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Abstract—This paper presents Hybrid-MUSE, a new fault
localization technique that combines MUtation-baSEd fault local-
ization (MUSE) and Spectrum-Based Fault Localization (SBFL)
technique. The core component of Hybrid-MUSE, MUSE, iden-
tifies a faulty statement by utilizing different characteristics of
two groups of mutants – one that mutates a faulty statement
and the other that mutates a correct statement. This paper also
proposes a new evaluation metric for fault localization techniques
based on information theory, called Locality Information Loss
(LIL): it can measure the aptitude of a localization technique
for automated fault repair systems as well as human debuggers.
The empirical evaluation using 51 faulty versions of the five
real-world programs shows that Hybrid-MUSE outperforms the
state-of-art fault localization technique significantly. For example,
Hybrid-MUSE localizes a fault after reviewing 1.65% of executed
statements on average, which is around 5.6 times more precise
than the state-of-the-art SBFL technique, Op2.

I. INTRODUCTION

Despite the advance in automated testing techniques, devel-
opers still spend a large amount of time to identify the root
cause of program failures. This process, called Fault Local-
ization (FL), is an expensive phase in the whole debugging
activity [15], [46], because it usually takes human effort to
understand the complex internal logic of the Program Under
Test (PUT) and reason about the differences between passing
and failing test runs. As a result, automated fault localization
techniques have been widely studied.

One such technique is Spectrum-based Fault Localization
(SBFL). It uses program spectra, i.e. summarized profile of test
suite executions, to rank program statements according to their
predicted risk of containing the fault. The human developer,
then, is to inspect PUT following the order of statements in
the given ranking, in the hope that the faulty statement will
be encountered near the top of the ranking [41].

SBFL has received much attention, with a heavy emphasis
on designing new risk evaluation formulas [20], [40], [6], [44],
but also on theoretical analysis of optimality and hierarchy
between formulas [27], [42], [43]. However, it has also been
criticized for their impractical accuracy and the unrealistic
usage model that is the linear inspection of the ranking [30].
This is partly due to the limitations in the spectra data that
SBFL techniques rely on. The program spectrum used by these
techniques is simply a combination of the control flow of PUT
and the results from test cases. Consequently, all statements in
the same basic block share the same spectrum and, therefore,

the same ranking. This often inflates the number of statements
needed to be inspected before encountering the fault.

This paper presents a novel fault localization technique
called Hybrid-MUSE, a combination of MUtation-baSEd fault
localization and Spectrum-Based Fault Localization (SBFL),
to overcome this problem. The core component of Hybrid-
MUSE, MUSE [35], uses mutation analysis to uniquely cap-
ture the relationship between individual program statements
and the observed failures for fault localization. It is free
from the coercion of shared ranking from the block structure.
Also, the combined SBFL technique adjusts the suspiciousness
results of MUSE for cases where mutation analysis does not
generate useful results.

Original mutation testing [4] evaluates the adequacy of a test
suite based on its ability to detect artificially injected faults,
i.e. syntactic mutations of the original program [3]. The more
of the injected faults are killed (i.e. detected) by the test suite,
the better the test suite is believed to be at detecting unknown,
actual faults. However, we focus on what happens when we
mutate an already faulty program and, particularly, the faulty
program statement. Intuitively, since a faulty program can
be repaired by modifying faulty statements, mutating (i.e.,
modifying) faulty statements will make more failed test cases
pass than mutating correct statements. In contrast, mutating
correct statements will make more passed test cases fail than
mutating faulty statements. This is because mutating correct
statements introduces new faulty statements in addition to the
existing faulty statements in PUT. These two observations
form the basis of the design of our new risk evaluation formula
for fault localization (Section III-A).

We also propose a new evaluation metric for fault local-
ization techniques that is not tied to the ranking model. The
traditional evaluation metric in SBFL literature is the Expense
metric, which is the percentage of program statements the
human developer needs to inspect before encountering the
faulty one [26]. However, recent work showed that the Expense
metric failed to account for the performance of the automated
program repair tool that used various SBFL techniques to
locate the fix: techniques proven to rank the faulty statement
higher than others actually performed poorer when used in
conjunction with a repair tool [31].

Our new evaluation metric, LIL (Locality Information Loss),
actually measures the loss of information between the true lo-
cality of the fault and the predicted locality from a localization



technique, using information theory. It can be applied to any
fault localization technique (not just SBFL) and to describe
localization of any number of faults.

Using both the traditional Expense metric and the LIL, we
evaluate Hybrid-MUSE against 51 faulty versions of five real-
world programs. The results show that Hybrid-MUSE is, on
average, about six times more accurate than Op2 [27], the
current state-of-the-art SBFL technique. In addition, Hybrid-
MUSE ranks the faulty statement at the top suspiciousness
ranking for 18 out of 51 studied faulty versions (i.e., 35%
(=18/51) of the faults are localized perfectly), and within the
top 10 suspiciousness ranking for 38 faults (i.e., 75% (=38/51)
of the faults are localized in 10 statements). Furthermore, the
newly introduced LIL metric also shows that Hybrid-MUSE
can be highly accurate, as well as confirming the observation
made by Qi et al. [31].

The contribution of this paper is as follows:
• The paper presents a novel fault localization technique

called Hybrid-MUSE: Mutation-based Fault Localiza-
tion. It utilizes mutation analysis to significantly improve
the precision of fault localization.

• The paper proposes a new evaluation metric for fault
localization techniques called Locality Information Loss
(LIL) based on information theory. It is flexible enough
to be applied to all types of fault localization techniques
and can be easily applied to multiple faults scenarios.

• The paper presents an empirical evaluation of Hybrid-
MUSE using five non-trivial real world programs. The
results demonstrate that Hybrid-MUSE is more accu-
rate than widely studied SBFL techniques such as Jac-
card [16], Ochiai [32], and Op2 [27]. The results from the
empirical evaluation show that Hybrid-MUSE improves
upon the best known SBFL technique by 5.6 times on
average and ranks the faulty statement within the top 10
suspicious statements for 38 out of 51 subject program
versions.

The remainder of this paper is organized as follows. Sec-
tion III describes the mutation-based fault localization tech-
nique to precisely localize a fault. Section IV explains the new
evaluation metric LIL based on information theory. Section V
shows the experiment setup for the empirical evaluation of
the techniques on the subject programs. Section VI explains
the experiment results regarding the research questions and
Section VII discusses the results. Section VIII presents related
work and Section IX finally concludes with future work.

II. SPECTRUM-BASED FAULT LOCALIZATION

Program spectra characterizes an execution information of
PUT []. For example, Executable Statement Hit Spectrum
(ESHS) records which statements are executed by a test cases.

The key idea of Spectrum-Based Fault Localization (SBFL)
techniques is to utilize correlation between failing test cases
and executed faulty entities (e.g., statements, branches) based
on program spectra. SBFL expects the correlation between
failing executions and faulty entities is higher than the corre-
lation between failing executions and correct entities. Specifi-

cally, SBFL computes suspiciousness scores of entities by an-
alyzing differences between the program spectrum of passing
executions and those of failing executions. If a statement is
used as the entity in SBFL, the suspiciousness of a statement
s increases as the number of failing test cases that execute
s increases. Conversely, the suspiciousness of s decreases as
the number of passing test cases that execute the statement
s increases. High suspiciousness of a statement indicates that
the statement is likely to be a faulty one.

For example, Jaccard [16] calculates a suspiciousness score
of a statement s by using the following metric:

SuspJaccard(s) =
|fP (s)|

|fP (s)|+ |pP (s)|
(1)

where fP (s) and pP (s) are a set of failing test cases and a
set of passing test cases that execute s respectively.

Similarly, the suspiciousness metrics of Ochiai [32] and
Op2 [27] are as follows:

SuspOchiai(s) =
|fP (s)|√

|fP | ∗ (|fP (s)|+ |pP (s)|)
(2)

SuspOp2(s) = |fP (s)| −
|pP (s)|
|pP |+ 1

(3)

where fP and pP are a set of failing test cases and a set of
passing test cases for program P respectively. Section III-D
explains how SBFL techniques localize a fault through a
concrete example.

III. HYBRID MUTATION-BASED FAULT LOCALIZATION
TECHNIQUE

Hybrid-MUSE utilizes both MUtation-baSEd fault localiza-
tion (MUSE) and Spectrum-Based Fault Localization (SBFL)
technique. In this section, we first present the core component
of Hybrid-MUSE, MUSE, and then present Hybrid-MUSE,
which is the combination of MUSE and SBFL.

A. Intuitions of Mutation-based Fault Localization Technique

Consider a faulty program P whose execution with some
test cases results in failures. We propose to mutate P knowing
that it already contains at least one fault. Let mf be a mutant
of P that mutates the faulty statement, and mc be one that
mutates a correct statement. MUSE depends on the following
two conjectures.
Conjecture 1: test cases that used to fail on P are more
likely to pass on mf than on mc.

The first conjecture is based on the observation that mf can
only be one of the following three cases:

1) Equivalent mutant (i.e. mutants that syntactically
change the program but not semantically), in which case
the faulty statement remains faulty. Tests that failed on
P should still fail on mf .

2) Non-equivalent and faulty: while the new fault may or
may not be identical to the original fault, we expect tests
that have failed on P are still more likely to fail on mf

than to pass.



3) Non-equivalent and not faulty: in which case the fault
is fixed by the mutation (with respect to the test suite
concerned).

Note that mutating the faulty statement is more likely to
cause the tests that failed on P to pass on mf (case 3) than
on mc because a faulty program is usually fixed by modifying
(i.e., mutating) a faulty statement, not a correct one. Therefore,
the number of the failing test cases whose results change to
pass will be larger for mf than for mc.

In contrast, mutating correct statements is not likely to make
more test cases pass. Rather, we expect an opposite effect,
which is as follows:
Conjecture 2: test cases that used to pass on P are more
likely to fail on mc than on mf .

Similarly to the case of mf , the second conjecture is based
on an observation that mc can be either:

1) Equivalent mutant, in which case the statement re-
mains correct. Tests that passed with P should still pass
with mc.

2) Non-equivalent mutant: by definition, a non-equivalent
mutation on a correct statement introduces a fault, which
is the original premise of mutation testing.

This second conjecture is based on the observation that a
program is more easily broken by modifying (i.e., mutating) a
correct statement than by modifying a faulty statement (case
2). Therefore, the number of the passing test cases whose
results change to fail will be greater for mc than mf .

To summarize, mutating a faulty statement is more likely to
cause more tests to pass than the average, whereas mutating
a correct statement is more likely to cause more tests to fail
than the average (the average case considers both correct and
faulty statements). These two conjectures provide the basis for
our MUtation-baSEd fault localization technique (MUSE).

B. Suspiciousness Metric of MUSE

Based on the two conjectures, we now define the suspicious-
ness metric for MUSE. For a statement s of P , let fP (s) be the
set of tests that covered s and failed on P , and pP (s) the set of
tests that covered s and passed on P . With respect to a fixed
set of mutation operators, let mut(s) = {m1, . . .mk} be the
set of all mutants of P that mutates s with observed changes in
test results. For each mutant mi ∈ mut(s), let fmi and pmi be
the set of failing and passing tests on mi respectively. And let
f2p and p2f be the number of test result changes from failure
to pass and vice versa between before and after all mutants
of P , the set of which is mut(P ). The mutation-based fault
localization metric SuspMUSE(s) is defined as follows:

SuspMUSE(s) =
1

|mut(s)|+ 1
×∑

m∈mut(s)

(
|fP (s) ∩ pm|
f2p+ 1

− |pP (s) ∩ fm|
p2f + 1

)

The first term, |fP (s)∩pm|
f2p+1 , reflects the first conjecture: it is

the proportion of the number of tests that failed on P but now

pass on a mutant m that mutates s over the total number of
all failing tests that pass on a some mutant (since f2p can be
zero, we adds 1 to f2p in the denominator to avoid division-
by-zero). Similarly, the second term, |pP (s)∩fm|

p2f+1 , reflects the
second conjecture, being the proportion of the number of tests
that passed on P but now fail on a mutant m that mutates s
over the total number of all passing tests that fail on a some
mutant. When averaged over |mut(s)|+ 1 (again, we adds 1
to avoid division-by-zero), the first term and the second term
become the probability of test result change per mutant, from
failing to passing and vice versa respectively.

Intuitively, the first term correlates to the probability of s
being the faulty statement (it increases the suspiciousness of
s if mutating s causes failing tests to pass, i.e. increase the
size of fP (s)∩pm), whereas the second term correlates to the
probability of s not being the faulty statement (it decreases
the suspiciousness of s if mutating s causes passing tests to
fail, i.e. increase the size of pP (s) ∩ fm).

Note that MUSE does not implicitly assume that a fault
lies in one statement. A partial fix of a multi-line spanning
fault obtained by mutating one statement can still make the
target program pass with a subset of failing tests and provide
important information to localize a fault (Conjecture 1).

C. Suspiciousness Metric of Hybrid-MUSE

In addition to MUSE, Hybrid-MUSE utilizes a SBFL tech-
nique to adjust MUSE when MUSE suspiciousness metric
(i.e., SuspMUSE(s) ) performs poorly in exceptional cases.
For example, when MUSE fails to generate a mutant on s
(i.e., |mut(s)| = 0), µ(s) = 0 since pm = fm = ∅. As MUSE
utilizes observed changes in test results, MUSE suspiciousness
metric does not provide a meaningful suspiciousness score for
s. In addition, if both MUSE and SBFL indicate a statement s
is more suspicious than other statements, s can be more likely
to faulty one than statements that are indicated by either of
them.

Based on those intuitions, therefore, Hybrid-MUSE suspi-
ciousness metric is defined as follows:

SuspHybrid MUSE(s) = norm susp(MUSE, s)+norm susp(sbfl, s)
(4)

where norm susp(flt, s) is the normalized suspiciousness of
a statement s in a FL technique flt, which is computed as
Suspflt(s)−min(flt)
max(flt)−min(flt) where min(flt) and max(flt) is the min-

imum and maximum observed suspiciousness score computed
by Suspflt(s) for all target statements [31]. sbfl is a SBFL
metric such as Jaccard, Ochiai, or Op2. Note that the purpose
of normalization is to balance the suspiciousness scores of
the both techniques. The suspiciousness normalization, which
makes a suspiciousness range of FL technique 0 to 1, prevents
a suspiciousness of a FL technique dominates the other one.

Since SBFL techniques does not require mutation analysis
to compute suspiciousness of each statement, the combination
of MUSE with a SBFL metric enables Hybrid-MUSE to assign
meaningful suspiciousness to a statement s where |mut(s)| =
0.



Spectrum of Test Cases (x, y) Jaccard Ochiai Op2

int max;
void setmax( int x, int y){

TC1
(3,1)

TC2
(5,-4)

TC3
(0,-4)

TC4
(0,7)

TC5
(-1,3)

|fP (s)| |pP (s)| Susp. Rank Susp. Rank Susp. Rank

s1: max = −x; //should be ‘max = x;’ • • • • • 2 3 0.40 5 0.63 5 1.25 5
s2: if (max < y){ • • • • • 2 3 0.40 5 0.63 5 1.25 5
s3: max = y; • • • • 2 2 0.50 2 0.71 2 1.50 2
s4: if (x∗y<0) • • • • 2 2 0.50 2 0.71 2 1.50 2
s5: print (‘‘ diff . sign ’’);} • • 1 1 0.33 6 0.50 6 0.75 6
s6: print (max);} • • • • • 2 3 0.40 5 0.63 5 1.25 5

Test Results Fail Fail Pass Pass Pass

Test Result Changes MUSE Hybrid-MUSE

Statements Mutants TC1
(3,1)

TC2
(5,-4)

TC3
(0,-4)

TC4
(0,7)

TC5
(-1,3)

|fP (s)
∩ pm|

|pP (s)
∩ fm|

Suspiciousness Rank Suspiciousness Rank

s1: max = −x; m1:max −= x−1; P→F 0 1 0.15 1 1.40 1m2:max=x; F→P F→P 2 0

s2: if (max < y){ m3:if (!( max<y)){ P→F P→F P→F 0 3 0.02 4 0.83 4m4:if(max==y){ F→P P→F 1 1

s3: max = y; m5:max = −y; P→F P→F 0 2 -0.07 3 1.07 3m6:max = y+1; P→F P→F 0 2

s4: if (x∗y<0){ m7:if (!( x∗y<0)) P→F P→F 0 2 -0.05 2 1.14 2m8:if(x/y<0) P→F 0 1

s5: print (‘‘ diff . sign ’’);} m9:return ; P→F 0 1 -0.03 6 0.21 6m10:; P→F 0 1

s6: print (max);} m11:printf (0);} P→F P→F 0 2 -0.08 5 0.40 5m12:;} P→F P→F P→F 0 3

Fig. 1. Example of how Hybrid-MUSE localizes a fault compared with different fault localization techniques

D. An Working Example

Figure 1 presents an example of how Hybrid-MUSE local-
izes a fault. The PUT is a function called setmax(), which
sets a global variable max (initialized to 0) with x if x > y,
or with y otherwise. Statement s1 contains a fault, as it should
be max=x. Let us assume that we have five test cases (tc1 to
tc5): the spectrum of individual test cases are marked with
black bullets (•). TC1 and TC2 fail because setmax() updates
max with the smaller number, y. The remaining test cases pass.
Thus, |fP | = 2 and |pP | = 3.

First, MUSE generates mutants by mutating only one state-
ment at a time. For the sake of simplicity, here we assume that
MUSE generates only two mutants per statement, resulting
in a total of 12 mutants, {m1, . . . ,m12} (listed under the
“Mutants” column of Figure 1). Test cases change their results
after the mutation as noted in the middle column. For example,
TC1, which used to fail, now passes on the two mutants, m2
and m4.

Based on the changed results of the test cases, MUSE
suspiciousness of s1, SuspMUSE(s1), is computed as 1

(2+1) ·
{( 0

3+1 −
1

19+1 ) + ( 2
3+1 −

0
19+1 )} = 0.15, where |fP (s1) ∩

pm1
| = 0 and |pP (s1)∩fm1

| = 1 for m1 and |fP (s1)∩pm2
| =

2 and |pP (s1)∩fm2
| = 0 for m2. Since there are three changes

from failure to pass, f2p = 3 (TC1 and TC2 on m2 and
TC1 on m4) while |fP | = 2. Similarly, p2f = 19 (see the
changed results of TC3, TC4, and TC5), while |pP | = 3. The
MUSE suspiciousness scores of other statements are computed
as 0.02, -0.07, -0.05, -0.03, and -0.08 (See MUSE column).

After calculating MUSE suspiciousness for each statement
s, normalized MUSE suspiciousness scores of statements
are computed to combine MUSE suspiciousness with
SBFL suspiciousness. The normalized suspiciousness of
the statement s1 in MUSE, norm susp(MUSE, s1), is
computed as 0.15−(−0.08)

0.15−(−0.08) = 1, where SuspMUSE(s1)

= 0.15 and min(MUSE) = -0.08, and max(MUSE)

= 0.15. Similarly, norm susp(MUSE, s2) = 0.43,
norm susp(MUSE, s3) = 0.07, norm susp(MUSE, s4)
= 0.14, norm susp(MUSE, s5) = 0.21, and
norm susp(MUSE, s6) = 0.

In addition, normalized suspiciousness scores of statements
in a SBFL technique (e.g., Jaccard) are also computed.
The normalized suspiciousness of the statement s1 in
the Jaccard, norm susp(Jaccard, s1), is computed as
0.40−(−0.33)
0.50−(−0.33) = 0.40, where Jaccard(s1) = 0.40 and
min(Jaccard) = 0.33, max(Jaccard) = 0.50 (see Susp. col-
umn of Jaccard). Similarly, norm susp(Jaccard, s2) = 0.40,
norm susp(Jaccard, s3) = 1.00, norm susp(Jaccard, s4)
= 1.00, norm susp(Jaccard, s5) = 0.00, and
norm susp(Jaccard, s6) = 0.40.

Finally, Hybrid-MUSE computes suspiciousness score for
each statement s, SuspHybrid−MUSE(s), based on the nor-
malized suspiciousness scores of s in the MUSE and in
the SBFL (Jaccard). The Hybrid-MUSE computes s1 as
1.00 + 0.40 = 1.40 where norm susp(MUSE, s1) = 1.00
and norm susp(Jaccard, s1) = 0.40. The suspiciousness
scores of the other five statements are computed as 0.83, 1.07,
1.14, 0.21, and 0.40, respectively (see Suspiciousness column
of Hybrid-MUSE). The suspiciousness of the s1 (i.e., the faulty
statement) is the highest at 1.40, which places it at the top
ranking.

In contrast, Jaccard, Ochiai, and Op2 choose s3 and s4 as
the most suspicious statements, while assigning the 5th rank
to the actual faulty statement s1. For example, Jaccard assigns
the highest suspiciousness scores (i.e., 2

2+2 = 0.5) to s3 and
s4 and marked them as rank 2, while the faulty line (s1) has a
suspiciousness score 2

2+3 = 0.4 and the faulty line is marked
as rank 5. This is because there are more passing test cases
that execute s1 (i.e., tc3, tc4, and tc5) than s3 or s4 (i.e., tc4
and tc5). For Jaccard, Ochiai, and Op2, passing test cases such
as tc3 to tc5 make the suspiciousness of the faulty statement
low, since they increase |pP (s)| in the denominator of the



suspiciousness metrics (Jaccard and Ochiai) or |pP (s)| in the
negative term of the suspiciousness metric (Op2). Thus, a fault
localization technique like Jaccard, Ochiai, and Op2 becomes
imprecise as there are more passing test cases that execute
faulty statements. It implies that MUSE can precisely locate
certain faults that the state-of-the-art SBFL techniques cannot.

E. MUSE Framework

Figure 2 shows framework of the core component of
Hybrid-MUSE, MUSE (MUtation-baSEd fault localization).
There are three major stages: selection of statements to mutate,
testing of the mutants, and calculation of the suspiciousness
scores.
Step 1: MUSE receives a target program P and a test suite
T . that contains at least one failing test case. After executing
T on P , Hybrid-MUSE selects the target statements, i.e. the
statements of P that are executed by at least one failing test
case in T . We focus on only these statements as those not
covered by any failing tests, can be considered not faulty with
respect to T . 1

Step 2: MUSE generates mutants of P by mutating each of
the statements selected at Step 1. MUSE can generate multiple
mutants from a single statement since one statement may
contain multiple mutation points [13]. Consequently MUSE
tests all generated mutants with T and records the results.
Step 3: MUSE compares the test results of T on P with the
test results of T on all mutants and calculates the suspicious-
ness of the target statements of P .

IV. LIL: LOCALITY INFORMATION LOSS

The output of fault localization techniques can be consumed
by either human developers or automated program repair
techniques. In SBFL literature, the human consumption model
assumes the output format of ranking of statements according
to their suspiciousness, which is to be linearly followed
by humans until identifying the actual faulty statement. Ex-
pense [26] metric measures the portion of program statements
that need to be inspected until the localization of the fault.
It has been widely adopted as an evaluation metric for FL
techniques [19], [27], [44] as well as a theoretical framework
that showed hierarchies between SBFL techniques [43], [42].
However, the Expense metric has been criticised for being
unrealistic to be used by a human developer directly [30].

In an attempt to evaluate the precision of SBFL tech-
niques, Qi et al. [31] compared SBFL techniques by mea-
suring the Number of Candidate Patches (NCP) generated
by GenProg [38] automated program repair tool, with the
given localization information.2 Automated program repair
techniques tend to bypass the ranking and directly use the

1It is possible that a statement that is not executed by any failing test case of
T can still be faulty if T fails to detect the fault. Hybrid-MUSE targets faults
that have been detected by a given test suite T as many other FL technique
do.

2Essentially this measures the number of fitness evaluation for the Genetic
Programming part of GenProg; hence the lower the NCP score is, the
more efficient GenProg becomes, and in turn the more effective the given
localization technique is.

suspiciousness scores of each statement as the probability of
mutating the statement (expecting that mutating a highly suspi-
cious statement is more likely to result in a potential fix) [11],
[38]. An interesting empirical observation by Qi et al. [31] is
that Jaccard [16] produced lower NCP than Op2 [27], despite
having been proven to always produce a lower ranking for
the faulty statement than Op2 [42]. This is due to the actual
distribution of the suspiciousness score: while Op2 produced
higher ranking for the faulty statement than Jaccard, it assigned
almost equally high suspiciousness scores to some correct
statements. On the other hand, Jaccard assigned much lower
suspiciousness scores to correct statements, despite ranking
the faulty statement slightly lower than Op2.

This illustrates that evaluation and theoretical analysis based
on the linear ranking model is not applicable to automated pro-
gram repair techniques. LIL metric can measure the aptitude of
FL techniques for automated repair techniques as it measures
the effectiveness of localization in terms of information loss
rather than the behavioural cost of inspecting a ranking of
statements. LIL metric essentially captures the essence of the
entropy-based formulation of fault localization [45] in the
form of an evaluation metric.

We propose a new evaluation metric that does not suffer
from this discrepancy between two consumption models. Let
S be the set of n statements of the Program Under Test,
{s1, . . . , sn}, sf , (1 ≤ f ≤ n) being the single faulty
statement. Without losing generality, we assume that output
of any fault localization technique τ can be normalized to [0,
1]. Now suppose that there exists an ideal fault localization
technique, L, that can always pinpoint sf as follows:

L(si) =
{

1 (si = sf )
ε (0 < ε� 1, si ∈ S, si 6= sf )

(5)

Note that we can convert outputs of FL techniques that do
not use suspiciousness scores in a similar way: if a technique
τ simply reports a set C of m statements as candidate faulty
statements, we can set τ(si) = 1

m when si ∈ C and τ(si) = ε
when si ∈ S − C.

We now cast the fault localization problem in a probabilistic
framework as in the previous work [45]. Since the suspi-
ciousness score of a statement is supposed to correlate to the
likelihood of the statement containing the fault, we convert the
suspiciousness score given by an FL technique, τ : S → [0, 1],
into the probability of any member of S containing the fault,
Pτ (s), as follows:

Pτ (si) =
τ(si)∑n
i=1 τ(si)

, (1 ≤ i ≤ n) (6)

This converts suspiciousness scores given by any τ (in-
cluding L) into a probability distribution, Pτ . The metric we
propose is the Kullback-Leibler divergence [22] of Pτ from
PL, denoted as DKL(PL||Pτ ): it measures the information
loss that happens when using Pτ instead of PL and is
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Fig. 2. Process of the mutation based fault localization of MUSE

calculated as follows:

DKL(PL||Pτ ) =
∑
i

ln
PL(si)

Pτ (si)
PL(si) (7)

We call this as Locality Information Loss (LIL). Kullbacl-
Leibler divergence between two given probability distribution
P and Q requires the following: both P and Q should sum
to 1, and Q(si) = 0 implies P (si) = 0. We satisfy the
former by the normalization in Equation 6 and the latter by
always substituting 0 with ε after normalizing τ 3 (because we
cannot guarantee the implication in our application). When
these properties are satisfied, DKL(PL||Pτ ) becomes 0 when
PL and Pτ are identical. As with the Expense metric, the
lower the LIL value is the more accurate the FL technique is.
Based on Information Theory, LIL has the following strengths
compared to the Expense metric:
• Expressiveness: unlike the Expense metric that only

concerns the actual faulty statement, LIL also reflects how
well the suspiciousness of non-faulty statements have
been suppressed by an FL technique. That is, LIL can be
used to explain the results of Qi et al. [31] quantitatively.

• Flexibility: unlike the Expense metric that only concerns
a single faulty statement, LIL can handle multiple loca-
tions of faults. For m faults (or for a fault that consists
of m different locations), the distribution PL will simply
show not one but m spikes, each with 1

m as height.
• Applicability: Expense metric is tied to FL techniques

that produce rankings, whereas LIL can be applied to any
FL technique. If a technique assigns suspiciousness scores
to statements, it can be converted into Pτ ; if a technique
simply presents one or more statements as candidate fault
location, Pτ can be formulated to have corresponding
peaks.

V. EMPIRICAL STUDY I

To evaluate the effectiveness of our proposed techniques
empirically, we have have designed the following research
questions. In this study, the effectiveness will be evaluated

3ε should be smaller than the smallest normalized non-zero suspiciousness
score by τ .

via both traditional evaluation metric for FL, i.e. Expense
metric [26], and newly introduced evaluation metric, i.e. LIL
metric (Section IV). Expense metric measures % of executed
statements to be examined to localize a faulty statement,
if human developer inspects PUT following the order of
statements in the ranking generated by a fault localization
technique.

RQ1. Foundation of MUSE: How many test results change
from failure to pass and vice versa on a mutant generated by
mutating a faulty statement, compared with a mutant generated
by mutating a correct one?

RQ1 is to validate the conjectures in Section III-A, on which
MUSE depends. If the conjectures are valid (i.e., more failing
tests become passing ones after mutating a faulty statement
than a correct one, and more passing tests become failing ones
after mutating a correct statement than a faulty one), we can
expect that MUSE will localize a fault precisely.

RQ2. Effectiveness of Hybrid-MUSE SBFL component:
How precise is Hybrid-MUSE compared with MUSE, which
does not utilize SBFL, in terms of Expense and LIL metric?

RQ2 evaluates the precision of Hybrid-MUSE (i.e., MUSE +
Jaccard) and that of MUSE, which does not utilize SBFL for
fault localization. The goal of this study is to evaluate the
effectiveness of Hybrid-MUSE SBFL component.

RQ3. Precision in terms of Expense metric: How precise
is Hybrid-MUSE, compared with Jaccard, Ochiai, and Op2 in
terms of Expense metric?

RQ3 evaluates Hybrid-MUSE with the Expense metric metric
against the three widely studied SBFL techniques – Jaccard,
Ochiai, and Op2. Op2 [27] is proven to perform well in
Expense metric; Ochiai [28] performs closely to Op2, while
Jaccard [16] shows good performance when used with auto-
mated program repair [31].

RQ4. Precision in terms of LIL metric: How precise is
Hybrid-MUSE, compared with Jaccard, Ochiai, and Op2 in
terms of LIL metric?

RQ4 evaluates Hybrid-MUSE with the newly introduced met-
ric, LIL, against the three SBFL techniques. The smaller the



TABLE I
SUBJECT PROGRAMS, # OF VERSIONS USED, THEIR AVERAGE SIZES IN
LINES OF CODE (LOC), AND THE AVERAGE NUMBER OF FAILING AND

PASSING TEST CASES

Subject # of ver. Size |fP | |pP | Description
program used (LOC)

flex 13 12,423.0 15.9 24.4 Lexical analyzer generator
grep 2 12,653.0 91.0 98.5 Pattern matcher
gzip 7 6,576.0 34.3 178.6 Compression utility
sed 5 11,990.0 43.4 235.0 Stream editor
space 24 9,129.0 22.8 130.2 ADL interpreter

LIL value is, the more precise the FL technique is.

RQ5. Relation between the precision and the number of
mutants utilized: How precise is Hybrid-MUSE with 1%,
10%, 40%, 70% and 100% of mutants utilized in terms of
both the expense metric and the LIL metric?

The core component of Hybrid-MUSE, MUSE, can generate
a large number of mutants (see Table II) and consumes a
large amount of time consequently. However, since Hybrid-
MUSE also utilizes SBFL that does not depend of mutants
utilized, Hybrid-MUSE may localize a fault enough precisely
using only a subset of the mutants. RQ3 evaluates the relation
between the mutant sampling rates and related precisions.

To answer the research questions, we performed a series of
experiments by applying Jaccard, Ochiai, Op2, MUSE, and
Hybrid-MUSE to the 51 faulty versions in five real world C
programs. The following subsections describe the details of
the experiments.

A. Subject Programs

For the experiments, we used five non-trivial real-world
programs including flex version 2.4.7, grep version 2.2,
gzip version 1.1.2, sed version 2.05, and space, all of
which are from the SIR benchmark suite [7].

Table I describes the target programs including the numbers
of the faulty versions used, their sizes in Lines of Code, and
the average numbers of failing and passing test cases for each
faulty version. We have targeted all faulty versions of the five
programs in the SIR benchmark suite (i.e., the total number of
versions of the subject programs is 51). We used the test suites
provided in the SIR benchmark. In addition, we excluded the
test cases which caused a target program version to crash
(e.g., segmentation fault), since gcov that we used to measure
coverage information cannot record coverage information for
such test cases.

B. Mutation and Fault Localization Setup

We use gcov to measure the statement coverage achieved
by a given test case. Based on the statement coverage informa-
tion, MUSE generates mutants of the PUT, each of which is
obtained by mutating one statement that is covered by at least
one failing test case. We use the Proteum mutation tool for the
C language [24], which implements the mutation operators
defined by Agrawal el al. [13]. For each statement (e.g., a
variable or an operator), MUSE generates all mutants that

can be generated by Proteum. (see Table II for the generated
mutants).

For each mutant sampling rate x%, MUSE randomly selects
x% of mutants among the all mutants generated per statement.
For example, if MUSE generates 85 mutants at line 50,
MUSE randomly selects 9 (= d85 × 10%e) mutants with the
mutant sampling rate 10%. We repeated this mutant sampling
experiment 30 times per subject faulty version to minimize
bias from the random sampling process.

We implemented Hybrid-MUSE, MUSE, as well as Jaccard,
Ochiai, and Op2, in 7,200 lines of C++ code. All experiments
were performed on 25 machines equipped with Intel i5 3.6Ghz
quad core CPUs and 8GB of memory running Debian Linux
6.05 64bits.

C. Threats to Validity

The primary threat to external validity for our study involves
the representativeness of our object programs, since we have
examined only 5 C programs in the SIR benchmark. While
this may be the case, the SIR benchmark provides various
real-world programs including real faults (i.e., faults that were
identified during testing and operational use of the programs)
and seeded faults (i.e., faults seeded by other researchers, not
us) to support controlled experimentation: all of space faults
are real faults, and all of flex, grep, gzip, and sed faults
are seeded ones [7]. In addition, the benchmark has been
widely used for fault localization studies [39], [40], [37], [33],
[48], [17]. Thus, we believe that this threat to external validity
is limited. The second threat involves the representativeness of
the fault localization techniques that we applied (i.e., Jaccard,
Ochiai, Op2). However, Jaccard performs well when used
with a repair tool [31], and Ochiai is generally known to
outperform other kinds of fault localization techniques [19],
[1]. In addition, Op2 is theoretically proved to outperform
other SBFL techniques on single fault programs [31]. Thus,
we believe that this threat is also limited. The third possible
threat is the assumption that we already have many test cases
when applying SBFL techniques to a target program. Our
rebuttal to this argument is that we can generate many test
cases using automated test generation techniques (i.e., random
testing, concolic testing, or test generation strategies for fault
localization [34], [10], [21]). A primary threat to internal
validity is possible faults in the tools that implement Jaccard,
Ochiai, Op2, MUSE, and Hybrid-MUSE. We controlled this
threat through extensive testing of our tool.

VI. RESULT OF THE EMPIRICAL STUDY I

A. Result of the Mutation

Table II shows the number of mutants generated per sub-
ject program version. On average, MUSE generates 98342.4
(=44411.5+53930.9) mutants per version and uses 44411.5
mutants, while discarding 53930.9 dormant mutants, i.e. those
for which none of the test cases change their results. This
translates into an average of 66.3 (=98342.4/1482.5) mutants



TABLE II
THE AVERAGE NUMBERS OF TARGET STATEMENTS, AVERAGE USED

MUTANTS, AND AVERAGE DORMANT MUTANTS (MUTANTS THAT DO NOT
CHANGE ANY TEST RESULTS) PER SUBJECT PROGRAM

Subject program No. of target No. of used No. of dormant
statements mutants mutants

flex 2,107.2 61,917.8 56,756.7
grep 1,508.0 499,008.0 149,627.5
gzip 398.6 16,209.7 24,265.1
sed 1,713.8 49,070.2 15,139.0
space 1,685.1 45,851.8 23,866.0

Average 1,482.5 44,411.5 53,930.9

TABLE III
THE AVERAGE NUMBERS OF THE TEST CASES WHOSE RESULTS CHANGE

ON THE MUTANTS

# of failing tests that # of passing tests that
Subject pass after mutating: fail after mutating:
program Correct Faulty (B)/(A) Correct Faulty (C)/(D)

stmts. stmts. stmts. stmts.
(A) (B) (C) (D)

flex 0.0896 9.7947 109.3234 7.9664 3.8525 2.0756
grep 8.3053 38.6876 4.6582 13.2657 3.2245 4.1140
gzip 0.1042 3.6774 35.2893 87.8037 4.1328 21.2458
sed 1.4087 10.6872 7.5866 108.8567 30.1406 3.6116
space 0.0088 3.6996 419.1440 31.6902 15.1574 2.0907

Average 1.9833 13.3093 115.2003 49.9225 11.3016 6.6276

per considered target statement (Section III-E) 4. The mutation
and the subsequent testing of all mutants took 19 hours using
the 25 machines, i.e. 22.4 (=(19×60)/51) minutes per each
version of a target program, on average.

B. Regarding RQ1: Foundation of MUSE

Table III shows the numbers of the test cases whose results
change on each mutant of the target programs. The second
and the third columns show the average numbers of failing
test cases on P which subsequently pass after mutating a
correct statement (i.e. mc), or a faulty statement (i.e. mf ),
respectively. For example, on average, 0.0896 and 9.7947
failing test cases on flex pass on mc and mf respectively.
The fifth and the sixth columns show the average numbers of
the passing test cases on P which subsequently fail on mc

and mf respectively.
Table III provides supporting evidence for the conjectures

of MUSE discussed in Section III. The number of the failing
test cases on P that pass on mf is 115.2 times greater than the
number on mc on average, which supports the first conjecture.
Similarly, the number of the passing test cases on P that fail
on mc is 6.6 times greater than the number on mf on average,
which supports the second conjecture. Based on these results,
we claim that both conjectures are valid.

4The numbers of target statements of the subject programs are smaller than
the sizes (LOC) of the programs because MUSE targets only statements that
are executed by at least one failing test case.

C. Regarding RQ2: Effectiveness of Hybrid-MUSE SBFL com-
ponent

Table IV presents the precisions of MUSE and Hybrid-
MUSE 5 in terms of both Expense and LIL metric. More
precise results are marked in bold. Presuming that a developer
inspects statements according to their rankings generated by
Hybrid-MUSE until reaching the fault (i.e., Expense metric),
one can localize a fault after reviewing 1.65% of the executed
statements on average. As indicated in Table IV, the average
precision of Hybrid-MUSE is 4.08 (=6.74/1.65) times higher
than that of MUSE. This answers to RQ2: The SBFL com-
ponent of Hybrid-MUSE is effective enough to improve the
precision of MUSE.

Considering that the LIL metric, MUSE is more precise
than Hybrid-MUSE. As indicated in Table IV, the average LIL
value of MUSE is 5.24, which is 1.12 (=5.86/5.24) times more
precise than that of Hybrid-MUSE. However, the decreased
precision (in terms of LIL) due to the combined SBFL
component of Hybrid-MUSE is negligible, while considering
that Hybrid-MUSE outperforms MUSE 4.08 times over the
Expense metric. Thus, we consider Hybrid-MUSE as our best
performer.

The main reason why MUSE performs worse compared
with that of Hybrid-MUSE over the Expense metric is due
to the faulty statements that do not have any used mutants.
Since MUSE depends on the two conjectures that utilize
observed test result changes by mutation (Section III-A),
MUSE cannot precisely localize faulty statements that do
not have any used mutants. The suspiciousness metric of
MUSE assigns 0 suspiciousness to all non-mutated state-
ments. In contrast, Hybrid-MUSE can precisely localize non-
mutated faulty statements thanks to the SBFL component of
Hybrid-MUSE, which is not utilized by MUSE. The sus-
piciousness metric of Hybrid-MUSE can assign meaningful
suspiciousness scores to non-mutated statements using the
SBFL component. Among the 51 faulty versions we studied,
there are 7 faulty versions in which all the faulty state-
ments are not-mutated: flex v16, v17, v18, v19,
gzip v14, space v4, and v37. The average expense
of Hybrid-MUSE on these versions is 5.27%, whereas that of
MUSE is 27.53%. Hybrid-MUSE is 5.22 (=27.53/5.27) times
more precise than MUSE on these versions. This provides
supporting evidence to answer RQ2: Since SBFL component
helps Hybrid-MUSE assign meaningful suspiciousness scores
to non-mutated statements, the SBFL component of Hybrid-
MUSE can improve the precision compared with MUSE over
the Expense metric.

5We have utilized Jaccard, Ochiai, and Op2 as the SBFL component of
Hybrid-MUSE to adjust MUSE (see Section III-C). We found that ’MUSE
+ Jaccard’ outperforms other combinations over LIL metric, and performs
comparably over Expense metric (i.e., On average, the Expense and LIL of
’MUSE + Jaccard’ are 1.65% and 5.86 respectively while those of ’MUSE
+ Ochiai’ are 1.62% and 6.18 and those of ’MUSE + Op2’ are 1.80% and
6.67 respectively). Thus, from now on, we call ’MUSE + Jaccard’ as Hybrid-
MUSE for the sake of simplicity.



TABLE IV
COMPARISON OF MUSE AND HYBRID-MUSE

Subject % of Executed Stmts Examined Rank of Faulty Stmt Locality Information Loss
Program MUSE Hybrid-MUSE MUSE Hybrid-MUSE MUSE Hybrid-MUSE

flex 17.72 4.38 490.62 121.00 6.12 8.30
grep 1.62 0.91 29.00 16.00 6.71 6.18
gzip 7.58 0.84 109.71 12.14 3.03 4.06
sed 1.16 0.45 25.00 10.00 6.30 5.99
space 5.63 1.67 126.33 48.88 4.04 4.74

Average 6.74 1.65 156.13 41.60 5.24 5.86

TABLE V
AVERAGE PRECISIONS OF JACCARD, OCHIAI, OP2 AND HYBRID-MUSE

Subject % of Executed Stmts Examined Rank of Faulty Stmt Locality Information Loss
Program Jaccard Ochiai Op2 Hybrid-MUSE Jaccard Ochiai Op2 Hybrid-MUSE Jaccard Ochiai Op2 Hybrid-MUSE

flex 23.66 23.25 19.37 4.38 458.62 447.77 350.15 121.00 8.86 9.00 9.09 8.30
grep 2.76 2.73 2.58 0.91 48.00 47.50 44.50 16.00 5.34 5.94 5.83 6.18
gzip 6.76 6.68 6.68 0.84 97.86 96.86 96.86 12.14 4.69 4.85 5.84 4.06
sed 11.57 11.57 11.42 0.45 249.40 249.40 246.20 10.00 6.06 6.35 6.70 5.99
space 4.08 3.61 6.20 1.67 125.75 110.42 198.04 48.88 5.26 5.78 6.47 4.74

Average 9.76 9.57 9.25 1.65 195.92 190.39 187.15 41.60 6.04 6.38 6.79 5.86

TABLE VI
AVERAGE PRECISION OF HYBRID-MUSE ON TARGET SUBJECTS CONTAINING MULTIPLE FAULTS

Target # of versions % of executed stmts examined
until the first fault is detected

program w/ single w/ multi Total Avg. of single Avg of multiple Total
fault faults fault versions faults versions avg.

flex 11 2 13 5.07 0.59 4.38
grep 1 1 2 1.31 0.50 0.91
gzip 6 1 7 0.96 0.07 0.84
sed 2 3 5 0.23 0.60 0.45
space 10 14 24 0.78 2.30 1.67

SUM/AVG 30 21 51 1.67 0.81 1.65

D. Regarding RQ3: Precision in terms of the Expense metric

Table V presents the precision evaluation of Jaccard, Ochiai,
Op2, and Hybrid-MUSE with the proportion of executed
statements required to be examined before localizing the fault
(i.e. the Expense metric). The most precise results are marked
in bold. As indicated in the Table, the average precision
of Hybrid-MUSE is 5.9 (=9.76/1.65), 5.8 (=9.57/1.65), and
5.6 (=9.25/1.65) times higher than that of Jaccard, Ochiai,
and Op2, respectively. In addition, Hybrid-MUSE produces
the most precise results for 46 out of the 51 studied faulty
versions. This provides quantitative answer to RQ3: Hybrid-
MUSE can outperform the state-of-the-art SBFL techniques
over the Expense metric.

In response to Parnin and Orso [30], we also report the
absolute rankings produced by Hybrid-MUSE, i.e. the actual
number of statements that need to be inspected before en-
countering the faulty statement. Hybrid-MUSE ranks the faulty

statements of the 18 faulty versions at the top, and ranks the
faulty statement of 38 versions among the top 10. On average,
Hybrid-MUSE ranks the faulty statements among the top 41.6
statements, which is 4.5 (=187.15/41.60) times more precise
than the best performing SBFL technique, Op2. We believe
Hybrid-MUSE is precise enough that its results can be used
by a human developer in practice.

In addition, Table VI shows that Hybrid-MUSE is also
precise on target versions containing multiple faults. This
is an advantage over conventional SBFL techniques which
are knows to be less precise on target programs containing
multiple faults in general. We guess that this advantage is due
to the partial fixes that Hybrid-MUSE generates, each of which
separately captures the control and data dependencies relevant
to each fault in a target program (see Section VII-A).
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Fig. 4. Comparision of distributions of normalized suspiciousness score across target statements of space v21
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E. Regarding RQ4: Precision in terms of the LIL metric

The LIL column of Table V shows the precision of Jaccard,
Ochiai, Op2, and Hybrid-MUSE in terms of the LIL metric,
calculated with ε = 10−17. The best results (i.e. the lowest
values) are marked in bold. The LIL metric value of MUSE is
5.86 on average, which is 1.03 (=6.04/5.86), 1.09 (=6.38/5.86),
and 1.16 (=6.79/5.86) times more precise than those of Jac-
card, Ochiai, and Op2. In addition, the LIL metric values of
Hybrid-MUSE are the smallest ones on the 29 out of the 51
subject program versions. This answers RQ4: Hybrid-MUSE
can outperform the state-of-the-art SBFL techniques over the
newly proposed LIL metric.

Figure 3 shows the advantage of the Hybrid-MUSE over the
SBFL techniques in a different aspect. It plots the normalized
suspiciousness scores for each target statement of spacev21

in a descending order using Jaccard, Ochiai, Op2, and Hybrid-
MUSE. The circles indicate the location of the faulty state-
ment. While all techniques assign, to the faulty statement,
suspiciousness scores that rank near the top (the ranks of the
faulty statement in Jaccard, Ochiai, Op2, and Hybrid-MUSE
are 16, 16, 16, and 1, respectively), it is the suspiciousness of
correct statements that differentiates the techniques. When nor-
malized into [0, 1], Hybrid-MUSE assigns values less than 0.3
to all correct statement except four statements (This is because
the SBFL component of Hybrid-MUSE (i.e., Jaccard) assigns
high suspiciousness scores to those four correct statements).
In contrast, the SBFL techniques assign values much higher
than 0. For example, 4.3% of the executed statements are
assigned suspiciousness higher than 0.9 by Op2, while 26.9%
are assigned values higher than 0.5. Figure 4 presents the
distribution of suspiciousness in space v21 for individual
techniques to make it easier to observe the differences. This
provides supporting evidence to answer RQ4: Hybrid-MUSE
does perform better than the state-of-the-art SBFL techniques
when evaluated using the LIL metric.

Table V also independently confirms the results obtained by
Qi et al. [31]. Our new evaluation metric, LIL, confirms the
same observation as Qi et al. by assigning Jaccard a lower
LIL value of 6.04 than that of Op2, 6.79 (see Section IV for
more details).

F. Regarding RQ5: Relation between the precision and the
number of mutants utilized

Although Hybrid-MUSE localizes a fault almost six times
more precisely than SBFL techniques (see Section VI-C),
Hybrid-MUSE can consume a large amount of time to test
98342.4 mutants for a target program, on average (see Ta-
ble II). If Hybrid-MUSE utilizes only a subset of mutants,
it can be faster although precision may decrease. Table VII
shows such trade-off between mutant sampling rates and the



TABLE VII
AVERAGE PRECISIONS OF HYBRID-MUSE PER MUTANT SAMPLING RATE

Mutant % of Executed Rank of a LIL
Sampling Rate Stmts Examined Faulty Stmt

1% 6.20 123.50 6.26
10% 4.60 95.53 6.11
40% 2.79 61.21 5.96
70% 1.83 45.59 5.90

100% 1.65 41.60 5.86

precisions (i.e., the expense and LIL metric).
As indicated in Table VII, Hybrid-MUSE with mutant

sampling rate 1% still outperforms the all SBFL techniques,
i.e. the expense of Hybrid-MUSE with mutant sampling rate
1% is 6.20% which is smaller than the expense of Op2
(9.25%). And Hybrid-MUSE with mutant sampling rate 40%
outperforms the all SBFL techniques in terms of LIL value,
i.e., the LIL of MUSE with sampling rate 40% is 5.96%
which is smaller than the LIL of Jaccard (6.04). Table VII
also shows that the precision of Hybrid-MUSE increases as
mutant sampling rate of Hybrid-MUSE increases. Thus, a user
may choose appropriate mutant sampling rate to achieve fault
localization result precise enough for his/her purpose fast.

VII. DISCUSSIONS

A. Why does Hybrid-MUSE work well?

As shown in Section VI-C and Section VI-E, Hybrid-MUSE
demonstrates superior precision when compared to the state-
of-the-art SBFL techniques. In addition to the finer granularity
of statement level, the improvement is also partly because the
core component of Hybrid-MUSE, MUSE, directly evaluates
where (partial) fix can (and cannot) potentially exist instead
of predicting the suspiciousness through program spectrum.
In a few cases, MUSE actually finds a fix, in a sense that it
performs a program mutation that will make all test cases pass
(this, in turn, increases the first term in the metric, raising the
rank of the location of the mutation). However, in other cases,
MUSE finds a partial fix, i.e. a mutation that will make only
some of previously failing test cases pass. While not as strong
as the former case, a partial fix nonetheless captures the chain
of control and data dependencies that are relevant to the failure
and provides a guidance towards the location of the fault.

B. Hybrid-MUSE and Test Suite Balance

One advantage Hybrid-MUSE has over SBFL is that
Hybrid-MUSE is relatively freer from the proportion of pass-
ing and failing test cases in a test suite. In contrast, SBFL
techniques benefit from having a balanced test suite, and have
been augmented by automated test data generation work [10],
[21], [18].

Hybrid-MUSE does not require the test suite to have many
passing test cases. To illustrate the point, we purposefully cal-
culated the Hybrid-MUSE without any test cases that passed
before mutation (this effectively means that we only use the

first term of the MUSE metric and Jaccard metric without the
passing test case term). On average, Hybrid-MUSE ranked
the faulty statement within the top 12.93% on average, and
among the 1% for 35 out of 51 faulty versions we studied.
In contrast, SBFL techniques Jaccard, Ochiai, and Op2 that
considered all passing and failing test cases rank the faulty
statement among the 1% for 14 faulty versions. Hybrid-MUSE
is 2.5 (= 35/14) times more precise than the SBFL techniques,
when considering the faulty versions that require a developer
to inspect less than 1% of executed statements to locate the
faulty statement.

More interestingly, Hybrid-MUSE does not require the test
suite to have many failing test cases. Considering that previous
work [21], [18] focused on producing more failing test cases
to improve the precision, this is an important observation. We
purposefully calculated Hybrid-MUSE without any test cases
that failed before mutation: although this translates into an
unlikely use case scenario, it allows us to measure the differ-
entiating power of the second conjecture in isolation. When
only the second term of the MUSE metric is calculated 6,
Hybrid-MUSE could still rank the faulty statement among the
top 27.37% on average. Intuitively, SBFL techniques require
many failing executions to identify where a fault is, whereas
Hybrid-MUSE is relatively free from this constraint because
it also identifies where a fault is not.

This advantage is due to the fact that the core component
of Hybrid-MUSE, MUSE, utilizes two separate conjectures,
each of which is based on the number of failing and passing
test cases respectively. Thus, even if a test suite has almost
no failing or passing test cases, Hybrid-MUSE can localize a
fault precisely.

C. LIL Metric and Automated Bug Repair

LIL metric is better at predicting the performance of an
FL technique for automated program repair tools than the
traditional ranking model. The fact that the ranking model
is not suitable has been demonstrated by Qi et al. [31]. We
performed a small case study with the GenProg-FL tool by Qi
et al., which is a modification of the original GenProg tool.
We applied Jaccard, Ochiai, Op2, and MUSE (not Hybrid-
MUSE, which is a combination of MUSE and SBFL), to
GenProg-FL in order to fix look utx 4.3, which is one
of the subject programs recently used by Le Goues et al. [12].
GenProg-FL [31] measures the NCP (Number of Candidate
Patches generated before a valid patch is found in the repair
process) of each FL technique where the suspiciousness score
of a statement s is used as the probability to mutate s.

Table VIII shows the Expense, the LIL and the NCP scores
on look utx 4.3 by the four fault localization techniques
we have evaluated. For the case study, we generated 30
failing and 150 passing test cases randomly and used the
same experiment parameters as in GenProg-FL [31] (we

6Since Jaccard metric without the failing test case term assigns 0 to
all executed statements, Hybrid-MUSE without any test cases that failed
before mutation only uses the second term of the MUSE metric to compute
suspiciousness scores.



TABLE VIII
EXPENSE, LIL, AND NCP SCORES ON LOOK UTX 4.3

Fault % of executed Locality Average of
localization statements information NCP over
technique examined loss (LIL) 100 runs

MUSE 11.25 3.52 25.3
Op2 42.50 3.77 31.0

Ochiai 42.50 3.83 32.2
Jaccard 42.50 3.89 35.5

obtained the average NCP score from 100 runs). Table VIII
demonstrates that the LIL metric is useful to evaluate the
effectiveness of an FL technique for the automatic repair of
look utx 4.3 by GenProg-FL: the LIL scores (MUSE :
3.52 < Op2 : 3.77 < Ochiai : 3.83 < Jaccard : 3.89) and the
NCP scores (MUSE : 25.3 < Op2 : 31.0 < Ochiai : 32.2 <
Jaccard : 35.5) are in agreement.

A small LIL score of a localization technique indicates that
the technique can be used to perform more efficient automated
program repair. In contrast, the Expense metric values did not
provide any information for the three SBFL techniques. We
plan to perform further empirical study to support the claim.

VIII. RELATED WORK

Among the wide range of fault localization approaches
including program state analysis [14], [46] and machine learn-
ing [2], the most widely studied has been the spectrum-based
approaches [41], [23]. SBFL techniques such as Tarantula [20]
and Ochiai [28] have been extensively studied both empiri-
cally [19], [32] and theoretically [42]. Other techniques expand
the input data to call sequences [6] and du-pairs [33]. While
the spectrum-based approaches are limited in their accuracy by
the basic block structure [36], MUSE is as accurate as the unit
of mutation, which is a single statement in the study presented
in this paper. With the improved accuracy, the empirical results
showed that MUSE can overcome the criticism of inadequate
accuracy shared by SBFL techniques [30]. Other techniques
attempt to improve the accuracy of SBFL using dynamic data
dependency and causal-inference model [8], [9], or combining
the SAT-based fault localization [25] with the spectrum-based
ones [10].

The idea of generating diverse program behaviours to
localize a fault more effectively has been utilized by several
studies. For example, Cleve and Zeller [14] search for program
states that cause the execution to fail by replacing states of a
neighbouring passing execution with those of a failing one. If
a passing execution with the replaced states no longer passes,
relevant statements of the states are suspected to contain
faults. Zhang et al. [48], on the other hand, change branch
predicate outcomes of a failing execution at runtime to find
suspicious branch predicates. A branch predicate is considered
suspicious if the changed branch outcome makes a failing
execution pass. Similarly, Jeffrey et al. [17] change the value
of a variable in a failing execution with the values with

other executions; Chandra et al. [5] simulate possible value
changes of a variable in a failing execution through symbolic
execution. Those techniques are similar to MUSE in a sense
that generating diverse program behaviours to localize faults.
However, they either partially depend on the conjectures of
MUSE (some [48], [17], [5] in particular depend on the first
conjecture of MUSE) or rely on a different conjecture [14].
Moreover, MUSE does not require any other infrastructure
than a mutation tool, because it directly changes program
source code to utilize the conjectures (Section V-B).

Since mutation operators vary significantly in their nature,
mutation-based approaches such as MUSE may not yield itself
to theoretical analysis as naturally as the spectrum-based ones,
for which hierarchy and equivalence relations have been shown
with proofs [42]. In the empirical evaluation, however, MUSE
outperformed Op2 SBFL metric [27], which is the known best
SBFL technique.

Yoo showed that risk evaluation formulas for SBFL can be
automatically evolved using Genetic Programming (GP) [44].
Some of the evolved formulas were proven to be equivalent to
the known best metric, Op2 [43]. While current MUSE metrics
are manually designed following human intuition, they can be
evolved by GP in a similar fashion.

Papadakis and Le-Traon have used mutation analysis for
fault localization [29]. However, instead of measuring the
impact of mutation on partial correctness as in MUSE (i.e.
the conjecture 1), Papadakis and Le-Traon depend on the
similarity between mutants in an attempt to detect unknown
faults: variations of existing risk evaluation formulas were used
to identify suspicious mutants. Zhang et al. [47], on the other
hand, use mutation analysis to identify a fault-inducing commit
from a series of developer commits to a source code repository:
their intuition is that a mutation at the same location as
the faulty commit is likely to result in similar behaviours
and results in test cases. Although MUSE shares a similar
intuition, we do not rely on tests to exhibit similar behaviour:
rather, both of MUSE metrics measures what is the differences
introduced by the mutation. Given the disruptive nature of the
program mutation, we believe MUSE is more robust.

IX. CONCLUSION AND FUTURE WORK

We have presented Hybrid-MUSE, a new fault localiza-
tion technique that combines MUtation-baSEd fault localiza-
tion (MUSE) and Spectrum-Based Fault Localization (SBFL)
technique. The core component of Hybrid-MUSE, MUSE,
localizes faults based on mutation analysis. Based on the
two conjectures we introduced, MUSE not only increases
the suspiciousness of potentially faulty statements but also
decreases the suspiciousness of potentially correct statements.
Also, the SBFL component of Hybrid-MUSE helps to localize
faulty statements more precisely, by adding suspiciousness of
SBFL to that of MUSE. The results of empirical evaluation
show that Hybrid-MUSE can not only outperform the state-
of-the-art SBFL techniques significantly, but also provide a
practical fault localization solution. Hybrid-MUSE is more
than 5.6 times precise compared to Op2, which is the best



known SBFL technique; Hybrid-MUSE also ranks the faulty
statement at the top for 18 out of the 51 faulty versions,
and among the top ten for another 38 versions. In addition,
we confirmed that Hybrid-MUSE improves the precision of
MUSE 4.08 times over the Expense metric thanks to the
combined SBFL component. The paper also presents Locality
Information Loss (LIL), a novel evaluation metric for FL
techniques based on information theory. A case study shows
that it can be better at predicting the performance of an FL
technique for automated program repair.

Future work includes optimization of the mutation analysis,
as well as in-depth study of the impact of different mutation
operators. We also plan to extend our tool to support code
visualization and inspection features in an integrated environ-
ment.
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