Automated Analysis of Industrial
Embedded Software

Moonzoo Kim and Yunho Kim
Provable Software Lab
KAIST, South Korea MIST
Thanks to Hotae Kim and Yoonkyu Jang@
Samsung Electronics, South Korea

Strong IT Industry in South Korea

KIA MOTORS

STEERING WHEEL ROOF
cruise control, wiper, turning light, g

telephone, ..

CLIMATE
small motors, control

ENGINE
sensors, small motors

HYUNDAI

Moonzoo Kim Automated Analysis of Industrial Embedded Software 2 119

Personal Research Roadmap

+ Past: RV (dynamic) && MC (static) o — — — -

Model Software

Runtime
Verification

) —> \Y{[eJe[=] —
ClEEInE I Checking [
FMSD’04 Spin’08 | [ASE‘08 [

, L TSE'L]
+ Current: Extended Concolic Testing— — = =

[: Distributed Hybrid
Concolic Concolic Algorithm
'l Testin : (i.e., w/ Better
= I Testing Genetic Alg) '
I €nelic A5 Industrial
FACI 2 | | FSE'l Ib ISSRE "1 | Application
| FSE'lla ICTAC’ 10
| | SBMFO9 |

4+ Future: Concolic Testing with Intelligence
Statistic Machine I:: ’\: User N 7
Inference E:]:I Learning Assistance

Moonzoo Kim Automated Analysis of Industrial Embedded Software 319

Part |: Experience from SW Model Checking

Target system: Samsung Unified Storage
Platform (USP) for OneNAND® flash memory
(around 30K lines of C code)

Source:
Software Center

» Characteristics of OneNAND® flash mem A
Each memory cell can be written limited
number of times only - - Unified
» Logical-to-physical sector mapping System Man:ailrngDPM Storage
» Bad block management, wear-leveling, etc Platform
Concurrent 1/0O operations]
» Synchronization among processes is crucial ez rghslation Layer oS
XIP by emulating NOR interface through " Adapt-
demand-paging scheme ation
» binary execution has a highest priority Module
Performance enhancement ——

» Multi-sector read/write

> Asynchronous operations OneNAND Flash Memory Devices
» Deferred operation result check /

Moonzoo Kim Automated Analysis of Industrial Embedded Software 4 /19

Results of Unit Analysis through CBMC and BLAST [TSE’11]

» Demand paging manager (234 LOC)
Detected a bug of not saving the status of suspended erase
operation

» Concurrency handling

Confirmed that the BML semaphore was used correctly in all 14
BML functions (150 LOC on average)

Detected a bug of ignoring BML semaphore exceptions in a call
sequence from STL (2500 LOC on average)

» Multi-sector read operation (MSR) (157 LOC)

Provided high assurance on the correctness of MSR

no violation was detected even after exhaustive analysis (at least with a
small number of physical units(~10))

» In addition, we evaluated and compared pros and cons of
CBMC and BLAST empirically

Moonzoo Kim Automated Analysis of Industrial Embedded Software 5/19

Logical to Physical Sector Mapping

LUNO LUN1 LUN 2 LUN 3 LUN 4 LUNS5 LUN 6 '""L"l'j"N"b""
¥ i i ¥ g e e I
SAM1
PUN 3 PUN 2 PUN1 PUN 6 PUN 4
Logical offset | Physical offset PUN 1
7 7 ; 5)
PUNO PUN 5 1 2 LS 1
2 ~ LS 1
. 3 A LSO
|:N mapping from a LUN to PUNs |
SAMA4 PUN 4
Logical offset | Physical offset
. y LS2
STEPO STEP 1 STEP 2 STEP 3 STEP 4 STEP 5 1
CLONOGTT LONOTT LONOTT LUONOTT LUNOTT LUNO
[[[[[[2 0
PUN 1 PUN 1 PUN 1 PUN 1 PUN 1 PUN 1 3
LS 0 LSO LSO LSO LSO .
s Lot Lot Lot Sector Allocation Map (SAM)
LS 1 LS 1 LS 1
LSO LSO
4 } } } |
Empt ; : i i :
Bty | WHeLSO WreLS1 ModiyLS1 ModiyLSO | euns » In flash memo ry, lo gica |
LS 2 o .
data are distributed over
Sector mapping ; physical sectors.
Write LS 2

Moonzoo Kim Automated Analysis of Industrial Embedded Software 6 /19

Multi-sector Read Operation (MSR)

SAMO~SAM4 PUO~PUA4 SAMO~SAM4 PUO~PUA4 SAMO~SAM4 PUO~PU4
sector 0 [1][[0 E 3[[Bl B 0 E
secor || [1] | L] AB| | F ol [Rl || D 1 ABl | F
Sector 2 2 C 3 F 2 C
Sector 3 3 D 1 AC| E 3 D

a) A dIStr'Ibutlon oquBCDEF” b) Anothel" distribution Of“ABCDEF” C) Invalid dlst”but'on Of“ABCDEF”

» MSR reads adjacent multiple physical sectors once in order to
improve read speed
MSR is 157 lines long, but highly complex due to its 4 level loops
4 parameters to specify logical data to read (from, to, how long, read flag)
» The requirement property is to check
after MSR -> (V. logical_sectors[i] == buf]i])
» We built a verification environment model for MSR

Moonzoo Kim Automated Analysis of Industrial Embedded Software 7119

Environment Modeling

1. One PU is mapped to at most one LU
2. Valid correspondence between SAMs and PUs:

If the i th LS is written in the k th sector of the j th PU, then the i th offset of thej th
SAM is valid and indicates the k’th PS,

Ex> 3 LS (‘C’) is in the 3™ sector of the 2" PU, then SAM1[2] ==
i=2 k=2 j=1
3. For one LS, there exists only one PS that contains the value of the LS:
The PS number of the i th LS must be written in only one of the (i mod 4) th offsets
of the SAM tables for the PUs mapped to the corresponding LU.

SAMO~SAM4 PUO~PU4

Vi, 3,k (LS[i]| = PUJj|.sect[k] — (SAM [j].valid[i mod m] = true
gk (LSTi] [7] k] — 7] [) Sector 0 |1 0] E
& SAM [j].of fset[i mod m] =k
_ i . , Sector | 1 11 AB F
& Vp.(SAM [p].valid[i mod m] = false)
; Sector 2 2 C
where p # j and PU|[p] is mapped t.t_)|_mJ”, LU)) Sector 3 3 D

Moonzoo Kim Automated Analysis of Industrial Embedded Software /19

Model Checking Results of MSR [Spin’08]

» Verification of MSR by using NuSMV, Spin, and CBMC
» No violation was detected within |LS|<=8, |PU| <=10

10'° configurations were exhaustively analyzed for |LS|=8, |PU|=10

100000

100000 -

Time complexity LS =6

’.

10000

Seconds
=)
o
o

100

=&—Spin
=m-NuSMV
=4=—CBMC

6 7 8 9 10

A number of physical units

Space complexity LS = 6

10000

Megabytes
)
8

100 -

‘_’-A
I _‘ ZA——‘/ — — C BM C

=&—Spin
=#-NuSMV

5

6 7 8 9 10

A number of physical units

9 /19

Moonzoo Kim

Automated Analysis of Industrial Embedded Software

Feedbacks from Samsung Electronics

Main challenge :
e |T industry is not mature enough to conduct unit testing

Current SW development of Samsung is not ready to apply unit testing

=

» Tight project deadline does not allow defining detailed asserts and environment
models

2. Needs large scalability even at the cost of accuracy

» Rigorous automated tools for small unit (i.e., SW model checker) is of limited
practical value

Many embedded SW components have dependency on external libraries

w

» Pure analysis methods on source code only are of limited value

4. Itis desirable to generate test cases as a result of the analysis.

» Current SW V&V practice operates on test cases

Moonzoo Kim Automated Analysis of Industrial Embedded Software 10/19

Background on Concolic Testing

» Concrete runtime execution guides symbolic path analysis
a.k.a. dynamic symbolic execution (DSE), white-box fuzzing

» Automated test case (TC) generation technique
Applicable to a large target program (no memory bottleneck)
Applicable to testing stages seamlessly
External binary library can be handled (partially)

» Explicit path model checker
All possible execution paths are explored based on the generated TCs
Anytime algorithm
» User can get partial analysis result (i.e., TCs) anytime
Analysis of each path is independent from each other
» Parallelization for linear speed up

» Ex. Scalable COncolic testing for Reliable Embedded Software (SCORE) on
thousands of Amazon EC2 cloud computing nodes [FSE’11b]

Moonzoo Kim Automated Analysis of Industrial Embedded Software 11719

Part Il: Experience from Concolic Testing using CREST

Target system: Samsung Smartphone Platform

» Unit-level testing
Busybox Is (1100 LOC)
» 98% of branches covered and 4 bugs detected
Samsung security library (2300 LOC)
» 73% of branches covered and a memory violation bug detected

» System level testing
Samsung Linux Platform (SLP) file manager
» Covered 20% of the branches and detected an infinite loop bug
10 Busybox utilities

» Covered 80% of the branches with 4 different search strategy and 10,000 TCs in
20 min each

» A buffer overflow bug in grep was detected
Libexif

» Covered 43% of the branches with 4 different search strategy and 10,000 TCs in 8
hours each

» 2 null pointer dereferences and 5 divide-by-0 bugs were detected

Moonzoo Kim Automated Analysis of Industrial Embedded Software 12/19

Samsung Security Library [FSE’113]

Security functions

» Providing complete security (AES, SHA, etc.)

protocol APIs

Complex math functions

» 3 level layered structure

» Complex mathematical
operation involved

Large integer functions

» We targeted the large integer functions layer using
the CREST tool

Upper 2 layers heavily use external math library functions and
are hard to understand due to complex algorithms

Moonzoo Kim Automated Analysis of Industrial Embedded Software 13719

Symbolic Inputs

» All 14 functions in the large integer functions layer receive struct
L_INT as inputs

» struct L_INT {
unsigned int size; // Allocated memory size in 32 bits
unsigned int len; // # of valid 32 bit elements, thus len <= size
unsigned int *da; // Actual data, da[len-1] are the most-significant bytes
unsigned int sign; // 0: non-negative, 1: negative

}
» Ex. 4294967298 (=2*20 + 1*232) is represented by

unsigned int size=3;

unsigned int len=2; mmm
unsigned int *da ={2,1,0}: // 220 + 1%232 4+ (*264 2 | 0
unsigned int sign=0;

Moonzoo Kim Automated Analysis of Industrial Embedded Software 14719

Symbolic L INT Generator

» gen_s_1nt() generates symbolic L_INT whose size is
between min and max

Allocate memory of L_INT with symbolic size of data buffer
(line 2~6)

Fill L_INT data when to_Fill is not O (line 8~12)

O1l: L_INT* gen_s int(int min,int max,int to fill) {
02: unsigned int size, 1;

03: CREST unsigned_int(size); //sym. var.
04: 1IT(size> max || size< min) exit(0);
05: L _INT *n=L_INT_Init(size);

06: n->len=size;

07:

08: if(to_fil){// sym. value assignment
09: for(i=0; 1 < size; 1++) {

10: CREST unsigned int(n->dafi1]);}
11: iIf(n->da[si1ze-1]==0) exit(0); }

12: return n;}

Moonzoo Kim Automated Analysis of Industrial Embedded Software 15/19

Test Driver for L INT ModAdd()

» L INT _ModAdd(dest, n1, n2, m)
dest := (n1+n2)%m // (6+7)% 10 =3

» Check (n1+n2)%m == (n2+n1)%m (line 11)
Generate 3 symbolic L_INT operands for n1, n2, and m (line 2~4)
Generate 2 symbolic L_INT dest and dest2 to store the results

O1l: void test L INT_ModAdd(Q {
02: L _INT *nl gen_s int(1,4,1),

03: *n2 = gen_s int(1,4,1),

04: *m = gen_s_int(1,4,1),

05: *dest = gen_s 1nt(1,4,0), // Do not fill *da
06: *dest2 = gen_s 1nt(1,4,0); // Do not fill *da
07:

08: L _INT_ModAdd(dest,nl,n2,m);

09: L _INT_ModAdd(dest2,n2,nl,m);

10: // (N1+n2)%m == (n2+n1)%m

11: assert(L_INT Cmp(dest,dest2)==0);}

Moonzoo Kim Automated Analysis of Industrial Embedded Software 16/19

Correct behavior

» We tested all 14 functions and | - Test input ---------

. . nl :2 :7f7d4b02 6b702b0d
all of them violated assertions |, .| 3787973c

7537 TCs generated in 5 mins m: | :777d0235
dest.size=|
1284/1953 branches dest2.size=|
covered(73.2%) |- Test output ---------
dest: | :539b103d
» L_INT_ModAdd() dest2: | :539b103d
L INT C dest,dest2)==0
831 TCs generated INT_Cmp(destdest2)
129 among 150 branches Violation of assert(destl=dest2)
A N Test input ---------
covered (866) nl :4:777d0295 3787923c 7f7d4b02 6b702b0d
17 violations of n2 :3 :513a3234 7d0b4f12 5789fd36
dest.size=|
dest2.size=1

-------- Test output ---------

dest: 3 :0000000| dc5f0f9e a0862e99
dest2: 3 :0874a808 dc5f0f9e a0862e99
L_INT_Cmp(dest,dest2)==-

_ _ test L INT_ModAdd:Assertion “result == 0' failed.
Moonzoo Kim AutomatEd AnalySlS O_f MTUUSTITUT CTITIPCUUTU JUJTVVUTT

Observations from these Verification Projects

Main challenge:
e State space explosion problem

1. Expensive computational cost
Huge state space (|TCs| =~ 2 lexecl)

~90% of time spent by a SMT solver

» SMT solvers seem good at solving a complex formula but not good
at solving millions of similar short formulas

2. Proper selection of symbolic input to reduce state space
requires deep knowledge of a target program

3. Build process and runtime environment dependence
causes additional burden

Moonzoo Kim Automated Analysis of Industrial Embedded Software 18/19

Conclusion and Future Work

» Formal verification techniques really work in IT industry |

Software model checking and concolic testing detected hidden bugs in
industrial embedded software

» To alleviate the limitations of concolic testing
Fault-tolerance for distributed concolic testing (SCORE framework [FSE’11b])
External function summaries through dynamic invariance generation

Develop a new search strategy for fast branch coverage

» Data mining on a huge set of runtime execution information
Automated oracle generation through dynamic invariant generation
Automated debugging

» Technical papers can be downloaded at

Moonzoo Kim Automated Analysis of Industrial Embedded Software 19/19

