red in the
leftmost box cause parsing errors to Proteum due to inline
keyword (Lines 149 and 155), built-in functions (Lines 152
and 158), and built-in type (Line 347). We generate a
temporary source file by removing the problematic lines
(see the middle box of Fig. 7) and apply Proteum to the
temporary file. After Proteum generates mutants, we revert
the removed lines in each of the mutants (see the right box
of Fig. 7).

For cURL, Proteum fails to generate a mutant even after
we have modified more than 20 lines in the preprocessed
tool_main.c source file which contains main() of
cURL. For Milu, we had to manually generate 38 pre-
processed source files and apply Milu to each of the pre-
processed source files separately. Therefore, MUSIC shows
higher applicability to a large real-world modern C program
such as cURL than Milu and Proteum.

3.2. Efficiency

3.2.1. Total Number of Mutants Generated. The forth
column of Table 1 shows numbers of mutants generated by
Milu, Proteum and MUSIC. Milu supports only 28 mutation
operators and usually generates much less mutants than



Figure 8. Example of stillborn mutants generated by Proteum

Figure 9. Example of stillborn mutants generated by Milu

Proteum (78 mutation operators) and MUSIC (73 mutation
operators). As a result, on average, Milu, Proteum, and
MUSIC generate 2273.1, 4896.9 and 6469.9 mutants on
Siemens benchmark programs, respectively.

For Siemens benchmark programs, MUSIC generates
1573.0 more mutants than Proteum, on average. The dif-
ference is mainly caused by the way CCCR (Constant for
Constant Replacement) and CCSR (Constant for Scalar Re-
placement) are implemented in each tool. MUSIC’s CCCR
and CCSR mutate a constant and a variable to a constant in
a target program including a global constant as defined in
Agrawal [9], respectively. However, Proteum’s CCCR and
CCSR do not mutate a constant or a variable to a global
constant.

For cURL, Milu and MUSIC generates 41,470 and
1,035,088 mutants respectively.

3.2.2. Number of Stillborn Mutants. The fifth column
of Table 1 shows that MUSIC generates no stillborn mu-
tants for Siemens benchmark programs. In contrast, 33.18%
and 3.68% of all mutants generated by Milu and Proteum
are syntactically illegal and uncompilable, respectively (the
sixth column of Table 1).

An example of a stillborn mutant generated by Proteum
is shown in Fig. 8. Proteum’s VLSR (Local Scalar Variable
Replacement) mutates a condition variable command on
Line 329 to a floating variable ratio. Since switch state-
ment cannot take a floating variable, the generated mutant
is syntactically illegal.

Fig. 9 shows an example of a stillborn mutant gen-
erated by Milu. When applying Milu to mutate function

numeric_case in printtokens, all 170 generated
mutants were syntactically illegal due to the syntax errors
occurred in function definition: redefinition of parameter ch
and inclusion of semicolon in the list of function parameters.

For cURL, MUSIC generates no stillborn mutant while
Milu generates 31,232 ones (i.e., 75.31% of the generated
mutants are syntactically illegal). We found that this large
number of stillborn mutants is caused by incorrect handling
of types including typedef, enum, const type qualifier
and an array type.

4. Conclusion and Future Work

We have presented MUSIC which can generate diverse
mutants for various mutation analysis purposes on mod-
ern real-world C programs. Through the experiments on
Siemens benchmark programs and cURL, we have demon-
strated that MUSIC has high applicability and generates no
stillborn mutant.

As future work, we will apply MUSIC to more large C
projects to evaluate its applicability further. Also, since mu-
tation analysis is actively used for various software analysis
tasks, we plan to provide more diverse mutation operators in
MUSIC. Furthermore, we apply MUSIC to automated unit-
test generation for C programs [13], [14] to enhance bug
detection ability and test coverage by diversifying unit test
executions through mutation analysis.

MUSIC is publicly available at https://github.com/
swtv-kaist/MUSIC

Acknowledgments

This research was supported by Next-Generation
Information Computing Development Program (No.
2017M3C4A7068177), Basic Science Research Program
(No. 2016R1A2B4008113) through the National Research
Foundation (NRF) funded by the Ministry of Science and
ICT of Korea, and Basic Science Research Program (No.
2017R1D1A1B03035851) through NRF funded by the
Ministry of Education of Korea.

References

[1] M. Papadakis and Y. L. Traon, “Metallaxis-FL: mutation-based fault
localization,” Softw. Test., Verif. Reliab., vol. 25, no. 5-7, pp. 605–628,
2015.

[2] S. Moon, Y. Kim, M. Kim, and S. Yoo, “Ask the mutants: Mutating
faulty programs for fault localization,” in 2014 IEEE Seventh Inter-
national Conference on Software Testing, Verification and Validation,
March 2014, pp. 153–162.

[3] S. Hong, B. Lee, T. Kwak, Y. Jeon, B. Ko, Y. Kim, and M. Kim,
“Mutation-based fault localization for real-world multilingual pro-
grams (t),” in 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE), Nov 2015, pp. 464–475.

[4] S. Hong, T. Kwak, B. Lee, Y. Jeon, B. Ko, Y. Kim, and M. Kim,
“MUSEUM: Debugging real-world multilingual programs using mu-
tation analysis,” Information and Software Technology, vol. 82, pp.
80 – 95, 2017.



[5] Y. Kim, S. Hong, B. Ko, D. Phan, and M. Kim, “Invasive software
testing: Mutating target programs to diversify test exploration for
high test coverage,” in 2018 IEEE 11th International Conference on
Software Testing, Verification and Validation, 2018.

[6] G. Fraser and A. Zeller, “Mutation-driven generation of unit tests
and oracles,” IEEE Transactions on Software Engineering, vol. 38,
pp. 278–292, 2011.

[7] J. C. Maldonado, M. E. Delamaro, S. C. P. F. Fabbri,
A. da Silva Simão, T. Sugeta, A. M. R. Vincenzi, and P. C. Masiero,
Proteum: A Family of Tools to Support Specification and Program
Testing Based on Mutation. Springer US, 2001, pp. 113–116.

[8] Y. Jia and M. Harman, “Milu: A customizable, runtime-optimized
higher order mutation testing tool for the full c language,” in Testing:
Academic Industrial Conference - Practice and Research Techniques
(taic part 2008), Aug 2008, pp. 94–98.

[9] H. Agrawal, R. A. DeMillo, B. Hathaway, W. Hsu, W. Hsu,
E. Krauser, R. Martin, A. P. Mathur, and E. Spafford, “Design of
mutant operators for the c programming language,” Purdue University,
Tech. Rep., March 1989.

[10] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled experi-
mentation with testing techniques: An infrastructure and its potential
impact,” Empirical Software Engineering, vol. 10, no. 4, pp. 405–435,
Oct. 2005.

[11] “cURL: A command line tool and library for transferring data with
URLs,” https://curl.haxx.se/.

[12] C. Lattner and V. Adve, “Llvm: a compilation framework for lifelong
program analysis transformation,” in International Symposium on
Code Generation and Optimization, 2004. CGO 2004., March 2004,
pp. 75–86.

[13] Y. Kim, Y. Kim, T. Kim, G. Lee, Y. Jang, and M. Kim, “Automated
unit testing of large industrial embedded software using concolic
testing,” in Proceedings of the 2013 IEEE/ACM 28th International
Conference on Automated Software Engineering, Nov 2013, pp. 519–
528.

[14] Y. Kim, Y. Choi, and M. Kim, “Precise concolic unit testing of
c programs using extended units and symbolic alarm filtering,” in
Proceedings of the 40th International Conference on Software Engi-
neering, ser. ICSE ’18, 2018.


