Automated Analysis of Industrial
Embedded Software

Moonzoo Kim and Yunho Kim
Provable Software Lab
KAIST, South Korea MIST
Thanks to Hotae Kim and Yoonkyu Jang@
Samsung Electronics, South Korea




Strong IT Industry in South Korea

KIA MOTORS

STEERING WHEEL ROOF
cruise control, wiper, turning light, g

telephone, ..

CLIMATE
small motors, control

ENGINE
sensors, small motors

HYUNDAI

Moonzoo Kim Automated Analysis of Industrial Embedded Software 2 119



Personal Research Roadmap

+ Past: RV (dynamic) && MC (static) o — — — -

Model Software

Runtime
Verification

) —> \Y{[eJe[=] —
ClEEInE I Checking [
FMSD’04 Spin’08 | [ ASE‘08 [

, L TSE'L ]
+ Current: Extended Concolic Testing— — = =

[ : Distributed Hybrid
Concolic Concolic Algorithm
'l Testin : (i.e., w/ Better
= I Testing Genetic Alg) '
I €nelic A5 Industrial
FACI 2 | | FSE'l Ib ISSRE "1 | Application
| FSE'lla ICTAC’ 10
| | SBMFO9 |

4+ Future: Concolic Testing with Intelligence
Statistic Machine I:: ’\: User N 7
Inference E:]:I Learning Assistance

Moonzoo Kim Automated Analysis of Industrial Embedded Software 319




Part |: Experience from SW Model Checking

Target system: Samsung Unified Storage
Platform (USP) for OneNAND® flash memory
(around 30K lines of C code)

Source:
Software Center

» Characteristics of OneNAND® flash mem A
Each memory cell can be written limited
number of times only - - Unified
» Logical-to-physical sector mapping System Man:ailrngDPM Storage
» Bad block management, wear-leveling, etc Platform
Concurrent 1/0O operations ]
» Synchronization among processes is crucial ez rghslation Layer oS
XIP by emulating NOR interface through " Adapt-
demand-paging scheme ation
» binary execution has a highest priority Module
Performance enhancement ——

» Multi-sector read/write

> Asynchronous operations OneNAND Flash Memory Devices
» Deferred operation result check /
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Results of Unit Analysis through CBMC and BLAST [TSE’11]

» Demand paging manager (234 LOC)
Detected a bug of not saving the status of suspended erase
operation

» Concurrency handling

Confirmed that the BML semaphore was used correctly in all 14
BML functions (150 LOC on average)

Detected a bug of ignoring BML semaphore exceptions in a call
sequence from STL (2500 LOC on average)

» Multi-sector read operation (MSR) (157 LOC)

Provided high assurance on the correctness of MSR

no violation was detected even after exhaustive analysis (at least with a
small number of physical units(~10))

» In addition, we evaluated and compared pros and cons of
CBMC and BLAST empirically
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Logical to Physical Sector Mapping
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Multi-sector Read Operation (MSR)

SAMO~SAM4  PUO~PUA4 SAMO~SAM4  PUO~PUA4 SAMO~SAM4  PUO~PU4
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Sector 3 3 D 1 AC| E 3 D

a) A dIStr'Ibutlon oquBCDEF” b) Anothel" distribution Of“ABCDEF” C) Invalid dlst”but'on Of“ABCDEF”

» MSR reads adjacent multiple physical sectors once in order to
improve read speed
MSR is 157 lines long, but highly complex due to its 4 level loops
4 parameters to specify logical data to read (from, to, how long, read flag )
» The requirement property is to check
after MSR -> (V. logical_sectors[i] == buf]i])
» We built a verification environment model for MSR
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Environment Modeling

1. One PU is mapped to at most one LU
2. Valid correspondence between SAMs and PUs:

If the i th LS is written in the k th sector of the j th PU, then the i th offset of thej th
SAM is valid and indicates the k’th PS,

Ex> 3 LS (‘C’) is in the 3™ sector of the 2" PU, then SAM1[2] ==
i=2 k=2 j=1
3. For one LS, there exists only one PS that contains the value of the LS:
The PS number of the i th LS must be written in only one of the (i mod 4) th offsets
of the SAM tables for the PUs mapped to the corresponding LU.

SAMO~SAM4 PUO~PU4

Vi, 3,k (LS[i]| = PUJj|.sect[k] — (SAM [j].valid[i mod m] = true
gk (LSTi] [7] k] — 7] [ ) Sector 0 |1 0] E
& SAM [j].of fset[i mod m] =k
_ i . , Sector | 1 11 AB F
& Vp.(SAM [p].valid[i mod m] = false)
; Sector 2 2 C
where p # j and PU|[p] is mapped t.t_)|_mJ”, LU)) Sector 3 3 D
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Model Checking Results of MSR [Spin’08]

» Verification of MSR by using NuSMV, Spin, and CBMC
» No violation was detected within |LS|<=8, |PU| <=10

10'° configurations were exhaustively analyzed for |LS|=8, |PU|=10
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Feedbacks from Samsung Electronics

Main challenge :
e |T industry is not mature enough to conduct unit testing

Current SW development of Samsung is not ready to apply unit testing

=

» Tight project deadline does not allow defining detailed asserts and environment
models

2. Needs large scalability even at the cost of accuracy

» Rigorous automated tools for small unit (i.e., SW model checker) is of limited
practical value

Many embedded SW components have dependency on external libraries

w

» Pure analysis methods on source code only are of limited value

4. Itis desirable to generate test cases as a result of the analysis.

» Current SW V&V practice operates on test cases
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Background on Concolic Testing

» Concrete runtime execution guides symbolic path analysis
a.k.a. dynamic symbolic execution (DSE), white-box fuzzing

» Automated test case (TC) generation technique
Applicable to a large target program (no memory bottleneck)
Applicable to testing stages seamlessly
External binary library can be handled (partially)

» Explicit path model checker
All possible execution paths are explored based on the generated TCs
Anytime algorithm
» User can get partial analysis result (i.e., TCs) anytime
Analysis of each path is independent from each other
» Parallelization for linear speed up

» Ex. Scalable COncolic testing for Reliable Embedded Software (SCORE) on
thousands of Amazon EC2 cloud computing nodes [FSE’11b]
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Part Il: Experience from Concolic Testing using CREST

Target system: Samsung Smartphone Platform

» Unit-level testing
Busybox Is (1100 LOC)
» 98% of branches covered and 4 bugs detected
Samsung security library (2300 LOC)
» 73% of branches covered and a memory violation bug detected

» System level testing
Samsung Linux Platform (SLP) file manager
» Covered 20% of the branches and detected an infinite loop bug
10 Busybox utilities

» Covered 80% of the branches with 4 different search strategy and 10,000 TCs in
20 min each

» A buffer overflow bug in grep was detected
Libexif

» Covered 43% of the branches with 4 different search strategy and 10,000 TCs in 8
hours each

» 2 null pointer dereferences and 5 divide-by-0 bugs were detected
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Samsung Security Library [FSE’113]

Security functions

» Providing complete security (AES, SHA, etc.)

protocol APIs

Complex math functions

» 3 level layered structure

» Complex mathematical
operation involved

Large integer functions

» We targeted the large integer functions layer using
the CREST tool

Upper 2 layers heavily use external math library functions and
are hard to understand due to complex algorithms
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Symbolic Inputs

» All 14 functions in the large integer functions layer receive struct
L_INT as inputs

» struct L_INT {
unsigned int size; // Allocated memory size in 32 bits
unsigned int len; // # of valid 32 bit elements, thus len <= size
unsigned int *da; // Actual data, da[len-1] are the most-significant bytes
unsigned int sign; // 0: non-negative, 1: negative

}
» Ex. 4294967298 (=2*20 + 1*232) is represented by

unsigned int size=3;

unsigned int len=2; mmm
unsigned int *da ={2,1,0}: // 220 + 1%232 4+ (*264 2 | 0
unsigned int sign=0;
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Symbolic L INT Generator

» gen_s_1nt() generates symbolic L_INT whose size is
between min and max

Allocate memory of L_INT with symbolic size of data buffer
(line 2~6)

Fill L_INT data when to_Fill is not O (line 8~12)

O1l: L_INT* gen_s int(int min,int max,int to fill) {
02: unsigned int size, 1;

03: CREST unsigned_int(size); //sym. var.
04: 1IT(size> max || size< min) exit(0);
05: L _INT *n=L_INT_Init(size);

06: n->len=size;

07:

08: if(to_fil){// sym. value assignment
09: for(i=0; 1 < size; 1++) {

10: CREST unsigned int(n->dafi1]);}
11: iIf(n->da[si1ze-1]==0) exit(0); }

12: return n;}
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Test Driver for L INT ModAdd()

» L INT _ModAdd(dest, n1, n2, m)
dest := (n1+n2)%m // (6+7)% 10 =3

» Check (n1+n2)%m == (n2+n1)%m (line 11)
Generate 3 symbolic L_INT operands for n1, n2, and m (line 2~4)
Generate 2 symbolic L_INT dest and dest2 to store the results

O1l: void test L INT_ModAdd(Q {
02: L _INT *nl gen_s int(1,4,1),

03: *n2 = gen_s int(1,4,1),

04: *m = gen_s_int(1,4,1),

05: *dest = gen_s 1nt(1,4,0), // Do not fill *da
06: *dest2 = gen_s 1nt(1,4,0); // Do not fill *da
07:

08: L _INT_ModAdd(dest,nl,n2,m);

09: L _INT_ModAdd(dest2,n2,nl,m);

10: // (N1+n2)%m == (n2+n1)%m

11: assert(L_INT Cmp(dest,dest2)==0);}
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Correct behavior

» We tested all 14 functions and | - Test input ---------

. . nl :2 :7f7d4b02 6b702b0d
all of them violated assertions |, .| 3787973c

7537 TCs generated in 5 mins m: | :777d0235
dest.size=|
1284/1953 branches dest2.size=|
covered(73.2%) |- Test output ---------
dest: | :539b103d
» L_INT_ModAdd() dest2: | :539b103d
L INT C dest,dest2)==0
831 TCs generated INT_Cmp(destdest2)
129 among 150 branches Violation of assert(destl=dest2)
A N Test input ---------
covered (866) nl :4:777d0295 3787923c 7f7d4b02 6b702b0d
17 violations of n2 :3 :513a3234 7d0b4f12 5789fd36
dest.size=|
dest2.size=1

-------- Test output ---------

dest: 3 :0000000| dc5f0f9e a0862e99
dest2: 3 :0874a808 dc5f0f9e a0862e99
L_INT_Cmp(dest,dest2)==-

_ _ test L INT_ModAdd:Assertion “result == 0' failed.
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Observations from these Verification Projects

Main challenge:
e State space explosion problem

1. Expensive computational cost
Huge state space ( |TCs| =~ 2 lexecl )

~90% of time spent by a SMT solver

»  SMT solvers seem good at solving a complex formula but not good
at solving millions of similar short formulas

2. Proper selection of symbolic input to reduce state space
requires deep knowledge of a target program

3. Build process and runtime environment dependence
causes additional burden
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Conclusion and Future Work

» Formal verification techniques really work in IT industry |

Software model checking and concolic testing detected hidden bugs in
industrial embedded software

» To alleviate the limitations of concolic testing
Fault-tolerance for distributed concolic testing (SCORE framework [FSE’11b])
External function summaries through dynamic invariance generation

Develop a new search strategy for fast branch coverage

» Data mining on a huge set of runtime execution information
Automated oracle generation through dynamic invariant generation
Automated debugging

» Technical papers can be downloaded at
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