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ABSTRACT

As software becomes more complex due to a number of complex software requirements, debugging

program becomes very challenging. One of the most expensive task of debugging process is to locate the

root cause of program failures (i.e., fault). This process, called fault localization, requires developers to

understand complex internal logic of Program Under Test (PUT) to identify the location of fault while

inspecting enormous program states.

To reduce the human efforts for fault localization, therefore, we propose two fault localization

techniques that utilize dynamic program behaviors. Each of the proposed techniques automatically ranks

statements of PUT according to their predicted risk of containing faults, which is essentially computed

based on the dynamic information (e.g., a set statements executed by a test case) gathered from test

case executions of PUT. Developers can effectively locate the fault by inspecting PUT while following

the order of statements in the ranking generated by the proposed techniques. The key ideas of proposed

techniques can be summarized as follows.

One of the proposed techniques, called FIESTA, utilizes correlation between failing executions and

each of executed program statements to identify the location of faults. The degree of the correlation

indicates the degree of possibility that a statement contains faults, which is used to rank program

statements. FIESTA strengthens the correlation between failing executions and faulty statements, by

eliminating program structures that can weaken the correlation through the program transformation. It

also assigns fault weight on a test case that indicates likelihood of the test case to execute a faulty state-

ment. Thanks to the strengthened correlation, FIESTA can localize faulty statements more effectively

than the previous fault localization techniques do.

The other one, called MUSE, utilizes mutation analysis to uniquely capture the relation between

individual program statements and observed failures. The key idea of MUSE is to identify a faulty

statement by utilizing different characteristics of two groups of mutants — one that mutates a faulty

statement and the other that mutates a correct one. For example, MUSE prioritizes statements where

modifications (i.e., mutants) on those statements make failing test cases become passing ones, since a

faulty program is usually repaired by modifying (i.e., mutating) faulty statements.

In addition, we also propose an evaluation metric for fault localization techniques based on in-

formation theory, called Locality Information Loss (LIL). It enables to measure the aptitude of a fault

localization technique for tools that automatically fix faults, which the existing evaluation metric cannot.

To evaluate the effectiveness of our techniques, we carried out experiments by applying the proposed

techniques on 12 C-programs including 5 real-world programs. The experimental results showed that

the proposed techniques are very effective for locating many faults. For example, MUSE ranks a faulty

statement among the top 7.4 places on average, which is about 25 times more precise than the state-of-

the-art fault localization technique, called Op2, on average. It implies that the proposed techniques can

reduce the human efforts for fault localization significantly.
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Chapter 1. Introduction

As the software development is primarily done by human developers, software inevitably contains

bugs which are produced by human mistakes. Software bugs not only make software deviates the required

functionalities, but also cause severe impacts on our lives. According to the report of National Institute of

Standards and Technology (NIST) in 2002, “software bugs, or errors, are so prevalent and so detrimental

that they cost the US economy an estimated $59 billion annually, or about 0.6 percent of the gross

domestic product” [48]. As a result, many human developers have examined the correctness of software

products to reduce the number of bugs in their products.

However, debugging program becomes challenging as the complexity of software rapidly increases

due to a number of complex software requirements [60]. One of the most expensive and laborious task of

debugging activity is to locate the root cause of program failures [33, 66], which is called fault localization.

This process requires human developers to understand the complex internal logic of the Program Under

Test (PUT) and reason about the differences between passing and failing executions in order to identify

the location of fault. Therefore, reducing the human efforts for fault localization will significantly decrease

the total cost of whole debugging activity.

This dissertation presents novel techniques to assist developers effectively locate faulty statements in

PUT. It presents two automated fault localization techniques (called FIESTA and MUSE), each of which

automatically ranks program statements of PUT according to their predicted risk of containing faults.

Each of the proposed techniques respectively utilizes test case executions of transformed PUT (Chapter 3)

and those of mutated PUT (Chapter 4), to compute the predicted risk of each statement. Developers

can effectively locate faults by inspecting PUT while following the order of statements in the ranking

generated by the proposed techniques. In addition, the dissertation also presents a new evaluation metric

for fault localization techniques, that enables to measure the aptitude of fault localization techniques

for tools that automatically fix faults [68], which is not possible by the exiting evaluation metric [56]

(Chapter 5).

From the evaluation results of the proposed techniques on 12 C-programs including 5 real-world

programs, we confirmed that the proposed techniques not only outperform the previous fault localization

techniques, but also can be a practical solution for fault localization. For example, in order to locate a

faulty statement, the proposed technique MUSE requires a developer to inspect 7.4 statements on average,

whereas the state-of-art spectrum-based fault localization technique Op2 does 184.6 statements, for our

subject programs.

In this chapter, we describe the limitations of the previous automated fault localization techniques,

and the key ideas of our approaches that can mitigate the described limitations. We then present the

summary of the contributions of this work.

1.1 Limitations of Previous Approaches

A number of automated fault localization techniques have been proposed to reduce the developers’

manual efforts for fault localization [6, 19, 31, 36, 56, 70, 78]. Among them, a promising research direction

is Spectrum-Based Fault Localization (SBFL) [36, 38, 42, 47, 72]. SBFL uses program spectrum, i.e.
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summarized profile of test suite executions that indicate which parts of PUT are executed during program

executions, to rank program entities (such as statements or branches) according to their predicted risk

of containing faults, called suspiciousness. The human developer, then, is to inspect PUT following the

order of entities in the given ranking, in the hope that the faulty entity will be encountered near the top

of the ranking [71].

The key idea of SBFL is to utilize the correlation between failing executions and executed faulty

statements to identify the locations of faulty statements. SBFL collects program spectrum from both

failing executions (i.e., executions that do not produce expected output) and passing executions (i.e.,

executions that produce expected output), and then gives high suspiciousness to statements that are

strongly correlated with failing executions. In other words, SBFL expects the correlation between faulty

statements and failing executions is stronger than the correlation between correct statements and failing

executions.

Although SBFL has empirically been proven to outperform other kinds of fault localization tech-

niques [35], it has also been criticized for their impractical accuracy [54]. One of main causes for the

impractical accuracy is the existence of Coincidentally Correct Test cases (CCTs), which are passing

test cases despite executing the faulty statements [58]. Due to the existence of CCTs, the correlation

between faulty statements and failing executions can be not strong enough to identify the locations of

faulty statements effectively [15, 67, 73]. This is because faulty statements executed by CCTs are often

considered as non-faulty ones since they are executed by passing test cases. Thus, the effectiveness of

SBFL techniques can decrease due to the CCTs.

In addition to the negative effect of CCTs, the coarse granularity of block level of SBFL is another

reason for the impractical accuracy [33]. The program spectrum used by SBFL techniques is simply a

combination of the control flow of PUT and the results from test cases. Consequently, all statements in

the same basic block share the same spectrum and, therefore, the same ranking. This often inflates the

number of statements needed to be inspected before encountering the fault.

In the view point of the technique evaluation, on the other hand, the traditional evaluation metric

in SBFL literature is the Expense metric, which is the percentage of program statements the human

developer needs to inspect before encountering the faulty one [56]. However, recent work showed that

the expense metric failed to account for the performance of the automated program repair tool that used

various SBFL techniques to locate the fix: techniques proven to rank the faulty statement higher than

others actually performed poorer when used in conjunction with a repair tool [55].

1.2 Our Approaches

We propose two automated fault localization techniques, which mitigate and overcome the described

limitations of SBFL respectively. In addition, we also propose a new evaluation metric for fault localiza-

tion techniques that overcomes the limitation of existing evaluation metric.

1.2.1 FIESTA: Fault Localization to Mitigate the Negative Effect of CCTs

We propose a new fault localization technique, called Fault-weIght and atomizEd condition baSed

local-izaTion Algorithm (FIESTA), that mitigates the negative effect of CCTS in the following ways:

(1) To transform a target program to reduce the number of CCTs (Debuggability transformation), and

(2) To develop a new suspiciousness formula that mitigates the negative effect of CCTs approximately.

– 2 –



First, FIESTA transforms a target program P into the semantically equivalent program P ′ by converting

a compound conditional statement into nested conditional statements with atomic conditions. Through

this Debuggability transformation, the precision of SBFL technique can increase due to the decreased

number of CCTs. Second, FIESTA defines a new suspiciousness metric that reduces the negative of

CCTs by considering fault weights on test cases. We define a fault weight on a test case t to indicate

likelihood of t to execute a faulty statement and utilize the fault weight values of the test cases that cover

a target statement s to compute a suspiciousness of s.

1.2.2 MUSE: Mutating Faulty Programs for Fault Localization

We also present another new fault localization technique, called MUSE (MUtation-baSEd fault lo-

calization technique), that overcomes the coarse granularity of block level of SBFL. MUSE uses mutation

analysis to uniquely capture the relation between individual program statements and the observed fail-

ures. It is free from the coercion of shared ranking from the block structure. The basic mutation testing

is defined as artificial injection of syntactic faults [17]. However, we focus on what happens when we

mutate an already faulty program and, particularly, the faulty program statement. Intuitively, since a

faulty program can be repaired by modifying faulty statements, mutating (i.e., modifying) faulty state-

ments will make more failed test cases pass than mutating correct statements. In contrast, mutating

correct statements will make more passed test cases fail than mutating faulty statements. This is be-

cause mutating correct statements introduces new faulty statements in addition to the existing faulty

statements in a PUT. These two observations form the basis of our new fault localization technique.

1.2.3 LIL: An Evaluation Metric for Fault Localization Techniques

To overcome the limitation of exiting evaluation metric for fault localization techniques, we propose

a new evaluation metric that is not tied to the ranking model. Our new evaluation metric, Locality

Information Loss (LIL), actually measures the loss of information between the true locality of the fault

and the predicted locality from a localization technique, using information theory. It can measure the

aptitude of a localization technique for automated fault repair systems as well as human debuggers.

In addition, it can be applied to any fault localization techniques (not just SBFL) and to describe

localization of any number of faults.

1.3 Contributions

The proposed research will provide the following contributions:

• Techniques (i.e., MUSE and FIESTA) that practically assist developers locate faulty statements

effectively.

– A fault localization technique, called Fault-weIght and atomizEd condition baSed local-izaTion

Algorithm (FIESTA), improves the precision of fault localization based on two proposed tech-

niques: (1) Debuggability transformation, that improves the precision by reducing the number

of CCTs, and (2) fault weight based suspiciousness metric, that improves the precision by uti-

lizing the likelihood of each test case to execute faulty statements.
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– A fault localization technique, called MUtation-baSEd fault localization (MUSE), that signif-

icantly improves the precision of fault localization by uniquely capturing the relation between

individual program statements and the observed failures based on mutation analysis.

• An evaluation metric for fault localization techniques, called Locality Information Loss (LIL), that

can measure the aptitude of a fault localization technique for automated program repair tools based

on information theory.

• Empirical demonstration of effectiveness and practicality of proposed techniques on 12 C-programs

including 5 real-world programs.

The contributions of this dissertation are also supported by the following papers:

• S.Moon, Y.Kim, M. Kim, S. Yoo. Ask the Mutants: Mutating Faulty Programs for Fault Local-

ization, The 7th IEEE International Conference on Software Testing, Verification, and Validation

(ICST 2014), to appear (acceptance rate: 28%).

• S.Moon, Y.Kim, M. Kim, FEAST: An Enhanced Fault Localization Technique using Probability

of Test Cases Executing Faults, Journal of KIISE: Software and Applications, Vol 40, Num 10, Oct

2013 (invited paper).

• S.Moon, Y.Kim, M. Kim, An Enhanced Fault Localization Technique using Probability of Test

Cases Executing Faults, Korea Conference on Software Engineering (KCSE), Jan 30 – Feb 1, 2013.

• S.Moon, Y.Kim, M. Kim, FIESTA: Effective Fault Localization to Mitigate the Negative Effect

of Coincidentally Correct Tests, in preparation.

It should be noted that Locality Information Loss (LIL) metric is originally proposed by prof. Shin

Yoo at University of College London, who has collaborated with us for developing new fault localization

techniques.

1.4 Outline of the Dissertation

Chapter 2 describes background and related work. We first define certain terminologies. We then

present related work and the limitations of previous approaches.

Chapter 3 presents our technique FIESTA, that mitigates the negative effect of CCTs. We first

explain the intuitions of FIESTA, and then present detailed approaches. We next show the high effec-

tiveness of FIESTA through the empirical evaluation. The empirical evaluation compares the effectiveness

of FIESTA with the state-of-art SBFL techniques. Finally, we discuss the limitations of FIESTA, and

related work of FIESTA.

Chapter 4 presents our technique MUSE, that overcomes the coarse granularity of block level of

SBFL. We first deliver intuitions of MUSE, and then present detailed approaches. We next demonstrate

the superior precision of MUSE through the empirical evaluation. The empirical evaluation compares

the effectiveness of MUSE with the state-of-art SBFL techniques. Finally, we discuss the reasons of the

superior precision of MUSE, and related work of MUSE.

Chapter 5 presents LIL metric, an metric for fault localization techniques based on information

theory, which can measure the aptitude of fault localization techniques toward automated program

repair tools. We evaluate fault localization techniques using LIL, and then discuss the advantages of LIL
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observed through the evaluation. In addition, a case study with an automated program repair tool [27]

is presented to demonstrate that LIL metric can be used to predict which fault localization techniques

help automated program repair tools to improve their performance.

Chapter 6 finally concludes this dissertation with future work.
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Chapter 2. Background and Related Work

This chapter provides background and related work. We describe previous debugging techniques

including automated fault localization techniques, and their limitations.

2.1 Definitions

In this dissertation, certain terminologies will be used repeatedly. We follow certain definitions in

the document, IEEE Standard 729 Glossary for Software Engineering Technology [63], which provides

definitions of fault, error, failure, and debug as follows:

• Fault : an incorrect step, process, or data definition in a computer program.

• Error : the difference between a computed, observed, or measured value or condition and the true,

specified, or theoretically correct value or condition. For example, a difference of 30 meters between

a computed result and the correct result.

• Failure: the inability of a system or component to perform its required functions within specified

performance requirements

• Debug : to detect, locate, and correct faults in a computer program.

Thus, a developer makes faults, which can can cause errors. Errors can make one detects failures. A

developer debug (i.e., debugging) Program Under Test (PUT) by following the process: (1) detecting

faults in PUT via failures, (2) locating faults (i.e., fault localization), and (3) correcting the faults.

We also define a few terminologies, which help readers understand our following work:

• Test case: A set of test inputs, execution conditions, and expected results developed for a particular

objective, such as to exercise a particular program path or to verify compliance with a specific

requirement.

• Passing test case: A test case that produces an expected output.

• Failing test case: A test case that does not produce an expected output.

2.2 Traditional Debugging

In traditional debugging approach, developers usually insert ‘print’ statements into several places

of PUT, which are likely to indicate locations of faults, based on their intuitions. Then, developers

attempt to identify locations of faults by analyzing outputs of each inserted print statement in failing

executions. Although this approach has been used widely, it can consume a lot of human efforts because

the approach requires in-depth understanding of PUT to insert print statements in appropriate places

and to analyze the outputs of the inserted print statements.

Another way to find the locations of faults is to use symbolic debuggers such as GDB [2] and

DBX [40]. These debuggers assist developers to trace internal states of program executions by supporting
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break pointing, stepping, and state modifying features. Developers can examine internal states of failing

executions on several places of PUT by using the supported features, without manually inserting print

statements. These examinations may enable developers to detect abnormal internal states, which can

indicate the locations of faults. However, debugging becomes challenging as the complexity of program

increases [60], even if one uses those symbolic debuggers. Developers should manually insert break points

to PUT, and examine enormous internal program states of failing executions to locate faults.

2.3 Program Slicing

Another kind of debugging techniques uses programs slices. Program slicing techniques [65] identify

particular parts of PUT that could affect a value of a variable at a specific program statement. The

particular parts are called a slice, and the variable with the program statement is called a slicing criterion.

Slicing approaches compute a slice, which could affect the slicing criterion. In the view point of program

debugging, the slice will be the particular parts of PUT that contain faults if the slicing criterion is

specified as the one that manifests failures, and the slice is examined by a developer to locate faults.

Slicing techniques are classified with static-slicing, execution-slicing, and dynamic-slicing according to

the information they use for the computation of a slice.

2.3.1 Static Slicing

Weiser proposed a slicing approach that computes a slice by analyzing PUT statically [69, 70]. Given

a slicing criterion in PUT, a computed slice is a set of all transitively relevant statements to the slicing

criterion, according to static control dependencies and data dependencies of PUT [65]. As the Weiser’s

approach utilizes only the static information to compute a slice, this approach is called static slicing.

Since static slicing can reduce the number of statements in PUT that need to be examined to localize

faults, it could reduce the human efforts for fault localization. However, as the static slicing approach

does not utilize any dynamic information from the executions that actually cause failures, the computed

slice is likely to include a number of statements that actually do not affect the slicing criterion (i.e.,

abnormal program behaviors) in the failing executions. Thus, developers could examine a number of

unnecessary statements for fault localization.

2.3.2 Dynamic Slicing

Dynamic slicing approach utilizes an execution history of a given input while computing a slice [6, 8].

Specifically, the computed slice consists of control dependencies and data dependencies that indeed occur

in a specific execution. Thus, dynamic slicing can further reduce the number of statements that need to

be examined to localize faults, when compared to the static slicing approach. This is because dynamic

slicing computes a slice that actually affects a slicing criterion (i.e., a variable that manifests a failure),

whereas static slicing computes a slice that could affect a slicing criterion.

The primary disadvantage of dynamic slicing is the cost for the computation of dynamic slice. Even

though several algorithms for dynamic slicing have been proposed [16, 81, 82], computing the precise

dynamic slice could take a excessive time.
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Coverage of Test Cases (x, y) Tarantula Ochiai Op2 FIESTA

int example (int x, int y){
TC1

(5,1)
TC2

(9,1)
TC3

(9,0)
TC4

(10,1)
TC5

(1,2)
TC6

(4,7)
Susp. Rank Susp. Rank Susp. Rank Susp. Rank

s1: int ret = 0; • • • • • • 0.50 7 0.41 7 0.17 7 0.92 6

s2: if (x>y){ • • • • • • 0.50 7 0.41 7 0.17 7 0.92 6

s3: x = x − 2; //should be ‘x=x+2;’ • • • • 0.63 3 0.50 3 0.50 3 0.95 2

s4: ret = ret + 1; } • • • • 0.63 3 0.50 3 0.50 3 0.95 2

s5: else{ y = y + 2; } • • 0.00 8 0.00 8 -0.33 8 0.36 8

s6: if (x<y+6){ • • • • • • 0.50 7 0.41 7 0.17 7 0.92 6

s7: ret = ret + 2; } • • • 0.71 1 0.58 1 0.67 1 0.90 7

s8: return ret; } • • • • • • 0.50 7 0.41 7 0.17 7 0.92 6

Test Results Fail Pass Pass Pass Pass Pass

Figure 2.1: Example of spectrum-based fault localization

2.3.3 Execution Slicing

To reduce the cost for computing a dynamic slice, the execution slicing approaches have been

proposed by researchers [7, 56]. These approaches essentially utilize coverage information of a particular

execution (e.g., a set of statements covered by an execution), called an execution slice. For instance, a

set of statements covered by a failing execution can be examined by a developer for fault localization.

Agrawal et al. are one the first researchers who use an execution slice for fault localization pur-

pose [7]. Given a failing and a passing test case, they compute ‘dice’, which is a set of statements that

are only executed by a failing test case (not by a passing test case). Their approach reports the dice

as likely faulty statements, because the dice is strictly correlated with failing executions. Renieres et

al. [56] extend the Agrwl et al.’s approach. Their approach, called Nearest Neighborhood (NN), selects

a passing test case that is most similar to the given failing test case in terms of code coverage. Then, the

differences between the covered statements by the selected passing test case and the covered statements

by the given failing test case are reported as likely faulty statements.

Although execution slicing-based approaches can decrease the search space for fault localization

without requiring much computation cost, the precision of fault localization can decrease significantly.

For example, a set of statements (e.g., dice) that is reported to a developer actually cannot contain faulty

statements if all faulty statements are executed by both failing and passing test cases. It implies that

a developer cannot find faults if her only searches for the statements reported by the fault localization

technique.

Moreover, both the dynamic slicing-based approaches and execution slicing-based approaches still

require a developer inspects a number of statements for fault localization (Section 2.4). For example,

NN technique requires a developer to inspect 50% of PUT, on average [56]. Thus, the effectiveness of

those approaches should be improved further to use them practically in the real world [54].

2.4 Spectrum-based Fault Localization

Program spectra characterizes an execution information of PUT. For instance, Executable State-

ment Hit Spectrum (ESHS) records which statements are executed by a test case (For more detailed

information, see [28, 57, 71]).

The key idea of spectrum-based fault localization (SBFL) techniques is to utilize correlation between

failing test cases and executed faulty entities. Specifically, they compute the suspiciousness of an entity

(such as a statement or branch), which represents the degree of the possibility that an entity is faulty

one, by analyzing differences between the program spectrum of passing executions and those of failing
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executions. If the statement is used as the entity in SBFL (i.e., ESHS spectra is used), the suspiciousness

of a statement s increases as the number of failing test cases that execute the statement s increases.

Conversely, the suspiciousness of a statement s decreases as the number of passing test cases that execute

the statement s increases. In other words, SBFL expects the correlation between failing executions and

faulty statements is higher than the correlation between failing executions and correct statements. A

representative SBFL technique called Tarantula [36] computes a suspiciousness of a statement s by using

the following metric:

SuspTarantula(s) =

|failing(s)|
|Tf |

|failing(s)|
|Tf |

+
|passing(s)|
|Tp|

where Tf is a set of failing test cases and failing(s) is a set of failing test cases that execute s (Tp and

passing(s) are defined similarly).

Figure 2.1 shows an example of how the above metric localizes a fault. Let us assume that we have

six test cases (tc1 to tc6) and statement s3 is the faulty statement because it should be x=x+2. The

executed statements by each test case (i.e., ESHS spectra) are marked with black dot in the figure. In

the figure, tc1 is the only failing test case because example() with tc1 will return 3, while it will return

1 if there is no fault (i.e., if statement s3 is x=x+2). All other test cases tc2 to tc6 are passing test cases

because example() with these test cases will return a correct value (i.e., 1 with tc2 to tc4 and 2 with tc5

and tc6).

With the suspiciousness metric of Tarantula, the faulty statement (statement s3) has
1
1

1
1 + 3

5

= 0.63

as a suspiciousness and marked as a rank 3. Thus, one can localizes the faulty statement after examining

the three statements (s7, s4, and s3) by following the order of statements in the ranking produced by

Tarantula. Note that a developer should examine all statements executed by the failing test case tc1 if

the dynamic slicing approach is used for fault localization; Given the slicing criterion ret in statement

s8 that manifests failures, all statements executed by tc1 are included into the computed slice. This is

because all the statements affect the value of ret via control or data dependencies of example() in the

failing execution (tc1).

The superior precision of Tarantula was empirically proved by Jones et al. [35]. They compared

Tarantula technique with other representative fault localization techniques [7, 21, 56] that had been pro-

posed. In their empirical evaluation on Siemens suite [29], Tarantula technique significantly outperforms

other fault localization techniques - for instance, it ranks the faulty statement among the top 1% of

executable statements for 14% of faults studied, which is three times more effective than the technique

previously showed to be the most effective at fault localization on the Siemens suite. Since then, many

researchers who were encouraged by the promising results have researched SBFL techniques to further

improve the effectiveness. Some use multiple coverage entities [61], some generate certain test cases [9],

some combine SBFL with other fault localization techniques [10, 11, 12, 25], and some utilize new suspi-

ciousness metric for SBFL [4, 30, 47, 50]. For example, Ochiai [50] and Op2 [47] suspiciousness metrics

are defined as follows:

SuspOchiai(s) =
|failing(s)|√

|Tf | ∗ (|failing(s)|+ |passing(s)|)

SuspOp2(s) = |failing(s)| − |passing(s)|
|Tp|+ 1
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Ochiai is generally known to outperform Tarantula, and Op2 is theoretically proved to outperform the

other SBFL formulas proposed so far in single fault programs [74] (For more detailed information about

SBFL formulas, see [47, 74]).

Although SBFL has received much attention, it has also been criticized for their impractical accuracy.

Even if SBFL techniques are used, the number of statements that need to be examined until reaching

the faulty statement is too many to use the techniques practically [54]. It is known the primary causes

that decrease the effectiveness of SBFL techniques are (1) The negative effect of Coincidentally correct

test cases (CCTs), which are test cases that pass despite executing the faulty statements, and (2) The

coarse granularity of block level of SBFL.

Negative effect of coincidentally correct test cases Consider the Figure 2.1 again. In the

Tarantula metric, statement s7 (ret = ret + 2) has the highest suspiciousness (i.e.,
1
1

1
1 + 2

5

= 0.71) and

marked as rank 1, while the faulty statement has
1
1

1
1 + 3

5

= 0.63. This is because there are more passing

test cases that execute statement s3 (i.e., tc2, tc3, and tc4) than s7 (i.e., tc5 and tc6). Since CCTs such as

tc2 to tc4 increase |passing(s)| in the denominator of the suspiciousness metrics (Tarantula and Ochiai)

or in the negative term of the suspiciousness metric (Op2), the suspiciousness of the faulty statement

becomes low. Thus, SBFL formulas like Tarantula, Ochiai, and Op2 become imprecise as there are more

CCTs.

Coarse granularity of block level The program spectrum used by SBFL techniques is simply a

combination of control flow of PUT and the results from test cases. Thus, all statements in the same basic

block share the same spectra and, therefore, the same ranking. For example, in Figure 2.1, statement s3

and s4 are in the same basic block, thus they share same ranking. Therefore, the number of statements

that need to be examined until reaching faulty statements will increase, as there are more statements in

the same basic block.

2.5 Other Debugging Techniques

We will introduce other kinds of debugging techniques including fault localization techniques rel-

evant to our approaches in Section 3.9 and Section 4.6, after describing the fundamentals of our ap-

proaches. Those include other kinds of SBFL techniques, delta debugging [21, 78], angelic debugging [19],

IVMP [31], and so on.
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Chapter 3. FIESTA: Fault Localization to Mitigate

the Negative Effect of Coincidentally Correct Tests

This chapter presents our fault localization technique, called FIESTA, that mitigates the negative

effect of Coincidentally Correct Test cases (CCTs). First, the chapter presents the intuitions of the

proposed approaches, and then describe detailed techniques to mitigate the negative effects of CCTs.

Second, the chapter presents empirical set-up and empirical evaluation results of FIESTA on the 12

subject programs. Third, the chapter presents several limitations of SBFL techniques including FIESTA,

observed through the experiments. Fourth, the chapter discusses the effectiveness of FIESTA, and its

practicality. Finally, the chapter compares our approaches with others that have attempted to solve the

CCT problem.

3.1 Intuitions

The effectiveness of Spectrum-based fault localization (SBFL) techniques suffer from the existence

of Coincidentally Correct Test cases (CCTs). As we showed in Section 2.4, the rank of faulty statement

can be lower than correct statements because CCTs decrease the suspiciousness of faulty statement. A

main cause of the negative effect of CCTs is that SBFL techniques only consider execution result of each

test case, when computing suspiciousness of each statement. Previous SBFL formulas [30, 36, 47, 50]

always decrease suspiciousnesses of statements if they are executed by the test cases that pass. However,

the suspiciousnesses of statements executed by particular passing test cases, which execute the faulty

statements, should be increased. For instance, the suspiciousness of statements executed by passing

test cases, which execute same statements as a failing test case does, should be increased because they

apparently execute the faulty statements. It implies that SBFL formulas should consider the passing test

cases that are (likely) to execute faulty statements, when computing suspiciousness of each statement to

improve the precision. Our new suspiciousness formula for SBFL considers such passing test cases when

computing the suspiciousness (Section 3.2).

Another way to overcome the negative effect of CCTs can be to remove CCTs. Although it is

generally not possible to remove CCTs because we do not know if a given passing test case executes a

faulty statement, we can think of a way that could partially remove CCTs for a certain type of faults,

i.e. faults in compound conditional statements. Consider a program that contains a compound condi-

tional statement scomp whose boolean condition (i.e., a predicate) consists of multiple clauses c1, c2, ...cn

combined with logical operators. If one such clause cm is faulty, scomp becomes faulty and a passing

test case tcp that executes scomp becomes a CCT, although tcp may not execute cm due to short-circuit

evaluation. Consequently, tcp decreases a suspiciousness score of scomp, since tcp covers scomp but passes.

We can mitigate this problem by decomposing a compound conditional statement scomp into semantically

equivalent nested atomic conditional statements (Section 3.3).

Based on the above two observations, we develop two techniques, which are called fault weight based

suspiciousness metric and debuggability transformation, respectively. Our fault localization technique,

Fault-weIght and atomizEd condition baSed localizaTion Algorithm (FIESTA), first transforms PUT to

– 11 –



the semantically equivalent one using the debuggability transformation technique to reduce the number

of CCTs. It then uses the fault weight based suspiciousness metric, that can mitigate the negative effect

of CCTs, in order to compute suspiciousness of each statement. Following sections describe the detailed

approaches.

3.2 Fault Weight Based Suspiciousness Metric

3.2.1 Fault Weights on Test Cases

We define a fault weight wf on a test case t, which indicates likelihood of t to execute a faulty

statement. For a failing test case tf , wf (tf ) is defined as 1. For a passing test case t, fault weight wf (t)

is defined as follows:

wf (t) =

Σtf∈Tf

|stmt(t) ∩ stmt(tf )|
|stmt(tf )|
|Tf |

where stmt(t) is a set of statements executed by a test case t and Tf is a set of failing test cases. wf (t)

represents a degree of overlap between the statements executed by t (i.e., stmt(t)) and the statements

executed by a failing test case tf ∈ Tf (i.e., stmt(tf )) on average over Tf . Thus, high wf (t) score

indicates that t is likely to execute a faulty statement.

For the example of Figure 2.1 where Tf = {tc1}, we can compute the fault weights of the six test

cases as follows:

• wf (tc1) = 1, since tc1 is a failing test case.

• wf (tc2) =

|stmt(tc2)∩stmt(tc1)|
|stmt(tc1)|

1
=

6
7

1
= 0.86

• wf (tc3) = wf (tc4) = wf (tc2) = 0.86, since stmt(tc3) = stmt(tc4) = stmt(tc2).

• wf (tc5) =

|stmt(tc5)∩stmt(tc1)|
|stmt(tc1)|

1
=

5
7

1
= 0.71

• wf (tc6) = wf (tc5) = 0.71, since stmt(tc6) = stmt(tc5)

The fault weights (i.e., 0.86) of CCTs (i.e., tc2, tc3, and tc4) are higher than the fault weights (i.e., 0.71)

of TCTs (Truly Correct Test cases) (i.e., tc5, tc6), which are passing test cases that do not execute a

faulty statement. If wf (tp) is high for a passing test case tp, tp is likely a CCT (see Figure 3.2) and we

can make a precise suspiciousness metric that gives high suspiciousness to the statements executed by

such tp.

3.2.2 Suspiciousness Metric of FIESTA

We define a new suspiciousness metric SuspFIESTA on a statement s using the fault weights on test

cases as follows:

SuspFIESTA(s) = (
|failing(s)|
|Tf |

+
Σt∈test(s)wf (t)

|test(s)|
)/2

where test(s) is a set of test cases that execute s (i.e., test(s) = passing(s) ∪ failing(s)).
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/* Original Program P */
s1: if (x>0 && y==0 && z<0){ // ‘z<0’ should be ‘z==0’
s2: statement;
s3: }

/* Transformed Program P ′ */
s11: if (x>0){
s12: if (y == 0){
s13: if (z < 0){ // ‘z<0’ should be ‘z==0’
s14: statement;
s15: }}}

Figure 3.1: Example of P and P ′ that has been transformed from P by FIESTA

The left term, |failing(s)||Tf | , increases the suspiciousness, if s is executed by more failing test cases. 1

The right term,
Σt∈test(s)wf (t)

|test(s)| , increases the suspiciousness, if s is executed by test cases with higher fault

weights. Finally, to normalize a metric value within a range 0 to 1, the sum of the left term and the

right term is divided by 2.

For example, with the example of Figure 2.1, the new fault localization metric computes the suspi-

ciousness of statement s3 as 0.95 and marks s3 (and statement s4 together) as the first rank as follows:

(
1

1
+
wf (tc1) + wf (tc2) + wf (tc3) + wf (tc4)

4
)/2 = 0.95

Note that the suspiciousness metric of FIESTA is more precise than those of Tarantula, Ochiai, and

Op2 for this example because FIESTA utilizes the fault weights to increase suspiciousness scores of the

statements executed by CCTs.

3.3 Debuggability Transformation of PUT

3.3.1 Overview

FIESTA transforms a target program P into the semantically equivalent program P ′ by converting

a compound conditional statement into nested conditional statements with atomic boolean conditions

(i.e., conditions without boolean operators) 2. For example, FIESTA transforms a compound condi-

tional statement at statement s1 of P in Figure 3.1 into the semantically equivalent nested conditional

statements in P ′ (statements s11 ∼ s13).

Suppose that the last atomic clause of statement s1 in P is a fault (e.g., it should be z==0, not z<0)

and a test case tc1(x=0,y=0,z=0) that executes s1 is a CCT for P . Note that tc1 is not a CCT for P ′

since tc1 does not execute the corresponding faulty statement (line 13) of P ′ (see Section 3.3.2). CCTs

that execute statement s1 of P are not CCTs for P ′ unless they satisfy x>0 && y==0. Thus, through

the transformation of a target program P to P ′, such CCTs become truly correct test cases (TCTs)

(i.e., passing test cases that do not execute a faulty statement) and the precision of coverage-based fault

localization can be improved on P ′ due to the decreased number of CCTs.

1The left term may make FIESTA localize a fault less precisely on a target program with multiple faults spanning on
multiple lines than one with a single line fault, which occurs commonly to most SBFL techniques. However, Digiuseppe et
al. [22] showed that SBFL techniques are still effective to target programs with multiple faults (i.e., in the situation where
different faults interfere with each other’s localizability) as the number of the faults increases. In addition, there are several
techniques (i.e., Liu et al. [41], Zheng et al. [83], and Jones et al. [34]) to cluster test cases targeting an individual fault to
reduce interference among multiple faults.

2FIESTA also transforms exp?v1:v2 in P to if(exp) tmp=v1; else tmp=v2; in P ′.
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Once the suspiciousness scores on the statements of P ′ are obtained, these scores are mapped to the

statements of P (see Section 3.3.2). Finally, the user reviews the statements of P to identify a faulty

statement as usual.

3.3.2 Mapping of Statements between P and P’

FIESTA utilizes CIL (C Intermediate Language) [49] to transform a target C program P to P ′

and CIL generates basic mapping information between statements of P and P ′. Based on this mapping

information, FIESTA maps a faulty statement in P to statement(s) in P ′. In addition, FIESTA maps

the suspiciousness scores on the statements in P ′ to the original statements in P .

Mapping Faulty Statements of P to P’

To measure how many CCTs are reduced through the transformation, we map a faulty compound

conditional statement of P to atomic conditional statements of P ′. There are four cases to consider for

the mapping as follows:

1. When a clause of a compound condition is faulty (e.g., z<0 is faulty in if(x>0 && y==0 && z<0),

since it should be z==0):

Statement(s) of P ′ that correspond to a faulty clause (i.e., if(z<0) in P ′) are marked as faulty

statements.

2. When a boolean operator is faulty (e.g., if(x>0 && y==0) {s1;} should be if(x>0 || y==0)

{s1;}):

Statement(s) of P ′ that correspond to the all operands of the faulty operator (e.g., if(x>0) and

if(y==0) in P ′) are marked as faulty statements. This is because each of those statements that

correspond to the operands can trigger errors.

For example, with tc2 (x=1,y=1), the correct program (i.e., if(x>0 || y==0) {s1;}) will execute

s1, but the faulty transformed program (i.e., if(x>0) { if(y==0) {s1;}}) will not execute s1

due to if(y==0). Similarly, with tc3 (x=0, y=0), the correct program will execute s1, but the faulty

transformed program will not execute s1 due to if(x>0).

3. A new clause is added (e.g., w!=0 is conjunctively added):

Statement(s) of P ′ that correspond to the newly added clause (e.g., if(w!=0) in P ′) are marked

as faulty statements.

4. A clause is omitted (e.g., if(x<0 /*&& y<0 omitted*/) {s1;}):

Statement(s) of P ′ that correspond to the statements that are control dependent on the omitted

clause in P (i.e., y<0 in the example) are marked as faulty (i.e., s1 in the example), since such

statements can trigger errors.

Mapping Suspiciousness Scores on the Statements of P’ to P

Although we obtain suspiciousness scores on the statements of P ′, we have to examine statements

of P in the descending order of their suspiciousness. This is because we would like to identify a fault in

the original program eventually. In addition, P ′ can be larger than P through the transformation, which

may cause a user to examine more statements even when the % of the executed statements to examine
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to find a faulty statement for P ′ is smaller than the % of the executed statements to examine for P .

Thus, FIESTA maps the suspiciousness scores on the statements of P ′ to the statements of P .

Suppose that a compound conditional statement scomp of P is transformed into nested conditional

statements with atomic conditions s′1, s
′
2, ...s

′
n. Then, the suspiciousness score of scomp is defined as the

score of s′m(1 ≤ m ≤ n) that has the highest suspiciousness score among the scores of all s′1, s
′
2, ...s

′
n. In

addition, FIESTA reports s′m to a user to help the user examine suspicious statements to localize a fault.

The suspiciousness scores of the statements of P ′ that are not expanded from a compound conditional

statement in P are directly mapped to their original statements in P .

3.4 Overall Procedure

FIESTA constructs the ranking of statements of a target program P whose execution with some

test cases results in failures, by following below procedures. The generated ranking of statements will be

consumed by a developer for fault localization.

First, FIESTA transforms a target program P into the semantically equivalent program P ′ by con-

verting each compound conditional statement into nested conditional statements with atomic conditions

(debuggability transformation).

Second, FIESTA executes the transformed program P ′ with a given test suite to get Executable

Statement Hit Spectra (ESHS) of each test case.

Third, FIESTA computes suspiciousness of each statement using the FIESTA suspiciousness metric

based on the ESHS of each test case.

Lastly, FIESTA maps suspiciousness of each statement in P ′ to P based on the rule defined in

Section 3.3.2, and ranks statements in P according to their suspiciousness.
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3.5 Empirical Study Setup

We design the following four research questions to study effectiveness of the transformation technique

and the fault weight metric as well as the precision of FIESTA:

RQ1: How effective is the transformation of a target program, in terms of a reduced number of CCTs?

We measure both the number of CCTs for a target program P and the number of CCTs for the trans-

formed target program P ′.

RQ2: How accurate is the fault weight metric of FIESTA on test cases, in terms of the probability of a

passing test case with a high fault weight to be a CCT?

We measure the number of passing test case whose fault weight is larger than 0.9 to be a CCT over all

passing test cases of target programs. Also we observe trend between fault weight and

RQ3: How precise is FIESTA, specifically compared to state-of-art SBFL techniques (i.e., Tarantula,

Ochiai, and Op2) in terms of the % of executed statements examined to localize a fault?

We measure the % of executed statements examined to localize a fault as a measurement of the precision.

The precision of the fault localization technique will inversely correlate with the percentage.

RQ4: How effective is the transformation of a target program, in terms of improved precision of FIESTA?

We measure how much the debuggability transformation improves the precision of FIESTA, by comparing

the precision with or without the debuggability transformation.

To answer these research questions, we have performed a series of experiments by applying Tarantula,

Ochiai, Op2, and FIESTA to the 12 subject programs. We will describe the detail of the experiment

setup in the following subsections.

3.5.1 Subject Programs

As objects of the empirical study, we use the seven SIEMENS programs (419.1 LOC on average) and

five non-trivial real-world programs (flex 2.4.7, grep 2.2, and gzip 1.1.2, sed 1.18, and space) in the

SIR benchmark suite [23] (10641.2 LOC on average). Among the faulty versions of those programs, we

excluded faulty versions for which no test case or only one test case fails. Table 4.1 describes the subject

programs and the number of their faulty versions on which we conducted fault localization experiments.

The subject programs have 154 faulty versions each of which has a single fault (only one line is different

from the non-faulty version) and 25 faulty versions each of which has multiple faults (more than one

line are different from the non-faulty version). In addition, we used all test cases in the SIR benchmark

except the ones that crash a subject program since gcov [1] we used to measure coverage information of

each test case cannot measure coverage information if a target program crashes.

3.5.2 Experiment Setup

We implemented Tarantula, Ochiai, Op2, and FIESTA in 2600 lines of C++ code with CIL 1.3.7.

The subject programs are compiled and instrumented in statement-level by using gcc. After each ex-

ecution of the instrumented object program finishes, we use gcov to get the statement coverage of the

program execution on a given test case. Our tools parse the statement coverage reported from gcov for

each test case, and construct a table that shows which statements are covered by which test cases (see

Figure 2.1). In our experiments, we consider only executed statements that can be tracked by gcov.

Each executed statement is given a suspiciousness according to the suspiciousness metrics of Tarantula,
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Table 3.1: Subject programs, their sizes in Lines Of Code (LOC), and the number of test cases

# of # of
Subject program LOC faulty provided Description

ver. used test cases

print tokens 563 7 4130 lexical analyzer
print tokens2 510 9 4115 lexical analyzer

replace 563 30 5542 pattern replacement
schedule 412 5 2650 priority scheduler
schedule2 307 9 2710 priority scheduler

tcas 173 40 1608 altitude separation
tot info 406 23 1052 information measure

flex 12423 16 567 lexical analyzer generator
grep 12653 4 809 pattern matcher
gzip 6576 5 214 file compressor
sed 11990 3 360 stream editor

space 9564 28 13585 ADL interpreter

Average 4678.33 14.92 3111.83

Ochiai, Op2, and FIESTA and ranked in a descending order of the suspiciousness scores. Statements

with the same suspiciousness are assigned the lowest rank the statements can have(See Figure 2.1). This

is because we assume that the developer must examine all of the statements with the same suspiciousness

to find faulty statements. All experiments were performed on 5 machines that are equipped with Intel

i5 3.6 Ghz CPUs and 8 Gigabyte of memory and run Debian 6.05.

3.5.3 Threats to Validity

The primary threat to external validity for our study involves the representativeness of our object

programs since we have examined only 12 C programs. However, since the subject programs include

various faulty versions of five real-world subject programs with test suites to support controlled experi-

mentation and the subject programs are widely used for fault localization research, we believe that this

threat is limited. The second threat involves the representativeness of the SBFL techniques that we

applied (i.e., Tarantula, Ochiai, Op2, and FIESTA). However, since Tarantula and Ochiai are considered

as representative SBFL techniques in literature, and Op2 is theoretically proven to outperform other

SBFL formulas proposed, in single fault programs [74]. Thus, we believe that this threat is also lim-

ited. The third possible threat is the assumption that we already have many test cases when applying

SBFL techniques to a target program. However, since we can generate many test cases using automated

test generation techniques (i.e., random testing, concolic testing, or test generation strategies for fault

localization [9, 25, 59]), this threat is limited too. A primary threat to internal validity is possible faults

in the tools that implement Tarantula, Ochiai, Op2, and FIESTA. We controlled this threat through

extensive testing of our tool.

3.6 Result of The Experiments

We have applied our implementation of Tarantula, Ochiai, Op2, and FIESTA to the 179 versions

of the 12 programs (the whole experiments took around three hours by running 5 machines). From the
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Table 3.2: Reduced number of CCTs through the debuggability transformation

Subject # of ver. # of faulty # of lines of # of CCTs # of CCTs Reduced
program with faulty comp. stmt. expanded in P in P ′ ratio (%)

comp. stmt. per version faulty stmt.

ptok2 3 1.00 2.67 1947.33 1897.33 2.57
replace 11 1.00 5.27 1647.55 1086.09 34.08
schedule2 4 1.00 4.00 2618.75 2166.25 17.28

tcas 20 1.20 5.38 1049.37 716.68 31.70
tot info 1 1.00 2.00 844.00 806.00 4.50

flex 3 1.00 2.67 330.67 58.67 82.26

Average 7.0 1.03 3.66 1406.28 1121.84 28.73

data obtained from the series of experiments, we can answer the four research questions in the following

subsections.

3.6.1 Regarding RQ1: Reduced Number of CCTs through the Debuggability

Transformation

Table 3.2 describes statistics on the reduced number of CCTs for the subject program versions that

have faulty compound conditional statements through the transformation (see Section 3.3). 3 Among the

total 179 versions of the subject programs, only 42 (=3+11+4+20+1+3) versions have faulty compound

conditional statements (see the second column of Table 3.2). For the 42 versions of the subject programs

that have faulty compound conditional statements, the number of CCTs decreases 28.73% on average

(see the last column of Table 3.2). For example, three versions among the 16 faulty versions of flex have

1.00 faulty compound conditional statement each on average (see the first to the third columns of the

seventh row of Table 3.2). In addition, each such compound faulty statement is transformed into 2.67

statements on average (see the fourth column of the seventh row of Table 3.2) and the number of CCTs

decreases from 330.67 for P to 58.67 for P ′ on average (i.e., 82% of CCTs are reduced) (see the fifth

to the seventh columns of the table). Therefore, we can conclude that the debuggability transformation

technique effectively reduces the number of CCTs for faulty compound conditional statements.

Note that bug studies in literature show that incorrect conditional statements were often the causes of

bugs. For example, the causes of 22% of the bugs in the operating system at IBM [20] and 25% of bugs in

the 12 open-source programs [24] resided in the incorrect conditional statements. It implies that FIESTA

can precisely localize faulty statements in real-world programs, due to the debuggability transformation

technique that effectively reduces the number of CCTs for the incorrect compound conditional statements.

3.6.2 Regarding RQ2: Accuracy of the Fault Weight Metric on Test Cases

Table 3.3 describes statistics on the test cases used to localize a fault in the subject programs. The

number of CCTs (i.e., 1111.5) is similar to TCTs (i.e., 1717.3) on average (see the third column and the

fifth column of the last row of the table). 4 Average fault weight of CCTs (i.e., 0.86) is higher than that

of TCTs (i.e., 0.66) (see the fourth column and the sixth column of the last row of the table).

3For a program version which does not contain a faulty compound conditional statement, the number of CCTs does not
change for P ′.

4Note that the numbers of CCTs may be different for different versions of a subject program P due to the different
faulty lines in the different versions of P .
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Table 3.3: Fault weights of test cases for the subject programs

Failing test Passing test cases Total test
Subject cases CCT TCT cases used

programs Avg. # of Avg. # of Avg. fault Avg. # of Avg. fault Avg. # of Avg. fault
test cases test cases weight test cases weight test cases weight

ptok 69.1 1960.1 0.75 2100.7 0.69 4130.0 0.72
ptok2 229.3 1187.9 0.83 2697.8 0.76 4115.0 0.80
replace 100.7 2218.8 0.79 3222.5 0.65 5542.0 0.72
schedule 142.8 1431.2 0.96 1069.0 0.64 2643.0 0.83
schedule2 29.0 2518.9 0.90 153.6 0.50 2701.4 0.87

tcas 40.6 852.6 0.90 714.8 0.62 1608.0 0.78
tot info 83.7 680.1 0.85 288.1 0.50 1052.0 0.77

flex 255.7 100.1 0.83 183.2 0.73 538.9 0.88
grep 241.5 36.0 0.87 486.8 0.67 764.3 0.78
gzip 47.6 37.4 0.96 128.0 0.81 213.0 0.91
sed 48.7 13.0 0.86 234.0 0.72 295.7 0.77

space 1954.2 2302.1 0.83 9328.6 0.67 13585.0 0.74

Average 270.3 1111.5 0.86 1717.3 0.66 3099.0 0.80

Figure 3.2: Ratios of CCTs and TCTs for different fault weights

Figure 3.2 shows that the ratios of CCTs and TCTs for the 179 versions of the 12 subject programs

according to their fault weight values. Figure 3.2 shows that passing test cases with high weights are more

likely CCTs. For example, a set of passing test cases whose weights are between 0.9 and 1 (mean value

0.95) consists of 86.4% CCTs and 13.6% TCTs (see the small circle at the top right part of Figure 3.2).

In other words, the probability of a passing test case with weight larger than 0.9 to be a CCT is 86.4%. In

contrast, the probability of a passing test case with a fault weight between 0.3 and 0.4 (mean value 0.35)

to be a CCT is only 7.1% (see the small circle at the bottom of Figure 3.2). Therefore, we can conclude

that the proposed fault weight metric is accurate enough to distinguish CCTs and TCTs approximately.

Consequently, FIESTA that utilizes the fault weight metric can improve the precision of fault localization

by reducing the negative effect of CCTs.
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Table 3.4: % of executed statements examined to localize a fault in the subject programs (i.e., precision)

Subject % of executed stmts examined
program Tarantula Ochiai Op2 FIESTA

print tokens 27.45 19.02 10.41 11.20
print tokens2 12.88 7.47 1.62 2.31

replace 9.19 6.98 5.44 7.74
schedule 5.95 3.51 17.17 10.45
schedule2 52.85 46.83 40.48 28.55

tcas 28.31 28.62 27.14 21.17
tot info 27.30 21.31 13.17 16.11

flex 29.55 12.51 13.54 12.84
grep 21.71 1.68 1.23 1.23
gzip 17.15 7.91 7.91 7.49
sed 4.94 1.32 1.29 1.29

space 5.83 2.80 4.90 3.70

Average 20.26 13.33 12.03 10.34

Figure 3.3: Accumulated % of subject versions whose faults are localized after examining a certain
amount of target statements

3.6.3 Regarding RQ3: Precision of FIESTA

Table 3.4 enumerates the precisions of fault localization on the subject programs by using Tarantula,

Ochiai, Op2, and FIESTA. We mark the most precise results in bold font. For the programs, FIESTA

localizes a fault after reviewing 10.34% of executed statements on average (the last column of the last

row of the table).

The comparison results with Tarantula, Ochiai, and Op2 are as follows. FIESTA is 49% (= 20.26−10.34
20.26 ),
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Table 3.5: Effect of the transformation technique on the precision of FIESTA

Subject % of executed stmts examined Relative
programs w/o Trans. w/ Trans. Imprv.(%)

p tokens 11.20 11.20 0.00
p tokens2 2.41 2.31 4.29
replace 10.88 7.74 28.82
schedule 10.32 10.45 -1.27
schedule2 43.01 28.55 33.62

tcas 27.29 21.17 22.44
tot info 15.76 16.11 -2.22

flex 13.75 12.84 6.67
grep 1.23 1.23 0.00
gzip 7.51 7.49 0.30
sed 1.29 1.29 0.00
space 3.70 3.70 0.00

Average 12.36 10.34 7.72

22% (= 13.33−10.34
13.33 ), and 14% (= 12.03−10.34

12.03 ) relatively more precise than Tarantula, Ochiai, and Op2, on

average, respectively (see the last row of Table 3.4). In addition, FIESTA localizes a fault more precisely

in all subject programs except schedule than Tarantula. With the exception of replace, schedule,

flex, and space, FIESTA localizes a fault more precisely than Ochiai. Compared to Op2, FIESTA

localizes a fault more precisely in the six programs (i.e., schedule, schedule2, tcas, flex, gzip, and

space) and localizes a fault with the same precision in grep and sed. Furthermore, in the five real-world

programs, FIESTA localizes a fault more or equally precisely compared to Op2.

Also, Figure 3.3 shows that FIESTA is more precise than Tarantula, Ochiai, and Op2 in a different

aspect. Figure 3.3 illustrates that faults of how many subject program versions (y axis) can be detected

by examining a given % of subject program executed statements (x axis). As showed in Figure 3.3,

FIESTA always detects a fault in more subject versions than Tarantula does after examining the same

number of target statements. FIESTA always detects a fault in more subject versions than Ochiai and

Op2 after examining the same number of target statements, except when % of executed statements

examined is between 8-12% and 4-20% for Ochiai and Op2 respectively. For example, by examining

2% of executed statements, FIESTA can find faults in 37% of all 179 subject program versions (i.e., 67

(=179×37%) versions) while Tarantula, Ochiai, and Op2 can find faults in 22% (40 versions), 31% (56

versions), and 33% (59 versions) of the subject program versions respectively.

3.6.4 Regarding RQ4: Improved Precision due to the Debuggability Trans-

formation

Table 3.5 shows how much the debuggability transformation improves the precision of FIESTA. The

table shows that the debuggability transformation relatively increases the precision FIESTA by 7.72%

on average. For example, for replace, FIESTA without the transformation finds a fault after reviewing

10.88% of the executed statements while FIESTA (with the transformation) does after reviewing 7.74%

of the executed statements, which is 28.82% (= 10.88−7.74
10.88 ) relatively more precise result (see the fourth

row of Table 3.5).
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Table 3.6: Effect of the transformation technique on the precision of FIESTA for versions containing
faulty compound conditional statements

Subject % of executed stmts examined Relative
program w/o Trans. w/ Trans. Imprv.(%)

p tokens2 1.88 1.41 25.00
replace 8.43 2.57 69.49
schedule2 65.41 31.08 52.48

tcas 37.94 24.05 36.62
tot info 14.41 10.17 29.41

flex 7.14 2.14 69.97

Average 22.53 11.90 47.16

The transformation improves the precision much for the subject versions that contain faulty com-

pound conditional statements. Table 3.6 shows the improved precision on such versions only (i.e., 42 out

of 179 versions (see the second column of Table 3.3)). For such versions of the subject programs, the

debuggability transformation significantly increases the precision of FIESTA by 47.16%. 5

Therefore, if we can generalize the experiment results, we can conclude that the debuggability

transformation technique can improve the precision of FIESTA.

3.7 Limitations

Although FIESTA detected a fault by examining 10.34% of the executed statements on average (see

Table 3.4), there are 8 versions out of the total 179 versions of the subject programs for which FIESTA

examined more than 50% of executed statements to localize a fault. We can classify these 8 versions into

the following four categories according to the reasons for the low precision:

• A large number of statements covered together (one version)

• Correct statements executed by only failing test cases and CCTs (one version)

• A fault in a large basic block (three versions)

• Subject program specific reasons (three versions)

Through the detailed analysis of these versions, we found that the first three categories are common

ones for most SBFL techniques, not specific for FIESTA. For example, the precision of FIESTA for

these versions is 62.99% on average and the precision of Tarantula, Ochiai, and Op2 for these versions is

74.40%, 67.26%, and 53.66% on average respectively.

3.7.1 Large Number of Test Cases that Cover the Same Statements

The precision of FIESTA for flex version 8 was 52.11%. A main reason for this imprecise result is

that more than half of executed statements are covered by the same set of test cases. Specifically, 396

statements (52.11% of executed statements) including the faulty statements are covered together by each

of the 553 test cases (out of total 567 test cases), so that those 396 statements have the same suspiciousness

5For the 137 versions that have no faulty compound conditional statements, the transformation relatively decreases the
precision of FIESTA by 0.76%.
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Figure 3.4: Exceptional case where a correct statement S1 is executed by only failing test cases and
CCTs

scores. Although the suspiciousness of the faulty statement is the highest, % of code to examine is more

than 50%, since the 396 statements that have the same suspiciousness should be examined altogether.

This problem can be solved by constructing test cases to execute different execution paths.

3.7.2 Correct Statements Executed by Only Failing Test Cases and CCTs

The precision of FIESTA for tot info version 10 was 51.75%. An important reason is that this

version has statements that are executed by only failing test cases and CCTs. Figure 3.4 shows the case

of tot info version 10. S1 is a correct statement that has a higher rank than a faulty statement S2

for the following reason. We found that all 8 failing test cases execute both S1 and S2, and there are

789 CCTs that execute S2 (121 CCTs execute both S1 and S2 and 668 CCTs execute S2 only) and

passing(S1) ⊂ passing(S2) (i.e., S1 is not executed by TCTs). In this situation, the 668 CCTs have

lower fault weights on average (i.e., 0.84) than the 121 CCTs (i.e., 0.92), because the 668 CCTs execute

a smaller number of statements that are executed by the failing test cases than the 121 CCTs execute.

Thus, S1 has a higher suspiciousness than S2.

Note that this case is exceptional and problematic for most SBFL techniques such as Tarantula,

Ochiai, and Op2. For example, the precision of Tarantula, Ochiai, and Op2 for this version are 60.53%,

58.77%, and 51.75%, respectively.

3.7.3 Fault in a Large Basic Block

tcas versions 3, 12, and 34 have a fault in an initial basic block of main() function. This basic block

consists of 26 statements, which are more than 40% of the executed statements of tcas (i.e., these 26

statements are always executed together). Although the suspiciousness of the fault is 1 (i.e., the highest

score), % of executed statements to examine is more than at least 40%, since the 26 statements in the

same basic block should be examined together.

3.8 Discussion

FIESTA improves the precision of spectrum-based fault localization by reducing the negative effects

of CCTs based on the debuggability transformation and the fault weight on test cases. Through the

experiments on the 12 programs including five real-world programs of large sizes, we have demonstrated

that FIESTA is 49%, 22%, and 14% relatively more precise than Tarantula, Ochiai, and Op2 on average,

respectively. In addition, compared with Tarantula, Ochiai, and Op2, FIESTA localizes a fault equally or

more precisely on 11, 8, and 8 subject programs out of the 12 subject programs on average, respectively.
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Although FIESTA outperforms the state-of-art SBFL techniques, the effectiveness of fault localiza-

tion techniques should be improved further to use fault localization techniques practically. For example,

a developer with FIESTA should examine 1000 LOC to find a faulty statement if 10000 LOC are executed

(FIESTA has ranked a faulty statement among the top 10.34% of executed statements on our subject

programs (Section 3.6.3)).

However, the further improvement of the effectiveness is challenging if we only utilize SBFL. As

SBFL techniques utilize program spectrum, they have the limitations: the negative effect of CCTs and

the block level granularity (Section 2.4). Thus, other kinds of approaches that do not strongly depend

on the program spectrum for fault localization should be developed. In the next chapter, we present a

novel fault localization, which is free from the negative effect of CCTs and the block level granularity,

thus improves the precision significantly.

3.9 Related Work

3.9.1 Techniques to Solve CCT Problems

Masri et al. [46] present an approach that removes CCTs by using the k-means clustering algo-

rithm [44, 64]. The technique selects a set of suspicious statements (calling them CCE) that are executed

by all failing test cases and a certain number of passing test cases (the number is given by a user as a

threshold). The technique then clusters test cases into two groups based on the similarity of the exe-

cuted statements of the test cases to the CCEs and the group that is more closely related to the CCEs

is removed.

A coverage refinement approach adjusts program coverage to strengthen correlation between faults

and failing test runs [67]. The work defines context patterns which are control and data flows before

and after the execution of the faulty statements. They define context patterns according to fault types

(e.g., missing assignment), and use the context patterns for adjusting coverage of test cases to reduce

negative effect of CCTs. However, this approach requires human knowledge on the types of faults to

define context patterns. In contrast, FIESTA does not require the types of program faults to be known,

but still filters out negative effect of CCTs through the debuggability transformation (see Section 3.3)

and the fault weights on test cases (see Section 3.2).

The motivation of the fault weight metric of FIESTA is similar to the related work described in

this section, in a sense that all of these techniques try to estimate distance between passing test runs

and failing test runs to localize a fault precisely. However, distance metrics utilized vary depending

on the techniques (fault weight for FIESTA, and CCE distance for Masri et al. [46], Ulam distance for

Renieres et al. [56], etc.). Furthermore, although all related work mentioned in this section may suffer

false positives or false negatives to recognize CCTs, the debuggability transformation of FIESTA reduces

certain number of CCTs without false positives nor false negatives, which can increase the precision of

SBFL technique.

Bandyopadhyay [13] assigns a weight to a passing test case based on the CC-proximity [43] to

improve the precision of SBFL. Although the idea of using weights on test cases is similar to FIESTA,

the rationale behind the FIESTA metric is different from the Banyopadhyay et al.’s approach. In their

approach, the weight on each passing test case is not to represent likelihood that a test case executes

faulty statements. The purpose of their weight metric is to measure the importance of each passing test

case. They argue that passing test cases that have similar coverage to the coverage of failing ones are
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important than other passing ones, since the differences between the statements covered by those passing

test cases and failing test cases may contain the faults [56]. In addition, as they replace |passing(s)|
term in Ochiai (see Section 2.4) with the average weight of passing test cases that execute statement s,

the variant Ochiai formula can suffer from the negative effect of CCTs. In the variant formula, if there

are many CCTs with high weights, the suspiciousness of faulty statements will decrease since the value

of denominator increases, thus decreasing the precision of fault localization 6. In contrast, in FIESTA

suspiciousness formula, if there are many CCTs with high weights, the suspiciousness of faulty statement

will increase, thus increasing the precision of fault localization.

3.9.2 Techniques to Utilize Predicates as a Target Program Spectrum

There have been several fault localization techniques that utilize predicates in the program code

and additional predicates on program execution information. For example, Liblit et al. [39] and Liu

et al. [42] instrument/transform a target program to record how program predicates (and additional

predicates such as if a return value of a function is equal to zero) are evaluated and rank suspicious

predicates. In other words, they utilize the numbers of failing tests and passing tests where a predicate

is true (or false) to localize a fault.

These techniques can also be considered to perform a debuggability transformation to extract useful

execution information for fault localization. The debuggability transformation of FIESTA, however,

improves the precision of fault localization actively by reducing the number of CCTs explicitly (see

Sections 3.3 and 3.6.1) while the above techniques improve the precision passively by observing more

execution information. In addition, those techniques handle a predicate consisting of multiple clauses as a

whole (although the effect of compound predicates were briefly discussed in Abreu et al. [3]). In contrast,

FIESTA targets each clause of a predicate individually through the debuggability transformation.

6To reduce the negative effect of CCTs, the variant Ochiai formula requires user given thresholds, which are not required
in FIESTA
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Chapter 4. MUSE: Fault Localization by Mutating

Faulty Programs

This chapter presents a novel fault localization technique, which utilizes mutation analysis [18].

First, this chapter describes intuitions of the proposed technique, and then describe detailed approaches.

Second, the chapter presents empirical set-up and empirical evaluation results of the proposed technique

on 5 real-world programs. Third, the chapter presents discussions about the effectiveness of the proposed

technique. Finally, the chapter presents related works, and compares the proposed technique with other

approaches.

4.1 Intuitions

Mutation testing [18] evaluates the adequacy of a test suite based on its ability to detect artificially

injected faults, i.e. syntactic mutations of the original program. The more of the injected faults are

killed (i.e. detected) by the test suite, the better the test suite is believed to be at detecting unknown,

actual faults.

For the fault localization, we focus on what happens when we mutate an already faulty program

and, particularly, the faulty program statement. Intuitively, since a faulty program can be repaired by

modifying faulty statements, mutating (i.e., modifying) faulty statements will make more failed test cases

pass than mutating correct statements. In contrast, mutating correct statements will make more passed

test cases fail than mutating faulty statements. This is because mutating correct statements introduces

new faulty statements in addition to the existing faulty statements in Program Under Test (PUT).

Consider a faulty program P whose execution with some test cases results in failures. We propose

to mutate P knowing that it already contains at least one fault. Let mf be a mutant of P that mutates

the faulty statement, and mc one that mutates a correct statement. MUSE depends on the following

two conjectures.

Conjecture 1: test cases that used to fail on P are more likely to pass on mf than on mc.

The first conjecture is based on the observation that mf can only be one of the following three cases:

1. Equivalent mutant (i.e. mutants that syntactically change the program but not semantically),

in which case the faulty statement remains faulty. Tests that failed on P should still fail on mf .

2. Non-equivalent and faulty: while the new fault may or may not be identical to the original

fault, we expect tests that have failed on P are still more likely to fail on mf than to pass.

3. Non-equivalent and not faulty: in which case the fault is fixed by the mutation (with respect

to the test suite concerned).

Note that mutating the faulty statement is more likely to cause the tests that failed on P to pass

on mf (case 3) than on mc because a faulty program is usually fixed by modifying (i.e., mutating) a

faulty statement, not a correct one. Therefore, the number of the failing test cases whose results change

to pass will be larger for mf than for mc.
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In contrast, mutating correct statements is not likely to make more test cases pass. Rather, we

expect an opposite effect, which is as follows:

Conjecture 2: test cases that used to pass on P are more likely to fail on mc than on mf .

Similarly to the case of mf , the second conjecture is based on an observation that mc can be either:

1. Equivalent mutant, in which case the statement remains correct. Tests that passed with P

should still pass with mc.

2. Non-equivalent mutant: by definition, a non-equivalent mutation on a correct statement intro-

duces a fault, which is the original premise of mutation testing.

This second conjecture is based on the observation that a program is more easily broken by modifying

(i.e., mutating) a correct statement than by modifying a faulty statement (case 2). Therefore, the number

of the passing test cases whose results change to fail will be greater for mc than mf .

To summarize, mutating a faulty statement is more likely to cause more tests to pass than the

average, whereas mutating a correct statement is more likely to cause more tests to fail than the average

(the average case considers both correct and faulty statements). These two conjectures provide the basis

for our MUtation-baSEd fault localization technique (MUSE).

4.2 MUSE: Mutation-based Fault Localization

4.2.1 Suspiciousness Metric of MUSE

Based on the two conjectures, we now define the suspiciousness metric for MUSE, µ. For a statement

s of P , let fP (s) be the set of tests that covered s and failled on P , and pP (s) the set of tests that covered

s and passed on P . With respect to a fixed set of mutation operators, let mut(s) = {m1, . . .mk} be

the set of all mutants of P that mutates s with observed changes in test results. After each mutation

mi ∈ mut(s), let fmi
and pmi

be the set of failing and passing tests on mi respectively (fP and pP

defined on P similarly). Given a weight α, the metric µ is defined as follows:

µ(s) =
1

|mut(s)|
∑

m∈mut(s)

(
|fP (s) ∩ pm|
|fP |

− α · |pP (s) ∩ fm|
|pP |

) (4.1)

The first term, |fP (s)∩pm|
|fP | , reflects the first conjecture: it is the proportion of tests that failed on

P but now pass on a mutant m that mutates s over tests that failed on P . Similarly, the second term,
|pP (s)∩fm|
|pP | , reflects the second conjecture, being the proportion of tests that passed on P but now fail on

a mutant m that mutates s over tests that passed on P . When averaged over mut(s), they become the

probability of test result change per mutant, from failing to passing and vice versa respectively.

Intuitively, the first term correlates to the probability of s being the faulty statement (it increases

the suspiciousness of s if mutating s causes failing tests to pass, i.e. increase the size of fP (s) ∩ pm),

whereas the second term correlates to the probability of s not being the faulty statement (it decreases

the suspiciousness of s if mutating s causes passing tests to fail, i.e. increase the size of pP (s) ∩ fm).

Since it is more likely that a passing test case on P will fail on m than a failing test case on P

will pass on m (i.e., breaking a program is easier than correcting the program), we expect the average

of the second term to be different from that of the first term. In order to balance the two terms, we

use the weight α to adjust the average values of the two terms to be the same. Thus, when we subtract
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Coverage of Test Cases (x, y) Jaccard Ochiai Op2

int max;
void setmax(int x, int y){

TC1

(3,1)
TC2

(5,-4)
TC3

(0,-4)
TC4

(0,7)
TC5

(-1,3)
|fP (s)| |pP (s)| Susp. Rank Susp. Rank Susp. Rank

s1: max = −x; //should be ‘max = x;’ • • • • • 2 3 0.40 5 0.63 5 1.25 5

s2: if(max < y){ • • • • • 2 3 0.40 5 0.63 5 1.25 5

s3: max = y; • • • • 2 2 0.50 2 0.71 2 1.50 2

s4: if(x∗y<0) • • • • 2 2 0.50 2 0.71 2 1.50 2

s5: print(‘‘diff.sign’’);} • • 1 1 0.33 6 0.50 6 0.75 6

s6: print(max);} • • • • • 2 3 0.40 5 0.63 5 1.25 5

Test Results Fail Fail Pass Pass Pass

Test Result Changes MUSE

Statements Mutants TC1

(3,1)
TC2

(5,-4)
TC3

(0,-4)
TC4

(0,7)
TC5

(-1,3)
|fP (s)
∩pm|

|pP (s)
∩fm|

Suspiciousness Rank

s1: max = −x;
m1: max −= x−1; P→F 0 1

0.46 1
m2: max = x; F→P F→P 2 0

s2: if(max < y){ m3: if(!(max<y)){ P→F P→F P→F 0 3
0.09 2

m4: if(max==y){ F→P P→F 1 1

s3: max = y;
m5: max = −y; P→F P→F 0 2

-0.16 5
m6: max = y+1; P→F P→F 0 2

s4: if(x∗y<0){ m7:if(!(x∗y<0)) P→F P→F 0 2
-0.12 4

m8:if(x/y<0) P→F 0 1

s5: print(‘‘diff.sign’’);} m9:return; P→F 0 1
-0.08 3

m10:; P→F 0 1

s6: print(max);} m11:printf(0);} P→F P→F 0 2
-0.20 6

m12:;} P→F P→F P→F 0 3

Figure 4.1: Example of how MUSE localizes a fault compared with different fault localization techniques

the weighted second term from the first term as in Equation 4.1, we get the baseline of value 0. For a

faulty statement, the first term is likely to be larger and the second term is likely to be smaller than for

a correct statement.

To adjust the average of both terms, the value of α should be calculated as f2p
|mut(P )|·|fP | ·

|mut(P )|·|pP |
p2f .

Variable f2p and p2f denote the number of test result changes from failure to pass and vice versa between

before and after all mutants of P , the set of which is mut(P ). Note that α can be calculated without a

priori knowledge of the faulty statement.

4.2.2 An Working Example

Figure 4.1 presents an example of how MUSE localizes a fault. The PUT is a function called setmax

(), which sets a global variable max (initialized to 0) with x if x > y, or with y otherwise. Statement s1

contains a fault, as it should be max=x. Let us assume that we have five test cases (tc1 to tc5): the

coverage of individual test cases are marked with black bullets (•). TC1 and TC2 fail because setmax()

updates max with the smaller number, y. The remaining test cases pass. Thus, |fP | = 2 and |pP | = 3.

First, MUSE generates mutants by mutating only one statement at a time. For the sake of simplicity,

here we assume that MUSE generates only two mutants per statement, resulting in a total of 12 mutants,

{m1, . . . ,m12} (listed under the “Mutants” column of Figure 4.1). Test cases change their results after

the mutation as noted in the middle column. For example, TC1, which used to fail, now passes on the

two mutants, m2 and m4.

Based on the changed results of the test cases, MUSE calculates α as f2p
|mut(P )|·|fP | ·

|mut(P )|·|pP |
p2f =

3
12·2 ·

12·3
19 = 0.24 over 12 mutants (|mut(P )| = 12). Since there are three changes from failure to pass,

f2p = 3 (TC1 and TC2 on m2 and TC1 on m4) while |fP | = 2. Similarly, p2f = 19 (see the changed

results of TC3, TC4, and TC5), while |pP | = 3.
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Figure 4.2: Framework of MUtation-baSEd fault localization technique (MUSE)

Using α = 0.24, MUSE calculates the suspiciousness of s1 as 1
2 ·{(0/2−0.24·1/3)+(2/2−0.24·0/3)} =

0.46, where |fP (s1)∩pm1 | = 0 and |pP (s1)∩fm1 | = 1 for m1 and |fP (s1)∩pm2 | = 2 and |pP (s1)∩fm2 | = 0

for m2. MUSE calculates the suspiciousness scores of the other five statements as 0.09, -0.16, -0.12, -0.08,

and -0.20. The suspiciousness of the s1 is the highest at 0.46, which places it at the top of the ranking. In

contrast, Jaccard, Ochiai, and Op2 choose s3 and s4 as the most suspicious statements, while assigning

the 5th rank to the actual faulty statement s1. The example shows that MUSE can precisely locate

certain faults that the state-of-the-art SBFL techniques cannot.

4.2.3 MUSE Framework

Figure 4.2 shows the framework of MUtation-baSEd fault localization technique (MUSE). There are

three major stages: selection of statements to mutate, testing of the mutants, and calculation of the

suspiciousness scores.

Step 1: MUSE receives a target program P and a test suite T . After executing T on P , MUSE selects

the target statements, i.e. the statements of P that are executed by at least one failing test case in T .

We focus on only these statements as those not covered by any failing tests, can be considered not faulty

with respect to T .

Step 2: MUSE generates mutant versions of P by mutating each of the statements selected at Step 1.

MUSE may generate multiple mutants from a single statement since one statement may contain multiple

mutation points [5]. Consequently MUSE tests all generated mutants with T and records the results.

Step 3: MUSE compares the test results of T on P with the test results of T on all mutants. This

produces the weight α, based on which MUSE calculates the suspiciousness of the target statements of

P 1.

4.3 Empirical Study Setup

We have designed the following three research questions to evaluate the effectiveness of MUSE in

terms of the Expense metric [56].

RQ1. Foundation: To what extent do failing test cases become passing ones on a mutant generated by

mutating a faulty statement of a target program, compared with a mutant generated by mutating a correct

1The minimal suspiciousness score is given to the other statements that are not executed by any of the failing test cases.

– 29 –



Table 4.1: Subject programs, their sizes in Lines Of Code (LOC), and the number of failing and passing
test cases

Subject program Faulty Ver. Fault Size |fP | |pP | Description

flex 2.4.7

v1 F HD 1 12,423 2 40 Lexical Analyzer
v7 F HD 7 12,423 1 41 Generator
v11 F AA 3 12,423 20 22

grep 2.2
v3 F DG 4 12,653 5 175 Pattern
v11 F KP 2 12,653 177 22 Matcher

gzip 1.1.2

v2 F KL 2 6,576 1 211 Compression
v5 F KP 1 6,576 17 196 Utility
v13 F KP 9 6,576 3 210

sed 1.18
v1 F AG 2 11,990 42 316 Stream
v3 F AG 17 11,990 1 357 Editor
v5 F AG 20 11,990 64 81

space

v19 N/A 9,129 8 145 ADL
v21 N/A 9,126 1 152 Interpreter
v28 N/A 9,126 46 107

statement? Also, to what extent do passing test cases become failing ones on a mutant by mutating a

correct statement, compared with a mutant by mutating a faulty statement?

RQ1 is to validate the conjectures in Section 4.1, on which MUSE depends. If these conjectures are

valid (i.e., more failing test cases become passing after mutating the faulty statement than a correct one,

and more passing test cases become failing after mutating a correct statement than the faulty one), we

can expect that MUSE will localize a fault precisely.

RQ2. Precision: How precise is MUSE, compared with Jaccard, Ochiai, and Op2 in terms of the % of

executed statements examined to localize a fault?

Precision in terms of the % of program statements to be examined is the traditional evaluation criteria

for fault localization techniques. RQ2 evaluates MUSE with the Expense metric against the three widely

studied SBFL techniques – Jaccard, Ochiai, and Op2. Op2 [47] is proven to perform well in Expense

metric; Ochiai [50] performs closely to Op2, while Jaccard [30] shows good performance when used with

automated progrma repair [55].

To answer the research questions, we performed a series of experiments by applying Jaccard, Ochiai,

Op2, and MUSE to the 14 faulty versions in five real-world C programs. The following subsections

describe the details of the experiments.

4.3.1 Subject Programs

For the experiments, we used five non-trivial real-world programs including flex version 2.4.7, grep

version 2.2, gzip version 1.1.2, sed version 1.18, and space, all of which are from the SIR benchmark

suite [23].

Table 4.1 describes the subject programs including their sizes in Lines of Code, the faulty versions

used, and the numbers of failing and passing test cases for each program version/fault pair. From the

base versions listed above, we randomly selected three faulty versions from each program except grep

where a failure is detected only in two faulty versions by the used test suite. grep v3 and space v19

have multiple faults and the other versions have one fault per each version. The fault ID of each version is

presented in Table 4.1. For flex, grep, and space, we used the coverage-adequate test suite provided by

– 30 –



Table 4.2: The number of target statements, used mutants, and dormant mutants (Those that do not
change any test results) per subject

Subject program Target Stmt. Used Mutants Dormant Mutants

flex v1 2,769 29,030 7,375
flex v7 2,773 28,575 7,411
flex v11 2,766 30,366 8,532
grep v3 1,982 18,127 10,201
grep v11 1,685 12,029 26,425
gzip v2 1,448 1,172 835
gzip v5 1,419 2,054 1,896
gzip v13 1,450 1,238 887
sed v1 2,228 13,215 4,813
sed v3 2,224 6,307 2,367
sed v5 2,151 23,552 0
space v19 3,360 14,489 4,919
space v21 3,358 9,708 2,790
space v28 2,843 13,946 7,443

Average 2318.3 14557.7 6135.3

the SIR benchmark. flex and grep has only one coverage adequate test suite. For space, we randomly

chose one coverage adequate test suite out of 1000 coverage-adequate test suites. For gzip and sed, we

use the universe test suite, because the SIR benchmark does not provide a coverage-adequate test suite

for the two programs. In addition, we excluded the test cases which caused a subject program version to

crash (e.g., segmentation fault), since gcov that we used to measure coverage information cannot record

coverage information for such test cases.

4.3.2 Experiment Setup

We use gcov [1] to measure the statement coverage achieved by a given test case. Based on the

coverage information, MUSE generates mutants of the PUT, each of which is obtained by mutating

one statement that is covered by at least one failing test case. We use the Proteum mutation tool for

the C language [45], which implements the mutation operators defined by Agrawal el al. [5]. For each

mutation point in a statement (e.g., a variable or an operator), MUSE generates at most one mutant

using Proteum (To generate at most one mutant for each mutation point, we use the option provided by

Proteum, which deterministically generates the mutants).

We implemented MUSE, as well as Jaccard, Ochiai, and Op2, in 4,200 lines of C++ code. All

experiments were performed on 10 machines equipped with Intel i5 3.6Ghz CPUs and 8GB of memory

running Debian Linux 6.05.

4.4 Result of The Experiments

4.4.1 Result of the Mutation

Table 4.2 shows the number of mutants generated per subject program version. On average, MUSE

generates 20693.0 (=14557.7+6135.3) mutants per version and uses 14557.7 mutants, while discarding

6135.3 dormant mutants, i.e. those for which none of the test cases change their results, on average. 2

2sed v5 has no dormant mutant because the fault of sed v5 is non-deterministic one (i.e., it dynamically allocates an
smaller amount of memory than necessary through malloc()).

– 31 –



Table 4.3: The numbers of the test cases whose results change on the mutants

# of failing tests that # of passing tests that
Subject pass after mutating: fail after mutating:
programs Correct Faulty (B)/(A) Correct Faulty (C)/(D) α

Stmts. Stmts. Stmts. Stmts.
(A) (B) (C) (D)

flex v1 0.0002 1.2727 6155.6 15.7270 8.8182 1.8 0.0009
flex v7 0.0002 0.6667 2721.1 16.3644 0.0000 N/A 0.0007
flex v11 0.0026 14.2857 5421.3 5.1064 3.5714 1.4 0.0013
grep v3 0.1299 0.4792 3.7 30.7825 8.0625 3.8 0.1490
grep v11 8.9740 85.8181 9.6 0.1942 0.0000 N/A 5.7939
gzip v2 0.0095 0.5625 59.1 113.3410 1.0000 113.3 0.0322
gzip v5 0.0611 15.1111 247.2 64.7306 0.1111 582.6 0.0227
gzip v13 0.0000 2.7000 N/A 109.2140 0.0000 N/A 0.0141
sed v1 0.0095 0.0000 0.0 189.3610 6.1111 31.0 0.0004
sed v3 0.0040 0.2500 63.0 238.7950 91.5000 2.6 0.0062
sed v5 0.3556 31.8333 89.5 12.6217 12.0690 1.0 0.0365
space v19 0.0105 4.6667 444.5 45.7808 13.1667 3.5 0.0057
space v21 0.0000 0.3333 N/A 65.6796 1.0000 65.7 0.0002
space v28 0.0114 23.0000 2016.5 31.2257 26.5000 1.2 0.0016

Average 0.6835 12.9271 1435.9 67.0660 12.2793 73.4 0.4332

This translates into an average of 6.3 mutants per considered target statement. The mutation and the

subsequent testing of all mutants took 10 hours using the 10 machines.

4.4.2 Regarding RQ1: Validity of the Conjectures

Table 4.3 shows the numbers of the test cases whose results change on each mutant of the subject

programs. The second and the third columns show the average numbers of failing test cases on P

which subsequently pass after mutating a correct statement (i.e. mc), or a faulty statement (i.e. mf ),

respectively. The fifth and the sixth columns show the average numbers of the passing test cases on P

which subsequently fail on mc and mf respectively. For example, on average, out of the 17 failing test

case of gzip v5, 0.0611 and 15.1111 failing test cases on gzip v5 pass on mc and mf respectively.

Table 4.3 provides supporting evidence for the conjectures of MUSE discussed in Section 4.1. The

number of the failing test cases on P that pass on mf is 1435.9 times greater than the number on mc

on average, which supports the first conjecture. Similarly, the number of the passing test cases on P

that fail on mc is 73.4 times greater than the number on mf on average, which supports the second

conjecture. Based on these results, we claim that both conjectures are true.

One interesting observation is that the first conjecture seems to be more effective than the second

conjecture in its capability to distinguish a faulty statement from correct statements: the average ratio

of the number of the failing test cases that change to the passing one on mf over the number on mc (i.e.

1435.9) is 19 times greater than the average ratio of the passing test cases that change their results on

mc over the number on mf (i.e. 73.4).
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Table 4.4: Precision of Jaccard, Ochiai, Op2, and MUtation-baSEd fault localization technique (MUSE)

Subject % of executed stmts examined Rank of a faulty stmt
Program Jaccard Ochiai Op2 MUSE Jaccard Ochiai Op2 MUSE

flex v1 49.48 45.04 32.01 0.04 1,371 1,248 887 1
flex v7 3.60 3.60 3.60 0.07 100 100 100 2
flex v11 19.76 19.54 13.51 0.04 547 541 374 1
grep v3 1.06 1.01 0.71 1.87 21 20 14 37
grep v11 3.44 3.44 3.44 1.60 58 58 58 27
gzip v2 2.14 2.14 2.14 0.07 31 31 31 1
gzip v5 1.83 1.83 1.83 0.07 26 26 26 1
gzip v13 1.03 1.03 1.03 0.07 15 15 15 1
sed v1 0.54 0.54 0.54 0.90 12 12 12 20
sed v3 2.56 2.56 2.56 0.13 57 57 57 3
sed v5 37.84 37.84 37.15 0.28 814 814 799 6
space v19 0.03 0.03 0.03 0.06 1 1 1 2
space v21 0.45 0.45 0.45 0.03 15 15 15 1
space v28 11.57 10.66 6.89 0.04 329 303 196 1

Average 9.67 9.27 7.56 0.38 242.64 231.50 184.64 7.43

4.4.3 Regarding RQ2: Precision of MUSE in terms of the % of executed

statements examined to localize a fault

Table 4.4 presents the precision evaluation of Jaccard, Ochiai, Op2, and MUSE with the proportion

of executed statements required to be examined before localizing the fault (i.e. the Expense metric) 3.

The most precise results are marked in bold. Following the ranking produced by MUSE, one can localize a

fault after examining 0.38% of the target statements on average. The average precision of MUSE is 25.68

(=9.67/0.38), 24.61 (=9.27/0.38), and 20.09 (=7.56/0.38) times higher than that of Jaccard, Ochiai, and

Op2, respectively. In addition, MUSE produces the most precise results for 11 out of the 14 studied

faulty versions. This provides quantitative answer to RQ2: MUSE can outperform the state-of-the-art

SBFL techniques over the Expense metric.

In response to Parnin and Orso [54], we also report the absolute rankings produced by MUSE, i.e.

the actual number of statements that need to be inspected before encountering the faulty statement.

MUSE ranks the faulty statements of the seven faulty versions (flex v1,v11, gzip v2,v5,v13, and

space v21,v28) at the top and ranks the faulty statement of another three versions (flex v7, sed v3,

and space v19) among the top three. On average, MUSE ranks the faulty statement among the top

7.43 places, which is 24.86 (=184.64/7.43) times more precise than the best performing SBFL technique,

Op2. We believe MUSE is precise enough that its results can be used by a human developer in practice.

4.5 Discussion

Based on the two conjectures we introduced, MUSE not only increases the suspiciousness of po-

tentially faulty statements but also decreases the suspiciousness of potentially correct statements. The

results of empirical evaluation show that MUSE can not only significantly outperform the state-of-the-

art SBFL techniques, but also provide a practical fault localization solution. MUSE is more than 25

times precise compared to Op2, which is the best known SBFL technique; MUSE also ranks the faulty

3The last column of Table 4.3 shows the α values computed for each subject.
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statement at the top for seven out of the 14 faulty versions, and among the top three for another three

versions. We discuss the superior precision of MUSE in detail in the following sections.

4.5.1 Why does it work well?

As showed in Section 4.4.3, MUSE demonstrates superior precision when compared to the state-of-

the-art SBFL techniques. In addition to the finer granularity of statement level, the improvement is also

partly because MUSE directly evaluates where (partial) fix can (and cannot) potentially exist instead of

predicting the suspiciousness through program spectrum. In a few cases, MUSE actually finds a fix, in

a sense that it performs a program mutation that will make all test cases pass (this, in turn, increases

the first term in the metric, raising the rank of the location of the mutation). However, in other cases,

MUSE finds a partial fix, i.e. a mutation that will make only some of previously failing test cases pass.

While not as strong as the former case, a partial fix nontheless captures the chain of control and data

dependencies that are relevent to the failure and provides a guidance towards the location of the fault.

4.5.2 MUSE and Test Suite Balance

One advantage MUSE has over SBFL is that MUSE is relatively freer from the proportion of passing

and failing test cases in a test suite. In contrast, SBFL techniques benefit from having a balanced test

suite, and have been augmented by automated test data generation work [25, 32, 59].

MUSE does not require the test suite to have many passing test cases. To illustrate the point, we

purposefully calculated MUSE metric without any test cases that passed before mutation (this effectively

means that we only use the first term of the metric). On average, MUSE ranked the faulty statement

within the top 5.09%, which outperforms SBFL techniques that considered all passing and failing test

cases: MUSE is still 1.90 (=9.67/5.09), 1.82 (=9.27/5.09) and 1.49(=7.56/5.09) times more precise than

Jaccard, Ochiai, and Op2 respectively.

More interestingly, MUSE does not require the test suite to have many failing test cases. Considering

that previous work [32, 59] focused on producing more failing test cases to improve the precision, this is

an important observation. We purposefully calculated MUSE metric without any test cases that failed

before mutation: although this translates into an unlikely use case scenario, it allows us to measure the

differentiating power of the second conjecture in isolation. When only the second term of the MUSE

metric is calculated (with α = 1), MUSE could still rank the faulty statement among the top 14.62%

on average, and among the top 2% for seven out of 14 faulty versions we studied. Intuitively, SBFL

techniques require many failing executions to identify where a fault is, whereas MUSE is relatively free

from this constraint because it also identifies where a fault is not.

This advantage is due to the fact that MUSE utilizes two separate conjectures, each of which is

based on the number of failing and passing test cases respectively. Thus, even if a test suite has almost

no failing or passing test cases, MUSE can localize a fault precisely.

4.6 Related Work

The idea of generating diverse program behaviours to localize a fault more effectively has been

utilized by several studies. For example, Cleve and Zeller [21] search for program states that cause the

execution to fail by replacing states of a neighbouring passing execution with those of a failing one. If a

passing execution with the replaced states no longer passes, relevant statements of the states are reported
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as likely faulty statements. Zhang et al. [80], on the other hand, change branch predicate outcomes of

a failing execution at runtime to find suspicious branch predicates. A branch predicate is considered

suspicious if the changed branch outcome makes a failing execution pass. Similarly, Jeffrey et al. [31]

change the value of a variable in a failing execution with the values with other executions; Chandra et

al. [19] simulate possible value changes of a variable in a failing execution through symbolic execution.

Those techniques are similar to MUSE in a sense that generating diverse program behaviours to localize

faults. However, they either partially depend on the conjectures of MUSE (some [19, 31, 80] in particular

depend on the first conjecture of MUSE) or rely on a different conjecture [21]. Moreover, MUSE does

not require any other infrastructure than a mutation tool, because it directly changes program source

code to utilize the conjectures (Section 4.3.2).

Since mutation operators vary significantly in their nature, mutation-based approaches such as

MUSE may not yield itself to theoretical analysis as naturally as the spectrum-based ones, for which

hierarchy and equivalence relations have been showed with proofs [74]. In the empirical evaluation,

however, MUSE outperformed Op2 SBFL metric [47], which is the known best SBFL technique.

Yoo showed that risk evaluation formulas for SBFL can be automatically evolved using Genetic

Programming (GP) [76]. Some of the evolved formulas were proven to be equivalent to the known best

metric, Op2 [75]. While current MUSE metrics are manually designed following human intuition, they

can be evolved by GP in a similar fashion.

Papadakis and Le-Traon have used mutation analysis for fault localization [53]. However, instead of

measuring the impact of mutation on partial correctness as in MUSE (i.e. the conjecture 1), Papadakis

and Le-Traon depend on the similarity between mutants in an attempt to detect unknown faults: vari-

ations of existing risk evaluation formulas were used to identify suspicious mutants. Zhang et al. [79],

on the other hand, use mutation analysis to identify a fault-inducing commit from a series of developer

commits to a source code repository: their intuition is that a mutation at the same location as the

faulty commit is likely to result in similar behaviours and results in test cases. Although MUSE shares

a similar intuition, we do not rely on tests to exhibit similar behaviour: rather, both of MUSE metrics

measures what is the differences introduced by the mutation. Given the disruptive nature of the program

mutation, we believe MUSE is more robust.
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Chapter 5. LIL: An Evaluation Metric for Fault

Localization Techniques

This chapter presents a new evaluation metric for fault localization techniques, which can measure

the aptitude of a localization technique for automated program repair tools as well as human debuggers.

The chapter first presents the motivation of the proposed metric by describing the limitation of the

exiting evaluation metric that has been used widely for fault localization techniques. The chapter then

presents the detailed approach of the proposed metric. The chapter next demonstrates usefulness of the

proposed metric through the evaluation of fault localization techniques using the proposed metric, and

a case study with an automated program repair tool.

5.1 Motivation

The output of fault localization techniques can be consumed by either human developers or au-

tomated program repair techniques. In SBFL literature, the human consumption model assumes the

output format of ranking of statements according to their suspiciousness, which is to be linearly followed

by humans until identifying the actual faulty statement. Expense metric [56] measures the portion of

program statements that need to be inspected until the localization of the fault. It has been widely

adopted as an evaluation metric for fault localization techniques [35, 47, 76] as well as a theoretical

framework that showed hierarchies between SBFL techniques [74, 75]. However, the Expense metric has

been criticised for being unrealistic to be used by a human developer directly [54].

In an attempt to evaluate the precision of SBFL techniques, Qi et al. [55] compared SBFL techniques

by measuring the Number of Candidate Patches (NCP) generated by GenProg [68] automated program

repair tool, with the given localization information.1 Automated program repair techniques tend to

bypass the ranking and directly use the suspiciousness scores of each statement as the probability of

mutating the statement (expecting that mutating a highly suspicious statement is more likely to result

in a potential fix) [26, 68]. An interesting empirical observation by Qi et al. [55] is that Jaccard [30]

produced lower NCP than Op2 [47], despite having been proven to always produce a lower ranking for

the faulty statement than Op2 [74]. This is due to the actual distribution of the suspiciousness score:

while Op2 produced higher ranking for the faulty statement than Jaccard, it assigned almost equally

high suspiciousness scores to some correct statements. On the other hand, Jaccard assigned much lower

suspiciousness scores to correct statements, despite ranking the faulty statement slightly lower than

Op2. This illustrates that evaluation and theoretical analysis based on the linear ranking model is not

applicable to automated program repair techniques.

1Essentially this measures the number of fitness evaluation for the Genetic Programming part of GenProg; hence the
lower the NCP score is, the more efficient GenProg becomes, and in turn the more effective the given localization technique
is.
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5.2 Locality Information Loss (LIL) Metric

We propose a new evaluation metric, called LIL, that does not suffer from this discrepancy between

the two consumption models (human and automated program repair tool). LIL metric can measure the

aptitude of fault localization techniques for automated program repair techniques as it measures the

effectiveness of localization in terms of information loss rather than the behavioural cost of inspecting a

ranking of statements. LIL metric essentially captures the essence of the entropy-based formulation of

fault localization [77] in the form of an evaluation metric.

Let S be the set of n statements of the Program Under Test, {s1, . . . , sn}, sf , (1 ≤ f ≤ n) being

the single faulty statement. Without losing generality, we assume that output of any fault localization

technique τ can be normalized to [0, 1]. Now suppose that there exists an ideal fault localization

technique, L, that can always pinpoint sf as follows:

L(si) =

 1 (si = sf )

ε (0 < ε� 1, si ∈ S, si 6= sf )
(5.1)

Note that we can convert outputs of fault localization techniques that do not use suspiciousness

scores in a similar way: if a technique τ simply reports a set C of m statements as candidate faulty

statements, we can set τ(si) = 1
m when si ∈ C and τ(si) = ε when si ∈ S − C.

We now cast the fault localization problem in a probabilistic framework as in the previous work [77].

Since the suspiciousness score of a statement is supposed to correlate to the likelihood of the statement

containing the fault, we convert the suspiciousness score given by a fault localization technique, τ : S →
[0, 1], into the probability of any member of S containing the fault, Pτ (s), as follows:

Pτ (si) =
τ(si)∑n
i=1 τ(si)

, (1 ≤ i ≤ n) (5.2)

This converts suspiciousness scores given by any τ (including L) into a probability distribution, Pτ .

The metric we propose is the Kullback-Leibler divergence [37] of Pτ from PL, denoted as DKL(PL||Pτ ):

it measures the information loss that happens when using Pτ instead of PL and is calculated as follows:

DKL(PL||Pτ ) =
∑
i

ln
PL(si)

Pτ (si)
PL(si) (5.3)

We call this as Locality Information Loss (LIL). Kullbacl-Leibler divergence between two given

probability distribution P and Q requires the following: both P and Q should sum to 1, and Q(si) = 0

implies P (si) = 0. We satisfy the former by the normalization in Equation 5.2 and the latter by

always substituting 0 with ε after normalizing τ2 (because we cannot guarantee the implication in our

application). When these properties are satisfied, DKL(PL||Pτ ) becomes 0 when PL and Pτ are identical.

As with the Expense metric, the lower the LIL value is the more accurate the fault localization technique

is. Based on Information Theory, LIL has the following strengths compared to the Expense metric:

• Expressiveness: unlike the Expense metric that only concerns the actual faulty statement, LIL

also reflects how well the suspiciousness of non-faulty statements have been supressed by a fault

localization technique. That is, LIL can be used to explain the results of Qi et al. [55] quantitatively.

2ε should be smaller than the smallest normalized non-zero suspiciousness score by τ .
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Table 5.1: Expense and LIL of Jaccard, Ochiai, Op2, and MUtation-baSEd fault localization technique
(MUSE)

Subject % of executed stmts examined Locality Information Loss (LIL)
Program Jaccard Ochiai Op2 MUSE Jaccard Ochiai Op2 MUSE

flex v1 49.48 45.04 32.01 0.04 8.25 7.79 7.64 1.28
flex v7 3.60 3.60 3.60 0.07 5.65 6.43 7.49 1.22
flex v11 19.76 19.54 13.51 0.04 7.27 7.38 7.29 1.59
grep v3 1.06 1.01 0.71 1.87 5.15 5.57 6.19 5.92
grep v11 3.44 3.44 3.44 1.60 5.25 6.06 5.30 7.19
gzip v2 2.14 2.14 2.14 0.07 5.10 4.45 6.23 1.66
gzip v5 1.83 1.83 1.83 0.07 4.22 4.51 5.12 1.88
gzip v13 1.03 1.03 1.03 0.07 2.99 3.48 5.68 0.70
sed v1 0.54 0.54 0.54 0.90 4.08 4.83 5.63 6.72
sed v3 2.56 2.56 2.56 0.13 6.66 6.37 6.96 2.66
sed v5 37.84 37.84 37.15 0.28 7.10 7.19 7.11 4.80
space v19 0.03 0.03 0.03 0.06 5.12 5.76 6.52 2.15
space v21 0.45 0.45 0.45 0.03 4.80 5.79 7.45 0.40
space v28 11.57 10.66 6.89 0.04 7.14 7.21 7.05 1.96

Average 9.67 9.27 7.56 0.38 5.63 5.91 6.55 2.87

• Flexibility: unlike the Expense metric that only concerns a single faulty statement, LIL can handle

multiple locations of faults. For m faults (or for a fault that consists of m different locations), the

distribution PL will simply show not one but m spikes, each with 1
m as height.

• Applicability: Expense metric is tied to fault localization techniques that produce rankings,

whereas LIL can be applied to any fault localization technique. If a technique assigns suspiciousness

scores to statements, it can be converted into Pτ ; if a technique simply presents one or more

statements as candidate fault location, Pτ can be formulated to have corresponding peaks.

5.3 Evaluation using LIL metric

We evaluate the effectiveness of SBFL techniques, Jaccard, Ochiai, Op2, and the proposed technique

MUSE in terms of LIL on the same subject programs used in Section 4.3. We report the results of

traditional metric (i.e., expense metric) as well as the results of LIL metric, in order to compare the

usefulness of both two metrics. We then perform a case study to show that the LIL metric is better at

predicting the performance of a fault localization technique for automated program repair tools than the

traditional ranking model. Through the evaluation of fault localization techniques and the case study,

we will demonstrate not only the advantage of LIL metric, but also the superior precision of MUSE

(Chapter 4) in terms of LIL metric.

5.3.1 Evaluation of Fault Localization Techniques

The LIL column of Table 5.1 shows the precision of Jaccard, Ochiai, Op2, and MUSE in terms of the

LIL metric, computed with ε = 10−16. The best results (i.e. the lowest values) are marked in bold. The

LIL metric value of MUSE is 2.87 on average, which is 1.96 (=5.63/2.87), 2.06 (=5.91/2.87), and 2.28

(=6.55/2.87) times more precise than those of Jaccard, Ochiai, and Op2. In addition, the LIL metric
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Figure 5.1: Normalized suspiciousness scores from space v21 in descending order
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Figure 5.2: Comparison of distributions of normalized suspiciousness score across target statements of
space v21

values of MUSE are the smallest ones on the eleven out of the 14 subject program versions. MUSE

outperforms the state-of-the-art SBFL techniques over the newly proposed LIL metric.

One interesting observation is that MUSE produces Expense and LIL values that correlates relatively

well. The versions whose absolute ranking of faulty statement is equal to or less than 3, and whose LIL

metric is less than 2.66, are the following 10 versions: flex v1,v7,v11, gzip v2,v5,v13, sed v3, and

space v19,v21,v28. For another three versions (grep v3,v11 and sed v1), both the Expense and LIL

metric values perform worse than the other techniques, although not significantly.

In contrast, Expense and LIL metric often do not agree with each other for the SBFL techniques.

Consider space v21: Jaccard, Ochiai, and Op2 produces the same Expense value of 0.45%. However,
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Table 5.2: Expense, LIL, and NCP scores on look utx 4.3

Fault Localization
Technique

% of executed stmts
examined

Locality Information
Loss (LIL)

Average of NCP over
100 runs

MUSE 11.25 3.52 25.3
Op2 42.50 3.77 31.0

Ochiai 42.50 3.83 32.2
Jaccard 42.50 3.89 35.5

their LIL values are all different (Jaccard: 4.80 < Ochiai: 5.79 < Op2: 7.45). A similar pattern is

observed in other subject versions (flex v7, grep v11, gzip v2,v5,v13, sed v1,v3, space v19,v21).

In case of grep v3, the Expense metric and the LIL metric directly conflict with each other. With

respect to the Expense values, Op2 produces the best result, while Jaccard produces the worst result

(Jaccard: 1.06 > Ochiai: 1.01 > Op2: 0.71). However, with respect to the LIL values, Jaccard produces

the best result, while Op2 the worst (Jaccard: 5.15 < Ochiai: 5.57 < Op2: 6.19).

Figure 5.1 illustrates this phenomenon in more detail. It plots the normalized suspiciousness scores

for each target statement of space v21 in a descending order 3. The circles indicate the location of

the faulty statement. While all techniques assign, to the faulty statement, suspiciousness values that

rank near the top, it is the suspiciousness of correct statements that differentiates the techniques. When

normalized into [0, 1], MUSE assigns values less than 0.00024 to all correct statements. In contrast,

the SBFL techniques assign values much higher than 0. For example, 4.8% of the target statements

are assigned suspiciousness higher than 0.9 by Op2, while 37.2% are assigned values higher than 0.5.

Figure 5.2 presents the distribution of suspiciousness in space v21 for individual techniques to make it

easier to observe the differences. It intuitively illustrates the strength of the LIL metric over the Expense

metric.

This independently confirms the results obtained by Qi et al. [55]. Our new evaluation metric, LIL,

confirms the same observation as Qi et al. by assigning Jaccard a lower LIL value of 4.80 than that of

Op2, 7.45 (see Section 5.1 and 5.2 for more details).

5.3.2 A Case Study: LIL metric and Automated Bug Repair

We performed a small case study with the GenProg-FL tool by Qi et al., which is a modification

of the original GenProg tool. We applied Jaccard, Ochiai, Op2, and MUSE, to GenProg-FL in order to

fix look utx 4.3, which is one of the subject programs recently used by Le Goues et al. [27]. GenProg-

FL [55] measures the NCP (Number of Candidate Patches generated before a valid patch is found in

the repair process) of each fault localization technique where the suspiciousness score of a statement s is

used as the probability to mutate s.

Table 5.2 shows the Expense (i.e., % of executed stmts examined), the LIL and the NCP scores

on look utx 4.3 by the four fault localization techniques we have evaluated. For the case study, we

generated 30 failing and 150 passing test cases randomly and used the same experiment parameters as

in GenProg-FL [55] (we obtained the average NCP score from 100 runs). Table 5.2 demonstrates that

the LIL metric is useful to evaluate the effectiveness of a fault localization technique for the automatic

repair of look utx 4.3 by GenProg-FL: the LIL scores (MUSE : 3.52 < Op2 : 3.77 < Ochiai : 3.83 <

3The normalized suspiciousness of a statement s in a fault localization technique τ , norm suspτ (s) is computed as
(suspτ (s)−min(τ))/(max(τ)−min(τ)) where min(τ) and max(τ) is the minimum and maximum observed suspiciousness
for all statements [55].
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Jaccard : 3.89) and the NCP scores (MUSE : 25.3 < Op2 : 31.0 < Ochiai : 32.2 < Jaccard : 35.5) are in

agreement.

A small LIL score of a localization technique indicates that the technique can be used to perform

more efficient automated program repair. In contrast, the Expense metric values did not provide any

information for the three SBFL techniques. We plan to perform further empirical study to support the

claim.
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Chapter 6. Conclusion and Future Work

Fault localization is the most expensive phase in the whole debugging activity. To reduce the cost

for fault localization, thus, we have proposed techniques that assist a developer to effectively locate

faults in target program. The proposed techniques automatically rank statements in target program

according to their suspiciousness, which is computed by utilizing program transformation, mutation

analysis, and dynamic information gathered from test executions. The ranked statements can be reported

to a developer to reduce her manual efforts to locate faults. For example, a developer can find a faulty

statement in the subject programs we used, by only examining 7.4 statements on average while following

the order of statements in the ranking produced by the proposed technique MUSE. Therefore, we believe

that the proposed techniques can significantly reduce the cost for software fault localization.

6.1 Summary

In this dissertation, we first investigated the fundamentals of previous fault localization techniques

and their limitations. In these investigations, we described that the promising fault localization ap-

proach, called SBFL, suffers from the negative effect Coincidentally Correct Test Cases (CCTs) (i.e.,

test cases that pass despite executing faults), and the coarse granularity of block level of SBFL. Second,

we developed a new fault localization technique, called FIESTA, which mitigates the negative effect of

CCTs to improve the precision of SBFL. It mitigates the CCT problem by using the newly proposed

techniques - fault weight metric and debuggability transformation. We evaluated FIESTA on 12 pro-

grams including 5 real-world programs (consist of 173 to 12,653 LOC), and showed that FIESTA is

relatively more precise than SBFL techniques upto 49%, on average. Third, we developed another new

fault localization technique, called MUSE, which utilizes mutation analysis to overcome the limitations

of SBFL. MUSE localizes faults very precisely based on the two conjectures, which essentially capture

the different characteristics of two groups of mutants - mutants on faulty statements and mutants on

correct statements. Empirical evaluation of MUSE on 5 real-world programs (consist of 6,576 to 12,653

LOC) showed that MUSE ranks a fault among the top 7.4 places on average, which is about 25 times

more precise than the state-of-art SBFL technique, Op2. Fourth, we proposed a new evaluation metric,

called Locality Information Loss (LIL), for fault localization techniques. LIL actually measures the loss

of information between the true locality of fault and the predicted locality from a localization technique,

using information theory. Evaluation of fault localization techniques using LIL metric and a case study

showed that LIL metric can be better at predicting the performance of a fault localization technique for

automated program repair tool.

6.2 Future Work

Our future work will focus on developing techniques that improve the effectiveness and the efficiency

of the proposed technique MUSE, which showed more promising results than FIESTA. In addition, we

plan to apply MUSE on different domains.
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6.2.1 Improving the Effectiveness

Although MUSE localizes faults very precisely on our subject programs, the technique should be

developed further to localize particular faulty statements the current MUSE cannot localize. Since MUSE

localizes faults by observing differences between test results of target program and those of mutants, faulty

statements where no mutants are generated cannot be located by MUSE. One possible way to solve the

problem is to define additional mutation operators to mutate statements that cannot be mutated by

current mutation operators. Another possible way is to combine MUSE with other fault localization

techniques. For example, MUSE can be easily combined with SBFL techniques that utilize program

spectra. If no mutants are generated for certain statements, the suspiciousness of the statements can be

computed by utilizing SBFL formulas [30, 36, 47, 50]. These approaches will enable MUSE to localize

faulty statements where no mutants are generated.

6.2.2 Improving the Efficiency

The proposed technique MUSE utilizes mutation analysis, which can consume much time due to the

large number of mutants and test cases used. Thus, appropriate optimization techniques that reduce the

time complexity should be developed. We plan to develop optimization techniques in the following four

ways.

• Mutant sampling which can reduce the number of mutants used for fault localization. Similar to

the mutation analysis for software testing [52], we can sample certain number of mutants per each

statement or per each mutation operator, to reduce the number of mutants used. If MUSE with

a certain ratio of whole mutants shows comparable performance to MUSE with whole mutants,

mutant sampling can enable to improve the efficiency without losing the effectiveness.

• Defining sufficient mutation operators to localize faults effectively. The current implementation of

MUSE uses all mutation operators defined in [45], thus it can generate a lot of mutants. However,

some of the mutation operators used in MUSE may not be necessary for effective fault localization.

Similar to the intuitions of the studies that try to decrease the cost of mutation analysis for software

testing [14, 51, 62], we can define sufficient mutation operators for effective fault localization of

MUSE through the robust empirical study.

• Generating or selecting certain test cases that are sufficient to localize faults effectively. As the

required time for mutation analysis increases proportional to the the number of test cases used,

reducing the number of test cases can improve the efficiency. Thus, techniques that generate or

select certain test cases for effective fault localization of MUSE could be developed.

• Combining MUSE with program slicing techniques to reduce the number of mutants. We can

reduce the number of mutants used for MUSE by reducing the number of target statements that

are mutated through program slicing. For instance, if certain statements are not contained in a

dynamic slice, which is computed by a dynamic slicing technique [81] according to the given slicing

criterion (i.e., a value of variable that manifests failures), the certain statements will not contain

faults. Thus, the number of generated mutants will be reduced since those statements not need to

be mutated.
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6.2.3 Applications on Different Domains

As MUSE requires source code of target program, mutation operators, and a test suite, MUSE can

be extended to localize faults in other types of applications such as web applications and concurrent

applications. If target source code, appropriate mutation operators mutating target statements, and a

test suite are provided, we believe that MUSE can precisely localize faults in any types of applications

as it does in sequential applications written in C programming language.
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Summary

Effective Software Fault Localization using Dynamic Program
Behaviors

프로그램 오류의 원인을 찾는 것은 소프트웨어 디버깅 과정 중 가장 많은 비용을 요구 하는 과정 중 하나

로 알려져 있다. 결함 위치추정이라고 불리는 이 과정은 개발자가 직접 테스트 케이스의 실행 정보 등을

이용하여 결함의 위치를 추정해야 하기 때문에 가장 많은 시간과 노력을 요구한다. 따라서, 본 논문에서는

결함 위치추정에 소모되는 비용을 줄이기 위한 두 가지 자동 결함 위치추정 기법을 제안하였다. 제안된 결함

위치추정 기법들은 대상 프로그램의 각 구문들이 결함일 가능성을 계산하여 그 가능성에 따라 각 구문들을

순위화 하는데, 이 때 각 구문이 결함일 가능성은 대상 프로그램, 변형된 대상 프로그램, 변환된 대상 프로그

램의 동적 정보를 활용하여 계산된다. 개발자는 순위화된 구문을 순서대로 검사함으로써 결함 위치추정에

드는 비용을 줄일 수 있다.

본 논문에서는, 먼저 이전 결함 위치추정 기법들의 근본적 접근방법과 한계에 대해서 조사하였다. 이

조사에서, 전도유망한 연구 방향 중 하나인 스펙트럼에 기반한 결함 위치추정 기법(Spectrum-based Fault

Localization (SBFL))의 한계에 대해서 설명했다. 그 한계는, 우연히 성공한 테스트 케이스 (Coincidentally

Correct Test Cases (CCTs))로 인한 부정적 효과와 SBFL 기법의 정제되지 않은 블락 단위 수준이었다.

두 번째로, 본 논문에서는 CCT의 부정적 효과를 감소시키는 결함 위치추정 기법인 FIESTA를 제안하였다.

FIESTA 기법은 각 테스트 케이스가 결함을 실행했을 확률을 나타내는 ‘Fault weight’척도와 CCT의 수를

줄이는 ‘Debuggability transformation’기법을 이용하여 결함과 실패 실행간의 상관관계를 향상 시킨다. 결

함과 실패 실행간의 향상된 상관관계는, FIESTA가 기존의 SBFL 기법에 비해 더 정확하게 결함의 위치를

추정하도록 만든다. 12개의 C 프로그램(173 ∼ 12,653 LOC 로 구성)에 대한 실험을 통해 FIESTA가 대표적

SBFL 기법인 Tarantula에 비해 상대적으로 49% 더 정확하게 결함의 위치를 추정하는 것을 확인할 수 있었

다. 세 번째로, 우리는 변형 분석을 활용하여 결함의 위치를 추정하는 새로운 종류의 결함 위치추정 기법인

MUSE를 제시했다. MUSE 기법은 본 논문에서 제시한 두 개의 가정에 기반하여 결함의 위치를 추정한다.

두 개의 가정은 기본적으로 결함 구문을 변형시킨 변형 프로그램들과 결함 구문이 아닌 구문을 변형시킨

변형 프로그램들을 실행한 테스트 케이스의 결과가 서로 다른 특성을 보임을 이용한다. 5개의 실제 C 프로

그램들(6,576 ∼ 12,653 LOC 로 구성)에 대한 MUSE의 성능평가 결과로부터 MUSE는 결함 구문의 순위를

평균적으로 상위 7.4등 이내로 매기는것을 확인할 수 있었다. 이 실험결과는 지금까지 알려진 가장 정확한

SBFL 기법인 Op2 보다 평균적으로 약 25배 더 정확한 결과다. 네 번째로, 결함 위치추정 기법의 성능을

평가하는 새로운 평가 척도인 LIL 척도를 제안하였다. LIL 은 정보 이론에 기반하여 이상적인 위치추정

결과와 어떤 결함 위치추정 기법에 의해 주어진 위치추정 결과 사이의 정보 손실을 측정한다. LIL을 이용한

다수의 결함 위치추정 기법에 대한 평가와 자동 프로그램 수리 도구를 이용한 사례 연구를 통해, LIL이 결함

위치추정 기법의 자동 프로그램 수리 도구에 대한 성능을 측정하는데 유용할 수 있다는 것을 확인하였다.
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