
Effective Pattern-driven Concurrency Bug Detection for

Operating Systems

Shin Hong, Moonzoo Kim∗

Computer Science Department, KAIST, South Korea

Abstract

As multi-core hardware has become more popular, concurrent programming is
being more widely adopted in software. In particular, operating systems such as
Linux utilize multi-threaded techniques heavily to enhance performance. How-
ever, current analysis techniques and tools for validating concurrent programs
often fail to detect concurrency bugs in operating systems (OS) due to the com-
plex characteristics of OSes. To detect concurrency bugs in OSes in a practical
manner, we have developed the COncurrency Bug dETector (COBET) frame-
work based on composite bug patterns augmented with semantic conditions.
The effectiveness, efficiency, and applicability of COBET were demonstrated by
detecting 10 new bugs in file systems, device drivers, and network modules of
Linux 2.6.30.4 as confirmed by the Linux maintainers.

Keywords: Concurrency Bug, Bug Pattern, Static Analysis, Linux

1. Introduction

As multi-core hardware becomes increasingly powerful and popular, operat-
ing systems (OSes) such as Linux utilize the cutting-edge multi-threaded tech-
niques heavily to enhance performance. However, current analysis techniques
and tools for concurrent programs have limitations when they are applied to
operating systems due to the complex characteristics of OSes. In particular, the
following three characteristics of OSes make concurrency bug detection on OSes
difficult.

• Various synchronization mechanisms utilized
Most concurrency bug detection techniques [1, 2, 3, 4, 5, 6] focus on
lock usage, since a majority of user-level applications utilize simple mu-
texes/critical sections to enforce synchronization. However, OSes exploit

∗Corresponding author
Email addresses: hongshin@kaist.ac.kr (Shin Hong), moonzoo@cs.kaist.ac.kr

(Moonzoo Kim)

Preprint submitted to Elsevier July 12, 2012

various synchronization mechanisms (see Table 1) for performance en-
hancement.

• Customized synchronization primitives
OS developers sometimes implement their own synchronization primitives.
Thus, concurrency bug detection tools for standard synchronization mech-
anisms do not recognize these customized synchronization primitives and
produce imprecise results [7].

• High complexity of operating systems
A dynamic analysis (i.e., testing) often fails to uncover hidden concurrency
bugs due to the exponential number of possible interleaving scenarios be-
tween threads in OSes. In addition, replaying bugs is difficult, since it
is hard to manipulate thread schedulers in OSes directly. A static anal-
ysis, on the other hand, has limited scalability to analyze OS code due
to its high complexity and complicated data structures. Furthermore, the
monolithic structure (i.e., tightly coupled large global data structure) of
OSes severely hinder modular analyses.

For these reasons, in spite of much research on concurrent bug detection (see
Section 6), such techniques have seldom been applied to OS development in
practice.

To alleviate the above difficulties, we have developed the COncurrency Bug
dETector (COBET) framework, which utilizes composite bug patterns augmented
with semantic conditions. Note that concurrency errors are caused by unin-
tended interference between multiple threads. A salient contribution of COBET
is that it utilizes multiple sub-patterns, each of which represents a buggy pat-
tern in one thread, and checks semantic information that determines possible
interferences between multiple threads in a precise and scalable manner (see
Section 3). In addition, since engineers who use COBET can define various
concurrency bug patterns in a flexible manner, COBET can detect concurrency
bugs that are due to customized synchronization mechanisms or not targeted
by lock-based concurrency bug detection tools.

One drawback of COBET is that a user has to identify and define bug
patterns. To identify effective (i.e., detecting many bugs) and precise (i.e.,
raising few false alarm) bug pattern requires user’s domain knowledge on target
code. In addition, it takes time to concretely define bug patterns for identified
bugs in a machine processable form. Without such effort, it is easy to define
imprecise bug patterns, which increases the burden to filter out false alarms
manually and, thus, decreases practical usefulness of the COBET framework.1

1We have defined only four bug patterns (Section 4), since we had to learn domain knowl-
edge on linux kernel from scratch in limited research time. However, if linux developers define
bug patterns, they could build a database containing many effective and precise bug patterns
in modest time. Since COBET is very fast to apply bug patterns to large program code
(see Tables 3-5), a large number of bug patterns may not cause much overhead to detect
concurrency bugs.

2

However, once such bug patterns are well-defined, corresponding pattern
detectors can be implemented to detect concurrency bugs in (1) subsequent re-
leases of the target program, and/or (2) other modules in a similar domain. It
has been frequently observed that although a given bug had been fixed previ-
ously, similar bugs often appeared in the subsequent releases or in the different
modules of the target program (see Section 5.1 and Section 5.3). Thus, initial
efforts to define bug patterns could be sufficiently rewarded by detecting concur-
rency bugs in rapidly evolving large software systems such as Linux. Further-
more, to lessen the effort to define bug patterns and construct corresponding
bug pattern detectors, the COBET framework provides a pattern description
language (PDL)(see Section 3.2).

Currently, COBET provides four concurrency bug patterns that are identi-
fied based on a review of Linux kernel ChangeLog documents. The effectiveness
of COBET was demonstrated by detecting 10 new bugs in file systems, network
modules, and device drivers of Linux 2.6.30.4 (the latest Linux release at the
moment of the experiments), which were confirmed by Linux maintainers.

The contributions of this research are as follows:

• We have derived interesting observations on the Linux concurrency bugs
from a review of the Linux ChangeLogs documents on Linux 2.6.x releases
(Section 2).

• We have developed a pattern-based concurrency bug detection framework,
which can define and match various bug patterns. To improve bug detec-
tion precision, our framework utilizes composite patterns with semantic
conditions in a scalable manner (Section 3).

• Based on previous bug reports, we have defined four concurrency bug
patterns with various synchronization mechanisms, which are effective to
detect new bugs in Linux that are not targeted by lock-based analysis
techniques. (Sections 4-5).

The remainder of this paper is organized as follows. Section 2 describes the
characteristics of Linux to show the advantages of pattern-based bug detection
approach on Linux. Section 3 overviews the COBET framework. Section 4
explains composite bug patterns with semantic conditions upon the COBET
framework. Section 5 reports the evaluation of the COBET framework through
the empirical results on Linux kernel. Section 6 discusses related work. Finally,
Section 7 concludes the paper.

2. Characteristics of Linux Operating System

In this section, we describe the characteristics of concurrent programming
practices used in Linux.

3

Table 1: Statistics on the Synchronization Statements in the Linux Kernel 2.6.30.4

atomic cond. memory mutex rw rw sema- spin thread total
inst. var. barrier sema- spin phore lock oper-

phore lock ation

of stmt. 8926 949 1926 14902 2471 4248 759 44205 460 78846
Ratio 11.3% 1.2% 2.4% 18.9% 3.1% 5.4% 1.0% 56.1% 0.6% 100.0%

2.1. Synchronization Mechanisms in Linux

Linux utilizes various synchronization mechanisms for enhanced performance.
We gathered statistics on the nine standard synchronization mechanisms in
the entire kernel code of Linux 2.6.30.4, which consists of around 11.6 mil-
lion lines of C code. These nine synchronization mechanisms include atomic
instructions, conditional variables, memory barriers, mutexes, read/write sema-
phores, read/write spin locks, semaphores, spin locks, and thread operations
(e.g., thread creation, join, etc). Those synchronization mechanisms are identi-
fied in target code by the name of the corresponding library function calls.

Table 1 shows the numbers of statements for the nine synchronization mech-
anisms. Locks, the most popular synchronization mechanism, can be imple-
mented by using spin locks, mutexes, and binary semaphores. Thus, locks take
75∼76% (= 56.1% + 18.9% + 0∼1.0%) of all synchronization statements in
the Linux kernel code. Consequently, 24∼25% of synchronization statements
cannot be examined by lock-based bug detection techniques.

2.2. Survey of the Linux Bug Reports

We reviewed 324 ChangeLogs on Linux 2.6.0 to 2.6.30.3 to understand the
nature of real concurrency bugs (as Lu et al. [8] did on large application pro-
grams) and identified concurrency bug patterns accordingly. We concentrated
on the bug reports related to Linux file systems for the following three reasons.
First, file systems utilize heavy concurrency to handle multiple I/O transactions
simultaneously. Thus, we expected that file systems had many concurrency is-
sues. Second, there are relatively rich reference documents on the Linux file
systems, so that it is easy to understand the bug reports and define bug pat-
terns. Third, as Linux file system consists of multiple naive file systems such
as nfs and ext4 whose overall functionalities are similar, we expected that we
could find a concurrency bug that occurred commonly in multiple naive file
systems, which can be a good candidate for a bug pattern to define.

We collected the concurrency bug reports on the Linux file systems by search-
ing related keywords (i.e., ‘lock’, ‘concurrency’, ‘data races’, ‘deadlock’, etc.) as
well as manual inspection. Finally, we found 50 concurrency bug reports on the
Linux file systems and 27 of them were selected for in-depth review (the remain-
ing 23 bugs were discarded, since these bugs were caused by domain-specific
requirement violations or could not be understood concretely). Through the
review, we made the following observations:

4

Observation 1: Half of the concurrency bugs are involved with synchroniza-
tion mechanisms other than locks. 12 of the 27 bugs were associated with syn-
chronization mechanisms other than locks (i.e., atomic instructions, memory
barriers, thread operations, etc.). In addition, locks were sometimes used in a
non-standard manner (e.g., recursive locking, releasing on blocking, etc.). This
observation indicates that we need customizable/flexible concurrency bug de-
tection tools that can analyze various synchronization mechanisms, not only
standard lock usages.
Observation 2: Code review was more effective to detect concurrency bugs
than runtime testing was. Linux ChangeLogs reported that, among the 27 con-
currency bugs, nine were detected by actual testing and 13 bugs detected by
manual code review (the sources of the remaining five bugs were not clear).
In general, code review does not reason with concrete input data and schedul-
ing, but by reading code statically. Note that pattern-based concurrency bug
detection also has this characteristics of the code review.
Observation 3: Linux kernel code was updated frequently. For six years, 324
Linux releases (including major releases and minor releases) have been made.
This means that a new Linux kernel has been released on average every week.
In addition, on average, 3.83 patches have been applied to Linux 2.6.X releases
per hour [9]. Furthermore, the Linux kernel has been constantly growing up
from 2.6.11 release (6.6 million lines of code in 17090 files) to 2.6.30 release
(11.6 million lines of code in 27911 files) [9]. Thus, we need a light-weight bug
detection framework that can analyze a large program quickly and conveniently.

2.3. Complexities of Linux File Systems

To estimate the complexities of the Linux file systems, we counted the num-
ber of different call sequences by traversing the inter-procedural control flow
graphs (CFG) starting from thread-starting functions such as system calls for
the seven Linux file system codes, including btrfs, ext4, nfs, proc, reiserfs,
sysfs, and udf. The number of call sequences can serve as a measure for the
complexity of the file system, since each call sequence represents a unique exe-
cution scenario. Each file system is analyzed together with Virtual File System
(VFS) code.

Table 2 describes the statistics on call sequences of the seven Linux file sys-
tems. To analyze all of these file systems (145KL, i.e., 145 thousand lines of C
codes), we had to analyze 20 billion different execution scenarios whose average
call depth is around 38 (see the last column of Table 2). Furthermore, due to
non-deterministic scheduling, the total number of concurrent execution scenar-
ios is exponential in the number of sequential execution scenarios in Table 2.
Thus, it is clear that, due to the huge number of execution scenarios, achieving
high coverage by testing and/or model checking is infeasible. Therefore, light-
weight analysis techniques should be developed for complex operating systems
like Linux.

5

Table 2: Statistics on the Call Sequences of the Seven Linux File Systems

btrfs ext4 nfs proc reiserfs sysfs udf Total/Avg.

Lines of code 41KL 28KL 29KL 8KL 27KL 3KL 9KL Total 145KL
of call sequences 2100M 1501M 3394M 12M 13413M 1M 51M Total 20488M
Max. length of call seq. 88 54 57 33 55 26 43 Avg. 51
Avg. length of call seq. 60 43 39 25 38 23 35 Avg. 38

3. COBET Framework

The observations in Section 2 suggest that a pattern-based concurrency bug
detection framework can be a practical solution for Linux. Thus, we have de-
veloped the COncurrency Bug dETector (COBET) framework for concurrent C
programs based on a pattern matching approach.

3.1. Overview of the COBET Framework

The overall structure of the COBET framework is depicted in Figure 1.
Since concurrency errors are caused by unintended interferences among multiple
concurrent threads, a concurrency bug pattern should be specified as multiple
sub-patterns each of which captures a specific code running on each thread.
For this purpose, COBET provides a pattern description language (PDL) to
describe the syntactic structure of a bug pattern (see Section 3.2). The COBET
synthesizer generates a bug pattern detector from a user-specified bug pattern
description in PDL. A synthesized bug pattern detector contains the following
four components:

• syntactic pattern matcher

• semantic condition checker

• semantic analysis engine

• abstract syntax tree (AST) generator

A syntactic pattern matcher in a generated bug pattern detector detects
segments of a target program code that match sub-patterns in the given PDL
description. Then, a semantic condition checker checks whether or not these
code segments can run concurrently and interfere with each other through a se-
mantic analysis engine. For this purpose, the semantic analysis engine performs
path analysis, lock analysis, and alias analysis (see Section 3.3). For these anal-
yses, a user should provide configurations of a target program, which include
names of thread starting functions, specifications of lock/unlock operations (e.g.,
spin lock(), spin unlock(), etc.), and specification of memory allocation op-
erations (e.g., kmalloc(), kmem cache alloc(), etc.). Different target domains
may have different configurations. At the lowest layer, the AST generator parses
and creates the AST of a target program using the EDG parser [10]. The AST

6

of a target program is used by the syntactic pattern matcher to detect code
segments that match bug patterns syntactically.

The COBET framework consists of 4500 lines of C code in 96 functions.
The COBET framework uses GCC 4.3.0 to preprocess a target code and EDG
C/C++ Front-End 3.1 to parse the preprocessed code.

3.2. Bug Pattern Detectors

The COBET synthesizer constructs bug pattern detector code from a user-
given bug pattern specification. A pattern description language (PDL) is de-
signed to help engineers define bug patterns in a correct and convenient manner.
Figure 2 shows the brief grammar of PDL. In PDL, a concurrency bug pattern
is described as a set of sub-patterns (line 1 of Figure 2), each of which specifies
target code running on one thread. A sub-pattern contains one or more func-
tion descriptions (line 2). A function description consists of abstract statement
descriptions (line 3). An abstract statement description (lines 4-10) is specified
with a keyword (e.g., if, loop, lock, read, etc.) which indicates a type of target
code statement to match. A bug pattern detector based on PDL searches target
code to find matched code statements while ignoring irrelevant code statements.
In addition, PDL can describe a bug pattern by using \{Stmt+} (exclusion),

AST generator

Path analysis

Semantic

analysis engine

Alias
analysis

Input to
COBET

COBET
component

Legend

Config.

Thread
starting
functions

Lock spec.

Preproces
sed target
C src code

Memory
alloc. spec.

Lock
analysis

Bug 1
description

Bug pattern
detector 1

COBET synthesizer

Bug 2
description

Bug pattern
detector 2

Semantic
condition
checker

Syntactic
pattern
matcher

Figure 1: Overview of the COBET framework

7

Bug-pattern ::= Sub-pattern+

Sub-pattern ::= pattern constant {Function+}

Function ::= fun Identifier {Stmt+}

Stmt ::= if $cond {Stmt∗}

| if $cond {Stmt∗} else {Stmt∗}

| loop $cond {Stmt∗} | break;

| lock Identifier; | unlock Identifier;

| read Identifier; | write Identifier;

| call Identifier $args;| \{Stmt+}

| ...

Identifier ::=constant | $〈name〉

Figure 2: Brief grammar of the COBET pattern description language

which specifies statements that should not appear in pattern matching instances.
In PDL, $<name> is a untyped free variable that binds a corresponding code
element in a target C statement.

First, a bug pattern detector matches a PDL description to a target code in
a syntactic manner using the tree pattern matching algorithm [11]; the syntactic
pattern matcher in the pattern detector maps each abstract pattern statement
to a C statement and each free variable to a C expression. For example, a
pattern description if $cond {write $var;} can match if (x<0) {x=f(x);
y= x*x; } and generates the following two pattern matching instances. For the
first matching instance, $cond and $var are bound to x<0 and x in a target
code, respectively. For the second instance, $cond and $var are bound to x<0

and y, respectively. Free variables of PDL are used to describe subtle conditions
in a bug pattern.

Second, to check semantic conditions on a pattern matching instance, pat-
tern detector code invokes sem cond checking() at every syntactic match-
ing/binding step. As a default, sem cond checking() checks feasibility of in-
terference among code segments that match sub-patterns and run on multiple
threads (e.g., checks whether or not the sets of held locks at different sub-
patterns are disjoint (see Section 3.3)). In addition, a user can add sophisti-
cated semantic condition checking routines to this function, since synthesized
pattern detector code is human-readable. For this purpose, COBET provides
library functions to check the semantic conditions in a bug pattern matching
instance. Figure 6 shows one example of sem cond checking() for ‘misused
test and test-and-set’ bug pattern (see Section 4.1).

3.3. Semantic Analysis Engine

The COBET semantic analysis engine checks whether or not multiple code
segments that match specified sub-patterns can run concurrently and inter-
fere with each other through path analysis, lock analysis, and alias analysis.

8

Inter procedural
An interleaved concurrent

execution path
Inter procedural

1a

b

2a

1a
2a

2b

CFG to f1()
execution path

CFG to f2()

1b

1d1c

1e

2b

2c

1b

1c

1e

2c

1e

1f

1h

2d

2
2f

1f

1g

2d
1g

1i
1j

2e

2g

sb.1which match sb.2 which match
1i

2e

2g

b.1

the code pattern

b.1

the code pattern

b.2
Interference between

b.1 and b.2

=> Bug b is detected

Figure 3: Interference between two sub-patterns causing a concurrency error

The semantic analysis engine performs the path analysis first to explore inter-
procedural execution paths reaching functions that match at least one syntactic
sub-pattern. Then, lock analysis and alias analysis are performed on these exe-
cution paths. 2

For example (see Figure 3), suppose that a bug pattern b consists of two sub-
patterns, b.1 and b.2. Also, assume that, through syntactic pattern matching,
COBET detects that the target program has functions f1() and f2(), which
contain statements sb.1 and sb.2 matching b.1 and b.2, respectively. Then,
the COBET semantic analysis engine statically explores execution paths start-
ing from thread-starting functions to the target functions f1() or f2() (path
analysis). Suppose that the COBET analysis engine finds that there is a lock
to prohibit concurrent executions of f1() and f2() in all possible paths (lock
analysis). Then, COBET concludes that b does not occur, since sb.1 and sb.2

cannot be interleaved and, thus, cannot interfere with each other. If there is no
such lock to prevent interference between sb.1 and sb.2 , then COBET checks
whether or not sb.1 and sb.2 can access the same variable causing interference
(alias analysis). If the alias analysis result indicates that sb.1 and sb.2 can ac-
cess the same shared variable, COBET reports that b is detected in the target
program.

2The path analysis, lock analysis, and alias analysis of COBET are similar to the techniques
used in RacerX [2].

9

Path Analysis: COBET’s path analysis generates an inter-procedural CFG
from the AST of a target program. Then, the path analysis generates inter-
procedural execution paths starting from thread starting functions to the func-
tions that match specified sub-patterns by exploring the interprocedural CFG.
Since exploration of all inter-procedural execution paths in the OS consumes
a huge amount of time (see Section 2.3), COBET conducts syntactic pattern
matching first to prune irrelevant execution paths.

If a target program has many function pointers, which are frequently used to
link lower-layer modules to upper-layer modules in layered OS architecture, it is
hard to generate an accurate inter-procedural CFG, since we do not know which
functions will be called via function pointers. COBET solves this problem using
the following heuristics. COBET constructs a function pointer table consisting
of pairs of a function pointer and candidate functions which can be invoked
through the function pointer, by analyzing assignment statements on global
variables of function pointer type. The path analysis refers to the table when it
reaches a function call via a function pointer. If there exist multiple candidate
functions for a function pointer, the path analysis generates multiple paths to
all these candidate functions in a conservative manner.
Lock Analysis: COBET’s lock analysis formulates locksets (i.e., a set of held
locks) at a code location. The lockset information is used to check whether or
not two code locations are guarded by the same lock. The lock analysis obtains
a lockset of a code location by exploring inter-procedural execution paths while
recording lock acquiring operations and lock releasing operations. The lock
analysis recognizes lock/unlock operations in a target program based on the
lock operation function names specified in an input configuration to COBET.
The technique concludes that two lock operations with parameters acquire the
same lock if their parameters may alias each other. COBET performs path-
insensitive lock analysis due to the high computational cost of path-sensitive lock
analysis. For a branching statement, the lock analysis explores both branches
and takes the union of the two locksets obtained from both branches as a result
of the branching statement. For a loop statement, COBET analyzes only one
iteration.

COBET uses an inter-procedural lock analysis. In other words, the technique
transfers the lockset of a call site in a caller function to the analysis on the callee
function. However, to prevent propagation of incorrect lock analysis results from
a callee function, COBET does not reflect the locksets of exit statements in the
callee function to the caller function [2].

To avoid redundant inter-procedural lock analysis, COBET semantic analy-
sis engine uses a cache that records the lock analysis result for functions. When
the analysis reaches a call site of f() with a lockset LS, COBET tries to find
〈f(), LS〉 in the cache. If the cache does not contain such an entry, the analysis
continues to the callee function f(). Otherwise, the analysis does not go into
f(). Figure 4 illustrates the cache operations. The lock analysis on the first
execution path records 〈f1(),∅〉, 〈f2(), {L1}〉 in the cache. The lock analy-
sis on the second execution path skips f2(), since the cache already contains
〈f2(), {L1}〉. This cache technique saves a large amount of lock analysis time in

10

Cacheinter procedural

Lockset: ;
f1() ; visited

f2() {L1} visited

f3() {L1} visited

Cacheinter procedural
execution path #1

inter procedural

f1()

lock(L1)

lock(L1)

Lockset: ;

Lockset: {L1}

p
execution path #2

lock(L1)

f2()

Lockset: {L1}

{ }

The analysis skips
f2() as the cache

indicates f2() was

previously analyzed

f2()

f2() previously analyzed
with the lockset L1

f3()

Figure 4: Caching in the lock analysis

our experiments, achieving 2∼20 times speedup compared to non-caching lock
analysis.
Alias Analysis : COBET’s alias analysis statically examines whether or not
two expressions may access the same shared variable. COBET utilizes the
extended type information on variables (i.e., type of a variable and the type
of a structure containing the variable as a field) for the analysis and considers
two heap variables of the same type to be aliased.

COBET assumes that the following variables are non-shared: (1) local vari-
ables, and (2) dynamically allocated variables through function calls such as
kmalloc(), kmem cache alloc(), etc. that are not assigned to global variables
yet (i.e., performing ‘uniqueness analysis’ [12]). The technique traces pointer
assignments and considers a variable that is assigned with a non-shared variable
to be a non-shared variable, too. At a function call site, if actual parameters
of the function are non-shared variables, the analysis utilizes this information
during the analysis of the callee function.

4. Composite Bug Patterns with Semantic Conditions

After reviewing the bug reports on Linux file systems (see Section 2.2), we
defined the following four bug patterns:

1. Misused test and test-and-set

2. Unsynchronized communication at thread creation

3. Incorrect usage of atomic operations

4. Waiting for an already terminated thread

11

For each bug pattern, it takes approximately 3 hours for one graduate stu-
dent with the knowledge on the Linux file systems and the bug pattern to define
a corresponding syntactic bug pattern in PDL and implement a bug pattern de-
tector based on the generated template code upon the COBET framework. The
following subsections explain these four patterns in detail.

4.1. Misused Test and Test-and-Set

Test and test-and-set programming idioms are used to reduce the number of
expensive lock operations required to protect a shared variable.

1:if(c) { // Test and test-and-set idiom

2: lock l_v;

3: if(c) {

4: update v;}

5: unlock l_v;}

Suppose that c indicates whether or not a current thread can update a shared
variable v. Before performing an expensive lock operation (line 2) to update v

safely (line 4), this idiom checks whether or not c is satisfied (line 1). Thus,
the lock operation is executed only when c is true. If c is true (line 1), the
above code performs a lock operation (line 2) and checks c again (line 3), since
c might be changed by other threads between lines 1 and 3.

Unfortunately, programmers often omit this second check (line 3), which
results in a race condition. For example, Linux ChangeLog 2.6.11.1 reported a
data race bug in
ext3 discard reservation() in the ext3 file system, which was caused by
misused test and test-and-set idiom. We suspect that similar bugs existed in
the subsequent releases or other modules of Linux as this bug pattern could be
easily introduced during manual code optimization.

We define the ‘misused test and test-and-set’ bug pattern 3 as two sub-
patterns, pattern 1 and pattern 2, in Figure 5. This bug pattern has the
following semantic conditions to check in all pattern matching instances:

1. A lockset at target code that matches 3a must be disjoint with the lockset
at target code that matches 3b. Otherwise, target code that matches
pattern 1 and pattern 2 do not interfere with each other.

2. $w should be a shared variable.

3. $cond should contain a variable that is equal to or alias to $w

sem cond checking(bug instance bi) in Figure 6 checks these semantic
conditions. Through the pattern matching, each field of bug instance con-
tains a target code element that matches a corresponding PDL element of

3This pattern is different from ‘double-checked locking’ [13], which consider test and test-
and-set idioms as bugs due to the Java memory model. Our bug pattern checks whether or
not test and test-and-set idioms are correctly used in general.

12

1a:pattern 1 { 1b:pattern 2 {

2a: fun $f1 { 2b: fun $f2 {

3a: if $cond { 3b: write $w;

4a: lock $l; 4b: }}

5a: \{if $cond { }}

6a: unlock $l;

7a: }}}

Figure 5: Misused test and test-and-set bug pattern

1: BOOL sem_cond_checking(bug_instance bi) {

2: if (is_lock_disjoint(bi._3a, bi._3b) == FALSE)

3: return FALSE;

4: if (is_shared_var(bi._w) == FALSE)

5: return FALSE;

6: if (may_alias(bi._cond,bi._w) == FALSE)

7: return FALSE;

8: return TRUE; }

Figure 6: Semantic condition checking function

a bug pattern. For each binding of bug instance to a target code entity,
sem cond checking(bug instance bi) is invoked to check if the current pat-
tern matching instance bi satisfies the semantic conditions. Line 2 in Figure 6
checks whether or not target code that matches pattern 1 and pattern 2 is
protected by a common lock. bi. 3a and bi. 3b represent target code that
matches the abstract statements 3a and 3b in the PDL description (see Fig-
ure 5). is lockset disjoint (bi. 3a,bi. 3b) obtains the lock analysis re-
sults for the code statements that match abstract statements 3a and 3b of the
PDL description. Lines 4 and 6 utilize alias analysis to check whether or not
matched code statements may access the same shared variable and cause a data
race. bi. w and bi. cond represent the code elements that match $w and $cond

in the PDL description, respectively.
We now illustrate how COBET detects this bug pattern in the example

shown in Figure 7. In this example, suppose that COBET detects two syntac-
tically matching instances:

• Matching instance 1 : proc get sb()(lines 1c-6c) and proc get sb()(lines
1d-4d) matched pattern 1 and pattern 2, respectively.

• Matching instance 2 : proc get sb()(lines 1c-6c) and proc alloc inode()

(lines 1e-5e) matched pattern 1 and pattern 2, respectively.

For matching instance 1, to check semantic condition 1 (the lockset at target
code that matches 3a must be disjoint to the lockset at a target code that
matches 3b), COBET checks whether or not there exists a lock to synchronize

13

// Matching with pattern 1

1c:int proc_get_sb(file_system_type *fs_type...){

2c: ...

3c: ei = PROC_I(sb->s_root->d_inode);

4c: if(!ei->pid) {

5c: rcu_read_lock();

6c: ei->pid = get_pid(...;

// Matching with pattern 2

1d:int proc_get_sb(file_system_type *fs_type...){

2d: ...

3d: if(!ei->pid)

4d: ei->pid = find_get_pid(1);

// Matching with pattern 2

1e:inode *proc_alloc_inode(super_block *sb){

2e: ...

3e: ei = kmem_cache_alloc(...);

4e: if (!ei) return NULL ;

5e: ei->pid = NULL ;

Figure 7: proc get sb() (in fs/proc/root.c) and proc alloc inode() (in fs/proc/inode.c)
of Linux kernel 2.6.30.4

the target codes that match pattern 1 and pattern 2. COBET finds that the
lockset at line 3c and the lockset on line 3d always contained lock kernel. This
indicates that line 3c and line 3d cannot run concurrently, thus cannot interfere
each other. Thus, COBET ignores this matching instance.

For matching instance 2, COBET finds that there is an execution path that
has no lock to synchronize the target code that match pattern 1 and pattern

2. However, by checking semantic condition 2 ($w should be a shared variable),
the alias analysis finds that ei->pid at line 5e is not a shared variable, since
ei was allocated (line 3e) and had not yet become shared. Therefore, COBET
concludes that the matching instance 2 should be rejected as well.

As another example, the following matching instance was found in the netfilter
network module (see Section 5.3) as shown in Figure 8.

• Matching instance 3 : htable put() (lines 1f-5f) and htable find get()

(lines 1g-3g) matched pattern 1 and pattern 2, respectively.

Matching instance 3 was not filtered out by the semantic analyses, so we
reported this result as a suspected bug to a corresponding Linux maintainer.
The Linux maintainer in charge of netfilter confirmed this bug report and
fixed htable put() in Linux 2.6.34 [14].

14

// Matching with pattern 1

1f: void htable_put(xt_hashlimit_htable *hinfo){

2f: if (atomic_dec_and_test(&hinfo->use)) {

3f: spin_lock_bh(&hashlimit_lock) ;

4f: hlist_del(&hinfo->node) ;

5f: spin_lock_bh(&hashlimit_lock) ;

// Matching with pattern 2

1g: xt_hashlimit_htable *htable_find_get(net *net, u_int8_t family) {

2g: ...

3g: atomic_inc(&hinfo->use);

Figure 8: htable put() and htable find get() in net/netfilter/xt hashlimit.c of Linux
kernel 2.6.30.4

4.2. Unsynchronized Communication at Thread Creation

The Linux kernel creates a new thread by using kthread run(). For in-
stance, kthread run(func, arg, "daemon") creates a new kernel thread whose
name is "daemon" and then executes func(arg) on the thread. arg is a single
variable used as a function parameter. Through this variable, a parent thread
transfers data used for the initialization of a new thread. In many cases, a par-
ent thread passes a shared memory address through which the parent thread
communicates with the child thread. For this type of communication, a parent
thread and the child thread should be synchronized. However, programmers
often omit synchronization so that concurrent execution of a parent thread and
its child thread can exhibit data race errors. Linux ChangeLog 2.6.24 reported
such a bug in GFS2 file system.

We defined this ‘unsynchronized communication at thread creation’ bug pat-
tern as the two sub-patterns pattern 1 and pattern 2 shown in Figure 9.
pattern 1 indicates a parent thread that calls kthread run() and then as-
signs some value to the shared memory (line 4h). pattern 2 describes a func-
tion executed by a child thread. $f2 reads data passed from its parent thread
through a pointer of the function parameter (line 3i). Since PDL does not spec-
ify expression-level conditions, a user needs to add additional condition checking
code to the synthesized bug detector code (i.e., the first element of $a1 should
be same to $f2). This bug pattern has the following semantic conditions:

1. The lockset at 4h must be disjoint with the lockset at 3i.

2. $a2 should be a shared variable.

3. $a3 should contain a variable which is equal to or alias to $a2

The ‘unsynchronized communication at thread creation’ bug detector found
a new bug in btrfs, as shown in Figure 10. The child thread (worker loop())
can access worker and read an invalid value (line 4k), since the parent thread
(btrfs start workers()) may not have assigned a proper value to worker (line

15

1h:pattern 1 { 1i:pattern 2 {

2h: fun $f1 { 2i: fun $f2 {

3h: call "kthread_run" $a1; 3i: read $a3;

4h: write $a2 ; 4i: }}

5h: }}

Figure 9: Unsynchronized communication at thread creation bug pattern

// Matching with pattern 1

1j:int btrfs_start_workers(btrfs_workers *workers,

int num_workers) {

2j: ...

3j: worker->task = kthread_run(worker_loop,worker,

"btrfs-%s-%d",worker->name,worker->num_workers+i);

4j: worker->workers = workers;

// Matching with pattern 2

1k:int worker_loop(void *arg) {

2k: btrfs_worker_thread *worker = arg ;

3k: ...

4k: work->worker = worker;

Figure 10: btrfs start workers() and worker loop() at fs/btrfs/async-thread.c of Linux
2.6.30.4

4j) yet. We reported this bug to the kernel developers and they made the patch
immediately (see Linux ChangeLog 2.6.31).

4.3. Incorrect Usage of Atomic Operations

CPU architectures often provide atomic instructions for synchronization op-
erations, which guarantee the atomic execution of read and consequent update
on operands. ‘test-and-set’ and ‘compare-and-swap’ are examples of these in-
structions. Linux kernel provides a special variable type atomic t and library
functions for atomic operations (e.g., atomic read() and atomic set()) to uti-
lize these atomic instructions. When a programmer develops synchronization
code, he/she should use a proper library function to handle two subsequent
read and update atomically. However, a programmer often mistakenly uses two
separate atomic operations instead of one combined atomic operation, and this
can lead to data races.

We characterize this incorrect atomic operation usages as a bug pattern
shown in Figure 11. pattern 1 represents two consecutive atomic operations
whose executions are intended to be atomic. pattern 2 expresses another
thread which can be scheduled between these two atomic operations in pattern

1 and interfere their executions.
The semantic condition checking examines the following conditions:

16

1l:pattern 1 { 1m:pattern 2 {

2l: fun $f1 { 2m: fun $f2 {

3l: call $atomic1 $a1 ; 3m: call $atomic2 $a3 ;

4l: if ($a2) { } 4m: }}

5l: }}

Figure 11: Incorrect usage of atomic operations bug pattern

1: unsigned int ip_vs_in(unsigned int hooknum,

2: sk_buff *skb, net_device *in, net_vice *out,

3: int(*okfn)(sk_buff *)) {

4: ...

5: atomic_inc(&cp->in_pkts);

6: if (af == AF_INET

7: && (ip_vs_sync_state & IP_VS_STATE_MASTER)

8: && ((cp->protocol != IPPROTO_TCP ||

9: cp->state == IP_VS_TCP_S_ESTABLISHED)

10: && (atomic_read(&cp->in_pkts) ...

Figure 12: Incorrect usage of atomic operations bug detected at
net/netfilter/ipvs/ip vs core.c of Linux 2.6.30.4

1. The set of held locks at 3l must be exclusive to the set of held locks at 3m.
Otherwise, pattern 1 and pattern 2 do not interfere with each other.

2. $a1 and $a3 should be shared variables and may be alias to each other.

3. $a2 should contain a variable which is equal to or alias to $a1.

4. $atomic1 is an atomic operation that updates $a1. Similarly, $atomic2
is an atomic operation that updates $a3.

5. $a2 should contains a function call to an atomic operation which reads
$a1 (e.g, atomic read(), etc).

In addition, we modified the generated bug pattern detector code to check
whether the type of associated variables are atomic t or not. Also, we pro-
vide a list of library function names for atomic operations. The bug pattern
detector utilizes these information to check the fourth and the fifth semantic
conditions.

We found new bugs in the Linux kernel using this bug pattern detector.
One example is shown in Figure 12. This code updates &cp->in pkts through
atomic inc() at line 5 and then examines its value through atomic read() at
line 10 separately, although these two operations should be executed together
atomically. We reported this bug to corresponding Linux maintainers and the
maintainers immediately patched the code that these two separate atomic oper-
ations were replaced by one combined atomic operation atomic add return().

17

1n:pattern 1 { 1p:pattern 2 {

2n: fun $f1 { 2p: fun $f2 {

3n: call "kthread_run" $a1 ; 3p: loop $c1 {

4n: call "kthread_stop" $a2 ; 4p: if $c2 {

5n: }} 5p: break ; }

6p: }}}

Figure 13: Waiting for an already finished thread bug pattern

4.4. Waiting Already Finished Thread

Linux kernel can create and execute a child thread by calling kthread run()

and terminate the child thread by calling kthread stop(). kthread stop()

sends a special message to a child thread and waits until the child thread is
terminated. A child thread should regularly call kthread should stop() that
returns true if the message is received, and terminate accordingly. Otherwise,
the parent thread waits indefinitely at kthread stop().

A child thread contains a loop whose condition checks kthread should stop();
the child thread operates until kthread should stop() returns true. The child
thread should not terminate even when the task is completed or the task
may not proceed due to errors. Otherwise, the parent thread may invoke
kthread stop() after the child thread terminates and it waits indefinitely at
kthread stop(). Therefore, if a child thread terminates earlier than the parent
thread calls kthread stop(), deadlock will occur. Linux Change Log 2.6.28
reported this bug, where the loop was escaped by break statement for an error
condition.

We specified this bug into a PDL pattern as shown in Figure 13. pattern 1

represents a parent thread which creates a child thread and invokes kthread stop()

for the child thread. pattern 2 specifies the function for a child thread which
has a loop with kthread should stop(). Line 5p escapes the loop and termi-
nates the child thread.

We detected related bugs in Linux 2.6.30.4 btrfs file system. One example is
shown in Figure 14. The child thread terminates when the error handling branch
is taken (lines 5q-6q). The btrfs developers confirmed these bugs. Further-
more, the Linux kernel developers modified the semantics of kthread stop()

to prevent indefinite waiting if the child thread is already finished since Linux
2.6.32.

5. Empirical Results

To investigate the effectiveness, efficiency, and applicability of the COBET
framework, we performed the following three empirical evaluations on Linux
2.6.30.4, the latest version at the time of this empirical study.

• To determine whether pattern-driven bug detectors based on the old bug
reports can detect new concurrency bugs in subsequent releases, we ap-
plied the four bug pattern detectors (based on the bug reports on the file

18

1q: static int cleaner_kthread(void *arg) {

2q: btrfs_root *root = arg;

3q: do {

4q: smp_mb() ;

5q: if (root->fs_info->closing)

6q: break ;

7q: ...

8q: } while(!kthread_should_stop()) ;

9q: return 0; }

Figure 14: Waiting for an already finished thread bug detected at fs/btrfs/async-thread.c
of Linux 2.6.30.4

systems in Linux 2.6.0 to 2.6.30.3) to the file systems in Linux 2.6.30.4.
We reported our bug detection results to Linux maintainers and validated
the bug detection results by their feedback (Section 5.1).

• We evaluated the effectiveness and efficiency of the three semantic analyses
(path analysis, lock analysis, and alias analysis) of the COBET semantic
analysis engine. We measured the improvement in bug detection preci-
sion and the additional time cost associated with each semantic analysis
(Section 5.2).

• To investigate the applicability of the COBET framework, we applied
the four bug pattern detectors not only to file systems, but also to other
modules. We applied the four bug pattern detectors to the device drivers
and the network modules, and then evaluated the bug detection capability
(Section 5.3).

In addition, we applied Coverity Prevent [15] to the same Linux targets to
evaluate the advantages of COBET over conventional concurrency bug detectors
(Section 5.5). Prevent is a static bug detector and demonstrated its effective-
ness successfully through many real-world software projects [16] including Linux
kernels. We selected Prevent as a representative static concurrency bug detec-
tion tool to compare with COBET, since most other static concurrency bug
detection tools are not available to analyze Linux kernel.

All empirical studies in this section were performed on 64-bit Fedora Linux
9 equipped with a 3.6 GHz Core2Duo processor and 16 GBytes memory.

5.1. Bug Detection Result on File Systems

We applied the four bug pattern detectors (Section 4) to the seven Linux
file systems (btrfs, ext4, nfs, proc, reiserfs, sysfs and udf). Since Linux
file systems are tightly coupled with virtual file system layer (VFS), we ana-
lyzed each file system together with VFS. We specified all system call handling
functions in VFS as the thread starting points.

19

Table 3: Bug Detection Results on Linux File Systems

btrfs ext4 nfs proc reiserfs sysfs udf vfs Total
(41KL) (28KL) (29KL) (8KL) (27KL) (3KL) (9KL) (48KL) (193KL)

Misused test and
3/0 3/0 4/0 2/0 3/0 1/0 2/0 10/0 28/0

test-and-set
Unsync. comm

2/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 2/1
at thread creation
Incorrect usage of

5/0 2/0 1/0 0/0 7/0 0/0 0/0 3/0 18/0
atomic operations
Waiting already

3/3 0/0 0/0 0/0 0/0 0/0 0/0 0/0 3/3
terminated thread

Total 13/4 5/0 5/0 2/0 10/0 1/0 2/0 13/0 51/4
Time (s) 1.72 1.90 1.20 0.81 1.26 0.66 0.80 8.35

Table 3 describes the number of detected bugs for each bug pattern and
for each file system. The first row shows the sizes of the file systems before
pre-processing (for example, btrfs is 41000 lines long (the second column)).
The first number in a cell of Table 3 indicates the number of new bugs detected
by COBET. The second number indicates the number of real bugs among the
detected bugs that were confirmed by the Linux maintainers. For example, CO-
BET detected two ‘unsynchronized communication at thread creation’ bugs in
btrfs file system (third row, second column). We reported these two suspected
bugs to a btrfs maintainer, who confirmed that one was a real bug, but the
other was a false alarm. COBET took only nine seconds to apply these four
bug pattern detectors to the seven file systems (see the last row and the last
column of Table 4).

Another observation is that relatively new file systems such as btrfs have
several concurrency bugs. For example, btrfs was introduced in the Linux
2.6.29 release in March 2009. It has three ‘waiting already terminated thread’
bugs and one ‘unsynchronized communication at thread creation’ bug, which
were confirmed by the Linux maintainers. If we can generalize this result, CO-
BET can detect bugs in recently revised modules more effectively. Considering
that Linux evolves rapidly (see Section 2.2), a light-weight bug detection tool
such as COBET can be a practical aid to detect concurrency bugs in the OS.

5.2. Evaluation of Semantic Analysis Techniques

To investigate the effectiveness and efficiency of the COBET semantic anal-
yses, we measured the false alarm reduction rate through the semantic analyses
and additional time cost for the analyses. For this purpose, we performed four
series of studies for each bug pattern detector with different combinations of
semantic analyses (see Section 3.3).

1. The first series of studies detected one main sub-pattern without semantic
analysis (see the second column of Table 4). This series of studies was
similar to the studies with conventional pattern-based bug detection tools
(e.g., MetaL [17] and FindBugs [18]).

20

Table 4: Effectiveness and Efficiency of the Semantic Analyses for the Linux File Systems

Syn. matching Syn. matching Syn. matching Syn. matching
(single (multiple + path analysis + path analysis
sub-pattern) sub-patterns) + lock analysis + lock analysis

+ alias analysis
Bug Time (s) Bug Time (s) Bug Time (s) Bug Time (s)

Misused test and
51 1.38 36 2.55 32 4.21 28 4.23

test-and-set
Unsync. comm.

2 0.86 2 1.00 2 1.28 2 1.30
at thread creation
Incorrect usage of

21 0.90 18 1.06 18 1.55 18 1.59
atomic operations
Waiting already

3 0.64 3 0.74 3 1.01 3 1.23
terminated thread

Total 77 3.78 59 5.35 55 8.05 51 8.35

2. The second series of experiments detected multiple sub-patterns of a bug
pattern, but still without semantic analyses.

3. The third series extended the second series by performing path analysis
and lock analysis as well. Note that the lock analysis depends on the path
analysis and cannot be performed separately.

4. The fourth series extended the third by performing alias analysis as well.
This series utilizes all semantic analyses by the semantic analysis engine.

Table 4 describes the numbers of bugs detected and corresponding analysis
time on the seven file systems in total. This table shows that the false alarms are
reduced as additional analysis techniques are employed. For example, ‘misused
test and test-and-set’ bugs (second row of Table 4) are reduced from 51 to 36, 32,
and 28 as multiple pattern matching, path/lock analyses, and path/lock/alias
analyses are applied respectively; finally 45% (=(51-28)/51) of the ‘misused test
and test-and-set’ bugs were filtered out through these techniques.

The time costs for these analysis techniques were not burdensome. For
example, the four bug pattern detectors spent 8.35 seconds in total to analyze
the seven file systems with vfs with multiple sub-pattern matching and all
semantic analyses (last row and last column of Table 4) while they required
3.78 seconds with syntactic analysis for a single sub-pattern only. The maximum
memory consumption was less than 50 MBytes in the all experiments.

5.3. Bug Detection Results on Device Drivers and Network Modules

To investigate the general applicability of COBET, we applied the four pat-
tern detectors for Linux file systems to other Linux modules. We targeted
the seven modules in total including three Linux device drivers (bluetooth,
ieee1494, and mtd) and four network modules (atm, ax25, netfilter, and
rds(ib)). These target programs were implemented as loadable kernel module

21

Table 5: Bug Detection Result on Linux Device Drivers and Network Modules

Device drivers Network modules
bluetooth ieee1394 mtd atm ax25 netfilter rds(ib) Total
(11KL) (25KL) (15KL) (8KL) (7KL) (27KL) (9KL) (100KL)

Misused test and
0/0 1/0 0/0 1/1 4/1 1/1 1/0 8/3

test-and-set
Unsync. comm.

0/0 0/0 1/1 0/0 0/0 0/0 0/0 1/1
at thread creation
Incorrect usage of

0/0 0/0 0/0 0/0 0/0 1/1 3/1 4/2
atomic operations
Waiting already

0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
terminated thread

Total 0/0 1/0 1/1 1/1 4/1 2/2 4/1 13/6
Time (s) 5.90 7.29 7.85 0.46 1.06 24.65 1.64 48.85

objects. Thus, the thread starting points of these modules are the function
pointers registered at the module initializations.

Table 5 shows the bug detection results. The first number in each cell indi-
cates the number of new bugs detected by COBET. The second number indicates
the number of bugs that were confirmed as “real” by Linux maintainers. The
three bug pattern detectors (‘misused test and test-and-set’, ‘unsynchronized
communication at thread creation’, and ‘incorrect usage of atomic operations’)
detected 13 bugs while ‘waiting for an already terminated thread’ detected no
bug. Six bugs among these 13 bugs were confirmed as real ones by Linux main-
tainers.

Although the scope of this empirical study is limited, these results suggest
that the bug patterns defined in one domain can be applied effectively to other
domains and can help OS developers in practice. The following quotation is part
of a response from a Linux maintainer to our ‘misused test and test-and-set’ bug
report on netfilter.

Nice catch, this does indeed look like a bug. The entire locking
concept seems a bit strange, we neither need an atomic t for the
reference count nor two locks to protect the list... 4

This bug report was immediately followed by the corresponding kernel patch.
We received similar positive responses from other Linux maintainers regarding
our bug reports and it indicates that the COBET approach can help kernel
developers to detect subtle concurrency bugs in a practical manner.

5.4. Analysis on False Alarms

To investigate the practical effectiveness of COBET, after we removed ob-
vious false alarms through code review, we reported the alarms raised by the
COBET bug detectors to the corresponding Linux maintainers. We received 16

4This quotation is from an e-mail from Patrick McHardy on Jan 13th, 2010. The full text
and patch information can be found at [14]

22

feedbacks for our bug reports on the file systems, the device drivers, and the
network modules. Among these 16 feedbacks, 10 feedbacks confirmed that the
corresponding alarms were real bugs. From the six negative feedbacks, we could
identify the following sources of false positives:

• Imprecise semantic analysis:
Although concurrent accesses to a shared variable can be carefully coor-
dinated to prevent data race (i.e., by a lock-free algorithm), the COBET
bug detectors may still report alarms on the concurrent access code. This
is because the semantic analysis of COBET is not precise enough to rec-
ognize a lock-free algorithm and suppress false positives.

• Limited alias analysis:
Since COBET performs lightweight alias analysis, it may fail to reason
alias constraints in a complex data structure precisely and raise a false
alarm. A bug pattern detector utilizes the alias analysis result to check
if matched sub-patterns can interact with each other through a shared
variable. Thus, imprecise alias analysis result may cause a bug pattern
detector to conclude that two sub-patterns can conflict each other, al-
though they cannot.

• Path insensitive analysis:
COBET may report a false bug pattern matching for an infeasible exe-
cution path due to path insensitive analysis. For example, a bug pattern
may match two statements guarded by two mutually exclusive branch
conditions respectively. In this case, a matching for the bug pattern with
these two statements should be ignored, since the two statements cannot
execute in a sequence.

• Unrealistic operation:
Although it was confirmed that some alarms could cause a problem in
theory, Linux maintainers considered possibility for those alarms to make
serious problem (i.e., crash Linux kernel) is very low in practice and ig-
nored those alarms.

As we have described above, main causes of false alarms are due to lack of
detailed understanding of semantics of target code. Thus, leveraging domain
knowledge of developers will be important for the COBET approach to reduce
false alarms and improve practical effectiveness of concurrency bug detection.

5.5. Comparison with Coverity Prevent

We applied Prevent to compare COBET with a conventional concurrency
bug detection technique. Prevent has the following five pre-defined concurrency
checkers [15]:

• ATOMICITY checker reports a bug if a shared variable that was updated
while holding a lock is read after releasing the lock.

23

Table 6: Bug Detection Result by Prevent on the Linux File Systems

btrfs ext4 nfs proc reiserfs sysfs udf vfs Total
(41KL) (28KL) (29KL) (8KL) (27KL) (3KL) (9KL) (48KL) (193KL)

ATOMICITY 45 1 1 3 5 3 0 4 62
LOCK 7 5 0 0 0 0 0 1 13
MISSING LOCK 3 1 1 1 1 1 0 3 11
ORDER REVERSAL 0 0 0 0 0 0 0 0 0
SLEEP 0 0 0 0 0 0 0 0 0

Total 55 7 2 4 6 4 0 8 86
Time (s) 47.72 51.37 75.80 14.56 11.53 14.58 27.93 9.37 252.86

Table 7: Bug Detection Result by Prevent on Linux Device Drivers and Network Modules

Device drivers Network modules Total
bluetooth ieee1394 mtd atm ax25 netfilter rds total
(11KL) (25KL) (15KL) (8KL) (7KL) (27KL) (9KL) (100KL)

ATOMICITY 0 4 14 0 0 0 2 20
LOCK 0 1 0 4 4 1 1 11
MISSING LOCK 0 2 0 5 7 2 5 21
ORDER REVERSAL 0 0 0 0 0 0 0 0
SLEEP 0 0 0 0 0 0 0 0

Total 0 7 14 9 11 3 8 52
Time (s) 9.12 29.78 17.27 13.23 4.86 15.89 9.18 99.33

• LOCK checker checks pairing of a lock operation and an unlock operation
within a function.

• MISSING LOCK checker reports a data race bug for a shared variable
that is not consistently guarded by a lock.

• ORDER REVERSAL checker reports a deadlock bug when lock A is ac-
quired while holding lock B and lock B is acquired while holding lock A
in a program, since this program may result in deadlock due to cyclic
dependencies between lock A and lock B.

• SLEEP checker reports a thread can invoke sleeping operations while hold-
ing a lock. A thread should release every held lock before sleeping; other-
wise other threads can be blocked by acquiring a lock held by the sleeping
thread.

We applied these five bug checkers to the file systems, network modules,
and device drivers of Linux 2.6.30.4. For fair comparison with COBET, we
configured Prevent to (1) enable function call via function pointers, (2) set
bug sensitivity high so to report as many bugs as possible, and (3) utilize the
specification of the lock operations in a target domain.

Table 6 and 7 show the number of bugs reported by Prevent and the ex-
ecution time for each target module. When we checked the file systems, we

24

examine each naive file system together with VFS as we did with COBET. For
example, ATOMICITY checker reported 45 bugs in btrfs and it took 47.72
seconds to apply all five bug checkers to btrfs (see Table 6). However, we did
not validate these bug reports (i.e., to check whether a reported bug report is
real or false), since communicating with developers to validate these bug reports
would require large efforts and time.

First, we checked howmany real bugs detected by COBETwere also detected
by Prevent. We found that Prevent did not detect any of the 10 real bugs
detected by COBET. This result is not surprising, since Prevent handles only
standard lock and recursive lock operations as synchronization operations and
cannot analyze various synchronization operations correctly [15]. Therefore,
this result confirms that COBET can detect concurrency bugs that cannot be
detected by other conventional bug detection tool and serve as a complementary
concurrency bug detection tool to support kernel developers.

Second, the analysis of Prevent was much slower than that of COBET. For
example, Prevent spent 252.86 seconds to analyze the seven Linux file systems
while COBET spent 8.35 seconds. Since bug checkers of Prevent and those of
COBET are different and the bug detection algorithm of Prevent is not publicly
available, it is difficult to identify the reasons for this performance difference
precisely. Our conjecture for the performance difference is due to the fact that
COBET performs path-insensitive analysis whereas Prevent does path-sensitive
analysis [17]. In addition, COBET performs the syntactic pattern matching
prior to semantic analysis and avoids analysis of irrelevant code consequently
(see Section 3.3), which enables COBET to analyze a target code faster than
Prevent.

6. Related Work

Pattern based techniques [19, 17, 18, 20] can analyze large programs quickly,
since these techniques perform pattern matching on a target program without
sophisticated analyses. Engler et al. [17] used a high-level state-machine lan-
guage MetaL to specify system rules (i.e., programming idioms) over linear ex-
ecution paths. They applied system rules such as a ‘holding lock’ rule (i.e., the
acquired locks should be released before a function exits) to several operating
systems and found bugs [19]. However, they target sequential errors related to
synchronization operations while COBET targets complex concurrency errors
caused by thread interactions. Hovemeyer et al. [18] defined frequently ob-
served Java concurrency bug patterns and analyzed the bytecode of the target
Java program through code pattern matching. They found several concurrency
bugs in Sun JDK 1.5 and an open source J2SE library. The false alarm ratio of
simple bug patterns such as ‘double check’ that target sequential errors related
to lock operations was less than 20%. However, the false alarm ratio of complex
concurrency bug patterns (e.g. ‘wait not in loop’) was high, since [18] does
not check thread interactions or semantic conditions. COBET targets complex
concurrency bugs by utilizing multiple sub-patterns and semantic conditions.

25

In addition, COBET helps engineers build bug detectors in a semi-automatic
manner using PDL.

Otto et al. [20] propose a bug pattern matching technique with semantic
analyses on locks for finding concurrency bugs in Java programs. The idea of
utilizing semantic information for better accuracy is similar to COBET. How-
ever, they do not provide a pattern description language, or support multiple
sub-patterns.

Lock based techniques concentrate on lock usages. Lock based techniques
effectively detect deadlocks [2, 3, 21, 22] and low-level data races [1, 2, 23, 5, 6]
which occur only when no lock synchronizes multiple threads which read and
update one shared variable. However, these techniques share the limitation when
they are applied to OS codes which utilize various synchronization mechanisms
other than lock.

Concurrency bug detection techniques that analyze stateful behavior of a
target program detect violations of user-specified properties (i.e., assertions,
invariants, or temporal logic formulae) by analyzing executions state by state,
either by model checking [24, 25, 26] or by systematic testings [27, 28]. Nonethe-
less, the scalability of these approaches is still limited due to the state explosion
problem. Thus, these approaches are still not capable of analyzing OS kernels
in practice.

7. Conclusion

We have developed a pattern-based COncurrency Bug dETector (COBET)
framework for operating systems. To target complex concurrency bugs, COBET
utilizes composite bug patterns and associates semantic information with code
structures in bug pattern matching. While most concurrency bug detection
techniques concentrate on lock usages, COBET targets various concurrency bug
patterns specified by a user, so as to detect complex bugs. The effectiveness,
efficiency, and applicability of COBET were illustrated by detecting ten new
bugs in the file systems, device drivers, and network modules of Linux 2.6.30.4
with a modest cost. Although the bug detection of COBET is neither sound nor
complete, the empirical results indicate that the COBET approach can detect
concurrency bugs in large and complex programs practically.

References

[1] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, M. Sridharan,
Efficient and precise datarace detection for multithreaded object-oriented
programs, in: Proceedings of the ACM SIGPLAN 2002 Conference on Pro-
gramming language design and implementation, PLDI ’02, 258–269, 2002.

[2] D. Engler, K. Ashcraft, RacerX: Effective, Static Detection of Race Condi-
tions and Deadlocks, in: Proceedings of the nineteenth ACM Symposium
on Operating Systems Principles, SOSP ’03, 2003.

26

[3] M. Naik, C. S. Park, K. Sen, D. Gay, Effective Static Deadlock Detection,
in: Proceedings of the 31st International Conference on Software Engineer-
ing, ICSE ’09, 386–396, 2009.

[4] A. Raza, G. Vogel, RCanalyzer: A Flexible Framework for the Detection of
Data Races in Parallel Programs, in: Proceedings of the 13th Ada-Europe
international conference on Reliable Software Technologies, Ada-Europe
’08, Springer-Verlag, 226–239, 2008.

[5] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, T. Anderson, Eraser: A
Dynamic Data Race Detector for Multi-threaded Programs, ACM Trans-
actions on Computer Systems 15 (4) (1997) 391–411.

[6] J. W. Voung, R. Jhala, S. Lerner, RELAY: static race detection on millions
of lines of code, in: Proceedings of the the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering, ESEC-FSE ’07, 205–214, 2007.

[7] W. Xiong, S. Park, J. Zhang, Y. Zhou, Z. Ma, Ad hoc synchronization
considered harmful, in: Proceedings of the 9th USENIX conference on
Operating systems design and implementation, OSDI ’10, 1–8, 2010.

[8] S. Lu, S. Park, E. Seo, Y. Zhou, Learning from mistakes: a comprehensive
study on real world concurrency bug characteristics, in: Proceedings of the
13th international conference on Architectural support for programming
languages and operating systems, ASPLOS XIII, 329–339, 2008.

[9] G. Kroah-Hartman, J. Corbet, A. McPherson, Linux Kernel Development:
How fast it is going, who is doing it, what they are doing, and who is
sponsoring it: An August 2009 Update, Tech. Rep., the Linux Foundation,
2009.

[10] E. D. Group, The C++ Front End, http://www.edg.com, 2011.

[11] M. Dubiner, Z. Galil, E. Magen, Faster tree pattern matching, Journal of
ACM 41 (1994) 205–213.

[12] P. Pratikakis, J. S. Foster, M. Hicks, LOCKSMITH: Practical static race
detection for C, ACM Transactions on Programming Languages and Sys-
tems 33 (2011) 3:1–3:55.

[13] D. Hovemeyer, W. Pugh, Finding bugs is easy, in: Companion to the 19th
annual ACM SIGPLAN conference on Object-oriented programming sys-
tems, languages, and applications, OOPSLA ’04, 132–136, 2004.

[14] Linux kernel mailing list of netfilter, http://www.spinics.net/lists/

netfilter-devel/msg11823.html, 2010.

[15] Coverity 5.4 Checker Reference, http://www.coverity.com, 2011.

27

[16] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, D. Engler, A few billion lines of code later:
using static analysis to find bugs in the real world, Communications of the
ACM 53 (2010) 66–75.

[17] S. Hallem, B. Chelf, Y. Xie, D. Engler, A system and language for building
system-specific, static analyses, in: Proceedings of the ACM SIGPLAN
2002 Conference on Programming language design and implementation,
PLDI ’02, 69–82, 2002.

[18] D. Hovemeyer, W. Pugh, Finding Concurrency Bugs in Java, in: In Pro-
ceedings of the PODC Workshop on Concurrency and Synchronization in
Java Programs, 2004.

[19] D. Engler, B. Chelf, A. Chou, S. Hallem, Checking system rules using
system-specific, programmer-written compiler extensions, in: Proceedings
of the 4th conference on Symposium on Operating System Design & Im-
plementation - Volume 4, OSDI’00, USENIX Association, Berkeley, CA,
USA, 2000.

[20] F. Otto, T. Moschny, Finding synchronization defects in Java programs:
extended static analyses and code patterns, in: Proceedings of the 1st
international workshop on Multicore software engineering, IWMSE ’08, 41–
46, 2008.

[21] I. Molnar, A. van de Ven, Runtime locking correctness validator,
Documentation/lockdep-design.txt in Linux kernel 3.5, 2012.

[22] R. Agarwal, L. Wang, S. D. Stoller, Detecting Potential Deadlocks with
Static Analysis and Run-Time Monitoring, in: Proceedings of the Parallel
and Distributed Systems: Testing and Debugging, Springer-Verlag, 191–
207, 2005.

[23] J. Erickson, M. Musuvathi, S. Burckhardt, K. Olynyk, Effective data-race
detection for the kernel, in: Proceedings of the 9th USENIX conference on
Operating systems design and implementation, OSDI’10, 1–16, 2010.

[24] M. Musuvathi, S. Qadeer, Iterative context bounding for systematic testing
of multithreaded programs, in: Proceedings of the 2007 ACM SIGPLAN
conference on Programming language design and implementation, PLDI
’07, 446–455, 2007.

[25] H. Post, C. Sinz, W. Küchlin, Towards automatic software model checking
of thousands of Linux modules - a case study with Avinux, Software Testing
Verification and Reliability 19 (2009) 115–172.

[26] S. Qadeer, D. Wu, KISS: Keep It Simple and Sequential, in: Proceedings
of the ACM SIGPLAN 2004 conference on Programming language design
and implementation, PLDI ’04, 14–24, 2004.

28

[27] E. Farchi, Y. Nir, S. Ur, Concurrent Bug Patterns and How to Test Them,
in: Proceedings of the International Parallel and Distributed Processing
Symposium, 286b, 2003.

[28] P. Joshi, M. Naik, C.-S. Park, K. Sen, CalFuzzer: An Extensible Active
Testing Framework for Concurrent Programs 5643 (2009) 675–681.

29

