
박사 학위논문

Ph. D. Dissertation

동시성커버리지메트릭을이용한멀티쓰레드

프로그램의효과적이고효율적인테스트생성

Effective and Efficient Test Generation for Multithreaded Programs

Using Concurrency Coverage Metrics

홍 신 (洪 申 Hong, Shin)

전산학부

School of Computing

KAIST

2015

동시성커버리지메트릭을이용한멀티쓰레드

프로그램의효과적이고효율적인테스트생성

Effective and Efficient Test Generation for Multithreaded Programs

Using Concurrency Coverage Metrics

Effective and Efficient Test Generation for

Multithreaded Programs

Using Concurrency Coverage Metrics
Advisor : Professor Kim, Moonzoo

by

Hong, Shin

School of Computing

KAIST

A thesis submitted to the faculty of KAIST in partial fulfillment

of the requirements for the degree of Doctor of Philosophy in the School

of Computing . The study was conducted in accordance with Code of

Research Ethics1.

2015. 5. 26.

Approved by

Professor Kim, Moonzoo

[Advisor]

1Declaration of Ethical Conduct in Research: I, as a graduate student of KAIST, hereby declare that

I have not committed any acts that may damage the credibility of my research. These include, but are

not limited to: falsification, thesis written by someone else, distortion of research findings or plagiarism.

I affirm that my thesis contains honest conclusions based on my own careful research under the guidance

of my thesis advisor.

동시성커버리지메트릭을이용한멀티쓰레드

프로그램의효과적이고효율적인테스트생성

홍 신

위 논문은 한국과학기술원 박사학위논문으로

학위논문심사위원회에서 심사 통과하였음.

2015년 5월 26일

심사위원장 김문주 (인)

심사위원 류석영 (인)

심사위원 한태숙 (인)

심사위원 허재혁 (인)

심사위원 Chao Wang (인)

DCS

20115325

홍 신. Hong, Shin. Effective and Efficient Test Generation for Multithreaded Programs

Using Concurrency Coverage Metrics. 동시성 커버리지 메트릭을 이용한 멀티쓰레드

프로그램의 효과적이고 효율적인 테스트 생성. School of Computing . 2015. 123p.

Advisor Prof. Kim, Moonzoo. Text in English.

ABSTRACT

To effectively utilize advanced multi-core processors, many software systems today are built as mul-

tithreaded programs. One challenge in developing a multithreaded program is to ensure its correctness.

Unlike single-threaded programs, the behavior of a multithreaded program depends not only on program

input values, but also on thread schedules. To ensure correctness, a multithreaded program must be

checked for all thread schedule cases whose numbers are notoriously large due to non-determinism in

thread scheduling. Many techniques have been proposed to generate various thread schedules to test

multithreaded programs and find concurrency errors. However, none of these techniques can provide

effective and efficient fault detection results at the same time scales with respect to the size of a target

multithreaded program.

In this dissertation, I present a new technique that utilizes concurrency coverage metrics to generate

effective and efficient test executions of multithreaded programs. Concurrency coverage metrics aid in

supporting multithreaded program testing by providing reasonable assessments of the testing quality.

Unlike structural coverage metrics such as the branch and statement coverage metrics, it has not been

well established that concurrency coverage metrics are actually useful for multithreaded program testing,

and there exist only a few applications of concurrency coverage metrics for multithreaded program

test generation. The first part of this dissertation, through empirical study, attempts to answer the

question of whether or not the existing concurrency coverage metrics are actually useful for testing

multithreaded programs. Although none of the existing metrics seems to be perfect, the study results

show that the existing concurrency coverage metrics are effective at estimating fault detection ability

and at providing test generation targets in multithreaded program testing. The second part of this

dissertation presents a new concurrency coverage based thread scheduling algorithm that generates test

executions to achieve high concurrency coverage fast. In particular, the proposed technique utilizes

a new coverage metric called the combinatorial concurrency coverage metric, which supplements the

existing concurrency coverage metrics by providing more fine-grained test targets. The experiment

results show that the proposed technique generates more effective and more efficient test executions than

do the existing multithreaded program test generation techniques. For the last part of this dissertation,

I present a concurrency coverage-based regression testing technique for multithreaded programs. The

proposed technique utilizes a concurrency coverage metric to identify the changed multithreaded program

behavior by a code modification; it then generates the targeted test executions for the identified behaviors

to effectively detect regression faults. The experiment results imply that the proposed regression testing

technique is more effective and efficient than are the existing techniques at detecting regression faults of

multithreaded programs.

i

Contents

Abstract . i

Contents . ii

List of Tables . vi

List of Figures . vii

Chapter 1. Introduction 1

1.1 Challenges in testing multithreaded programs 1

1.2 Limitations of existing testing techniques 2

1.3 Approach: generating tests to achieve high concurrency coverage 4

1.4 Structure of the dissertation . 6

Chapter 2. Background and Related Work 7

2.1 Concurrency bugs in multithreaded programs 7

2.1.1 Multithreaded programs and executions 7

2.1.2 Concurrency errors and concurrency bugs 8

2.2 Concurrency coverage metrics . 9

2.2.1 Overview . 9

2.2.2 Concurrency coverage metric definition 10

2.2.3 Assessing effectiveness of concurrency coverage metrics 11

2.3 Survey on race bugs and the detection techniques 12

2.3.1 Overview of survey . 13

2.3.2 Execution model of multithreaded programs 16

2.3.3 Data race bug detection techniques 20

2.3.4 Block race bug detection techniques 24

2.3.5 Multi-data race bug detection techniques 26

2.3.6 Multi-data block race bug detection techniques 29

2.3.7 Relations between race bug classes 31

2.3.8 Other work on race bug survey 37

2.4 Test generation techniques for multithreaded programs 37

2.4.1 Random noise injection-based testing techniques 38

2.4.2 Bug-directed testing techniques 38

2.4.3 Systematic testing techniques 39

2.4.4 Coverage-based test generation 40

ii

Chapter 3. Empirical Evaluation of Concurrency Coverage Metrics 41

3.1 Introduction . 41

3.2 Study design . 42

3.2.1 Variables and measures . 43

3.2.2 Experiment setup . 45

3.2.3 Threats to validity . 48

3.3 Results . 49

3.3.1 Visualization . 49

3.3.2 Correlation between variables 51

3.3.3 Models of effectiveness . 54

3.3.4 Effectiveness of maximum coverage 57

3.3.5 Effect of combining concurrency coverage metrics 61

3.3.6 Effectiveness of difficult-to-cover test requirements . . . 64

3.4 Discussions . 67

3.4.1 Practical implications for testers 69

3.4.2 Limitations of existing concurrency metrics 70

3.4.3 Relation between metric effectiveness and fault type . . 70

3.4.4 Implications for concurrent test generation research . . 72

3.5 Summary of this chapter . 73

Chapter 4. Test Generation Using Concurrency Coverage Metrics 74

4.1 Introduction . 74

4.2 Combinatorial concurrency coverage 74

4.2.1 Definition . 74

4.2.2 Advantages of the combinatorial concurrency coverage . 75

4.3 CUVE framework . 77

4.3.1 Overview . 77

4.3.2 Estimator of Feasible Test Requirement 77

4.3.3 Test generator . 80

4.3.4 Singular coverage based scheduler 82

4.3.5 Combinatorial coverage based scheduler 83

4.4 Experiment design . 84

4.4.1 Research questions . 84

4.4.2 Test generation techniques 84

4.4.3 Study objects . 85

4.4.4 Testing runs and measurement 87

4.4.5 Tool implementation . 88

4.4.6 Threat to validity . 88

– iii –

4.5 Experiment results . 88

4.5.1 RQ1. coverage achievement effectiveness 88

4.5.2 RQ2. coverage achievement efficiency 89

4.5.3 RQ3. fault detection effectiveness 90

4.5.4 RQ4. fault detection efficiency 91

4.5.5 RQ5. impact of CTP on CUVE performance 92

4.6 Discussion . 93

4.6.1 High effectiveness of CUVE for various faults 93

4.6.2 Benefits of the combinatorial concurrency coverage . . . 93

4.6.3 Comparison with Maple 94

4.7 Summary of this chapter . 94

Chapter 5. Regression Testing Using Concurrency Coverage Metric 95

5.1 Introduction . 95

5.2 Existing approaches . 96

5.2.1 Static and dynamic analyses for finding regression bugs 96

5.2.2 Thread schedule generation for regression testing 96

5.2.3 Coverage-guided testing of multithreaded programs . . . 97

5.3 Recurve: a coverage based regression testing technique 98

5.3.1 Overview . 98

5.3.2 Combinatorial Concurrency (CC) coverage metric . . . 98

5.3.3 Selection of test targets 100

5.3.4 Coverage guided test generation 102

5.4 Experiment design . 106

5.4.1 Research questions . 106

5.4.2 Target programs . 106

5.4.3 Test generation techniques 108

5.4.4 Test runs . 109

5.4.5 Measurement . 109

5.5 Experiment results . 110

5.5.1 RQ1. fault detection effectiveness 110

5.5.2 RQ2. fault detection efficiency 111

5.5.3 Impact of test target prioritization 112

5.6 Summary of this chapter . 113

Chapter 6. Conclusion 114

References 115

– iv –

Appendices 124

Chapter A. Formal Definitions of Concurrency Coverage Metrics 125

Chapter B. Complete Experiment Result Data of Empirical Evaluation on

Concurrency Coverage Metrics 127

Summary (in Korean) 130

– v –

List of Tables

2.1 Overview of eight concurrency coverage metrics . 10

2.2 Data race bug detection techniques . 23

2.3 Block race bug detection techniques . 27

2.4 Multi-data race bug detection techniques . 29

2.5 Multi-data block race detection techniques . 32

3.1 Study objects used for the empirical study on concurrency coverage metrics 44

3.2 Concurrency coverage metrics used in the study . 44

3.3 Mutation operators . 46

3.4 Correlations over coverage metrics . 54

3.5 Minimum and maximum relative increase in adjusted R2 when using two dependent vari-

ables. 57

3.6 Maximum achievable coverage test suite statistics . 59

3.7 Correlations over combined metrics. 62

3.8 Maximum achievable coverage test suite statistics, combined metrics 64

3.9 Relative improvement in fault detection using combined metrics 65

3.10 Fault detection effectiveness for difficult and easy to cover test requirements. 68

3.11 Relation between fault types and concurrency coverage metrics 71

4.1 Study objects used for the CUVE experiments . 86

4.2 Mutation operators used for the study . 87

4.3 Coverage achievements of the testing techniques . 88

4.4 Time to reach certain level of coverage achievement (in seconds) 89

4.5 Fault detection abilities of the testing techniques . 90

4.6 Time to reach certain level of fault detection ability (in seconds) 91

4.7 Comparison between CUVE-c and CUVE on coverage achievement and fault detection

ability . 92

5.1 Test requirements covered in the example executions . 100

5.2 Study objects used for the Recurve experiments . 106

5.3 Fault detection effectiveness . 110

5.4 Time for achieving high levels of fault detection effectiveness (in second) 111

vi

List of Figures

1.1 Comparison of the conventional test generation techniques with the coverage based test

generation technique . 3

1.2 Overview of this dissertation . 4

2.1 Relationship among the four classes of race bug detection techniques 13

2.2 A data race bug . 15

2.3 A block race bug . 16

2.4 A multi-data race bug . 16

2.5 A multi-data block race bug . 17

2.6 Example of a target program code and an observed execution 17

2.7 Examples of constructed execution models . 18

2.8 Data race bug example . 22

2.9 Block race bug example . 26

2.10 Multi-data race bug example . 28

2.11 Multi-data block race bug example . 30

2.12 Relation between data race bugs and block race bugs . 32

2.13 Example of a data race bug not detected by block race bug detectors 33

2.14 Example of a data race bug detected by block race bug detectors 34

2.15 Relation between data race bugs and multi-data race bugs 34

2.16 Relationship between block race bugs and multi-data block race bugs 35

2.17 Relationship between multi-data race bugs and multi-data block race bugs 35

2.18 Example of a multi-data race bug detected by multi-data block race bug detectors 36

3.1 Size versus coverage, four single fault objects . 49

3.2 Size versus coverage, mutation objects . 50

3.3 Coverage versus fault detection effectiveness, four single fault objects 52

3.4 Coverage versus fault detection effectiveness, mutation objects 53

3.5 Size versus fault detection effectiveness, all objects . 53

3.6 Correlations across mutants, mutation objects. 55

3.7 Adjusted R2 for every best fit model, all combinations of objects & coverage metrics. . . . 56

3.8 Minimum and maximum relative increase in adjusted R2 when using two dependent vari-

ables, mutation objects. 58

3.9 Maximum fault detection, greedy versus random, across mutants. 60

3.10 Relative improvement in coverage, greedy versus random, across mutants 61

3.11 Correlations across mutants, combined metrics. 63

3.12 Maximum fault detection, greedy versus random, across mutants, combined metrics. . . . 66

3.13 Relative difficulty of covering individual coverage requirements for four single fault objects

and all mutation objects. 67

3.14 Two execution scenarios of Clean . 72

vii

4.1 Example of atomicity violation error . 76

4.2 Example of general race error . 76

4.3 Coverage achievement over time per testing technique . 89

4.4 Fault detection abilities over time per testing technique 91

4.5 Fault detection abilities of the testing techniques per mutant 93

4.6 Singular coverage achievement over time . 94

5.1 Overall process of Recurve . 98

5.2 Examples of multithreaded programs and executions . 99

5.3 Selected test requirements among CP , EP and EP ′ . 102

5.4 Fault detection over time per technique, for the three mutation objects 111

B.1 Size versus coverage, all single fault objects . 127

B.2 Coverage versus fault detection effectiveness, all single fault objects 128

B.3 Percentage of test executions covering test requirements, sorted, all single fault and mu-

tation objects . 129

– viii –

Chapter 1. Introduction

1.1 Challenges in testing multithreaded programs

To effectively utilize advanced multi-core CPUs, many software systems today are developed as

concurrent programs. Unlike sequential programs that run one stream of operations in their executions,

concurrent programs execute multiple streams of operations at the same time. Concurrent programs

can inherently deploy multiple processor cores simultaneously to execute multiple streams of operations

concurrently, easily achieving high utilization of multi-core processors. Writing concurrent code has be-

come an important programming skill for software developers. A survey of Microsoft software developers

presented in 2008 says that 50% of Microsoft product-line developers write concurrent programs to lever-

age multi-core processors and enhance the computational speed and/or responsiveness of their software

products [38].

A multithreaded program is one of the most popular types of concurrent programs in practice. A

multithreaded program consists of a set of sequential code fragments called threads that can run con-

currently and interact with each other through shared data structure in their execution. According to

an empirical study presented in 2012, 87% of the large-scale open-source C# programs in the study

contain multithreaded code [73]. A characteristic of multithreaded programs is non-deterministic behav-

ior, which is the result of non-deterministic thread scheduling. The standard multithreaded program

semantics allow an arbitrary execution order of operations in concurrently running threads. To fully

utilize multi-core processors under different runtime circumstances, most thread schedulers of threading

libraries or operating systems exploit this non-determinism for dynamic thread scheduling.

Despite the widespread of multithreaded program development, writing multithreaded programs

correctly remains a challenging task for developers because there is no practical verification method to

ensure the correctness of the non-deterministic behaviors of multithreaded programs. A multithreaded

program may show different results for the same program input (i.e., non-deterministic behavior) because

its execution depends not only on program input, but also on non-deterministic execution orders of

operations across threads. As a consequence, a multithreaded program can have a concurrency error,

which is caused by incorrect interactions among concurrent threads. Different from bugs in sequential

programs, a concurrency error does not always appear for a specific input value, but only under specific

thread schedules. To detect concurrency errors and ensure correctness, a multithreaded program must be

checked with all thread schedule cases. However, even for small multithreaded programs, the number of

distinguishable thread schedules is enormously large and there is no practical method that can effectively

and efficiently verify the correctness of multithreaded programs. For this reason, it is well-known that

concurrency errors/bugs are difficult to detect, reproduce, and fix.

The problem of concurrency errors is an actual threat in concurrent program development. Accord-

ing to interviews of skilled software developers [86], the interviewee commonly say that “the hardest bugs

to track down are in concurrent code”; most of them agree that “ubiquitous multi-core CPUs are going

to force some serious changes in the way software is written”, and thus finding concurrency errors and

ensuring the correctness of multithreaded programs are some of the most challenging tasks that they

face.

– 1 –

To date, testing is the most popular method in practice to find bugs and ensure the correctness of

software. To observe various program behaviors and check if any behavior is unintended (i.e., error),

testing executes a target program while controlling factors that influence the target program behaviors.

Compared with other kinds of verification techniques such as model checking or dynamic/static analyses,

testing is more precise as testing checks for actual program behaviors rather than using abstract models.

Testing can detect any form of errors, whereas static/dynamic analyses are limited to finding certain types

of errors. In addition, with real-world software, testing is more effective than model checking techniques

as the state-of-art model checkers are still not scalable for verification of the industrial software. For

these reasons, testing is the de facto standard method to ensure the software correctness in practice;

many techniques have been developed to generate useful program inputs for the testing of sequential

programs.

Unfortunately, conventional testing methods and techniques are not effective for multithreaded pro-

grams because multithreaded program behaviors are also influenced by thread schedules at the execution

time. A common practice is stress testing which repeats executions of the target programs while provid-

ing unusual workload to the thread scheduler in hopes of observing uncommon thread scheduling cases.

However, repeating test executions for a certain test environment redundantly generates similar thread

schedules and does not effectively increase the likelihood of detecting concurrency errors.

Effective testing of multithreaded programs must generate various thread schedules that induce

all behaviors of a target program per program input value; however, generating such effective testing

is challenging for the following reasons. First, even for a small-size program, there exists too large

a number of distinct thread scheduling cases for this process to be feasible for an ordinary testing

budget (i.e., the thread schedule explosion problem). The number of distinguishable thread scheduling

choices is exponentially related to the number of operations in an execution (i.e., execution length).

For a multithreaded program with T number of threads each of which has N number of operations, the

number of possible thread scheduling decisions is (T×N)!
(N !)T

. Another problem of testing all thread schedules

is that many distinguishable thread schedules may generate redundant program behavior; thus, efforts

to test these thread schedules are useless. Let us consider a multithreaded program with T threads

that have N threads each. Suppose that none of these threads commonly accesses to the same shared

variable. Although there exist an exponential number of possible thread schedules, all these thread

schedules generate the same execution result. A study on concurrency errors shows that the probability

of detecting concurrency errors is often very low (> 0.001) without a systematic generation of thread

execution order [26]. Therefore, testing of a multithreaded program should be done in such a way as

to carefully select thread schedules as test cases so as to obtain effective and efficient concurrency error

detection: the selected thread schedules should generate comprehensive program behaviors so as not to

miss any errors in the program; however, to save testing cost, each selected thread schedule generates a

distinguishable program behavior.

1.2 Limitations of existing testing techniques

For effective and efficient concurrency error detections, conventional test generation techniques for

multithreaded programs aim to generate useful thread schedules using certain criteria. In high level,

there are three kinds of the conventional test generation techniques: random noise injection-based test

generation, bug-directed test generation, and systematic test generation. Figure 1.1 describes the limi-

tations of these three kinds of test generation techniques. These conventional techniques commonly have

– 2 –

(a) Random noise
injection-based
test generation

(c) Systematic
test generation

(b) Bug-directed
test generation

Thread schedule space Thread schedules covered by a test

Error-inducing thread schedules Thread schedules related to a predicted fault

(d) Coverage-based
test generation

Figure 1.1: Comparison of the conventional test generation techniques with the coverage based test

generation technique

limitations for generating highly effective and highly efficient tests at the same time. Discussion of the

three kinds of testing techniques is as follows (more discussion is found in Chapter 2):

• Random noise injection-based test generation (Section 2.4.1)

Random noise injection-based test generation techniques insert random timing delay into a target

program, and then execute the modified target programs many times [27, 96]. The intuition of

these techniques is that the inserted timing delay diversifies the execution order of the threads

to increase the chance of generating error executions. Although these techniques are effective to

diversify thread schedule generations, the limitation of these techniques is that there is no guarantee

that random noise injection-based test generation techniques can keep generating unseen program

behavior, as shown in Figure 1.1(a). For this reason, these techniques are not effective at detecting

concurrency errors with few error-inducing thread schedules [75].

• Bug-driven test generation (Section 2.4.2)

Bug-driven test generation techniques use static/dynamic analyses to predict possible concurrency

errors before testing, and then these techniques generate the thread schedules targeted to induce

each predicted concurrency error [48, 75, 88]. As can be seen in Figure 1.1(b), these techniques

generate thread schedules toward predefined targets. Although these techniques are effective and

efficient at detecting certain types of concurrency faults, bug-directed techniques cannot be used

to detect arbitrary concurrency errors that do not match any predefined pattern.

• Systematic test generation (Section 2.4.3)

Systematic test generation techniques (or model checking techniques) rigorously explore all thread

schedule decisions for a given input value [105, 109]. As these techniques can explore all possible

thread schedules, they can detect all existing concurrency faults in a multithreaded program if a

sufficient amount of testing time is given. However, can be seen in Figure 1.1(a), with a limited

testing time, these techniques may generate a small subset of thread schedules that do not induce

concurrency errors because there exist tremendous number of thread schedules. To compensate

this limitation, several techniques utilize heuristic search strategies to resolve the low efficiency

problem; however, currently existing techniques do not show sufficient performance to effectively

check large size multithreaded programs.

– 3 –

Study and investigation on concurrency coverage metrics

Develop concurrency coverage based test generation techniques

Conventional
Concurrency

Coverage Metrics
(Sec. 2.2)

Evaluating Adequacy
of Conventional

Concurrency
Coverage Metrics

(Ch. 3)

CUVE:
Test Generation Using
Concurrency Coverage

(Section 4.5)

Combinatorial
Concurrency Coverage

(Section 4.2)

Evaluation Extension

Recurve:
Regression Testing
Using Concurrency

Coverage Metric
(Chapter 5)

Extension

Figure 1.2: Overview of this dissertation

Beside testing techniques, another approach for effectively detecting concurrency faults is to pre-

dict suspicious instructions/operations that may induce concurrency errors via static/dynamic analyses.

These techniques can find concurrency errors without generating actual error executions. However, these

techniques commonly have limited fault detection ability because their analyses are able to find out only

specific types of concurrency faults. Furthermore, due to the limited precision of the analyses, predicted

concurrency faults may not result in any actual error (i.e., false positives).

1.3 Approach: generating tests to achieve high concurrency

coverage

In this dissertation, I present a new approach of multithreaded program test generation utilizing

concurrency coverage metrics (see Figure 1.2). To assess the quality of the multithreaded program

testing (i.e., comprehensiveness and necessity), various concurrency coverage metrics are proposed. A

concurrency coverage metric derives a set of test requirements from a target program code. Similar to

branch/statement coverage metrics for the testing of sequential programs, concurrency coverage metrics

generate a test requirement to check whether or not a certain thread interaction involved with specific

code entities is executed at least one execution in a test. A set of test requirements for a concurrency

coverage metric can be used to measure the expected effectiveness and also to identify unexamined

program behaviors of a test.

I expect that a test generated toward achieving high concurrency coverage will be effective and

efficient at detecting concurrency errors because the concurrency coverage metrics provide useful targets

corresponding to various thread interaction cases of a target program. Figure 1.1(d) illustrates the

coverage based test generation technique. As concurrency coverage metrics provide a moderate number

of comprehensive test generation targets, I expect that the coverage based test generation technique can

effectively and quickly detect arbitrary concurrency errors.

– 4 –

There is currently active research on test case generation techniques that aim to achieve high

branch/statement coverage because a strong positive correlation of coverage achievement and fault de-

tection ability has been empirically shown. However, there has been little research on how concurrency

coverage metrics can be utilized for effective test case generation for multithreaded programs. To develop

effective testing methods using concurrency coverage metrics, I initially explored the following questions:

• Do concurrency coverage metrics properly measure the effectiveness of tests of a multithreaded

program?

Unlike branch/statement coverage metrics for sequential program testing, there was no rigorous

study that examined the impact of concurrency coverage metrics on the effectiveness of multi-

threaded program testing. To answer this question, I conducted empirical studies to check whether

or not a conventional concurrency coverage metric would be a good predictor of testing effective-

ness, and whether or not the set of test requirements by the existing concurrency coverage metric

would be proper test generation targets.

• How can we generate test cases that achieve high concurrency coverage fast?

I developed a new thread scheduling technique that dynamically guides a running execution to

achieve high concurrency coverage. Although there exist techniques that has mechanisms to in-

crease the possibility of achieving more coverage, they have limitations for achieving high effective-

ness and high efficiency at the same time.

To generate effective tests, I investigate the conventional concurrency coverage metrics and propose

new test generation techniques that utilize concurrency coverage metrics for better test generations. More

specifically, the results of my study and the techniques I develop can be summarized in the following

three points:

• I empirically evaluate whether or not coverage increase in a coverage metric properly estimates

the increase in testing effectiveness and whether or not a testing designed to achieve maximum

coverage shows higher testing effectiveness than another testing of the same size. To quantify these

things, I used mutation testing for concurrent programs. I found that there are certain existing

concurrency coverage metrics that provide good estimations of the effectiveness of tests, whereas

the other coverage metrics do not properly estimate the test effectiveness. In addition, I found

empirical evidence that no existing concurrency coverage metric is perfect.

• I develop a coverage-based thread schedule generation technique to achieve high concurrency cover-

age fast. The technique is based on two key ideas. First, the technique utilizes a dynamic analysis

technique that precisely estimate likely feasible test requirements. Second, the technique utilizes

a new concurrency coverage metric called the combinatorial concurrency coverage metric which

generate more useful sets of test requirements than the existing concurrency coverage metrics. I

implement the testing technique with the proposed thread schedule generation algorithm for mul-

tithreaded Java programs. The experiment shows that my technique generates test cases that

achieve higher coverage faster than other random testing techniques do.

• I define a new concurrency coverage metric combinatorial concurrency coverage metrics and extend

the thread schedule generation technique that achieves high coverage fast for a target multithreaded

program. The combinatorial concurrency coverage metric can capture more diverse thread sched-

ules than the conventional concurrency coverage metrics. Through a series of experiments with

– 5 –

multiple faulty programs including real-world bugs, I demonstrate that my technique is more ef-

fective and efficient in concurrency fault detections than other techniques.

• I extend the coverage-based thread scheduling algorithm to generate regression testing of multi-

threaded programs. The proposed technique utilizes a concurrency coverage metric to detect and

target the changed behavior of a target program for a program modification. The experiment result

shows that the proposed regression technique is more effective and efficient at detecting regression

faults than are the existing techniques.

1.4 Structure of the dissertation

The remainder of the dissertation is structured as follows. First, in Chapter 2, I present the back-

ground and related work for multithreaded program testing and analysis techniques . Especially, I

present a classification of race bugs and detection techniques for these bugs because a lot of previ-

ous research efforts on multithreaded program analyses have been concentrated on detecting race bugs.

Chapter 3 presents the empirical evaluation of the presented concurrency coverage metrics on testing

effectiveness. I report experiment results for measures of correlations of the coverage achievement and

the fault detection ability in test suites and also the fault detection ability of the test suites generated

for maximum coverage achievement with minimum size. In Chapter 4, I present a new test generation

technique for multithreaded programs based on concurrency coverage metrics. For effective concurrency

fault detection, I propose a new concurrency coverage metric called combinatorial concurrency coverage;

I also propose thread scheduling algorithms that utilize the conventional and the new coverage metrics

to achieving high fault detection fast. The experiment results indicate that the proposed test genera-

tion technique shows better performance in fault detection and also in coverage achievement than do

other multithreaded program testing techniques. Finally, in Chapter 5, I present an extension of the

coverage-based test generation technique for regression testing of multithreaded programs. I also present

the experiment results, which show that the proposed regression technique is effective and efficient at

detecting regression faults in multithreaded programs. I conclude this dissertation in Chapter 6 with a

consideration of future work.

– 6 –

Chapter 2. Background and Related Work

In this chapter, I present the background on multithreaded program testing including concurrency

bugs, concurrency coverage metrics, and the existing testing techniques for multithreaded programs. 1

In Section 2.1, I explain the basics of multithreaded programs and concurrency bugs. In Section 2.2,

I present the existing concurrency coverage metrics proposed in earlier work. As a part of the related

work, I present a survey on various race bugs and their detection techniques for multithreaded programs

in Section 2.3, because the largest portion of the research effort on the multithreaded program analysis

has been concentrated on detecting/predicting race bugs Last, I discuss the existing test generation

techniques for multithreaded programs in Section 2.4.

2.1 Concurrency bugs in multithreaded programs

2.1.1 Multithreaded programs and executions

A multithreaded program consists of a finite set of threads, thread local variables, and shared

variables. Each thread is a sequential program that manipulates its local variables, manipulates the

shared variables which can be manipulated by any thread in the same multithreaded program, and

synchronizes with other threads to control execution orders in different threads. A thread interacts with

other concurrently running threads by executing synchronization operations and by updating shared

variables.

An execution of multithreaded program is a set of thread executions each of which is a finite sequence

of operations. A thread accepts given input data, and then reads and writes local and shared variables

throughout an execution. Unlike sequential program executions, the multiple threads in a multithreaded

program executes concurrently either in a parallel manner, or an interleaving manner. With multiple

parallel processors, concurrent threads are executed by different processors simultaneously; otherwise, a

single processor interleaves executions of multiple concurrent threads with time sharing (i.e., interleaved

executions).

In a multithreaded program execution, basically there is no ordering constraint on two operations

that are executed in two different threads at the same time. Rather, their execution order in an execution

is decided arbitrary in runtime. Thus, different executions of a same multithreaded program with a same

input data may have different execution order of concurrent operations.

Synchronization refers to execution ordering constraints imposed by programmers. Since multiple

threads can manipulate a same shared variable concurrently, the result of a multithreaded program

execution depends on in which order threads write/read the shared variables. To control concurrency and

guard the integrity of shared variables, programmers write synchronization instructions (e.g., binary lock,

conditional variable) in a multithreaded program to enforce certain execution ordering constraints such

as mutually exclusive execution of certain code fragments, strict ordering between two code fragments.

A multithreaded program is executed with input data and with a thread schedule. As similar to

sequential programs, the input data defines the starting state of an execution. A thread schedule is

1A part of this chapter was published in the STVR journal [42]

– 7 –

the execution orders of operations in different threads, which is decided by the thread scheduler of an

execution environment. When a multithreaded program runs, a thread scheduler either in an operating

system or in a threading library decides which processor executes which thread at a time. Therefore, the

decisions made by a thread scheduler throughout an execution results in the execution order of operations

in different threads.

A thread schedule of an execution corresponds to the execution orders of operations among threads

in the execution. An interleaved execution where the operations from all threads are totally ordered is

a model that represents a thread schedule of a multithreaded program execution. With the sequential

consistent (strong) memory model, interleaved executions can represent all possible thread schedules. An

interleaved execution is also a sound model of a multithreaded program execution with relaxed (weak)

memory models where operations in different threads are partially ordered. 2

A thread schedule of a multithreaded program is generally non-deterministic. This means that a

thread scheduler for a multithreaded program is possible to generate any thread schedule that is feasible.

Even with a same input data, a multithreaded program can be executed with various thread schedules

because there is no restriction of thread schedules except for the synchronization constraints induced by

the synchronization instructions in the multithreaded program.

2.1.2 Concurrency errors and concurrency bugs

A multithreaded program has a concurrency error if, depending on thread schedules, the multi-

threaded program execution fails (i.e. crashes, violates invariants, or generates wrong output). An

error is not a concurrency error when the multithreaded program always generates failing executions for

a certain input data regarding regardless of thread schedules. Concurrency errors occur when the pro-

grammer misuses synchronization instructions which allow unintended interferences in concurrent thread

executions.

A concurrency bug (concurrency fault) refers to a set of instructions that causes a concurrency error

of a multithreaded program. In theory, it is not trivial to define the concurrency bug correspond to

a concurrency error because the error might be caused by complex interactions of many instructions.

However, many studies on the concurrency errors in practice show that there are common concurrency

bug patterns, for instance, data race bugs and atomicity violations. For this reason, there have been

many research works that aim to detect known concurrency bug patterns and propose new concurrency

bug patterns. A concurrency bug detection technique such as data race detectors detects/predicts the

instructions that are matched with the pattern of a certain kind of concurrency errors.

In the previous works, concurrency bugs are categorized as the deadlock bug and the race bug 3, and

there have been many bug patterns presented for each category. A deadlock bug induces an indefinite

waiting of a set of threads each of which is blocked by the other threads under certain thread schedules.

A deadlock bug is harmful because the bug can make the running program fails to complete its execution.

For instance, the cycle locking pattern, the most popular pattern of the deadlock bugs, defines a set of

nested lock instructions that can induce deadlock errors depending on their lock acquisition orders.

A race bug leads an execution to violate concurrency requirements intended by programmers which

2The interleaved execution model does not completely represent all executions with the weak memory model because

an execution with the weak memory model also depends on non-deterministic internal states of multi-core processors.
3Livelock is another kind of concurrency bugs which violates liveness properties in reactive systems. However, I do

not discuss the livelock bugs because I assume that each thread execution is finite (i.e., target programs are not reactive

systems).

– 8 –

result in invalid states or invalid execution results. For example, the data race bug detection techniques

determine shared variable accesses without a consistent locking as race bugs because the concurrent

execution of these accesses may result in unexpected states of the shared variables. As a lot of research

efforts have been concentrated on developing concurrency bug detection techniques for various types of

race bugs, I will discuss more on different types of race bugs and their detection techniques in a later

section 2.3.

2.2 Concurrency coverage metrics

2.2.1 Overview

A test coverage metric derives test requirements from a target program artifact. A code coverage

metric refers to a test coverage metric that generates test requirements from a target program code. A

test requirement is a predicate over a program execution. A test (or a test suite) satisfies (or covers) a

test requirement when there is at least one execution that satisfies the test requirement in the test. The

coverage level (or simply, coverage) of a test with respect to a coverage metric is the ratio of covered

test requirements by the test to the number of all generated test requirements by the coverage metric.

In general, a test satisfies a coverage metric when the test satisfies all test requirements by the coverage

metric for a target program. When a testing uses a coverage metric , a testing process is obligated to

have a test case to meet every generated test requirement.

A structural coverage metric generates test requirements to check whether every specific program

construct is ever executed (e.g., statement coverage), or a specific condition of a conditional branch is

every satisfied (e.g., branch coverage, MC/DC coverage) in single threaded program testing.

A concurrency coverage metric is a code coverage metric specialized to generate test requirements

from multithreaded program code. Concurrency coverage metrics aim to generate a set of test re-

quirements that check various thread interaction cases for multithreaded program test executions. Al-

though the structural coverage metrics generate meaningful test requirements for effective single-threaded

program testing, these are not able to check presence of certain thread interactions, thus, these are not

effective to be used for a multithreaded program testing purpose, where a test should repeat a program

execution with a same input value while inducing different thread scheduling.

Various concurrency coverage metrics have been proposed by researchers. These concurrency cov-

erage metrics derive test requirements from synchronization constructs or data access constructs that

may manipulate shared variables in a target program. Each concurrency coverage metric is based on

an intuition to capture important concurrent execution aspects whose impacts may or may not con-

tribute to concurrency errors in a multithreaded program. Thus, two test requirements derived from a

same program construct by two different coverage metrics may have different satisfaction conditions and

require a test for different executions to cover.

In this section, I select the eight representative concurrency coverage metrics as shown in Table 2.1,

and describe them in full detail. To make the selection concise while having diversity in the collection,

I first classify concurrency coverage metrics with the following two aspects–the number of program

constructs that define a test requirement, and the construct type that defines a test requirement and

then I select at least one coverage metrics that have unique definitions for each coverage metrics type.

For the number of program constructs, concurrency coverage metrics can be categorized as singular (i.e.,

each test requirement is associated with one program construct) or pairwise (i.e., each test requirement

– 9 –

Table 2.1: Overview of eight concurrency coverage metrics

Synchronization operation Data access operation

Singular
Blocking [27],

LR-Def [56]
Blocked [27]

Pairwise
Blocked-Pair [102], PSet [119],

Follows [102], Sync-Pair [41] Def-Use [98]

is associated with a pair of program constructs). For the other aspect, the concurrency coverage metrics

can be categorized as one defined for synchronization program constructs and data accesses program

constructs. The selection covers the coverage metrics each of which cannot be defined as a combination

of other coverage metrics (i.e., primitive).

The selection contains the thee singular concurrency coverage metrics LR-Def, Blocked, and Blocking

and the five pairwise concurrency coverage metrics. LR-Def is a singular data access-based concurrency

coverage criterion that generates test requirements for write operations in a target program. Blocked

and Blocking are singular synchronization-based coverage metrics that derive test requirements for every

lock operation or synchronized block in a target program. For the pairwise data access-based coverage

metrics, I select Def-Use and PSet. Note that PSet is almost equivalent to access-pair and location-

pair. Thus, I only select PSet as a representative of these. Sync-Pair, Follows, and Blocked-pair are

pairwise synchronization-based coverage metrics. Both Sync-Pair and Follows are to check consecutive

lock ordering between two lock operations, but have slightly different definitions. Blocked-pair is to check

whether or not a lock operation makes the other lock operation blocked.

2.2.2 Concurrency coverage metric definition

In this section, I describes the definition of the test requirements from the eight concurrency coverage

metrics. The formal definition of these test requirements are presented in Appendices A.

Synchronization based coverage

Blocked. The Blocked coverage criterion [27] defines a test requirement Blocked(l) for a syn-

chronization statement located at a program location l. Briefly speaking, a Blocked test requirement

Blocked(l) is satisfied by an execution if one execution of the statement at l is blocked for acquiring a

lock by other threads.

Blocked-Pair. The Blocked-Pair coverage criterion defines a test requirement Blocked-Pair(l1, l2)

for two synchronization statements located at a program location l1 and another location l2, correspond-

ingly. An execution satisfies Blocked-Pair(l1, l2) when there are one lock-hold action for l1 and another

lock-acquire action for l2 blocked by the locking effect of the lock-hold action.

The Blocked-Pair coverage criterion is an extension of the Blocked coverage criterion and the Block-

ing coverage criterion. An execution that satisfies Blocked-Pair(l1, l2) also satisfies Blocking(l1) and

Blocked(l2).

Blocking. The Blocking coverage criterion defines a test requirement Blocking(l) for a synchroniza-

tion statement located at a program location l. A Blocking test requirement Blocking(l) is satisfied by an

execution if there exist a lock-hold action for l that holds a lock variable and a following lock-acquire

action on the same lock variable that is blocked due to the effect of the lock-hold action. A Blocking test

– 10 –

requirement is the counter-part of the Blocked test requirement for a same synchronization statement.

Follows. The Follows coverage criterion defines a test requirement for two synchronization state-

ments. A Follows test requirement for two synchronization statements l1 and l2 is satisfied when two

threads hold a same lock consecutively by the two statements l1 and l2 in sequence.

Sync-Pair. The Sync-Pair coverage criterion generates test requirements defined over two synchro-

nization statements. A Sync-Pair test requirement Sync-Pair(l1, l2) checks whether two threads hold a

same lock consecutively by two synchronization statements at l1 and l2 in order. The Sync-Pair coverage

criterion is similar to Follows. The difference is that Sync-Pair generates a test requirement for two

consecutive lock-hold actions executed by a same thread whereas Follows does not.

Data access based coverage

Def-Use. The Def-Use coverage criterion generates a test requirement for a pair of data write

statement and data read statement and a pair of a data write statement and another data write statement.

A Def-Use test requirement is satisfied by an execution when the former data write statement defines a

value of a data variable and then the latter statement manipulates the data variable while there is no

other data write statement defines the same variable between the two statements in the execution. The

Def-Use coverage criterion is the same as the def-use (DU) coverage criterion used for the single-threaded

program testing.

LR-Def. The LR-Def coverage criterion generates two test requirements for a data read statement:

a L-Def test requirement and a R-Def test requirement. The L-Def test requirement for a data read

statement l is satisfied by an execution if there is a data write action executed by the same thread that

defines the value of a data variable that the read statement reads. The R-Def test requirement for a

data read statement l is satisfied by an execution if the data read statement reads the value of a data

variable defined by a data write statement executed by a different thread than the data read statement.

PSet. The PSet coverage criterion generates a test requirement for two data access statements

that manipulates a same variable and at least one of the two is the write statement. More specifically, A

PSet test requirement is defined for a pair of a read statement and a write statement, a pair of a write

statement, and a read statement, or a pair of two write statements. PSet aims to check all immediate

data dependencies in two data access statements executed by two different threads.

2.2.3 Assessing effectiveness of concurrency coverage metrics

In work on concurrency coverage metrics, the effectiveness of achieving high coverage has been

argued for primarily through analytical comparisons between coverage definitions and concurrency fault

pattern, such as those involving data races and atomicity violations [56,102,109].

Trainin et al. [102] note that concurrency faults are related to certain test requirements for the

Blocked-Pair and Follows concurrency coverage metrics, which suggests that achieving high levels of

coverage should correlate with testing effectiveness. Wang et al. [109] highlight how data races or atom-

icity violations may be triggered by satisfying HaPSet test requirements. Neither analysis empirically

demonstrates the benefits of achieving higher coverage.

Tasiran et al. [98] evaluate the location-pair metric empirically, and compare it to two other coverage

metrics (method-pair and def-use) with respect to the correlation between coverage and fault detection.

The study uses two case examples and generates faulty versions via concurrency mutation operators and

manual fault seeding. However, the scope of this study is limited for the three metrics and the two case

examples.

– 11 –

2.3 Survey on race bugs and the detection techniques

Developing bug-free multithreaded applications is challenging due to non-deterministic thread schedul-

ing, which generates a large number of diverse program behaviors to be checked for correctness. To make

multiple threads behave correctly, multithreaded applications enforce synchronization among the threads.

A mistake in synchronization, however, can cause race bugs, which make a target program execute abnor-

mally with unintended accesses to shared resources. To address this problem, many race bug detection

techniques have been developed with predefined race bug patterns. These techniques check if execution

trace or program code matches the patterns through static or dynamic analyses to identify race bugs.

Despite the wealth of literature on race bug detection techniques, it is difficult to analyze and com-

pare them due to their use of various race bug patterns. This is because different race bug detection

techniques define their race bug patterns using different methods, such as the program analysis technique

(e.g., dynamic analysis, static analysis, etc.), views on the program execution (e.g., totally ordered execu-

tion, partially ordered execution, etc.), target synchronization primitives (e.g., binary lock, wait/notify,

etc.), and target memory models (weak memory model, sequentially consistent memory model, etc.).

Furthermore, these techniques define the target race bug patterns using different terminologies, which

makes the description of the race bug detection techniques difficult to understand.

In this section, as the first step to alleviate the aforementioned problems, I define a formal execution

model which provides an abstract view on the program execution (Section 2.3.2). By using the proposed

single execution model, I can define various target race bug patterns from different race bug detection

techniques. Then, I compare and classify the techniques according to their target race bugs. I classify

race bugs depending on whether or not a bug violates operation block specification, and also depending

on whether or not the bug violates data association specification (Section 2.3.1). Figure 2.1 shows the

relationships among the following four classes of race bugs:

• Data race bug : operations that manipulate a shared variable in different threads without synchro-

nization (Section 2.3.3)

• Block race bugs: operations that violate an operation block specification (Section 2.3.4)

• Multi-data race bugs: operations that violate a data association specification (Section 2.3.5)

• Multi-data block race bugs: operations that violate both operation block specifications and data

association specifications (Section 2.3.6)

I classify race bug detection techniques that do not utilize operation block nor data association

specification as data race bug detection techniques (Section 2.3.3). Techniques that use the lockset

algorithm [84] belong to this class. I classify race bug detection techniques that utilize operation block

specification, but not data association specification as block race bug detection techniques (Section 2.3.4).

This class includes atomicity violation detectors and serializability violation detectors. On the other

hand, multi-data race bug detection techniques utilize data association specification, but not operation

block specification (Section 2.3.5). Multi-data block race bug detection techniques utilize both operation

block and data association specifications (Section 2.3.6).

I have classified 43 race bug detection techniques in terms of the above four classes: data race bug

detection techniques, block race bug detection techniques, multi-data race bug detection techniques, and

multi-data block race bug detection techniques. In addition, I have compared the key mechanisms used

by the race bug detection techniques to identify the target race bug patterns in program execution or

– 12 –

Data race
bug

Block race
bug

Multi‐data
block race bug

Multi‐data
race bug

Figure 2.1: Relationship among the four classes of race bug detection techniques

code (see Tables 2.2-2.5). Thus, this survey can help researchers obtain a clear top-down view of various

race bug detection techniques for multithreaded programs.

For example, suppose that I would like to know if Velodrome [35] can detect the race bugs that

AVIO [59] cannot detect. The answer to the question is not simple because these techniques define

race bugs using different notions of correctness, namely, conflict serializability in Velodrome and access

interleaving invariants in AVIO. In addition, Velodrome is designed for Java programs with synchronized

blocks as target synchronization primitives, whereas AVIO analyzes C programs with lock()/unlock()

as target synchronization primitives. Thus, it is difficult to compare the race bug detection capabilities

of these two techniques. In contrast, our classification shows that AVIO is a block race bug detection

technique while Velodrome is a multi-data block race bug detection technique. This information allows

us to simply answer “yes” to the question above since the block race bug class is a strict subset of

the multi-data block race bug class (Section 2.3.7). As another example, from Table 2.3, I know that

PENELOPE [94] aims to detect the same class of race bugs targeted by AVIO. However, PENELOPE

detects more race conditions as race bugs than AVIO since PENELOPE considers two write operations

of different threads as a conflict while AVIO does not (see the fourth column of Table 2.3). In addition,

PENELOPE takes the effect of lock synchronization into account, whereas AVIO does not (see the last

column of Table 2.3). Thus, PENELOPE and AVIO might detect different block race bugs.

The contributions of this survey are as follows:

• The classification of the 43 techniques provides a systematic overview on race bug detection tech-

niques, which helps researchers understand and improve race bug detection techniques.

• The systematic characterization and concrete examples of a broad range of race bugs can help field

engineers avoid race bugs in their multithreaded programs.

2.3.1 Overview of survey

A race bug refers to a multithreaded program fault that causes race conditions, which in turn make

the program execute incorrectly (i.e., reaching an invalid state). A multithreaded program has a race

condition if an execution order of two operations is not fixed (i.e., non-deterministic) and their execution

result varies depending on the order. 4 Race bug detection techniques detect race bugs by checking if

4 Race conditions do not necessarily cause incorrect program executions. Programmers may utilize race conditions for

better processor utilization and responsiveness to requests, since race conditions enable various thread execution orders.

– 13 –

the target program can violate synchronization requirements, which must be satisfied to control multiple

threads correctly. Race bug detection techniques typically work in the following three steps:

1. modeling concurrent program behaviors and synchronization requirements;

2. identifying operations that are involved with race conditions ;

3. checking if the identified operations can violate the synchronization requirements.

In this paper, I classify race bug detection techniques according to the usage of operation block specifica-

tions and data association specifications, which are orthogonal synchronization requirements for correct

multithreaded executions.

• Operation block (SOB of Definition 1 in Section 2.3.2)

An operation block specification is defined as a sequence of consecutive operations of a thread, which

are intended to execute without interference from other threads. A program is considered to satisfy

an operation block specification if a specified operation block always results in a state (regardless of

interference from other threads) that is equivalent to the resulting state of the non-interfered operation

block.

Race bug detection techniques receive an atomic region specification that specifies an operation block

in the target program. 5 Some race bug detection techniques provide annotation mechanisms for

users to specify atomic regions on the target program code [24, 35, 39, 94, 116, 123]. Other techniques

automatically infer an operation block specification by using predefined code patterns or execution

patterns [17,19,53,59–61,97,112]. Still other techniques simply consider executions of function/method

body of certain types as operation blocks [5, 6, 106,111].

An operation block corresponds to an execution of “atomic code block” [35], “unit of work” [39],

or “transaction” [111] that occur in the literature. Instead of using these terms, I decided to use a

new term “operation block”, which delivers the high-level meaning clearly because the existing terms

defined in specific contexts are not suitable for explaining different techniques.

• Data association (SDA of Definition 1 in Section 2.3.2)

Variables of a data structure are often correlated to each other and may have implicit or explicit invari-

ants. Thus, concurrent accesses to such variables should be synchronized and coordinated to satisfy

the invariants/relations. Some race bug detection techniques receive the relation of correlated variables

as a requirement specification, and check the “correctness” of access operations to the variables. In

other words, they check if these operations are coordinated correctly to satisfy the invariants/relations

over correlated variables.

Data association specifications are obtained from the structure of composite data types (e.g. struct,

object, array) [79, 107], or obtained from user-given specifications [39, 60, 97]. Some techniques im-

plicitly infer data association specifications from access patterns to variables [5,35,57,106,116]. Data

association corresponds to the terms “multi-variable correlation” [57], “atomic-set” [39], “causal de-

pendency between two variables” [24], or “view” [5] that occur in the literature.

I classify race bugs into four classes depending on the usage of operation block specifications and/or

data association specifications in the race bug definition; race bug detection techniques are then classified

5Atomic region specification should not be confused with atomic constructs such as synchronized blocks in Java.

– 14 –

operation21

Thread2

:

:

operation11

Thread1

:

:

m

Memory

Thread

read write

Figure 2.2: A data race bug

according to their target race bug class. The high-level overviews of the four race bug classes are as follows

(the formal race bug definitions are described in Sections 2.3.3–2.3.6).

• Data race bug (Section 2.3.3)

A data race bug is defined as two operations of different threads that concurrently read and write

(or both write) data on the same memory location without synchronization. Figure 2.2 illustrates an

example of a data race bug: operation11 of Thread1 and operation21 of Thread2 can update the same

memory location m without synchronization. A data race bug coincides with “data race” in Netzer et

al. [70].

• Block race bug (Section 2.3.4)

A block race bug is defined as three operations p, p′, and q, where p and p′ of the same thread belong

to an operation block, and q of another thread interferes the intended data-flow between p and p′ (this

intention is specified by an operation block). A block race bug can be harmful because this interfered

data-flow may result in unintended program behaviors and raise an error. Figure 2.3 illustrates an

example of a block race bug; operation21 of Thread2 interferes the intended data-flow on m between

operation11 to operation12 of Thread1. Block race bug is called as “AI (access interleaving)-invariant

violation” [59], or “atomicity violation” [53,61,76] in the literature. 6

• Multi-data race bug (Section 2.3.5)

A multi-data race bug is defined as two operations of two different threads that manipulate data

associated memory locations without proper synchronization. The multi-data race bug definition

extends the data race bug definition to check conditions on data association relations. Figure 2.4

shows an example of a multi-data race bug. Since the accesses to the two data associated memory

locations (e.g., m1 and m2) are not synchronized, the data structure may become inconsistent. The

class of multi-data race bugs covers “multi-variable race” [57] and “object race” [107] in the literature.

• Multi-data block race bug (Section 2.3.6)

A multi-data block race bug is defined as three operations such that two of these are executed by

a thread in the same operation block, the other operation is executed by another thread, and the

three operations manipulate memory locations with data association relations. The multi-data block

6Some papers use the term “atomicity violation” to refer to multi-data race bug (e.g., [35]).

– 15 –

m

operation21

Thread2

:

:
operation11

operation12

Thread1

:

:

:

Memory

Thread

Operation block
write

read

write

Figure 2.3: A block race bug

m1 mn

operation21

Thread2

:

:

operation11

Thread1

:

:

…m2

Memory

Thread

Data association

write write

Figure 2.4: A multi-data race bug

race bug definition extends the block race bug definition with an additional data association check.

Figure 2.5 describes an example of a multi-data block race bug. As a result of interleaved executions

of the three operations, the execution may have unintended combinations of data-flows on the data

associated variables. The multi-data block race bug definition corresponds to “high level data race” [5],

“atomic-set serializability violation” [39, 104], “multi-variable atomicity violation” [57], or “atomicity

violation” [35] in the literature.

2.3.2 Execution model of multithreaded programs

In this section, I formally define an execution model to represent the program executions.

Overview

A race bug detection technique constructs and analyzes an execution model that represents the

concurrent executions of a target multithreaded program. Dynamic race bug detection techniques execute

the target program to construct an execution model of the program based on the execution traces. Static

techniques construct a predictive execution model from the target program code by analyzing the control

flow, data flow, and synchronization effects of the program. Most race bug detection techniques have

their own definitions of execution models. To describe various definitions of the execution models used

– 16 –

operation21

Thread2

:

:
operation11

operation12

Thread1

:

:

:

m1 mn
…m2

Memory

Thread

Operation block

Data association

write

read

write

Figure 2.5: A multi-data block race bug

-th1:fun1()- -th2:fun2()-

1: x = 1
2: lock(m)
3: y = 1
4: unlock(m)

(b) Observed execution case (a) Program code

void fun1() {
1: x = 1;
2: synchronized(m){
3: y = 1;
4: }

}

void fun2() {
11: synchronized(m){
12: y = 0 ;
13: x = 0 ;
14: }

}

11: lock(m)
12: y = 0
13: x = 0
14: unlock(m)

Figure 2.6: Example of a target program code and an observed execution

by race bug detection techniques, I define a general execution model that captures the essential aspects

of concurrent executions without language- or analysis-technique-specific features.

Our execution model represents the executions of a multithreaded program as operations and syn-

chronized order relations of the operations. In the model, an operation represents an atomic action of the

target program execution (an operation is either read or write). A synchronized order relation represents

the order of operations enforced by synchronization. In addition, our execution model represents oper-

ation blocks as a relation on operations and data associations as a relation on the variables of a target

program. These specifications are used to define the block race bugs, the multi-data race bugs, and the

multi-data block race bugs.

Examples of Execution Models.

This section shows how two different race bug detection techniques can be compared clearly by

using our execution model. Suppose that I have a target program (Figure 2.6(a)) and an observed

execution of the program (Figure 2.6(b)). Suppose that I would like to compare FastTrack [33] and

Eraser [84] both of which target data race bugs. To check if two operations can execute concurrently

without synchronization, FastTrack utilizes happens-before relation and Eraser utilizes lockset algorithm.

Using our execution model definition, I show that FastTrack and Eraser may construct different

execution models from the same code and observed execution (i.e., Figure 2.6). Figure 2.7(a) and Fig-

ure 2.7(b) show the execution models constructed from Figure 2.6 by FastTrack and Eraser, respectively.

In the execution model, operations represent executions of instructions (i.e., reads and writes) which are

not synchronizing instructions. An operation pi denotes the execution of line number i in the example

– 17 –

p1:(th1,write,x)

p3:(th1,write,y)

p12:(th2,write,y)

p13:(th2,write,x)

p1:(th1,write, x)

p3:(th1,write, y)

p12:(th2,write, y)

p13:(th2,write,x)

(a) An execution model of FastTrack (b) An execution model of Eraser

operation
synch.
order

Legend

Figure 2.7: Examples of constructed execution models

code. For example, the execution of line 1 (i.e., x=1) is represented by an operation p1=(th1, write, x)

which indicates a write operation executed by thread th1 on a variable x. The rest of the execution can

be modeled in a similar way. Executions of synchronization instructions (e.g., lines 1, 4, 11, and 14) are

represented by the synchronized order relations. If there is a synchronized order between two operations

p and q, it means that q always starts only after p finishes.

FastTrack uses the happens-before relation to build a synchronized order relation. In other words,

FastTrack builds a synchronized order relation from the order of operations in the same thread (i.e.,

(p1, p3) and (p12, p13)) and the order of operations enforced by a lock m (i.e.,(p3, p12), (p3, p13)) in the

observed execution and their transitive relations (i.e., (p1, p12), (p1, p13)). FastTrack builds an execution

model with synchronized order relation →SFT
as follows:

→SFT
= {(p1, p3), (p1, p12), (p1, p13), (p3, p12), (p3, p13), (p12, p13)}

In contrast, Eraser uses only mutual exclusion constraints induced by lock m and the operation order

in each thread to generate synchronization order relations. Eraser generates a concurrent execution model

with the synchronized order relation →SER
as follows:

→SER
= {(p1, p3), (p12, p13), (p2, p13), (p3, p13)}

Thus, the data race bug detection results of FastTrack and Eraser can be different because their

execution models of the same program and its observed execution can be different as shown above. For

the example in Figure 2.6, Eraser reports p1 and p13 as a race bug because p1 and p13 write to x and

there is no synchronized order between them in →SER
. In contrast, FastTrack does not report these

two operations as a race bug because there is a synchronized order between these two operations in the

execution model (i.e., →SFT
).

Formal Definition of Execution Model

The proposed execution model aims to describe different execution models used by various race

bug detection techniques in a uniform manner. For this purpose, the execution model in Definition 1

is parametric to race bug detection techniques. For example, the operation in the definition is not

restricted to a particular programming language or analysis technique, but general enough to represent

all dynamic/static analysis techniques in this survey. In addition, we allow different definitions of conflict

for different techniques (see Table 2.3).

Definition 1. Execution model

For a race bug detection technique and a target program P with given synchronization requirement

specifications (i.e., operation block specification and data association specification), an execution model

– 18 –

is defined as

< Σ, Thread,Mem,→S , conflict, SOB , SDA >

which consists of the following six elements:

• A set of operations Σ

Σ is a set of operations (i.e., {p1, p2, ...}), each of which models a unit of execution of P . An operation

p has the following attributes whose concrete definitions depend on a race bug detection technique.

• thread(p) ∈ Thread indicates a thread that executes p.

• optr(p) ∈ {read, write} indicates a type of p, which is either data read or data write.

• operand(p) ∈Mem indicates a memory location or variable manipulated by p (i.e., the operand

of the p operation).

• A set of threads Thread

• A set of memory locations Mem

• A synchronized order relation on operations →S : Σ× Σ

→S is a transitive closure of a binary relation on a set of operations Sync : Σ×Σ such that (p, q) ∈ Sync
if at least one of the following conditions holds:

(a) p and q are executed by the same thread and p is executed before q, or

(b) explicit synchronization causes p to finish before q starts.

Different race bug detection techniques may generate →S differently (see Section 2.3.2). For example,

there are techniques that construct →S using happens-before relations enforced by lock operations in

the observed execution (e.g., [21, 33, 35]). Other techniques may generate →S using mutual exclusion

relations enforced by lock operations in the observed execution (e.g., [7, 29,84]). 7

• A conflict relation conflict : Σ× Σ

(p, q) ∈ conflict (i.e., p and q conflict with each other) indicates that p and q can interfere each other

and cause invalid behaviors. Formally speaking, (p, q) ∈ conflict holds if the computational effect of

p and q depends on the order in which they are executed. A conflict relation should be transitive and

symmetric. Again, a concrete definition of conflict may vary depending on the detection technique.

• A set of operation blocks SOB : Σ× Σ

(p, p′) ∈ SOB indicates that p and p′ are executed by the same thread and p executes before p′ in

an operation block (i.e., p →S p
′). (p, p′) ∈ SOB indicates that execution from p to p′ should not be

interfered by another thread.

• A relation of data association SDA : Mem×Mem

SDA indicates a relation on shared variables as described in Section 2.3.1. (v1, v2) ∈ SDA indicates

that v1 and v2 are parts of a composite data structure and update operations on v1 and v2 should be

coordinated to satisfy the data structure invariants. Note that SDA is reflexive (i.e., ∀v ∈Mem.(v, v) ∈
SDA); SDA may or may not be transitive/symmetric depending on the technique (see Tables 2.4

and 2.5).

2

7 Note that our execution model represents the effect of synchronization with →S , not the synchronization itself. Thus,

this execution model is general enough to describe various race bug detection techniques with different synchronization

mechanisms.

– 19 –

Execution Model Generation

Many race bug detection techniques check the program behavior against race bug definitions as soon

as a part of the execution model is constructed (i.e., on-the-fly) for efficiency. In this paper, these two

steps are distinguished to describe various techniques in a uniform manner. A total 43 race bug detection

techniques are classified (Sections 2.3.3–2.3.6) according to how they generate an execution model.

• Dynamic techniques (34 out of the 43 techniques)

These techniques instrument the target program to extract concrete values of program executions at

runtime, such as thread identifiers, memory addresses, temporal ordering of operations including

synchronization, and so on. These techniques can generate an execution model that does not

contain infeasible behaviors (i.e., a bug detected by these techniques is always real). However, the

generated execution model may miss buggy executions and miss race bugs as a result (i.e., false

negatives). Most of the techniques (34 out of 43) in this survey belong to this class [7, 19–21, 33,

35, 39, 53, 54, 57, 59–61, 63, 64, 66, 72, 76, 77, 79, 84, 90, 91, 93, 94, 97, 107, 111–113, 116, 122]. For more

detail on how each technique constructs an execution model, see Tables 2.2-2.5.

• Static techniques (7 out of 43 techniques)

These techniques utilize static analysis methods such as alias analysis [68], data-flow analysis [6],

dependency analysis [24], and type systems [31] to obtain the information necessary to construct

an execution model. These techniques can generate execution models representing a large scope of

possible program executions. However, the accuracy of the resulting execution models is often low

due to the imprecision inherent to static analysis methods. Thus, these techniques may raise false

positives. In this survey, 7 out of 43 techniques belong to this class [6, 24,29,31,68,106,108].

• Hybrid (dynamic + static) techniques (2 out of the 43 techniques)

HAVE [17] constructs execution models by combining runtime information obtained by dynamic

analysis and code information obtained from a static analysis. McPatom [123] also combines

dynamic execution information and source code information to generate execution models by con-

sidering program semantics.

Most race bug detection techniques generate multiple execution models to check as many thread

scheduling scenarios as possible. To generate multiple execution models from a single observed execution

(i.e., to predict alternative scheduling scenarios [16]), dynamic techniques mutate orders of operations

while satisfying the relations/constraints enforced by synchronization code. Static techniques analyze a

target program including synchronization code, to build execution models that represent various thread

scheduling scenarios and satisfy the synchronization constraints. These synchronization constraints are

used to build a synchronized order relation (i.e., →S in Definition 1).

2.3.3 Data race bug detection techniques

In this section, data race bug is defined based on the formal execution model. The data race bug

definition does not use the operation block specification nor data association specification, and it is the

simplest class of race bugs presented in this paper. This section presents the formal definition of data

race bug, and then presents a survey of race bug detection techniques for data race bugs.

– 20 –

Bug Definition

A data race bug is defined as two unsynchronized operations of two different threads that access

the same shared variable, where at least one is a write operation. The data race bug definition in

this paper coincides with the definition of “data race” in Netzer et al. [70]. Many race bug detection

techniques [7,20,21,29,31,33,54,63,64,68,72,84,90,91,108,113,122] target to detect the data race bugs

and implement various methods to detect them efficiently (Section 2.3.3). The definition of the data race

bug using the formal execution model is as follows:

Definition 2. Data Race Bug

A program has a data race bug if an execution model of the program 〈Σ, Thread,Mem,→S , conflict, SOB , SDA〉
satisfies all of the following conditions:

There exist two operations p, q ∈ Σ such that

DR1: thread(p) 6= thread(q)

DR2: operand(p) = operand(q)

DR3: conflict(p, q)

DR4: p 6→S q ∧ q 6→S p

2

The data race bug definition indicates lack of synchronization on accesses to a shared variable. The

DR1 condition checks if p and q are executed by different threads. The DR2 and DR3 conditions together

check if p and q may interfere with each other. Note that various techniques have different definitions

of conflict() (see the fourth column of Table 2.2). Finally, the DR4 condition checks if p and q can run

concurrently without synchronization. In other words, for two operations p and q constituting a data

race bug, no synchronization is enforced between p and q (i.e., p→S q or q →S p).

Two operations that match the data race bug definition can be harmful because unsynchronized

accesses to a shared variable may induce unintended behaviors. Especially, with weak memory models

and multicore CPUs, executions depend on runtime status of CPU and shared variable accesses, and often

produce counterintuitive results [2, 13]. Enforcing synchronization on all accesses to a shared variable

makes the accesses predictable because the access results are consistently determined by an access order.

In addition, data race bugs may be harmful even with the sequentially-consistent memory model because

a data race bug is caused by unsynchronized concurrent operations on the shared variable, which may

not have been intended by developers [8].

Data Race Bug Example

Figure 2.8 shows an example of a data race bug in a buggy program code and an erroneous execution

scenario. The example is a bank account program that includes method withdraw(long x). Although

withdraw(long x) should not withdraw x if x is larger than balance (line 1) to keep balance non-

negative, the program allows negative balance due to the data race bug explained below.

Suppose that, as shown in Figure 2.8(b), there are two threads (th1 and th2) running the bank

account program and balance is 10 initially. Also, suppose that a data race bug detection technique

similar to Eraser [84] is used to generate an execution model from the execution in Figure 2.8(b) with

the following elements:

– 21 –

/5

Data Race Bug

2014-04-30 A Survey of Race Bug Detection Techniques for Multithreaded Programs 2

class Account_DR {
long balance ;
//balance should be always non-negative

void withdraw(long x) {
1: if (balance >= x){
2: balance = balance - x;}

...
}}

(a) Buggy program code (b) An erroneous execution

-th1: withdraw(10)-

1:if(balance>=10)

2:balance=0-10

-th2: withdraw(10)-

1’:if(balance>=10)

2’:balance=10-10

p
q

[Initially, balance:10]

The invariant is violated as
balance becomes negative

Figure 2.8: Data race bug example

• Σ = {p1, p2, p1′ , p2′ , ...}

• Thread = {th1, th2}

• operand(p) = operand(q) ∈Mem

• →S= {(p1, p2), (p1′ , p2′), ...}

• (p, q) ∈ conflict if either optr(p) or optr(q) is write

• SOB = ∅

• SDA = ∅

Operation p (i.e., p1) of th1 and operation q (i.e., p2′) of th2 (satisfying DR1) access the same

shared variable balance (satisfying DR2). In addition, the technique considers that p and q conflict

with each other (see the fourth column of the fifth row of Table 2.2) because optr(p) is read and optr(q)

is write (satisfying DR3). Furthermore, p and q can run concurrently without synchronization (i.e.,

p1 6→S p2′ and p2′ 6→S p1 (satisfying DR4)). Since the given execution satisfies all conditions of the data

race bug definition, the technique reports a data race bug. This data race bug actually causes an error

by assigning -10 to balance (line 2 in th1), which violates the non-negative invariant on balance .

Data Race Bug Detection Techniques

Table 2.2 summarizes 17 techniques for detecting the data race bugs. Each column describes how

these techniques check each condition in Definition 2. The four columns (labelled DR1 through DR4 in

the top row) are as follows:

• The second column describes mechanisms/methods to obtain thread information of an operation p to

check the DR1 condition. The techniques with “runtime thread identifier” [7,20,21,33,54,63,64,72,84,

90,91,113,122] utilize thread identifiers observed in monitored runtime traces to check if two operations

are executed by different threads. The techniques with “static approximation” [29, 31, 68, 108] obtain

thread identifiers statically, which may produce imprecise results due to the lack of thread sensitivity

in static analyses. To obtain a thread identifier, some techniques with “static approximation” try to

identify code segments that cannot be executed concurrently, such as interrupt handlers.

• The third column describes the methods to check whether or not p and q may access the same memory

location (DR2). The techniques with “code analysis” [29, 31, 68, 108] perform alias analyses on the

– 22 –

Table 2.2: Data race bug detection techniques

Technique
thread() operand() conflict() →S

(DR1) (DR2) (DR3) (DR4)

Acculock [113]
runtime runtime read-write, write-read,

lock
thread identifier memory address write-write

Choi et al. [20]
runtime runtime read-write, write-read, lock, thread

thread identifier memory address write-write create/join

Chord [68]
static code read-read, read-write,

lock
approximation analysis write-read, write-write

Eraser [84]
runtime runtime read-write, write-read,

lock
thread identifier memory address write-write

FastTrack [33]
runtime runtime read-write, write-read lock, thread

thread identifier memory address write-write create/join

GUARD [64]
runtime runtime read-write, write-read,

lock, barrier
thread identifier memory address write-write

LiteRace [63]
runtime runtime read-write, write-read, lock, atomic oper.

thread identifier memory address write-write message send/receive

O’Callahan et al. [72]
runtime runtime read-write, write-read, lock, message

thread identifier memory address write-write send/receive

Racer [7]
runtime runtime read-write, write-read, lock, thread

thread identifier memory address write-write create/join

RacerX [29]
static code read-write, write-read,

lock
approximation analysis write-write

RaceTrack [122]
runtime runtime read-write, write-read, lock, thread

thread identifier memory address write-write create/join

RACEZ [91]
runtime runtime read-write, write-read,

lock
thread identifier memory address write-write

RccJava [31]
static code read-read, read-write,

lock
approximation analysis write-read, write-write

RELAY [108]
static code read-write, write-read,

lock
approximation analysis write-write

SOS [54]
runtime runtime read-write, write-read, lock, thread

thread identifier memory address write-write create/join

ThreadSanitizer [90]
runtime runtime read-write, write-read, lock, message

thread identifier memory address write-write send/receive

TRaDe [21]
runtime runtime read-write, write-read,

lock
thread identifier memory address write-write

target program code to check if two operations may access the same memory location in any execution.

For this purpose, Chord [68] exploits data-flow analyses and RELAY [108] utilizes symbolic executions.

RccJava [31] exploits a type system to group operations that may access to the same object.

The techniques with “runtime memory address” [7,20,21,33,54,63,64,72,84,90,91,113,122] use mem-

ory locations observed in runtime traces as operands to check if operand(p) is the same as operand(q).

Many techniques try to reduce the runtime overhead involved in monitoring all operations. O’Callahan

et al. [72] leverage static analysis to select statements that may produce data race bugs, and then

instrument only those statements to be monitored at runtime. SOS [54] statically finds read-only

variables (called stationary variables) and then does not monitor accesses to them to save the runtime

monitoring cost. Another approach to reduce the runtime monitoring overhead is selecting a subset

of memory locations that are likely to be involved in data race bugs to monitor their accesses. LiteR-

ace [63] and ThreadSanitizer [90] utilize the cold region hypothesis, which states that frequently tested

code segments are less likely to have data race bugs, and exclude frequently executed statements from

monitoring. As an alternative approach, RACEZ [91] tries to reduce the monitoring cost by monitoring

sampled target memory accesses at the cost of missing data race bugs.

• The forth column describes the methods to check if two operations conflict with each other (DR3).

– 23 –

All data race bug detection techniques in Table 2.2 consider a combination of a read operation and a

write operation (read-write, or write-read) or a combination of two write operations (write-write) as

conflict. RccJava [31] additionally considers the case of two read operations as conflict because the

type system of RccJava requires that every operation on a shared variable should be guarded by a lock

regardless of the access type.

• The fifth column explains which synchronization mechanisms each technique utilizes to construct the

synchronized order relation→S of an execution model to check DR4. All techniques in Table 2.2 utilize

observed lock operations (denoted by “lock”). The techniques with “message send/receive” [63,72,122]

use message send-and-receive style synchronization as well. The techniques with “thread create/join”

[7, 20, 33, 54, 122] additionally use thread operations. LiteRace [63] utilizes atomic operations, and

GUARD [64] utilizes barriers in addition to lock operations.

2.3.4 Block race bug detection techniques

Block race bug detection techniques aim to detect race bugs that are caused by unintended concur-

rent accesses to a shared variable by an operation block and an operation. More specifically, the block

race bug detection techniques detect three operations as a block race bug if two operations access the

same variable in the same operation block, and the other operation in another thread can access the

same variable concurrently to interfere the operation block execution.

Block Race Bug Definition

The block race bug definition is defined in terms of the following three operations: two operations

p and p′ in an operation block and one operation q that can run concurrently with the two operations.

The block race bug definition describes that p and p′ in the operation block should not be interfered

by the other concurrent operation q for accessing the shared variable m. In the literature, block race

bugs are sometimes called as “atomicity violation” [53, 61, 76], or “AI (access interleaving)-invariant

violation” [59]. Note that the term “atomicity violation” also refers to a different class of race bugs (i.e.,

multi-data block race bugs in Section 2.3.6).

The formal definition of the block race bug is as follows.

Definition 3. Block Race Bug

A program has a block race bug if an execution model of the program 〈Σ, Thread,Mem,→S , conflict, SOB , SDA〉
satisfies all of the following conditions:

There exist three operations p, p′, q ∈ Σ such that

BR1: thread(p) = thread(p′)

BR2: (p, p′) ∈ SOB

BR3: operand(p) = operand(p′)

BR4: thread(p) 6= thread(q)

BR5: operand(p) = operand(q)

BR6: conflict(p, q) ∧ conflict(q, p′)

BR7: q 6→S p ∧ p′ 6→S q

2

– 24 –

The BR1–BR3 conditions check if two operations p and p′ of the same thread (BR1) access the same

variable (BR3) in an operation block (BR2). Note that for two operations p and p′ that satisfy BR2, p

is executed before p′ in the operation block (i.e., p→S p
′).

The BR4–BR7 conditions check if operation q can run concurrently with p and p′, and access the

same variable. The BR4 and BR7 conditions check if q is executed by a different thread from the thread

of p and p′ (BR4) and q can be executed while a thread executes p and p′ in an operation block (i.e.,

if q can execute between p and p′) (BR7). Note that q does not have to belong to any operation block.

The BR5–BR6 conditions check if p and q access the same variable, and thus, potentially interfere each

other (similarly for q and p′).

Note that the BR4–BR7 conditions are similar to the DR1–DR4 conditions for the data race bug

definition, while BR4–BR7 have additional constraints for the relation between q and p′. In Section 2.3.7,

a detailed comparison of the block race bugs with the data race bugs is presented.

Block Race Bug Example

Figure 2.9 shows an example of a program with a block race bug and an erroneous execution due

to the block race bug. Note that the program should keep balance non-negative. Lines 4–8 of method

void withdraw(long x) are specified as an atomic region, thus the operations that execute lines 4–8

are defined as an operation block. Suppose that there are two threads (th1 and th2) running the bank

account program in Figure 2.9 and balance is initially 10.

Suppose that a block race bug detection technique like PENELOPE [94] (see the 11th row of

Table 2.3) is applied to Figure 2.9. Operations p and p′ are executed by the th1 thread (satisfying

BR1) in the same operation block (satisfying BR2) and access the same variable balance (satisfying

BR3) (see Figure 2.9(b)).

The th2 thread executes q (satisfying BR4) that accesses the same variable balance (satisfying

BR5). Operations p and q conflict with each other and operations q and p′ have a conflict as well

(satisfying BR6) because optr(p) is read while optr(q) is write , and optr(q) is write while optr(p′) is

write (see the fourth column of the 11th row of Table 2.3). Finally, q occurs between p and p′ (satisfying

BR7). Therefore, the execution model for the given execution satisfies all conditions of the block race

bug definition, and thus, the technique detects a block race bug. This execution actually results in an

error by assigning -10 to balance (line 6 in th1), which violates the intention of the program. The error

occurs because the condition check on balance (line 4) and the following update of balance (line 6) are

not guarded by the same synchronized block, which allows a concurrent update of balance (line 6) by

the other thread.

Block Race Bug Detection Techniques

Table 2.3 summarizes the ten block race bug detection techniques [19,53,59,61,76,77,93,94,123]. 8

The four columns of the table are as follows:

• The second column describes the methods to check whether two operations are executed by the same

thread or different threads (BR1 and BR4). All block race bug detection techniques in this survey

utilize thread identifier information observed in actual traces to check the BR1 and BR4 conditions.

• The third column shows the methods to check if two operations access the same variable (BR3 and

BR5). In this survey, all techniques compare concrete memory locations observed in actual traces.

8Our survey does not include Atomizer [32] because Atomizer checks locking patterns rather than data access patterns.

– 25 –

/5

Block Race Bug

2014-04-30 A Survey of Race Bug Detection Techniques for Multithreaded Programs 3

class Account_BR {

Lock L ;
long balance ;
//balance should be always non-negative

long getBalance() {
1: synchronized(L){
2: return balance;
3: }

}

void withdraw(long x) {
//Atomic region begins

4: if (getBalance() >= x) {
5: synchronized(L) {
6: balance=balance - x;
7: }
8: }

//Atomic region ends }

(a) Buggy program code (b) An erroneous execution

-th1: withdraw(10)-

1:lock(L)
2:ret = balance
3:unlock(L)
4:if (ret >=10)

5:lock(L)
6:balance = 0-10
7:unlock(L)

-th2: withdraw(10)-

1’:lock(L)
2’:ret = balance
3’:unlock(L)
4’:if (ret >= 10)
5’:lock(L)
6’:balance = 10-10
7’:unlock(L)

p

q

[Initially, balance:10]

`

p’

Operation block

The invariant is violated as
balance became negative

Figure 2.9: Block race bug example

• The fourth column shows the criteria to determine if two operations executed by different threads

conflict with each other (BR6). The three techniques [77,94,123] consider that two operations conflict

with each other when at least one operation is a write operation, which is denoted as “read-write,

write-read, write-write” in the table. The other seven techniques [19, 53, 59, 61, 76, 93] consider p and

q (or p′ and q) as conflicting with each other if they are “read-write, write-read, write-write′” on a

variable. These techniques consider p and q as not conflicting if they write to a variable m and the

operation block of p has another operation that overwrites m before any read operation (denoted by

write-write′). The techniques with “write-write” conflict follow the notion of conflict-serializability.

The techniques with “write-write′” conflict follow the notion of view-serializablility. 9

• The last column describes the synchronization mechanisms to construct the synchronized order relation

→S to check BR7. For this purpose, six techniques [53,61,76,94,112,123] track lock operations (denoted

by “lock”). The block-based algorithm [112] additionally uses message send/receive operations, and

CTrigger [76] and McPatom [123] consider other synchronization mechanisms including wait-and-

notify, thread creation/join, and barrier to generate more accurate execution models. The other

four techniques [19, 59, 77, 93] approximately check BR7 based on the observed temporal orders of

operations (denoted by “timestamp”) without considering explicit synchronization operations (i.e.,

check if starting time instances of p, q and p′ are in sequence). These four techniques may miss a block

race bug when operation q happens to be executed before p or after p′.

2.3.5 Multi-data race bug detection techniques

The multi-data race bug detection techniques target a race bug that inconsistently updates two asso-

ciated variables specified in the data association specification SDA. This type of race bugs is characterized

by unsynchronized concurrent accesses to the associated variables.

Multi-Data Race Bug Definition

Definition 4. Multi-data Race Bug

9 An in-depth comparison of the algorithmic complexity and bug detection precision for these two notions is found in

Qadeer et al. [80].

– 26 –

Table 2.3: Block race bug detection techniques

Technique
thread() operand() conflict() →S

(BR1, BR4) (BR3, BR5) (BR6) (BR7)

Atom-Aid [61]
runtime runtime

read-write, write-read, write-write′ lock
thread identifier memory address

AtomRace [53]
runtime runtime

read-write, write-read, write-write′ lock
thread identifier memory address

AVIO [59]
runtime runtime

read-write, write-read, write-write′ timestamp
thread identifier memory address

Block-based runtime runtime
read-write, write-read, write-write′

lock, message

algorithm [112] thread identifier memory address send/receive

CTrigger [76]
runtime runtime

read-write, write-read, write-write′
barrier, lock,

thread identifier memory address thread create/join

DefUse [93]
runtime runtime

read-write, write-read, write-write timestamp
thread identifier memory address

FALCON [77]
runtime runtime

read-write, write-read, write-write timestamp
thread identifier memory address

Kivati [19]
runtime runtime

read-write, write-read, write-write′ timestamp
thread identifier memory address

McPatom [123]
runtime runtime

read-write, write-read, write-write lock, wait/notify
thread identifier memory address

PENELOPE [94]
runtime runtime

read-write, write-read, write-write lock
thread identifier memory address

A target program has a multi-data race bug if an execution model of the program 〈Σ, Thread,Mem,→S

, conflict, SOB , SDA〉 satisfies all of the following conditions:

There exist two operations p, q ∈ Σ such that

MR1: thread(p) 6= thread(q)

MR2: (operand(p), operand(q)) ∈ SDA

MR3: conflict(p, q)

MR4: p 6→S q ∧ q 6→S p

2

The MR1, MR3 MR4 conditions are the same as the DR1, DR3, and DR4 conditions of the data race

bug, respectively. The MR2 condition utilizes data association SDA to check if p and q access associated

variables. Section 2.3.7 presents a detailed comparison of the multi-data race bugs and the data race

bugs.

Multi-data Race Bug Example

Figure 2.10 describes an example of a program containing a multi-data race bug and an erroneous

execution caused by the bug. In the example, balance and debt represent the amount of balance and

the amount of debt in a bank account, respectively. The program has an invariant that debt is zero

when balance is positive (i.e., (balance>0)→(debt==0)) and balance is zero when debt is positive

(i.e., (debt>0)→ (balance==0)). Therefore, balance and debt are associated and should be updated

consistently to satisfy the invariant. The deposit(long x) method increases balance by x when debt

is zero (lines 11–14). The withdraw(long x) method increases debt by x when balance is zero (lines

21–24).

– 27 –

/5

Multi‐Data Race Bug

2014-04-30 A Survey of Race Bug Detection Techniques for Multithreaded Programs 4

class Account_MR {
Lock LB, LD ;
long balance, debt; //(balance,debt)∈ ࡰࡿ
// (balance > 0) -> (debt == 0) must hold
// (debt > 0) -> (balance == 0) must hold

(a) Buggy program code (b) An erroneous execution

-th1: deposit(10)-

1: lock(LD)
2: ret = debt;
3: lock(LD)
11:if (ret == 0)

12:lock(LB)
13:balance = 0+10 p

q

[Initially, balance:0, debt:0]

long getBalance(){
4: synchronized(LB){
5: return balance;
6:}}

long getDebt(){
1: synchronized(LD){
2: return debt;
3:}}

void deposit(long x){
11: if(getDebt()==0){
12: synchronized(LB){
13: balance=balance + x;
14: }

}...
}

void withdraw(long x){
21: if(getBalance()==0){
22: synchronized(LD){
23: debt=debt + x;
24: }

}...
}

-th2: withdraw(5)-

4: lock(LD)
5: ret = balance;
6: lock(LD)
21:if (ret == 0)

22:lock(LD)
23:debt = 0+5
24:unlock(LD)

The invariant is violated
as balance is 10 while
debt is 5

Figure 2.10: Multi-data race bug example

Suppose that a multi-data race bug detection technique similar to the object race detection tech-

nique [107] is used (see the fourth row of Table 2.4). Suppose that there are two threads, th1 and th2,

running the bank account program where balance is 0 and debt is 10 initially. Also, suppose that

balance and debt are associated to satisfy the invariant. Operation p on th1 and operation q on th2

(satisfying MR1) access balance and debt respectively (satisfying MR2 as (balance, debt) ∈ SDA). In

addition, p and q conflict with each other, since optr(p) is write and optr(q) is also write (satisfying

MR3). Furthermore, p and q run concurrently without synchronization (satisfying MR4).

Therefore, the given execution scenario satisfies all conditions of the multi-data race bug definition,

and thus, the multi-data race is detected. This execution actually causes an error, since balance becomes

10 and debt becomes 5, which violates the invariant. In other words, the interleaved execution updates

associated variables inconsistently because p and q are protected by different locks.

Multi-data Race Bug Detection Techniques

Table 2.4 gives an overview of the multi-data race bug detection techniques. The columns represent

the following:

• The second column shows that all three multi-data race bug detection techniques in this survey [57,79,

107] use runtime thread identifiers observed in actual traces to check if two operations are executed

by the same thread or not (for checking MR1).

• The third to sixth columns (MR2) represent the type and characteristics of the data association relation

for each technique. Data association for a target execution model is specified as a relation over two

variables. The third to fifth columns show whether or not the data association relation is reflexive (i.e.,

∀a ∈ Mem.(a, a) ∈ SDA), symmetric (i.e., ∀a, b ∈ Mem.(a, b) ∈ SDA → (b, a) ∈ SDA), or transitive

(i.e., ∀a, b, c ∈ Mem.(a, b) ∈ SDA ∧ (b, c) ∈ SDA → (a, c) ∈ SDA), respectively. The sixth column

(“Type”) shows the type of the data association relation used by the technique. MultiRace [79] and

the object data race detection technique [107] construct data association relation as a set of two

memory locations. MUVI-Eraser [57] defines a data association as an ordered pair of variables (i.e.,

not symmetric) with conditions on the access types to the variables (i.e., read or write).

In addition, all three techniques in this category utilize memory locations observed in actual traces

to obtain operand information and check MR2.

• The seventh column shows that all three techniques in this class consider two operations as conflicting

if they access the associated variables and at least one operation is a write operation (MR3).

– 28 –

Table 2.4: Multi-data race bug detection techniques

Technique
thread() SDA (MR2) conflict() →S

(MR1) Ref Sym Tran Type (MR3) (MR4)

MultiRace [79]
runtime

© © ©
pairs of mem. read-write, write-read, lock, thread

thread identifier locations write-write create/join

MUVI-Eraser [57]
runtime

© × ×
ordered pairs of mem. read-write, write-read,

lock
thread identifier locations w/ access types write-write

Object data race runtime
© © ©

pairs of mem. read-write, write-read,
lock

detection [107] thread identifier locations write-write

• The last column represents that all three techniques track lock operations to build a synchronized order

relation →S to check MR4. MultiRace [79] additionally considers thread creation and join.

The methods that these techniques employ to obtain data association are as follows. MultiRace [79]

aggregates continuous shared memory locations allocated for a composite data structure into one cluster

and considers any two memory locations in the cluster as associated. Consequently, the data association

relation becomes an equivalence relation (i.e, transitive, symmetric, and reflexive). Similarly, object

data race detection technique [107] considers members/fields of an object as associated data. These two

techniques obtain the data association specification from data structures declared in a target program.

MUVI [57] utilizes data association specification inferred by a heuristic that considers two variables as

associated if they are frequently accessed in close distance.

2.3.6 Multi-data block race bug detection techniques

This section presents the definition of multi-data block race bug, and 13 techniques that target the

multi-data block race bug. A multi-data block race bug consists of two operations within an operation

block and another operation that runs concurrently with the two operations that access associated

variables in unsynchronized manner. The race bug detection techniques in this category detect multi-

data block race bugs that violate combined specifications of operation blocks and data associations.

Multi-data Block Race Bug Definition

Definition 5. Multi-data Block Race Bug

A program has a multi-data block race bug if an execution model of the program 〈Σ, Thread,Mem,→S

, conflict, SOB , SDA〉 satisfies all of the following conditions:

There exist three operations p, p′, q ∈ Σ such that

MBR1: thread(p) = thread(p′)

MBR2: (p, p′) ∈ SOB

MBR3: (operand(p), operand(p′)) ∈ SDA

MBR4: thread(p) 6= thread(q)

MBR5: (operand(p), operand(q)) ∈ SDA ∧ (operand(q), operand(p′)) ∈ SDA

MBR6: conflict(p, q) ∧ conflict(q, p′)

MBR7: q 6→S p ∧ p′ 6→S q

– 29 –

/5

Multi‐Data Block Race Bug

2014-04-30 A Survey of Race Bug Detection Techniques for Multithreaded Programs 5

class Account_MBR {
Lock L;
long balance, debt; //(balance,debt)∈ ࡰࡿ
// (balance > 0) -> (debt == 0) must hold
// (debt > 0) -> (balance == 0) must hold

(a) Buggy program code (b) An erroneous execution

-th1: withdraw(5)-

1:lock(L)
2:ret=balance
3:lock(L)
11:if(ret==0)

12:lock(L)
13:debt=debt+5
14:unlock(L)

p

q

[Initially, balance:0, debt:10]

long getBalance(){
1: synchronized(L){
2: return balance;
3:}}

void withdraw(long x){
//Atomic region begins

11: if(getBalance()==0){
12: synchronized(L){
13: debt = debt + x;
14: }

}...
//Atomic region ends}

void deposit(long x){
21: synchronized(L){
22: if(balance==0){
23: if(debt < x){
24: balance=x-debt;
25: debt = 0;}}
26: ...
27:}}

-th2: deposit(20)-

21:lock(L)
22:if(balance==0)
23:if(debt < 20)
24:balance=20-10
25:debt=0

...
27:unlock(L)

p’

Operation block

The invariant is violated
since balance is 10
while debt is 5

Figure 2.11: Multi-data block race bug example

2

The MBR1–MBR3 conditions specify that operations p and p′ should be executed by the same

thread (MBR1) within the same operation block (MBR2), and the operand(p) and operand(p′) are data

associated (MBR3). The MBR4–MBR7 conditions check if there exists an operation that can be executed

by another thread (MBR4), between p and p′ (MBR7), and the operation can interfere with the data

association of p and p′ (MBR5 and MBR7).

There exist techniques that have additional condition for MBR5. The five techniques [17,35,66,111,

116] additionally check if the operands of p and q (or the operands of q and p′) should be the same. Other

two techniques [5, 106] detect three operations as a multi-data race bug only if at least two associated

variables are involved with the three operations.

The multi-data block race bug definition is an extension of the block race bug definition (Definition 3)

to check additional conditions on data association relations, in a way similar to the multi-data race bug

definition (Definition 4). The MBR1, MBR2, MBR4, MBR6, and MBR7 conditions are identical to

the BR1, BR2, BR4, BR6, and BR7 conditions in the block race bug definition. The MBR3 and

MBR6 conditions are adapted from MR2 to check if variables accessed by two operations are associated.

Section 2.3.7 presents a detailed comparison of block race bug and multi-data block race definitions.

Similarly, the comparison of the multi-data race bug definition with the multi-data block race bugs is

presented in Section 2.3.7.

Multi-data Block Race Bug Example

Figure 2.11 shows an example of a multi-data block race bug. The concurrent execution causes an

error because operations p and p′ that access two associated variables (balance and debt) should be

synchronized as a whole but separately. Thus, because of the intervening q of th2, the values of balance

and debt are updated inconsistently and violate the invariant.

Multi-data Block Race Detection Techniques

Table 2.5 is an overview of 13 multi-data block race detection techniques.

• The second column shows that the ten techniques with “runtime thread identifier” use the informa-

tion of thread identifiers observed in actual traces to check the MBR1 condition [5, 17, 35, 39, 57, 60,

– 30 –

66, 97, 111, 116]. The other three techniques [6, 24, 106] consider that two operations of two public

methods/functions can be executed by different threads.

• The third to sixth columns show the properties of data association relation SDA in each technique (for

checking MBR3 and MBR5). The data association relations used by the three techniques [39, 60, 97]

are reflexive, transitive, and symmetric. Thus, the data association relation of an execution model

can be represented as a set of partitions of memory locations. For example, an atomic-set [39, 104]

defines a set of member fields of an object as associated. The sixth column shows that the three

techniques [24, 57, 106] generate the data association relation by specifying two variables with access

types (read or write).

• The seventh column represents the method to obtain operand information for each technique to check

the MRB3 and MBR5 conditions. The eight techniques with “runtime mem.” [35, 39, 57, 60, 66, 97,

111, 116] use runtime memory addresses observed in actual traces. The four techniques with “code

analysis” use static analysis to estimate operand information. HAVE [17] utilizes a hybrid method

that use both runtime trace and code analysis result.

• The eighth column shows that the four techniques [5,6,24,106] consider that two operations accessing

associated variables conflict with each other (MBR6) regardless of their types. Other eight tech-

niques [17,35,39,60,66,97,111,116] consider two operations as conflicting, when at least one operation

is a write operation. MUVI-AVIO [57], an extension of AVIO [59], does not consider two write opera-

tions p and q as conflicting, when another write operation in the same operation block as p overwrites

the variable before any read (denoted by write-write′).

• The last column shows that the eight techniques with “lock” [5,6,17,24,35,106,111,116] obtain synchro-

nized order relations by tracking lock synchronization (MBR7). In addition to tracking lock ordering,

COPPER [116] considers thread creation/join and wait/notify. The commit-node algorithm [111] and

HAVE consider the execution order induced by message send/receive, to build the synchronized order

→S . The five techniques with “timestamp” [39, 57, 60, 66, 97] use the observed temporal ordering of

operations to generate the synchronization order relation without considering explicit synchronization

instructions (i.e., p →S q if timestamp(p) < timestamp(q)). Since these methods over-approximate

the synchronization relation, the five techniques may miss existing multi-data block race bugs.

The multi-data block race bug detection techniques use different methods to obtain data association

specification. First, the three techniques [39, 60, 97] ask users to concretely specify the data association

specification. The other techniques use program analysis or heuristics to infer data association relations

from the target program code or observed runtime traces. Dias et al. [24] analyze the target program

code to identify control dependency and data dependency relation in shared variable accesses, and then

consider two variables with data dependency or control dependency as associated. MUVI-AVIO [57]

infers likely data association relations by analyzing statistics on the variable accesses in the target

program code. The other techniques [5,6,17,24,35,66,106,111,116] consider two variables accessed in an

operation block as data associated. The block-local atomicity technique [6] defines two variables x and

y as associated when the two variables are accessed in the same method and there exists a local variable

that is assigned by the value of x and then used to define y.

2.3.7 Relations between race bug classes

Based on the formal definitions of the four classes of race bugs, it is possible to clarify the relation

among the four classes of race bugs using the following notations:

– 31 –

Table 2.5: Multi-data block race detection techniques

Technique
thread() SDA (MBR3, MBR5) operand() conflict() →S

(MBR1, MBR4) Ref Sym Tran Type (MBR3, MBR5) (MBR6) (MBR7)

Atomic-set serial. runtime
© © ©

pairs of mem.
runtime mem.

read-write, write-read,
timestamp

violation detector [39] thread identifier locations write-write

AtomTracker [66]
runtime

© © ×
pairs of mem.

runtime mem
read-write, write-read,

timestamp
thread identifier locations write-write

Block-local static
© × ×

ordered pairs of
code analysis

read-read, read-write,
lock

atomicity [6] approximation mem. locations write-read, write-write

ColorSafe [60]
runtime

© © ©
pairs of mem.

runtime mem.
read-write, write-read,

timestamp
thread identifier locations write-write

Commit-node [111]
runtime

© © ×
pairs of mem.

runtime mem.
read-write, write-read lock, message

thread identifier locations write-write send/receive

COPPER [116]
runtime

© © ×
pairs of mem.

runtime mem.
read-write, write-read, lock, wait/notify,

thread identifier locations write-write thread create/join

Dias et al. [24]
static

© × ×
ordered pairs of mem.

code analysis
read-read, read-write,

lock
approximation locations w/ access types write-read, write-write

HAVE [17]
runtime

© © ×
pairs of mem. runtime mem., read-write, write-read lock, message

thread identifier locations code analysis write-write send/receive

High-level data runtime
© © ×

pairs of mem.
code analysis

read-read, read-write,
lock

race detection [5] thread identifier locations write-read, write-write

Marathon [97]
runtime

© © ©
pairs of mem.

runtime mem.
read-write, write-read,

timestamp
thread identifier locations write-write

Method- static
© © ×

pairs of mem.
code analysis

read-read, read-write,
lock

consistency [106] approximation locations w/ access type write-read, write-write

MUVI-AVIO [57]
runtime

© × ×
ordered pairs of mem.

runtime mem.
read-write, write-read,

timestamp
thread identifier locations w/ access type write-write′

Velodrome [35]
runtime

© © ×
pairs of mem.

runtime mem.
read-write, write-read,

lock
thread identifier locations write-write

Data race
bugs

Figure2.14Figure2.13 Figure 2.9

Figure 14

Figure 13
Figure 9

Figure 8 Figure 10

Figure 13 Figure 10

Figure 18 Figure 11Figure 9 Figure11

Block race
bugs

Data race
bugs

Multi-data race
bugs

Multi-data race
bugs

Multi-data block
race bugs

Block race
bugs

Multi-data block
race bugs

Figure 2.12: Relation between data race bugs and block race bugs

• Fα denotes a conjunctive formula of all conditions of α race bug definition, where α ∈ {DR, BR,

MR, MBR} representing classes of data race bugs, block race bugs, multi-data race bugs, and

multi-data block race bugs, respectively.

• fc denotes a condition c of a race bug definition, where c ∈ {DR1, DR2, DR3, DR4}∪{BR1, BR2,

BR3, BR4, BR5, BR6, BR7}∪{MR1, MR2, MR3, MR4}∪{MBR1, MBR2, MBR3, MBR4, MBR5,

MBR6, MBR7}

• φα denotes the set of execution models satisfying Fα. For every execution model σ, σ |= Fα if and

only if σ ∈ φα. φCα denotes the complement of the set φα. φCα defines the set of execution models

that satisfies ¬Fα.

– 32 –

/5

Data Race but not Block Race Bug

2014-04-30 A Survey of Race Bug Detection Techniques for Multithreaded Programs 6

class FileSystem{
Lock L ;
long n_cache ;
Data [] cache ;

flush_daemon(){
//Atomic region begins

1: if (n_cache > 0){
2: synchronized(L){
3: flush(cache) ;
4: n_cache = 0 ;
5: }
6: }...

//Atomic region ends }

(a) Buggy program code (b) An erroneous execution

-th1:flush_daemon()-

1:if(n_cache > 0)

6: ...

-th2:writed_data(d)-

11:lock(L)
12:cache[n_cache]=d
13:n_cache++
14:unlock(L)

p

q

[Initially, n_cache:0]

Operation block

No operation to match ′

write_data(Data d){
...

11: synchronized(L){
12: cache[n_cache]=d;
13: n_cache++ ;
14: }
}

Figure 2.13: Example of a data race bug not detected by block race bug detectors

Data race bugs vs. block race bugs

The set of execution models that satisfy the data race bug condition (i.e., φDR) overlaps with the

set of execution models that satisfy the block race bug conditions (i.e., φBR). Figure 2.12 describes the

relation of φDR and φBR, and the examples correspond to each region of the diagram. We can prove the

relation by showing that φDR 6⊆ φBR, φDR ∩ φBR 6= ∅, and φBR 6⊆ φDR.

Theorem 1. φDR 6⊆ φBR
Proof. φDR 6⊆ φBR holds if and only if φDR∩φCBR 6= ∅. φDR∩φCBR 6= ∅ holds if and only if FDR∧¬FBR is

satisfiable (i.e., there exists an execution model σ such that ∃p, q, p′ ∈ Σ.FDR∧¬FBR). We can rewrite the

formula as follows: FDR∧¬(fBR4∧fBR5∧fBR1∧fBR2∧fBR3∧fBR6∧fBR7). This formula is satisfiable

if and only if there exists an execution model that satisfies FDR ∧¬(fBR1 ∧ fBR2 ∧ fBR3 ∧ fBR6 ∧ fBR7)

because FDR ∧ ¬(fBR4 ∧ fBR5) is unsatisfiable as fDR1 = fBR4 and fDR2 = fBR2. Thus, φDR 6⊆ φBR

holds if there exists an execution model that has two operations p and q which satisfy the data race bug

definition FDR, while the execution model has no operation for p′ in the operation block that contains p.

Figure 2.13 illustrates a program with an execution scenario which has a data race bug but no block

race bug. A data race bug detection technique such as Eraser [84] detects a data race bug for p and

q because these read and write the variable n cache without synchronization. However, block race bug

detection techniques such as AVIO [59] do not detect any block race bug for p and q because the execution

model has no operation to match p′.

φDR ∩ φBR 6= ∅
Proof. φDR ∩φBR 6= ∅ holds if and only if the following formula is satisfiable: FDR ∧FBR. This formula

is equivalent to FDR ∧ fBR1 ∧ fBR2 ∧ fBR3 ∧ fBR6 ∧ fBR7 as DR1 = BR4 and DR2 = BR5. Figure 2.14

describes an example that belongs to the intersection of φDR and φBR, which extends the example of

Figure 2.8 by adding an operation block specification. A block race bug detection technique can detect

operations p, p′ and q as a race bug because p and p′ belong to the same operation block of thread th1

(satisfying BR1 and BR2), all three operations access the same variable balance (satisfying BR3), q and

p′ conflict with each other as both operations are writing (satisfying BR6), and q can run concurrently

with p and p′ (satisfying BR7).

φBR 6⊆ φDR
Proof. φBR 6⊆ φDR holds if and only if φBR ∩ φCDR 6= ∅. The relation holds if and only if the following

formula is satisfiable: FBR∧¬FDR. The formula is equivalent to the formula FBR∧¬fDR4 because DR1

– 33 –

/5

Data Race Bug And Block Race Bug

2014-04-30 A Survey of Race Bug Detection Techniques for Multithreaded Programs 7

class Account_DR_and_BR {
long balance ;
//balance should be always non-negative

void withdraw(long x) {
//Atomic region begins

1: if (balance >= x) {
2: balance = balance - x;}

...
//Atomic region ends}}

(a) Buggy program code (b) An erroneous execution

-th1: withdraw(10)-

1:if(balance>=10)

2:balance=0-10

-th2: withdraw(10)-

1’:if(balance>=10)

2’:balance=10-10

p
q

[Initially, balance:10]

p’

Operation block
Operation block

The invariant is violated
as balance became
negative

Figure 2.14: Example of a data race bug detected by block race bug detectors

Data race
bugs

Figure 14Figure13 Figure 9

Figure 14

Figure 13
Figure 9

Figure 2.8
Figure 2.10

Figure 13 Figure 10

Figure 18 Figure 11Figure 9 Figure11

Block race
bugs

Data race
bugs

Multi-data race
bugs

Multi-data race
bugs

Multi-data block
race bugs

Block race
bugs

Multi-data block
race bugs

Figure 2.15: Relation between data race bugs and multi-data race bugs

= BR4, DR2 = BR5, and BR6 implies DR3 (i.e., ∀σ.σ |= fBR6 ⇒ σ |= fDR3). Figure 2.9 shows an

example which has a block race bug but no data race bug. The data race bug detection techniques do not

detect the data race bug in Figure 2.9 since p and q are synchronized (similarly, q and p′). 2

The practical implication of Theorem 1 is that it is a good idea to use data race bug detectors and

block race bug detectors together as complements since data race bug detectors cannot detect all block

race bugs, and vice versa.

Data race bugs vs. multi-data race bugs

Figure 2.15 shows that the class of data race bugs is a proper subset of the class of multi-data race

bugs. We can prove this relationship using the race bug definitions.

Theorem 2. φDR ⊂ φMR

Proof. φDR ⊆ φMR holds if and only if φDR∩φCMR = ∅. φDR∩φCMR = ∅ holds if and only if FDR∧¬FMR

is unsatisfiable. FDR ∧ ¬FMR is unsatisfiable if fDR2 ∧ ¬fMR2 is unsatisfiable because DR1 = MR1,

DR3 = MR3, and DR4 = MR4. DR2 implies ∃v.(v, v) ∈ SDA ∧ v = operand(p) = operand(q) (since

∀v.(v, v) ∈ SDA). Note that if opernad(p) = operand(q), fMR2 = ∃v.(v, v) ∈ SDA ∧ v = operand(p) =

operand(q). Thus, fDR2∧¬fMR2 is unsatisfiable and FDR∧¬FMR is unsatisfiable. Thus, φDR∩φCMR = ∅
and φDR ⊆ φMR hold.

In addition, it is clear that there exists an execution model that satisfies the multi-data race bug

definition but not the data race bug definition (for example, Figure 2.10). Thus, the class of data race

bugs is a proper subset of the class of multi-data race bugs.

– 34 –

Figure 2.14

Figure 2.9
Figure 2.11

Block race
bugs

Multi-data block
race bugs

Figure 2.16: Relationship between block race bugs and multi-data block race bugs

Data race
bugs

Figure 14Figure13 Figure 9

Figure 2.14

Figure 2.13
Figure 2.9

Figure 8 Figure 10

Figure 13 Figure 10

Figure 2.18 Figure 2.11Figure 9 Figure11

Block race
bugs

Data race
bugs

Multi-data race
bugs

Multi-data race
bugs

Multi-data block
race bugs

Block race
bugs

Multi-data block
race bugs

Figure 2.17: Relationship between multi-data race bugs and multi-data block race bugs

2

Block race bugs vs. multi-data block race bugs

Figure 2.16 shows that the class of the block race bug is a proper subset of the class of the multi-data

block race bug. We can prove this relation using the race bug definitions.

Theorem 3. φBR ⊂ φMBR

Proof. φBR ⊆ φMBR holds if and only if φBR ∩ φCMBR = ∅. φBR ∩ φCMBR = ∅ holds if and only if

FBR ∧ ¬FMBR is unsatisfiable. As BR1 = MBR1, BR2 = MBR2, BR4 = MBR4, BR6 = MBR6, and

BR7 = MBR7, FBR ∧ ¬FMBR is unsatisfiable if (fBR3 ∧ fBR5 ∧ ¬fMBR3) ∨ (fBR3 ∧ fBR5 ∧ ¬fMBR5)

is unsatisfiable. BR3 indicates ∃v.(v, v) ∈ SDA ∧ v = operand(p) = operand(q) (since ∀v.(v, v) ∈ SDA).

Note that if operand(p) = operand(q), fMBR3 = ∃v.(v, v) ∈ SDA ∧ v = operand(p) = operand(q). Thus,

fBR3 ∧ ¬fMBR3 is unsatisfiable and fBR5 ∧ ¬fMBR5 is also unsatisfiable for the similar reason. As a

result, FBR ∧ ¬FMBR is unsatisfiable.

In addition, it is clear that there exists an execution model that satisfies a multi-data block race bug

definition but not the block race bug definition (for example, Figure 2.11). Thus, the class of block race

bugs is a proper subset of the class of multi-data block race bugs.

2

– 35 –

/5

Multi‐Data Race Bug

2014-05-02 A Survey of Race Bug Detection Techniques for Multithreaded Programs 8

class Account_MR_MBR {
Lock LB, LD ;
long balance, debt; //(balance,debt)∈ ࡰࡿ
// (balance > 0) -> (debt == 0) must hold
// (debt > 0) -> (balance == 0) must hold

(a) Buggy program code (b) An erroneous execution

-th1: deposit(10)-

1: lock(LD)
2: ret = debt
3: lock(LD)
11:if (ret == 0)

12:lock(LB)
13:balance = 0+10 q

p’

[Initially, balance:0, debt:0]

long getBalance(){
4: synchronized(LB){
5: return balance;
6:}}

long getDebt(){
1: synchronized(LD){
2: return debt;
3:}}

void deposit(long x){
11: if(getDebt()==0){
12: synchronized(LB){
13: balance=balance+x;
14: }

}...
}

void withdraw(long x){
//Atomic region begins

21: if(getBalance()==0){
22: synchronized(LD){
23: debt=debt+x;
24: }

}...
//Atomic region ends}

-th2: withdraw(5)-

4: lock(LD)
5: ret = balance
6: lock(LD)
21:if (ret == 0)

22:lock(LD)
23:debt = 0+5
24:unlock(LD)

Operation block

The invariant is violated
as balance is 10 while
debt is 5

p

Figure 2.18: Example of a multi-data race bug detected by multi-data block race bug detectors

Multi-data race bugs vs. multi-data block race bugs

The class of the multi-data race bug φMR overlaps the class of the multi-data block race bug φMBR

as shown in Figure 2.17. We can prove the relation of φMR and φMBR by showing that φMR 6⊆ φMBR,

φMR ∩ φMBR 6= ∅, and φMBR 6⊆ φMB .

Theorem 4. φMR 6⊆ φMBR

Proof. φMR 6⊆ φMBR holds if and only if FMR ∧ ¬FMBR is satisfiable. The formula is equivalent

to FMR ∧ ¬(fMBR1 ∧ fMBR2 ∧ fMBR3 ∧ fMBR7) because MBR4 = MR1, MBR5 implies MR2 (i.e.,

∀σ.σ |= fMBR5 ⇒ σ |= fMR2), and MBR6 implies MR3 (i.e., ∀σ.σ |= fMBR6 ⇒ σ |= fMR3). Figure 2.13

is an example that has a multi-data race bug, but no multi-data block race bug since no operation matches

p′ in the operation block of p.

φMR ∩ φMBR 6= ∅
Proof. We can prove this statement by using Theorems 1, 2, and 3. φDR ⊆ φMR (Theorem 2) and

φBR ⊆ φMBR (Theorem 3) imply that φDR ∩ φBR ⊆ φMR ∩ φMBR. Thus, φMR ∩ φMBR 6= ∅ because

φDR ∩ φBR 6= ∅ (Theorem 1). Figure 2.18 describes the case for φMR ∩ φMBR, which has the same

code and execution as Figure 2.10. The multi-data race bug detectors detect two operations p and q as

a multi-data race bug because these operations access balance and debt from different threads without

synchronization. In addition, the multi-data block race detection techniques can detect operations p, p′

and q as a multi-data block race bug because these operations manipulate associated variables balance

and debt without synchronization.

φMBR 6⊆ φMR

Proof. φMBR 6⊆ φMR holds if and only if there exists an execution model that satisfies FMBR ∧ ¬FMR.

This formula is satisfiable if and only if FMBR ∧ ¬fMR4 because MBR4 = MR1, MBR5 implies MR2

(i.e., ∀σ.σ |= fMBR5 ⇒ σ |= fMR2), and MBR6 implies MR3 (i.e., ∀σ.σ |= fMBR6 ⇒ σ |= fMR3).

Figure 2.11 shows a case where the generated execution model has a multi-data block race bug involving

p, q, p′, but no multi-data race bug. Since operations p, p′, q are ordered with synchronization, multi-data

race bug detectors cannot detect these as a race bug. 2

– 36 –

2.3.8 Other work on race bug survey

There are a few survey papers on race bugs and race bug detection techniques. Netzer et al. [70]

formalizes two classes of race conditions, namely “general races” and “data races”. However, the formal-

ism in Netzer et al. [70] is too simple to characterize the recently proposed complex race bug detection

techniques such as multi-data block race bug detection techniques. Raza [81] surveys a dozen data

race detection techniques, all of which belong to the class of data race bug detection techniques (see

Section 2.3.3). Schimmel et al. [85] presents an empirical evaluation of bug detection capabilities of

two data race bug detection tools on real-world concurrent programs. Wang et al. [111] and Qadeer

et al. [80] present formal specifications of correctness criteria to detect race bugs. Violations of these

correctness criteria correspond to the multi-block race bugs (see Section 2.3.6). Flanagan and Freund

present a dynamic analysis framework, RoadRunner [34], that serves as a common platform to facilitate

implementation of various race bug detection techniques for Java programs. They demonstrate that 11

race bug detection techniques could be implemented using RoadRunner.

Compared to those surveys, this paper systematically characterizes and classifies various race bug

detection techniques of broader ranges (i.e., 43 race bug detection techniques) by using a formal execution

model. I have presented formal definitions of the four classes of race bugs and analyzed the 43 race bug

detection techniques according to their target race bug definitions. In addition, this survey analyzes and

demonstrates the relations among race bugs of different classes (see Section 2.3.7). Furthermore, this

survey reviews recently developed techniques such as multi-data race bug detection techniques.

There exist several survey papers on concurrent program analysis topics other than race bug de-

tections for multithreaded programs. Tchamgoue et al. [99] surveys techniques for bug detection and

debugging in event-driven programs and summarizes the terminologies in the techniques. Helmbold et

al. [40] summarizes the concepts of the race bug detection techniques for parallel programs and presents

a classification with respect to the characteristics of target program structure (e.g., loop, synchronization

operations). Souza et al. [95] gives an overview of more than 50 papers on concurrent program analysis

techniques. However, the paper includes only four papers on static/dynamic race bug detection tech-

niques. Fiedor et al. [30] describes various concurrency errors including data races, atomicity violations,

deadlock, livelocks, etc. and the corresponding bug detection techniques. However, the paper mentions

only a few techniques briefly (less than 10 techniques summarized in one page) and does not analyze race

bugs and detection techniques in detail. Lu et al. [58] reports a survey on the concurrency bugs from

real software projects such as bug patterns, bug triggering conditions, and bug fix strategies. However,

the paper does not analyze concurrency bug detection techniques. Bradbury et al. [10] compiles a set

of Java concurrency bug patterns from the literature. Long et al. [55] presents a classification of Java

concurrency bugs by using a Petri-net diagram. In contrast to the aforementioned works, this survey

concentrates on the various race bug detection techniques for multithreaded programs.

2.4 Test generation techniques for multithreaded programs

Researchers have proposed automated testing techniques for multithreaded programs which can be

categorized into three kinds of techniques: random noise injection-based test generation technique, bug-

directed test generation techniques, and systematic test generation techniques. In this section, I describe

each of the three kinds of multithreaded test generation techniques, and discuss the current limitation in

generating effective and efficient tests for real-world multithreaded programs. In addition, I will discuss

– 37 –

the existing approach for the coverage-based test generation.

In this section, I do not cover the input data generation techniques for multithreaded programs

(e.g. jCUTE [89]) since only few such techniques exist and test input generation is orthogonal to thread

schedule generation.

2.4.1 Random noise injection-based testing techniques

Random noise injection-based test generation techniques insert artificial noises in a target program

code to perturb thread schedules in executions. As a noise, some techniques inject sleep operations of

random periods of time, or context-switching operations (i.e., yield()). In addition, a noise can be set

to occur in a certain probability, in order to increase diversity in noise. These techniques insert noise-

injecting probes before/after an operation whose execution order affects the target program behavior.

(i.e., synchronization operation, or shared variable accesses)

ConTest [27] is a multithreaded Java testing framework based on noise injection techniques. ConTest

instruments a target program for inserting random sleeping as noise probes before/after synchronization

and shared variable access operations. In addition, ConTest utilizes static analyses to predict concurrency

bugs, and then insert probes at the predicted bugs to produce error-inducing thread schedules efficiently.

Moreover, ConTest also utilizes the coverage feedback for determining effectiveness noise configurations

at test generation [51,102]. Rstest [96] is another noise injection based technique for multithreaded Java

programs. Rstest uses yield operation as noise probe instead of sleep to reduce unnecessary slowdown in

execution time when artificial sleep noises are used.

Random noise injection based testing techniques indirectly induce a target program to generate

various concurrent behaviors, rather than controlling thread schedules explicitly. Thus, they can be used

for detecting any type of concurrency errors. As these techniques do not use sophisticated analyses on the

target programs, random noise injection-based techniques can be used for testing of multithreaded Java

programs with complicated synchronization (e.g., ad-hoc synchronization mechanism), or the programs

where only partial code/binary is available.

However, random noise injection-based techniques are not effective for detecting corner-case concur-

rency errors and they are ineffective for concurrency error detections in general. Due to random nature

of thread schedule generation, there exists no guarantee that they will explore subtle thread schedules

progressively. As a consequence, these techniques may be not effective for detecting concurrency errors

that hide under subtle thread schedules, although test generation continues for a large amount of time.

Second, injected noises incurs significant runtime overhead in test executions, which degrade testing

efficiency. Last, the performance for testing an arbitrary target program depends largely on noise injec-

tion configuration (e.g., noise type, randomness parameters); however, there are no method to find best

configurations before test generation starts.

2.4.2 Bug-directed testing techniques

The active testing techniques generate test executions by manipulating the execution orders of spe-

cific operations in runtime of test executions. These techniques aim to generate specific thread schedules

that seem useful for discovering concurrency errors. An active testing technique selects the targeted op-

erations based on concurrency bug prediction results or coverage metrics before test generation. In the

test generation phase, an active testing technique generates the specific execution orders of the selected

operations, that are expected to induce targeted concurrency behaviors.

– 38 –

CalFuzzer [48] is a bug-directed active testing technique that utilizes concurrency bugs predicted by

a data race detector [88], an atomicity violation detector [75], and a deadlock detector [49] as test targets.

For each type of concurrency bugs, CalFuzzer uses a specific thread schedule algorithm to generate error-

inducing thread schedules. PECAN [46] is another bug-directed active testing technique which targets

more kinds of concurrency bugs than CalFuzzer.

The main challenge for the bug-directed testing technique is the quality of generated test targets.

The fault detection capability of an active testing technique depends on the kinds of test targets. Unless

a technique selects the operations related to a concurrency error, the technique is not effective to generate

the thread schedules related to the concurrency error. For this reason, the bug-directed active testing

techniques are inherently not capable of detecting general concurrency errors which do not correspond

to any predefined patterns.

2.4.3 Systematic testing techniques

The systematic test generation techniques for multithreaded programs generate thread schedules by

manipulating all execution orders of operations in a test execution. These techniques intercept every

execution of the operations related to concurrent behavior of a target programs to control exact orders

of their executions. As a result, these techniques generate a finite sequence of concurrency operations for

a test execution. If a test explores all possible operation sequences for a multithreaded program with a

given input data, the test can detect all existing concurrency errors, or guarantee that there is no error.

For this reason, the systematic test generation techniques are often called as stateless model checkers as

these techniques do not store visited states.

A challenge in the systematic test generation techniques is that the number of possible operation

sequences grows exponentially with respect to the multithreaded program size, and thus, for most real-

world programs, there are an enormously large number of possible sequences. To resolve this challenge, a

systematic test generation technique has a search strategy that aim to generate useful operation sequences

for detecting concurrency errors cost-effectively. In high-level, there are three types of search strategies:

reduction, selection, and prioritization.

• Reduction strategies. The techniques with the reduction strategies check whether or not two

operation sequences are semantically equivalent, and avoid generating equivalent sequences since

their testing results are redundant. RAPOS [87] is a systematic test generation technique that

generates random operation sequences while its search strategy leverages a dynamic partial order

reduction algorithm to reduce useless effort for randomizing independent concurrent operations.

• Selection strategies. The selection strategies lead generated thread schedules to satisfy a certain

condition which provides usefulness of the generated thread schedules. The techniques with the

selection strategies first define the targeting thread schedule conditions before test generation.

And then, the techniques generate the thread schedule decision if it makes the execution satisfy

the predefined condition. Inspect [110] uses a concurrency bug detector such as data race detector

to identify concurrency bugs, and then the search strategy leads an execution to cover an error-

inducing thread schedule of a predicted concurrency bug. Fusion [109] uses the HaPSet coverage

metrics to create the targeted conditions, and then generates each thread schedule to cover new

HaPSet test requirements. One drawback is that the tests generated with the search strategy are

not able to detect the concurrency errors if the errors do not correspond to the predefined target

– 39 –

condition. Therefore, the techniques with the selection strategies are useful only for detecting

concurrency errors of specific types.

• Prioritization strategies. A prioritization strategy arranges thread schedules with respect

to certain criteria, and then generate test executions according to the thread schedule in the

order. Most prioritization criteria assign a higher priority to a simpler thread schedule, such that

a generated test first explores comprehensive executions under simple thread schedules, and then

gradually explores more executions with complicated thread schedules. The intuition behind these

strategies is that many concurrency errors can be detected with simple thread schedules. Thus,

it is cost-effective to explore check for the comprehensive cases of simple thread schedules before

complicated thread schedules. The context-bounded search strategy counts the number of context-

switches in an operation sequence, and gives a higher priority to an operation sequence with a

less number of context-switches [65]. PCT leverages the context-bounded search strategy with

randomness to provide a guarantee to detect concurrency errors of a certain complexity with a

certain probability [12]. The delay-bounding search strategy measures the difference between an

operation sequence and the operation sequence with a round-robin scheduling, and give a higher

priority to a sequence with less difference [28]. The empirical studies imply that these search

strategies are effective because most concurrency errors are detected with simple thread schedules.

Despite the efforts to cover the thread schedule space of a target program efficiently, the systematic

test generation techniques to date are not not effective with large target programs at detecting concur-

rency errors. Although they can detect all existing concurrency errors with unlimited testing time, these

techniques can only explore limited space of thread schedule within realistic bound of time and memory

resources. Furthermore, the runtime overhead for generating each test execution is large, thus these

techniques would not be cost-effective for detecting concurrency errors in a large-scale multithreaded

program.

2.4.4 Coverage-based test generation

Maple [120] uses a concurrency coverage metric iRoot which generates a test requirement consists

of two to four instructions. Maple utilizes a dynamic analyzer to obtain the target test requirements

which are expected to be achievable. For each test execution, Maple chooses one of the uncovered test

requirements per test generation, and controls the execution order of the operations that are related to

the chosen test requirement to satisfy the test requirement.

For the coverage-based testing techniques, the quality of test targets depends on the adequacy of the

target coverage metric, and the method to obtain achievable test requirements. The iRoot metric used

by Maple generates test requirements to capture one or two thread interactions between two threads.

Maple predicts achievable iRoot test requirements of a target program based on the dynamic analysis

result prior to a test generation. However, there is no evidence that the iRoot metric generates sufficient

test requirements to suitable for detecting general concurrency errors. Moreover, there is no guarantee

that all achievable test requirements are predicted by the dynamic analysis.

Maple is the only coverage-based test generation to the best of my knowledge, and most closely

related to the coverage-based testing techniques to be presented in a later chapter. More comparisons of

my technique with Maple will be found in Section 4.6.3.

– 40 –

Chapter 3. Empirical Evaluation of Concurrency

Coverage Metrics

3.1 Introduction 1

Concurrent coverage criteria define a set of test requirements for a multithreaded program, which

enumerates a set of possible interleavings of synchronization operations or shared variable accesses. As

similar to branch and statement coverage criteria, concurrent coverage criteria aim to allow testers to

estimate how well they have exercised concurrent program behaviors.

The intuition behind all concurrent coverage criteria is that as more test requirements relative to

the criteria are satisfied, the testing process is more likely to detect faults. Thus, to maximize the

effectiveness of testing processes, researchers create test adequacy criteria based on these metrics, and

develop techniques to satisfy them. The development of such techniques has long been an active area of

research in the context of structural coverage metrics for single threaded programs [14, 37, 74, 101], and

as multithreaded programs have become more common the development of techniques centered around

concurrent coverage criteria has also become an active area of research [27,41,51,109].

Unfortunately, the intuition behind concurrent coverage criteria remains largely unexplored. While

a large body of evidence exists exploring the impact of the coverage criteria invented for single threaded

programs on testing effectiveness (e.g., [4, 69, 124]), we are aware of no study rigorously examining the

impact of concurrent coverage criteria. We expect that increasing coverage relative to these criteria

will improve testing effectiveness, but we also expect that it will increase test suite size. Thus we

must ask: does improving concurrent coverage directly lead to a more effective testing process, or is it

merely a byproduct of increasing test suite size? Further, if improving coverage does lead to increased

testing effectiveness what practical gains in testing effectiveness can we expect? Finally, based on the

effectiveness of the current state of the art concurrent coverage metrics, what steps should be taken with

respect to continuing the development of test case generation techniques for concurrent coverage criteria?

In researches on concurrent coverage criteria, the effectiveness of achieving high coverage has been

argued for primarily through analytical comparisons between coverage definitions and concurrency fault

pattern, such as those involving data races and atomicity violations [56,102,109] (see Section 2.2.3). Our

study’s scope is more comprehensive, encompassing twelve case examples and eight concurrent coverage

criteria, and we apply a broader set of analyses.

To explore these questions, we studied the application of eight concurrent coverage criteria (see Sec-

tion 3.2) in testing twelve concurrent programs. For each program and metric pair, we used a randomized

test case generation process to generate 90,000 test suites with varying levels of size and coverage, and

measured the relationships between the percentage of test requirements satisfied, the number of test ex-

ecutions, and the fault detection ability of test suites via correlation and linear regression. Additionally,

we compared test suites generated to achieve high coverage against random test suites of equal size.

Our results show that each coverage criterion explored has value in predicting concurrency testing

effectiveness and as a target for test case generation. However, the results of the metrics vary across

1 Parts of this chapter were presented in ICST 2013 [43] and published in the STVR journal [44].

– 41 –

programs, which is contrast to the characteristics of the coverage metrics for single threaded program

testing [69]. In particular, we found that the correlation between concurrent coverage and fault detection,

while often moderate to strong (i.e., 0.4 to 0.8) and stronger than the relationship between test suite size

and fault detection, is occasionally low to non-existent.

We also found that while large increases in fault detection effectiveness (up to 25 times) can be

found when using concurrent coverage criteria as targets for test case generation relative to random test

suites of equal size, in some cases the results were no better than random testing.

Given these results, we see that the proposed concurrency coverage criteria have value and efforts

to develop techniques based on these coverage criteria are justified;however, additional work on more

advanced concurrency coverage criteria is required. In particular, the variability in metric effectiveness

across programs highlights the need for guidelines to help testers select from among the many metrics

already proposed. The coverage criteria would be improved to better capture the factors that constitute

effective concurrency testing.

3.2 Study design

The purpose of this study is to rigorously investigate the concurrency coverage metrics presented in

previous work, and to either provide evidence of each metric’s usefulness or demonstrate that the metric

is of little value. The usefulness of a coverage metric, concurrency or otherwise, invariably relates to

many factors, such as the testing budget available, the characteristics of the program under test, and the

goals of the testing process. Nevertheless, to show that any coverage metric can be considered useful, it

is necessary at minimum demonstrate two things:

• increased levels of coverage correspond to increased fault detection effectiveness;

• these increases are due in part to increasing coverage levels, not merely larger test suite sizes.

Further, to aide practitioners in selecting a coverage metric for use, we should attempt to quantify

the relationship between coverage, size, and fault detection effectiveness. In particular, we are interested

in the predictive value of each metric and the expected improvements over random testing in terms of

fault detection.

Finally, we are interested in how, given the concurrency coverage metrics proposed, we can best

approach test case generation for concurrent systems. Specifically, we wish to know whether potential

issues with these metrics, already identified in our previous work [43], can be overcome by a combined

use of coverage metrics. We also wish to know whether the current state of the art, coverage-guided

test generation techniques for concurrent program testing could be improved by the development of

techniques targeting difficult-to-cover test requirements. Such techniques would be analogous to existing

methods for improving coverage when using sequential coverage metrics, for example symbolic execution

and genetic algorithm based approaches [37,114].

Our study is thus designed to address four core questions.

• Research Question 1 (RQ1): For each concurrency coverage metric studied, does the coverage

achieved positively impact the effectiveness of the testing process for reasons other than increases

in test suite size? In other words, we would like to provide evidence that given two test suites of

equal size, the test suite with higher coverage will generally be more effective.

– 42 –

• Research Question 2 (RQ2): For each concurrency coverage metric studied, how does the fault

detection effectiveness of test suites achieving maximum coverage compare to that of random test

suites of equal size? While coverage levels may relate to effectiveness, the practical impact of

achieving high coverage for some metric over random test suites may be insignificant.

• Research Question 3 (RQ3): For the concurrency coverage metrics studied, do combinations of

coverage metrics outperform the original coverage metrics? The effectiveness of coverage metrics

can vary, with the most effective metric varying from case example to case example. By combining

metrics, we can potentially overcome these inconsistencies.

• Research Question 4 (RQ4): For each concurrency coverage metric studied, does covering

difficult-to-cover test requirements result in above average fault detection relative to other coverage

requirements? For a given case example, some coverage metrics contain test requirements that

are hard to cover, i.e. a small percentage of possible test cases satisfy the requirement, and thus

achieving maximum coverage in such scenarios can require significant effort. We would like to

determine whether such effort is potentially justified.

The objects for this study have been drawn from existing work on concurrent software analysis [26,

71, 75], and include objects without faults, and objects with faults detected in previous studies. Each

object is a multithreaded Java program.

We list the objects with the lines of code, numbers of threads, the type of test oracle for the program,

and mutants used in Table 4.1. The LOC column represents the size of the original source code for each

subject. The number of threads column shows how many threads are created during test execution, as

determined by the test case given for each object. The test oracle column describes the test oracle used

for the program. “AS” means that the fault is detected by an assertion that checks application-specific

requirement properties, and the number in the parenthesis represents the number of assertion statements

in the program. “TO” means that the fault is detected by a timeout (i.e., deadlock). The incorrect

versions column represents, for the mutation testing objects, the number of generated mutants and the

number of mutants used in parenthesis (the reason for the differences in these numbers is explained in

Section 3.2.2).

3.2.1 Variables and measures

Independent variables.

In this study, we manipulate two independent variables: the concurrency coverage metric and the

method of test suite construction.

Concurrency Coverage Metrics. Numerous concurrency coverage metrics have been proposed,

each based on some intuition about how to capture different aspects of concurrent executions. We

view these metrics as having two key properties: the number of code elements the test requirements

consider (either a single element or a pair of elements), and the the code construct the metric is defined

over (either synchronization operations or data access operations). For example, the Blocking and

Blocked coverage metrics define test requirements based on individual synchronized blocks/methods in

a Java program [27], and are thus singular concurrency coverage metrics, while the Blocked-Pair metric

is defined over pairs of blocks, and is thus a pairwise metric. All of these metrics are defined over

synchronized blocks, and thus they are all synchronization metrics [102].

– 43 –

Table 3.1: Study objects used for the empirical study on concurrency coverage metrics

Type Program LOC
Number of Test Incorrect Number of test

threads oracle versions executions

Mutation
ArrayList 5866 29 AS(6), TO 42 (10) 2000

testing
Boundedbuffer 1437 31 AS(6), TO 34 (6) 2000

Vector 709 51 AS(15), TO 88 (35) 2000

Accountsubtype 193 12 AS(1) 1 1000

Alarmclock 125 4 AS(1) 1 1000

Clean 51 3 TO 1 1000

Single Groovy 433 3 TO 1 1000

fault Piper 71 9 TO 1 1000

program Producerconsumer 87 5 AS(1) 1 1000

Stringbuffer 416 3 AS(19) 1 1000

Twostage 52 3 AS(1) 1 1000

Wronglock 118 22 TO 1 1000

Table 3.2: Concurrency coverage metrics used in the study

Synchronization operation Data access operation

Singular
Blocking [27],

LR-Def [56]
Blocked [27]

Pairwise
Blocked-Pair [102], PSet [119],

Follows [102], Sync-Pair [41] Def-Use [98]

Combined

Blocked-Pair+Def-Use, Blocked-Pair+PSet

Follows+Def-Use, Follows+PSet

Sync-Pair+Def-Use, Sync-Pair+PSet

We selected eight coverage metrics for use in our study, focusing on well-known metrics while also

ensuring that we considered every possible combination of our two key properties. We list the metrics

selected in Table 3.2. We concentrated on metrics that generate modest numbers of test requirements,

as this makes achieving high levels of coverage feasible in a reasonable time. Thus, coverage metrics

that produce very large numbers of test requirements are not included in this study. These include

metrics defined over memory addresses or exhaustive sets of interleavings (e.g., all-du-path [115], ALL,

SVAR [56]) and the series of extended coverage metrics proposed by Sherman et al. [92]. Access-pair [92]

and location-pair [98] are omitted as they are almost equivalent to the PSet metric. We interpret the

LR-Def metric as generating two test requirements for read accesses: one for the use of memory defined

by a local thread and the other for the use of memory defined by any remote thread.

In addition to these metrics, we considered six coverage metrics that are combinations of these

metrics to investigate the benefits of combining existing metrics (to address RQ3). Each combined

metric was created by combining the test requirements of one pairwise synchronization based coverage

metric (i.e., Blocked-Pair, Follows, and Sync-Pair) and the test requirements of one pairwise data access

based coverage metrics (i.e., Def-Use, and PSet). Hereafter we refer to the non-combined metrics as

original coverage metrics, and the six new coverage metrics as combined coverage metrics.

We chose these combinations for three reasons: (1) synchronization based coverage metrics and

– 44 –

data access based coverage metrics represent different paradigms for measuring concurrency coverage,

and thus seem likely to be complementary; (2) metrics within a paradigm tend to achieve similar coverage

and fault detection effectiveness rates; and (3), pairwise metrics generally outperform singular metrics

(at least as test case generation targets), and thus make a better starting point when attempting to

improve concurrency coverage metrics.

Test Suite Construction. We used two methods of test suite construction: random selection

and greedy test suite reduction. In random selection, test suites are constructed by randomly selecting

test executions to construct test suites of specified sizes. In greedy selection, test suites are constructed

to achieve maximum achievable coverage using a small number of test executions. These test suite

construction methods are used to address RQ1 and RQ2, respectively.

Dependent Variables

We measure three dependent variables computed over generated test suites: coverage achieved, test

suite size, and fault detection effectiveness. Additionally, we measure two dependent variables computed

over test requirements: difficulty of covering test requirements, and the fault detection effectiveness

achieved when covering test requirements.

Achieved concurrency coverage of test suites. For a give metric M , each test suite S’s coverage

is computed as the ratio of M ’s test requirements that are satisfied by S to the total number of test

requirements satisfied across all executions for a given program version. We construct test executions

while holding random test case generation parameters constant (see Section 3.2.2); because different

parameters can result in covering different requirements, the coverage of M ’s requirements is often less

than 100%, and our measurements reflect this. However, for the purpose of greedy test suite construction,

we define maximum achievable coverage as the number of requirements than can be covered for a specific

set of test case generation parameters.

Test suite size. Test suite size is the number of test cases in the test suite, and estimates testing

cost.

Fault detection effectiveness of generated test suites. The fault detection effectiveness of a

test suite is “success” when the fault is detected by at least one execution of a test case in the test suite

, or “failure” when the fault is not detected by any test case execution. During analysis we typically

compute the average fault detection effectiveness across many test suites, with results that range from

0.0 to 1.0.

Difficulty of satisfying test requirements. The difficulty of satisfying each test requirement is

computed as the ratio of the number of test executions satisfying the requirement to the total number

of test executions.

Fault detection effectiveness of test requirements. The fault detection effectiveness of a

test requirement is the ratio of the number of test executions detecting a fault while covering the test

requirement to the number of test executions that cover the test requirement.

3.2.2 Experiment setup

Conducting our experiment requires us to:

1. generate mutants for programs without faults,

2. conduct a large number of random test executions,

– 45 –

Table 3.3: Mutation operators

Category Description

Change Exchange Synchronized Block Parameter

Synchronization Remove wait()

Operations Replace notifyAll() with notify()

Expand Synchronized Block

Modify Remove Synchronized Block

Synchronized Remove synchronized Keyword from Method

Block Shift Synchronized Block

Shrink Synchronized Block

Split Synchronized Block

3. for each execution, record the requirements covered for all metrics and whether a fault is detected,

4. compute the difficulty and fault detection rate for each requirement generated,

5. perform resampling over executions to construct test suites, and

6. measure the resulting coverage and fault detection effectiveness of each test suite.

Mutant Generation

We wished to study fault detection in the presence of many diverse fault types, which is not possible

when using single fault programs. Thus, for several of our object programs we corrected known faults [75]

and applied mutation analysis. To choose mutation operators for our study, we drew on concurrency

mutation operators used in a recent survey on concurrency mutation testing [9]. These operators are

similar to traditional syntactic mutation operators commonly used in other studies [4, 25], but focus

on manipulating synchronization constructs, e.g., adding and removing synchronization primitives. Ta-

ble 4.2 describes the operators. We applied these operators to generate mutants. We then discarded any

mutants that (1) did not fail for any generated test execution, (2) were malformed, e.g., resulted in code

that could not be executed, or (3) were killed by every test execution.

We list the number of mutants generated together with the final number of mutants used within

parentheses in Table 4.1. Note that we also use objects containing real faults, thus mitigating the risk

present when using concurrency mutation operators, whose usage is less established and studied than

structural mutation operators for sequential programs [4]. Hereafter, when referring to “objects” we

are referring to individual faulty programs, e.g. “all objects” refers to all single fault programs and all

mutants.

Test Generation and Execution

We used a randomized test case generation approach to avoid bias that might result from using a

directed test generation approach such as those proposed in [27,96]. Our approach selects an arbitrary test

input and generates a large number of test executions by executing a target program on the test input with

varying random delays (i.e. calls to sleep()) inserted at shared resource accesses and synchronization

operations.

We control two parameters of this approach: the probability that a delay will be inserted at each

shared resource access or synchronization operation (0.1, 0.2, 0.3, and 0.4), and the maximum length of

– 46 –

the delay to be inserted (5 milliseconds, 10 milliseconds, and 15 milliseconds). We used these controls

because prior work indicates that they can impact the effectiveness of the testing process [51]. The

specific values used were selected based on our previous experience in this domain [41] and pilot studies,

both of which indicated that larger or finer grained delays and probabilities did not yield significantly

different results. In addition to the twelve random scheduling techniques, we ran test executions without

inserting any delay noise.

We began by estimating the number of test executions E required to achieve maximum coverage

for all eight coverage metrics used, and each of the six combined metrics considered. This was done

by executing the original object for several hours and recording the rate of coverage increase for each

metric. For each object, we required either 1000 or 2000 test executions. Following this, for each

parameter setting (13 (=4×3+1) in total) we conducted E executions for each mutant (for objects with

mutants) or each object program (for objects without mutants). During each execution, we recorded (1)

the test requirements covered for each coverage metric studied, and (2) whether a fault was detected.

We recorded an execution as detecting a fault if (1) an application-specific assertion statement is not

satisfied (i.e., invariant violations), (2) a crash occurs that throws a uncaught exception (e.g., null pointer

dereference, array index out-of-bound, invalid memory access), or (3) the program deadlocks, determined

by checking whether execution time is exceptionally long.

Data Collection

After each test execution we know (1) which test requirements are covered for each coverage metric

and (2) whether the program failed. Based on this information, we can obtain the data for each test

requirement – how frequently the test requirement is covered and how frequently executions that cover

the test requirement detect a fault. This data is used for analysis related to RQ4.

Using the test execution information, we can, via random resampling, construct test suites of varying

sizes and levels of coverage. Ideally, we would like to construct test suites encompassing all possible

combinations of size and coverage. Unfortunately, as coverage and size tend to be highly correlated this

is impossible; small test suites with high coverage (or vice-versa) are extremely rare in practice. We

instead generated, for each combination of object and coverage metric, 90,000 test suites ranging in size

(i.e. number of test executions) from 1 to the maximum size via random sampling of executions. This

results in a set of test suites with increasing size and, within each level of size, varying coverage. These

test suites are used to help address RQ1, RQ2 and RQ3.

We also generated 100 test suites achieving maximum achievable coverage for each coverage metric.

We generated these using a mostly greedy test suite reduction approach: from the set of executions,

repeatedly select either (1) the test execution satisfying the most unsatisfied requirements (80% chance)

or (2) a random test execution (20% chance) until all requirements are satisfied. This results in a test

suite that achieves maximum coverage using fewer test executions than are required by simple random

test suite construction. The randomization adds noise, ensuring some variation in the generated suites.

These test suites are used to address RQ2. To investigate RQ3, we apply the same test construction for

the six combined coverage metrics as well.

To select a test suite for a single fault program or mutant, we have one set of executions over the

object, and we resample from this set to construct test suites. Each test suite becomes a data point for

analysis, having an associated level of coverage, size, and fault detection result (killed/not killed). When

constructing each test suite, we held probability and delay constant. This was done to facilitate later

analysis considering the impact of these factors.

– 47 –

Note that the generation process for the original eight metrics and the six combined metrics is the

same. We treat a combined metric (e.g. Follows+PSet) as a single metric, with its own separate set of

coverage requirements, a separate sets of greedy test suites, etc. This allows for a fair comparison of the

original and combined metrics in Section 3.3.

3.2.3 Threats to validity

External: We conducted our study using only Java programs with standard synchronization oper-

ations. These programs are relatively small but have been chosen from existing work in this area, and

thus we believe that our results are at least generalizable to the class of programs concurrent program

testing research focuses on.

For concurrency coverage metrics, it is difficult to accurately determine satisfiable test requirements.

For all coverage metrics, however, we appear to have reached saturation during test case generation (see

Section 3.3.1) [92], and thus a larger number of executions is unlikely to significantly alter our results.

The randomized test generation technique we use was implemented in-house, but we have attempted

to match the behavior of other random testing techniques by constructing a general technique and varying

the parameters of probability and delay. We follow the current practice of concurrency testing research

which focuses on analyzing diverse thread interleavings effectively and efficiently by restricting other

factors such as test inputs. Thus, our study utilizes various thread schedulings with single test input

values, which may not consider the impact of various test input values on concurrent program testing.

Internal: Our randomized test case generation technique is implemented on top of Java’s internal

thread scheduler. When using other algorithmic thread schedulers, such as PCT [12,67] or CTrigger [76],

results may vary. Additionally, while we have extensively tested our experimentation tools, it is possible

that faults in our tools could lead to incorrect conclusions.

Construct: Our method of detecting faults may miss faults, e.g., errors not captured by an assertion

violation or not leading to an exception. In practice, however, much of concurrent testing focuses on

detecting faults via imperfect test oracles and thus our study uses a realistic approach to fault detection.

We measured the maximum coverage for a metric by tracking all coverage requirements covered in

any execution during test generation. This value is likely lower than the actual maximum achievable

coverage because there likely exist coverage requirements that are achievable but not covered by any

generated execution. Nonetheless, since we generate a large number of executions with different random

testing techniques, we expect missed coverage requirements are few. Furthermore, even if the maximum

coverage values are incorrect, only RQ3 depends on this value and thus other conclusions drawn would

not change. We did not use a predictive analysis technique for the study because the existing predictive

analysis techniques are known to produce false positives (i.e., infeasibile test requirements are estimated

as feasible).

We used mutation analysis to measure testing effectiveness for some objects. Our seeded faults

are designed to mimic actual concurrency faults, and of course are indeed faults, but the relationship

between faults generated by concurrency mutation operators and real concurrency faults has not been

thoroughly investigated. Nevertheless, the results for mutation-based objects and objects with real faults

are similar.

Conclusion: For each object, we constructed from 1 to 88 faults and 100,000 test suites per coverage

metric. While more mutants, faults, and test suites could in theory alter our conclusions, in practice

our conclusions remain the same for both single fault programs, mutation-testing driven programs, and

larger numbers of test suites.

– 48 –

0 200 400 600 800 1000

Test Suite Size

60

70

80

90

100

A
vg

.C
ov

er
ag

e
(%

)
Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(a) Accountsubtype

0 200 400 600 800 1000

Test Suite Size

40
50
60
70
80
90

100

A
vg

.C
ov

er
ag

e
(%

)

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(b) Alarmclock

0 200 400 600 800 1000

Test Suite Size

50

60

70

80

90

100

A
vg

.C
ov

er
ag

e
(%

)

Blocked
BlockedPair
Blocking
DefUse
Follows
LRDef
PSet
SyncPair

(c) Clean

0 200 400 600 800 1000

Test Suite Size

20
30
40
50
60
70
80
90

100

A
vg

.C
ov

er
ag

e
(%

)

Blocked
BlockedPair
Blocking
DefUse
Follows
LRDef
PSet
SyncPair

(d) Groovy

Figure 3.1: Size versus coverage, four single fault objects

3.3 Results

Our analyses are designed to study how each coverage metric impacts fault detection effective-

ness. Towards RQ1, we visualized the pairwise relationship between variables, measured the correlation

between coverage, size, and fault detection effectiveness, and performed linear regression to better under-

stand how both coverage and size contribute to fault detection effectiveness. Towards RQ2, we compared

the fault detection effectiveness of test suites satisfying maximum achievable coverage and random test

suites of equal size. Towards RQ3, we performed the analysis above over combinations of pairwise met-

rics and compared the results with the single metric versions. Finally, towards RQ4 we examined the

correlation between the difficulty of covering a test requirement and the average fault detection for test

executions covering a test requirement, and compared the average fault detection for difficult-to-cover

to the fault detection for easy-to-cover test requirements.

Ideally, we would like a coverage metric that: (1) is highly correlated with fault detection (over

0.7 coverage); (2) along with size, results in regression models with high fit for fault detection (higher

than 0.8); and (3) allows us to select test suites with significantly higher fault detection than randomly

selected test suites of equal size (improvements in fault detection of at least 20%). Any metric fitting

such criteria would be useful both as a predictor of fault detection effectiveness and as a test generation

target.

3.3.1 Visualization

To understand the relationship between test suite size, coverage, and fault detection effectiveness, we

began by plotting the relationship between each pair of variables. In Figure 3.1 we show the relationship

between size and coverage for each coverage metric, for four single fault objects (Figure B.1 for all

single fault objects). In Figure 3.2 we show the same relationship for objects using mutation testing. In

Figure 3.3 we show the relationship between coverage and fault detection for four single fault objects

– 49 –

0 500 1000 1500 2000

Test Suite Size

20

40

60

80

100

A
vg

.C
ov

er
ag

e
(%

)
Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(a) Arraylist

0 500 1000 1500 2000

Test Suite Size

20

40

60

80

100

A
vg

.C
ov

er
ag

e
(%

)

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(b) Boundedbuffer

0 500 1000 1500 2000

Test Suite Size

20

40

60

80

100

A
vg

.C
ov

er
ag

e
(%

)

Blocked
BlockedPair
Blocking
DefUse
Follows
LRDef
PSet
SyncPair

(c) Vector

Figure 3.2: Size versus coverage, mutation objects

(Figure B.2 for all single fault objects). In Figure 3.4 we show the same relationship for objects using

mutation testing. Finally, in Figure 3.5 we show the relationship between size and fault detection for

all objects. Note that expanded versions of Figure 3.1 and 3.3 are found in Appendices B. To ease

readability, we have elected to show only specifically referenced objects here.

Recall from Section 3.2.2 that for each combination of probability and delay (two variables controlled

during test generation) 1000 test executions were generated for each single fault program. Each figure

is an average across these traces of the test executions. Additionally, rather than plot a separate figure

for each of the dozens of mutants for the Arraylist, Boundedbuffer and Vector objects, figures for these

objects are averages across all mutants. Note that this averaging results in figures that do not necessarily

reflect the underlying trends within each mutant, as we discuss later in this section.

In all of the figures, there is typically a fair amount of variation along the y-axis as coverage and size

increase. To improve the readability of the figures, we have used two forms of smoothing. In the case of

plots of size versus coverage and size versus fault detection, we have used LOESS smoothing with a factor

of 0.1. The relationships here are clearly visible with raw plots; the use of mild smoothing allows us to

distinguish coverage metrics and objects after plotting. However, plots of coverage versus fault detection

are very noisy, as indicated by the correlations shown in Section 3.3.2. LOESS smoothing is of limited

help here, and so to further improve readability, before plotting we have averaged the fault detection

rates for all coverage levels within 5 percentage points, i.e. we have averaged the fault detection rate for

test suites achieving 12.5-17.5% coverage, 17.5-22.5% coverage, etc.

This averaging across mutants and test generation parameters results in graphs that must be care-

fully interpreted: individual points on the lines can reflect the average of many test suites — particularly

for coverage levels above 50% — or few test suites, as very low coverage levels are infrequently achieved

in practice. This is unfortunate, but necessary, as the alternative is to either plot each combination of

coverage metric and object separately, which would require hundreds of figures, or as very dense scatter-

– 50 –

plots, resulting in unintelligible figures. However, the goal of visualization is just to spot broad trends;

rigorous analysis follows in the remaining sections.

Note that in several cases coverage achieved is less than 100%. This occurs because each test suite is

specific to a single combination of test generation parameters, but the set of test requirements (and thus

the mark for 100% achievable coverage) is computed across all test suites. Thus, it is possible that no

single test suite achieves 100% maximum achievable coverage. Similar behavior is shown in Figure 3.5,

as several test suites of maximum size fail to detect the fault.

We begin by examining the relationship between size and coverage/fault detection, as shown in

Figures 3.1, 3.2 and 3.5). We can see that the concurrency coverage metrics often — but clearly not

always — exhibit behavior similar to what we expect from sequential coverage metrics and testing:

broadly logarithmic behavior, with a rapid increase in both fault detection and coverage for small test

suite sizes, and smaller increases as test suite size increases. Here we see small differences in coverage

metrics: some coverage metrics begin with very high levels of coverage for even small test suites, and thus

quickly achieve close to maximum coverage, while others grow in coverage more slowly. For example, LR-

Def is an extreme case, achieving maximum coverage almost immediately for many programs. In contrast

Follows, a more complex metric, often achieves maximum coverage only with larger test suites sizes, i.e.,

those greater than 300. Here, differences are related primarily to the number of “easy” requirements

to satisfy – those metrics that are easier to satisfy have high coverage even for very small test suites,

e.g., Blocking, Blocked, LR-Def. Similar variations are also visible in the relationship between size and

fault detection (see Figure 3.5). On the whole, however, the relationship between size and coverage/fault

detection is clearly positive.

Less easily inferred from the figures is the relationship between coverage and fault detection (Fig-

ures 3.3 and 3.4). Clearly, in many cases the relationship is positive; for example, this is true for all

metrics when applied to the Twostage and Arraylist objects. In other cases the relationship is noisy,

but nevertheless, high coverage appears to result in high fault detection, for example on the Alarm-

clock object. In some cases, however, the relationship is quite unclear. Boundedbuffer, for example,

exhibits no clear pattern for any coverage criteria (except when testing one specific mutant, as we dis-

cuss later), whereas Blocked-Pair coverage varies from seeming clearly related to fault detection (e.g., for

the Groovy and Vector objects) to seeming marginally related to fault detection (e.g., for the Alarmclock

and Stringbuffer objects).

This clear positive relationship between size and fault detection, coupled with the inconsistent, but

nevertheless positive relationship between coverage and fault detection, provides informal evidence that

both size and coverage impact fault detection effectiveness. We quantify the impact of both factors in

the following subsections.

3.3.2 Correlation between variables

The foregoing visualizations indicate that both test suite size and coverage appear to be positively

correlated with fault detection effectiveness, and that size is positively correlated with coverage. To

measure the strength of these relationships, for each object and coverage metric we measured the cor-

relation between each variable using Pearson’s r.2 We selected Pearson’s r for two reasons. First, we

are interested in the application of concurrency coverage metrics as predictors and thus measuring the

strength of the linear relationship between variables is desirable. Fault detection is guaranteed to increase

2For small samples, conclusions based on Pearson’s can be unsound for non-normal data; in our case the use of very

large number of samples, 30,000-90,000 per correlation computed, mitigates this risk.

– 51 –

0 20 40 60 80 100

Coverage (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

.F
au

lt
D

et
ec

ti
on

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(a) Alarmclock

20 40 60 80 100

Coverage (%)

0.2

0.4

0.6

0.8

1.0

A
vg

.F
au

lt
D

et
ec

ti
on

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(b) Groovy

0 20 40 60 80 100

Coverage (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

.F
au

lt
D

et
ec

ti
on

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(c) Stringbuffer

0 5 10 15 20 25

Coverage (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

.F
au

lt
D

et
ec

ti
on

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(d) Twostage

Figure 3.3: Coverage versus fault detection effectiveness, four single fault objects

monotonically with size and coverage, and thus establishing this using rank correlation (e.g. Spearman

or Kendall’s tau) yields less new information [50]. Second, single fault programs can only fail or pass for

each test suite; computing correlation over such data is a special case known as point-biserial correlation,

for which rank correlation (due to the many ties present) is unsuitable. For every non-zero correlation

computed, the p-value was (far) less than 0.05 and thus statistically significant at α = 0.05.

The computed correlations for single fault programs are presented in Table 3.4. For example, for

Accountsubtype, the correlation between Blocked coverage and fault detection/test suite size is 0.39 and

0.11, respectively, while the correlation between size and fault detection (S-FF) is 0.22, indicating that

coverage is more highly correlated with fault detection than test suite size.

The correlations for objects with multiple faulty versions are shown as boxplots in Figure 3.6.3 The

column labeled X-FF represents the correlation between the coverage X and fault detection, and the

column with X-SZ represents the correlation between the coverage X and the test suite size. The last

column labeled S-FF is the correlation between test suite size and fault detection.

For example, we can see for Arraylist that the correlation between size and fault detection (column

labeled “S-FF”) ranges from 0.4 to slightly less than 0.2, with a median slightly under 0.2 and a mean

of 0.2. In contrast, the correlation between each coverage metric and fault detection tends to be higher,

with means and medians ranging from roughly 0.3 for Blocking coverage to roughly 0.7 for Blocked

coverage. Additionally, several outliers, both above and below the mean, can be seen; for example in the

near perfect correlation of Blocked coverage and fault detection for one mutant, and the very low (and

sometimes even negative) correlations exhibited for a handful of combinations of coverage and mutant

scenarios.

For each metric there exists at least one single fault object for which the correlation with fault

detection is at or above 0.88. Further, even when coverage weakly correlates with fault detection, this

3For each boxplot, the mean is shown as a star, the box plot whiskers represent data within the 1.5 times the interquartile

range, and the outliers are shown as red “+” marks. This convention is maintained for box plots shown in future sections.

– 52 –

20 40 60 80 100

Coverage (%)

0.0

0.2

0.4

0.6

0.8

A
vg

.F
au

lt
D

et
ec

ti
on

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(a) Arraylist

0 20 40 60 80 100

Coverage (%)

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

A
vg

.F
au

lt
D

et
ec

ti
on

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(b) Boundedbuffer

0 20 40 60 80 100

Coverage (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

.F
au

lt
D

et
ec

ti
on

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(c) Vector

Figure 3.4: Coverage versus fault detection effectiveness, mutation objects

0 500 1000 1500 2000

Size

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

.F
au

lt
D

et
ec

ti
on

accountsubtype
alarmclock
arraylist
buffer
clean
groovy
piper
producerconsumer
stringbuffer
twostage
vector
wronglock

Figure 3.5: Size versus fault detection effectiveness, all objects

correlation is often higher than the correlation of fault detection and size (S-FF). These results provide

evidence that each metric is a useful predictor of concurrency testing effectiveness, depending on program.

The best metric, however, varies across programs, and no single metric is a consistent predictor of

effectiveness, though PSet is often quite strong. For the single fault programs, PSet shows the highest

correlation for four programs among nine single fault programs in total, and PSet always shows high or

moderate correlations except in the case of Boundedbuffer. Although PSet has a low average/median of

0.2 (Boundedbuffer), PSet has a better correlation than other coverage metrics.

The reason for this variation is unclear, but we believe this occurs because the metric’s intuition

does not always capture the single fault present. This is supported by the results shown in Figure 3.6,

where we see a wide variation even within program depending on the mutant used. For example, for the

Vector program, the relationship between coverage and fault detection varies strongly for several metrics,

e.g., Def-Use, which varies from exhibiting a negligible relationship to a moderately strong relationship

depending on the mutant used. This contrasts strongly with the very consistent relationships between

coverage and size for most metrics when applied to all of Vector ’s mutants.

– 53 –

Table 3.4: Correlations over coverage metrics
Each cell contains (coverage & fault detection effectiveness correlation, size & coverage correlation). S-FF

denotes size & fault detection effectiveness correlation
Blocked Blocked-Pair Blocking Def-Use S-FF

Accountsubtype 0.39, 0.11 0.39, 0.11 0.35, 0.10 0.60, 0.28 0.22

Alarmclock 0.77, 0.25 0.52, 0.24 0.27, 0.23 0.56, 0.22 0.05

Clean 0.16, 0.16 0.73, 0.23 0.19, 0.40 0.96, 0.29 0.30

Groovy 0.46, 0.36 0.50, 0.37 0.45, 0.37 0.45, 0.16 0.17

Piper 0.0, 0.0 0.62, 0.45 0.48, 0.25 0.07, 0.03 0.38

Producerconsumer 0.14, 0.03 0.17, 0.21 0.14, 0.16 0.57, 0.15 0.12

Stringbuffer 0.58, 0.18 0.67, 0.23 0.59, 0.31 0.43, 0.12 0.13

Twostage 0.88, 0.23 0.94, 0.13 0.88, 0.23 0.92, 0.13 0.10

Wronglock 0.12, 0.01 0.12, 0.01 0.12, 0.01 0.53, 0.13 0.11

Follows LR-Def PSet Sync-Pair S-FF

Accountsubtype 0.28, 0.09 0.30, 0.12 0.57, 0.42 0.28, 0.09 0.22

Alarmclock 0.66, 0.29 0.59, 0.30 0.59, 0.35 0.19, 0.26 0.05

Clean 0.17, 0.42 0.91, 0.30 0.83, 0.28 0.09, 0.05 0.30

Groovy 0.52, 0.24 0.30, 0.09 0.48, 0.18 0.52, 0.24 0.17

Piper 0.59, 0.49 0.66, 0.27 0.67, 0.27 0.62, 0.45 0.38

Producerconsumer 0.21, 0.43 0.46, 0.26 0.30, 0.26 0.11, 0.20 0.12

Stringbuffer 0.44, 0.35 0.74, 0.14 0.87, 0.15 0.66, 0.23 0.13

Twostage 0.88, 0.23 0.95, 0.13 0.96, 0.13 0.96, 0.13 0.10

Wronglock 0.0, 0.0 0.50, 0.15 0.58, 0.21 0.0, 0.0 0.11

In any case, the variation in the best metric for a given object indicates that selecting an effective

metric may be challenging. Additionally, the occasional low and often moderate correlation between

coverage and fault detection (and somewhat surprisingly, size and fault detection) hints that factors other

than those captured by the concurrency coverage metrics may relate to fault detection effectiveness. We

discuss this further in Section 3.4.2.

3.3.3 Models of effectiveness

Based on the previous two analyses we can see that for every metric, coverage levels do correspond

(somewhat) to testing effectiveness. However, we also see that test suite size and coverage are often

similarly correlated, and thus the relationship between size, coverage and fault detection is unclear. It

is possible that, in fact, coverage and size are not very independent of each other in terms of their effect

on fault detection; for example, depending on the case example, either coverage or size alone may be a

sufficient exploratory variable for fault detection.

Does coverage predict fault detection effectiveness, or merely reflect test suite size? And to what

extent (if any) does considering coverage improvement increase the ability to predict fault detection? To

address these questions we used linear regression to attempt to model how test suite size and coverage

jointly influence the effectiveness of the testing process, with the goal of determining whether coverage

has an independent explanatory ability with respect to fault detection.

In linear regression, we model the data as a linear equation y = β1x1 +β2x2 + . . .+βpxp + εi where

variables xi correspond to explanatory factors and variable y denotes the dependent variable. After

modelling the data, the coefficient of determination R2 is produced. R2 indicates how well the data fits

the model, and can be interpreted as the proportion of variability explained by the model, e.g. a fit of

0.6 indicates about 60% of the variation can be explained by the explanatory variables. In many cases,

– 54 –

Bloc
ked

-F
F

Bloc
ked

-S
Z

Bloc
ked

Pair
-F

F

Bloc
ked

Pair
-S

Z

Bloc
kin

g-F
F

Bloc
kin

g-S
Z

DefU
se

-F
F

DefU
se

-S
Z

Foll
ow

s-F
F

Foll
ow

s-S
Z

LRDef-
FF

LRDef-
SZ

PSet-
FF

PSet-
SZ

Syn
cP

air
-F

F

Syn
cP

air
-S

Z

Size
-F

F

0.0
0.2
0.4
0.6
0.8
1.0

C
or

re
la

ti
on

(a) Arraylist

Bloc
ked

-F
F

Bloc
ked

-S
Z

Bloc
ked

Pair
-F

F

Bloc
ked

Pair
-S

Z

Bloc
kin

g-F
F

Bloc
kin

g-S
Z

DefU
se

-F
F

DefU
se

-S
Z

Foll
ow

s-F
F

Foll
ow

s-S
Z

LRDef-
FF

LRDef-
SZ

PSet-
FF

PSet-
SZ

Syn
cP

air
-F

F

Syn
cP

air
-S

Z

Size
-F

F

0.0
0.1
0.2
0.3
0.4
0.5
0.6

C
or

re
la

ti
on

(b) Boundedbuffer

Bloc
ked

-F
F

Bloc
ked

-S
Z

Bloc
ked

Pair
-F

F

Bloc
ked

Pair
-S

Z

Bloc
kin

g-F
F

Bloc
kin

g-S
Z

DefU
se

-F
F

DefU
se

-S
Z

Foll
ow

s-F
F

Foll
ow

s-S
Z

LRDef-
FF

LRDef-
SZ

PSet-
FF

PSet-
SZ

Syn
cP

air
-F

F

Syn
cP

air
-S

Z

Size
-F

F

0.0
0.2
0.4
0.6
0.8

C
or

re
la

ti
on

(c) Vector

Figure 3.6: Correlations across mutants, mutation objects.

FF = fault detection, SZ = test suite size.

the goal of linear regression is model selection: from a set of candidate models, select the model that

offers the highest goodness of fit, while omitting unneeded explanatory variables.

In our work, we will focus largely upon the adjusted R2. Adjusted R2 is a measure of fitness that

adjusts for the number of explanatory variables. When comparing two models, a model with more

explanatory variables will have a higher adjusted R2 only when additional variables significantly con-

tribute.4 Strictly speaking, adjusted R2 cannot be used to indicate the proportion of variance captured,

but as adjusted R2 is always less than or equal to R2, we can infer that the proportion of variance

captured by a model is equal to or greater than that given by adjusted R2. Thus if for some model an

adjusted R2 of 0.6 is produced, this indicates that the model explains at least 60% of the variation in

fault detection.

In this case we would like to model fault detection effectiveness for each object and coverage metric

using test suite size (SZ) and/or coverage level (CV) as explanatory variables. If the best models always

employ coverage levels as an explanatory factor, this indicates that coverage has an independent ability

to predict fault detection effectiveness. Accordingly, for every combination of object and coverage metric

where coverage varies, we fit all possible linear models employing combinations of SZ, log(SZ), CV, and

4We also used Mallow’s Cp to determine goodness of fit [62]. The results when using Mallow’s led to the same conclusions,

and we have presented results using adjusted R2 as we believe this metric is easier to interpret.

– 55 –

Blocked
BlockedPair

Blocking
DefUse

Follows
LRDef PSet

SyncPair
0.0

0.2

0.4

0.6

0.8

A
dj

us
te

d
R

2

FF = SZ + log(CV)
FF = CV + SZ

FF = log(SZ)
FF = SZ

FF = CV + log(SZ)
FF = log(CV) + log(SZ)

Figure 3.7: Adjusted R2 for every best fit model, all combinations of objects & coverage metrics.

FF = fault detection, SZ = test suite size, CV = % coverage.

log(CV) as explanatory variables (with fault detection (FF) as the dependent variable). Note that the

use of log does not necessarily indicate that a factor is less important (in terms of fit) than a factor

linearly related, but indicates that the relationship is logarithmic.

Our fitting process results in over 10,000 regression models and thus listing regression models with

computed coefficients is infeasible; additionally, we are interested in exploring how well size and coverage

levels model fault detection effectiveness, not the specific models. To summarize our data, we began by

selecting the best fitting model for each object/coverage metric pair. We plot the associated adjusted R2

in Figure 3.7 for each coverage metric, across all objects, indicating which set of explanatory variables

had the highest fit. For example, we see that for the Def-Use metric, for two objects adjusted R2 was

greater than 0.8, indicating high fit with model FF = α×CV + β × log(SZ), while on all other objects

fit was under 0.4, suggesting a low to moderate fit. Here we can clearly see the variation in metric

effectiveness, with fits ranging from less than 0.2 to over 0.8, indicating a wide variation in predictive

power. However, for all coverage metrics, for at least one object an adjusted R2 of 0.8 or above was

observed, indicating high fit, and for many objects fits above 0.4 were observed, indicating moderate fit.

Following this, we wished to measure the degree to which coverage improves the model fit, i.e.,

how much does adding coverage as a dependent variable improve the fit as compared to models using

size alone? To answer this question, we computed minimum and maximum relative improvement in

adjusted R2 when using models with two dependent variables over models using size alone as a dependent

variable. We list the results in Table 3.5 for single fault objects, and plot the results in Figure 3.8 for

mutation objects. In the plots, the columns MN and MX represent the minimum and the maximum

relative increase in adjusted R2 when using two dependent variables for the corresponding object. An

NA denotes that the improvement cannot be computed, as the linear regression’s adjusted R2 is 0.0

(resulting in infinite improvement).

As shown in Table 3.5, in many cases adjusted R2 greatly improved with the addition of coverage

to the regression models. In several instances, for example when applying nearly every coverage metric

to the Stringbuffer object, we see improvements over 100%, indicating a more than double increase in

adjusted R2. In the case of mutation objects, we see less consistency, with Arraylist exhibiting small

improvements (less than 10% increases), and Vector exhibiting a mix of small to moderates increases

ranging from under 5% up to 30% (see Figure 3.8).

In some cases, however, the improvement found in using coverage as part of the regression model

is small, indicating that test suite size is the main component of effective testing. For example, Blocked

– 56 –

Table 3.5: Minimum and maximum relative increase in adjusted R2 when using two dependent variables.
Blocked Blocked-Pair Blocking Def-Use

Accountsubtype 0.0%, 45.8% 0.0%, 44.7% 0.0%, 34.0% 121.9%, 134.3%

Alarmclock 3293.5%, 3858.0% 1591.1%, 1767.3% 351.2%, 483.0% 1847.4%, 2008.1%

Clean 0.0%, 0.4% 67.0%, 122.9% 0.0%, 0.5% 244.6%, 253.7%

Groovy 198.5%, 313.9% 241.8%, 355.4% 182.8%, 280.5% 131.5%, 209.3%

Piper NA 16.5%, 30.1% 0.0%, 13.0% NA

Producerconsumer 0.0%, 10.4% 0.0%, 6.9% 0.0%, 6.5% NA

Stringbuffer 369.1%, 562.9% 518.9%, 542.0% 386.1%, 540.3% NA

Twostage 1384.0%, 1497.6% 1624.1%, 1703.9% 1384.0%, 1497.6% 1511.5%, 1609.3%

Wronglock 0.0%, 14.3% 0.0%, 14.3% 0.0%, 14.3% 223.5%, 245.1%

Follows LR-Def PSet Sync-Pair

Accountsubtype 0.0%, 20.2% NA 104.4%, 116.5% 0.0%, 20.2%

Alarmclock 2576.8%, 2791.3% 2170.2%, 2446.5% 2211.9%, 2621.7% 138.1%, 179.3%

Clean 0.0%, 1.0% 199.8%, 216.5% 142.0%, 164.7% 0.0%, 0.1%

Groovy 257.7%, 279.2% 27.0%, 85.7% 169.2%, 228.0% 257.7%, 279.2%

Piper 6.3%, 20.5% NA 43.6%, 55.3% 16.5%, 31.1%

Producerconsumer 0.0%, 5.2% NA 0.0%, 32.5% 0.0%, 1.6%

Stringbuffer 166.2%, 296.9% 624.7%, 653.9% 927.4%, 948.7% 514.3%, 619.2%

Twostage 1384.0%, 1497.6% 1688.0%, 1740.2% 1724.8%, 1774.8% 1627.3%, 1764.8%

Wronglock NA NA 289.3%, 294.2% NA

coverage applied to the Clean object yields a maximum improvement of only 0.4%, and for the Bounded-

buffer object (Figure 3.8) we see several instances where the relative change in adjusted R2 is negative,

indicating that the addition of coverage to the model provides no statistically significant improvement

to the predictive power of the model.

Based on these analyses, we can see that while no single set of explanatory variables is best, much

of the time models based on both coverage and size are preferable to models using only one explanatory

variable. Indeed, in several cases the addition of coverage to the model improves the model fit many

times over. This provides evidence that coverage metrics have a predictive ability separate from test

suite size. Nevertheless, the adjusted R2 is generally less than 0.8, indicating that while our models

do have reasonable predictive power, a significant proportion of variability is not accounted for by the

models. Furthermore, in some cases coverage provides little or no predictive power, leaving test suite

size as the sole (and often also weak, per Section 3.3.2) predictor of testing effectiveness. We discuss this

further in Section 3.4.2.

3.3.4 Effectiveness of maximum coverage

Our first three analyses have characterized the relationship between test suite size, coverage and fault

detection effectiveness and statistically established that for each metric, coverage level has a predictive

ability for fault detection apart from that of test suite size. From these results, we can see that while not

every coverage metric is highly effective for all programs, all coverage metrics do appear to have value.

Thus, it is worthwhile to use concurrency coverage metrics (in addition to test suite size) as methods for

estimating the concurrency fault detection effectiveness of a testing process.

Per RQ2, however, we also would like to quantify the ability of test suites to quickly achieve high

levels of concurrency coverage. To do this, for each program and coverage metric, we compared test

suites of maximum achievable coverage, generated using a greedy algorithm described in Section 3.2.2,

– 57 –

M
N M

X
M

N M
X

M
N M

X
M

N M
X

M
N M

X
M

N M
X

M
N M

X
M

N M
X

0

10

20

30

40

50

R
el

at
iv

e
A

dj
.

R
2

Im
p

(%
)

Blocked BlockedPair Blocking DefUse Follows LRDef PSet SyncPair

(a) Arraylist

M
N M

X
M

N M
X

M
N M

X
M

N M
X

M
N M

X
M

N M
X

M
N M

X
M

N M
X

0

2

4

6

8

R
el

at
iv

e
A

dj
.

R
2

Im
p

(%
)

Blocked BlockedPair Blocking DefUse Follows LRDef PSet SyncPair

(b) Boundedbuffer

M
N M

X
M

N M
X

M
N M

X
M

N M
X

M
N M

X
M

N M
X

M
N M

X
M

N M
X

0
5

10
15
20
25
30

R
el

at
iv

e
A

dj
.

R
2

Im
p

(%
)

Blocked BlockedPair Blocking DefUse Follows LRDef PSet SyncPair

(c) Vector

Figure 3.8: Minimum and maximum relative increase in adjusted R2 when using two dependent variables,

mutation objects.

MN = minimum, MX = maximum.

against random test suites of equal size. Our expectation is that if a metric is a reasonable target for

test case generation, holding the method of test case generation constant while reducing generated test

executions to construct small, high coverage test suites should result in more effective test suites than

pure random test case generation.

We began by formulating hypothesis H: test suites satisfying maximum achievable coverage will

outperform random test suites of equal size in terms of fault detection. We evaluated H for each

combination of program and coverage metric using a two-tailed bootstrapped paired permutation test, a

non-parametric statistical test that calculates the probability p that two paired sets of data come from

the same population [50]. The null hypothesis H0 is that test suites achieving maximum achievable

coverage are equally as effective as random test suites of equal size.

For each combination of coverage metric and object (per mutant for mutation objects), there are

100 test suites generated to achieve maximum achievable coverage (hereafter referred to as maximum

coverage) (see Section 3.2.2). Each test suite was paired with a randomly selected test suite of equal

size. Following this, the permutation test was applied using 250,000 permutations for each p-value [50].

Following the test, we computed the average fault detection when using test suites reduced to achieve

– 58 –

Table 3.6: Maximum achievable coverage test suite statistics
MFF = Maximum coverage fault detection, RFF = Random fault detection, Cv = % Increase in coverage over

random, Sz = Test suite size (* = Not statistically significant difference at α = 0.05)
Blocked Blocked-Pair Blocking

MFF RFF Cv Sz MFF RFF Cv Sz MFF RFF Cv Sz

Accountsubtype 0.19 0.06 31.9% 2.06 0.14 0.04 35.0% 2.16 0.09* 0.05* 29.5% 2.00

Alarmclock 0.92 0.34 54.0% 1.99 0.92 0.32 13.3% 2.20 0.29* 0.20* 81.4% 2.06

Clean 0.0 0.07 34.7% 1.93 0.0 0.10 0.0% 2.71 0.0 0.08 46.9% 2.3

Groovy 0.67* 0.64* 151.0% 3.72 0.63* 0.59* 182.4% 3.86 0.63 0.51 206.5% 3.4

Piper 0.00* 0.02* 0.0%* 1.0 0.39 0.03 13.9% 2.07 0.25 0.02 30.0% 1.96

Producerconsumer 0.21* 0.23* 5.4% 1.17 0.63 0.50 0.0%* 4.31 0.52 0.29 38.0% 2.13

Stringbuffer 0.78 0.53 168.4% 2.36 1.0 0.87 6.1% 6.50 0.97 0.62 209.5% 3.06

Twostage 0.92 0.16 431.9% 3.14 0.92 0.1 15.3% 3.2 0.92 0.1 405.0% 3.1

Wronglock 0.24* 0.26* 7.4% 1.0 0.21 0.35 3.1%* 1.0 0.26* 0.33* 2.3%* 1.0

Def-Use Follows LR-Def

MFF RFF Cv Sz MFF RFF Cv Sz MFF RFF Cv Sz

Accountsubtype 0.13 0.3 22.0% 2.99 0.24 0.06 7.1% 1.92 0.23 0.03 1.9% 1.87

Alarmclock 0.92 0.30 23.4% 3.51 0.52 0.26 62.3% 2.03 0.2* 0.27* 49.6% 2.01

Clean 1.0 0.04 5.2% 2.0 0.03* 0.08* 111.7% 1.28 0.03* 0.07* 14.3% 1.03

Groovy 0.35* 0.43* 5.3% 3.0 0.26 0.45 59.1% 3.02 0.30* 0.38* 6.3% 2.09

Piper 0.0* 0.02* 0.5% 1.13 0.70 0.09 13.0% 3.54 0.01* 0.03* 2.8% 1.78

Producerconsumer 1.0 0.36 4.1% 2.0 0.5* 0.5* 24.7% 3.71 1.0 0.31 5.9% 2.30

Stringbuffer 0.33 0.56 6.2% 2.33 1.0 0.83 238.1% 4.46 0.4* 0.30* 14.3% 1.4

Twostage 0.92 0.13 8.3% 2.92 0.92 0.07 374.5% 2.92 0.03* 0.03* 72.3% 1.19

Wronglock 0.34* 0.46* 19.5% 2.14 0.34* 0.35* 0.0%* 1.0 0.28* 0.33* 5.9% 2.0

PSet Sync-Pair

MFF RFF Cv Sz MFF RFF Cv Sz

Accountsubtype 0.36* 0.44* 29.4% 6.6 0.21 0.0 8.1% 1.87

Alarmclock 0.92 0.4 35.0% 5.20 0.53 0.26 14.9% 2.04

Clean 1.0 0.11 11.4% 2.93 0.06* 0.06* 8.7% 1.30

Groovy 0.33* 0.4* 6.8% 3.0 0.41* 0.46* 52.0% 3.02

Piper 0.43 0.06 5.1% 1.94 0.64 0.03 53.6% 3.49

Producerconsumer 1.0 0.4 6.3% 2.34 0.5* 0.38* 30.4% 3.72

Stringbuffer 1.0 0.76 7.3% 3.0 1.0 0.74 38.7% 4.35

Twostage 0.92 0.06 26.8% 2.92 0.92 0.07 66.6% 2.92

Wronglock 0.46 0.60 47.3% 2.96 0.31* 0.30* 0.0%* 1.0

maximum coverage, the average relative improvement in coverage over random test suites, and the

average fault detection for the random test suites.

Table 3.6 lists the results of this analysis for objects with only a single fault. (Note that fault

detection is the ratio of test suites detecting the fault to the total number of test suites.) Figure 3.9 plots

the fault detection for greedily reduced test suites and random test suites of equal size across mutants

as a boxplot. The column MFF represents the fault detection for the reduced test suites for each object

and coverage metric studied, and the column RFF represents fault detection for random test suites of

equal size. Figure 3.10 plots the relative increase in coverage when using greedy reduced tests suites over

randomly generated test suites of equal size.

Our analysis results imply that achieving high coverage generally yields not only statistically signif-

icant, but also practically significant increases in fault detection: large, often twofold or more increases

can be observed. For example, for the Clean object with the Def-Use coverage metric, the average fault

detection of test suites achieving maximum coverage is generally higher (up to 25 times higher) than

that of randomly generated test suites.

We can see a similar tendency for mutation object Arraylist. For the Arraylist object, the mean

fault detection of maximum achievable test suites of every coverage metric is higher than or equal to the

highest fault detection of corresponding randomly generated test suites.

– 59 –

M
FF

RFF
M

FF
RFF

M
FF

RFF
M

FF
RFF

M
FF

RFF
M

FF
RFF

M
FF

RFF
M

FF
RFF

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ul

t
D

et
ec

ti
on

Blocked BlockedPair Blocking DefUse Follows LRDef PSet SyncPair

(a) Arraylist

M
FF

RFF
M

FF
RFF

M
FF

RFF
M

FF
RFF

M
FF

RFF
M

FF
RFF

M
FF

RFF
M

FF
RFF

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ul

t
D

et
ec

ti
on

Blocked BlockedPair Blocking DefUse Follows LRDef PSet SyncPair

(b) Boundedbuffer

M
FF

RFF
M

FF
RFF

M
FF

RFF
M

FF
RFF

M
FF

RFF
M

FF
RFF

M
FF

RFF
M

FF
RFF

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ul

t
D

et
ec

ti
on

Blocked BlockedPair Blocking DefUse Follows LRDef PSet SyncPair

(c) Vector

Figure 3.9: Maximum fault detection, greedy versus random, across mutants.

MFF = maximum fault detection, RFF = random fault detection.

Note that, for the Boundedbuffer object, the reduced test suites with respect to a coverage metric

provide useful results although their correlations with fault detection are low. In contrast, LR-Def

displays moderate to high correlations in fault detection as shown in Table 3.4, but the reduced test

suites with respect to LR-Def do not have higher fault detection than randomly generated test suites in

most cases.

We were surprised, however, that there were object/coverage metric pairs for which reduction to

maximize coverage had a negative impact on the fault detection effectiveness of the testing process. For

example, for Wronglock, test suites reduced to satisfy Blocked-Pair found the fault 21% of the time, as

compared to 35% when using random test suites of equal size.

The case in which Def-Use was applied to Stringbuffer was more surprising. Here we see greedily

reduced test suites detecting the fault 33% of the time on average, relative to the 56% detection rate for

randomly reduced test suites of equal size. As we demonstrate in Section 3.3.6, however, when achieving

maximum coverage for complex coverage metrics, there exist several difficult-to-cover test requirements

that are satisfied only by specific test executions that do not necessarily detect a fault (see Table 3.10).

During greedy test suite reduction, these executions must be selected to achieve maximum coverage, and

are thus useless with respect to fault detection, but always present. We hypothesize that this is the cause

of this unusual behavior.

– 60 –

Bloc
ked

Bloc
ked

Pair

Bloc
kin

g

DefU
se

Foll
ow

s

LRDef
PSet

Syn
cP

air
0

10
20
30
40
50
60

R
el

at
iv

e
C

ov
er

ag
e

Im
p.

(%
)

(a) Arraylist

Bloc
ked

Bloc
ked

Pair

Bloc
kin

g

DefU
se

Foll
ow

s

LRDef
PSet

Syn
cP

air
0

50

100

150

200

R
el

at
iv

e
C

ov
er

ag
e

Im
p.

(%
)

(b) Boundedbuffer

Bloc
ked

Bloc
ked

Pair

Bloc
kin

g

DefU
se

Foll
ow

s

LRDef
PSet

Syn
cP

air
0

20

40

60

80

R
el

at
iv

e
C

ov
er

ag
e

Im
p.

(%
)

(c) Vector

Figure 3.10: Relative improvement in coverage, greedy versus random, across mutants

3.3.5 Effect of combining concurrency coverage metrics

In the previous subsections, we demonstrated that while every coverage metric has a meaningful

value as a predictor of fault detection effectiveness and also as a target for test generation, there is strong

variation in the relative usefulness of the coverage metrics for both purposes across target programs. This

implies that identifying a single proposed concurrency coverage metric to use for testing an arbitrary

target program may be unrealistic.

One possible solution for addressing this variability is to combine complimentary concurrency cov-

erage metrics, mitigating the shortfalls of each [43,109]. To determine whether this solution is effective,

we created and studied the effectiveness of six combined coverage metrics. The rationale for selecting

these metrics was detailed in Section 3.2.1, but in short these combinations were viewed as most likely

to yield improvements over the original metrics.

Combined Coverage Metrics as Predictors.

We begin by examining the effectiveness of our combined metrics as predictors of testing effectiveness.

In Table 3.7 and Figure 3.11, we present the correlation of coverage and fault detection effectiveness of

the combined coverage metrics as compared to the original metrics they are derived from. Based on these

results, we see that the combined metrics are a mixed bag in terms of improvements. Across the single

fault objects, in 26 of the 54 combinations of combined metrics and objects, the combined metric achieves

a correlation equal to or higher than the highest correlation observed from its composite original metrics.

Typically in these cases the gains over the highest correlation observed from an original metric is small,

but in some cases the gains over the lowest performing metric are quite high. For example, in the case of

the Arraylist object, the lowest correlation in the combined coverage metric is upgraded from the original

coverage metrics, whereas the highest correlation still remains. In the case of the Wronglock object, only

data access metrics are effective predictors of fault detection, with all pairwise synchronization based

metrics achieving no higher than an 0.12 correlation. Similar behavior also occurs for the Accountsubtype

– 61 –

Table 3.7: Correlations over combined metrics.
Each cell contains coverage & fault detection correlation. CM = combined metric correlation.

Blocked-Pair+Def-Use Blocked-Pair+PSet Follows+Def-Use

CM Blocked-Pair Def-Use CM Blocked-Pair PSet CM Follows Def-Use

Accountsubtype 0.61 0.39 0.60 0.59 0.39 0.57 0.60 0.28 0.60

Alarmclock 0.60 0.52 0.56 0.65 0.52 0.59 0.52 0.66 0.56

Clean 0.38 0.73 0.96 0.21 0.73 0.83 0.73 0.17 0.96

Groovy 0.56 0.50 0.45 0.55 0.50 0.48 0.51 0.52 0.45

Piper 0.59 0.62 0.07 0.48 0.62 0.67 0.62 0.59 0.07

Producerconsumer 0.31 0.17 0.57 0.15 0.17 0.30 0.17 0.21 0.57

Stringbuffer 0.46 0.67 0.43 0.61 0.67 0.87 0.67 0.44 0.43

Twostage 0.92 0.94 0.92 0.88 0.94 0.96 0.94 0.88 0.92

Wronglock 0.53 0.12 0.53 0.58 0.12 0.58 0.53 0.0* 0.53

Follows+PSet Sync-Pair+Def-Use Sync-Pair+PSet

CM Follows PSet CM Sync-Pair Def-Use CM Sync-Pair PSet

Accountsubtype 0.58 0.28 0.57 0.60 0.28 0.60 0.58 0.28 0.57

Alarmclock 0.25 0.66 0.59 0.27 0.19 0.56 0.55 0.19 0.59

Clean 0.20 0.17 0.83 0.07 0.09 0.96 0.66 0.09 0.83

Groovy 0.52 0.52 0.48 0.51 0.52 0.45 0.52 0.52 0.48

Piper 0.63 0.59 0.67 0.61 0.62 0.07 0.67 0.62 0.67

Producerconsumer 0.11 0.21 0.30 0.26 0.11 0.57 0.14 0.11 0.30

Stringbuffer 0.66 0.44 0.87 0.66 0.66 0.43 0.74 0.66 0.87

Twostage 0.92 0.88 0.96 0.90 0.96 0.92 0.96 0.96 0.96

Wronglock 0.58 0.0* 0.58 0.53 0.0* 0.53 0.58 0.0* 0.58

object. In these scenarios, the failure of synchronization based metrics is masked by the inclusion of data

access metrics (notably PSet, which per Section 3.3.2 we found to be the single most effective original

metric overall). For the Wronglock and Accountsubtype objects, the all combined coverage metrics shows

the moderate correlations (0.53 ∼ 0.58 for Wronglock, and 0.58 ∼ 0.61 for Accountsubtype).

In the opposite scenario, however, where synchronization based metrics outperform data access

metrics in terms of correlation, results are more mixed. For example, the combination of Def-Use to

Follows results in a moderate correlation of 0.52, but this is a small drop from the original metrics’

respective correlations of 0.56 and 0.66. In fact, examining our original suggestion of PSet, we find

that for 23 of the 24 combinations of combined metrics including PSet and single fault objects, PSet ’s

correlation is within 0.05 of the combined correlation, and for 17 combinations it is equal to or greater

than PSet ’s correlation.

More concerning are scenarios where combinations of metrics significantly reduce the correlation.

For example, in the case of Follows+PSet, the combined metric often performs far worse than either

metric alone (e.g., Alarmclock, Clean, Producerconsumer all show the correlation dropping by 50%).

Similar scenarios can be seen when using other combinations as well. Thus, while it is true that in some

cases a combination of metrics can be a better predictor than single metrics alone, we cannot offer a

general recommendation, as there are also many cases where combinations are less effective predictors.

Combined Metrics as Test Case Generation Targets.

While having more effective predictors of testing effectiveness is useful, we are also interested in

having more effective test case generation targets. In Table 3.8 and Figure 3.12 we present the fault

detection results for test suites achieving the maximum achievable coverage for the single fault objects

and for the mutation testing objects, respectively. In Table 3.9 we present the relative improvement in

fault detection when using combined coverage metrics over the original coverage metrics for the single

fault objects.

The results show that for every object and for every combined coverage metric, the fault detection

– 62 –

Bloc
ked

Pair
+

DefU
se

-F
F

Bloc
ked

Pair
+

DefU
se

-S
Z

Bloc
ked

Pair
+

PSet-
FF

Bloc
ked

Pair
+

PSet-
SZ

Foll
ow

s+

DefU
se

-F
F

Foll
ow

s+

DefU
se

-S
Z

Foll
ow

s+

PSet-
FF

Foll
ow

s+

PSet-
SZ

Syn
cP

air
+

DefU
se

-F
F

Syn
cP

air
+

DefU
se

-S
Z

Syn
cP

air
+

PSet-
FF

Syn
cP

air
+

PSet-
SZ

Size
-F

F
−0.1

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

C
or

re
la

ti
on

(a) Arraylist

Bloc
ked

Pair
+

DefU
se

-F
F

Bloc
ked

Pair
+

DefU
se

-S
Z

Bloc
ked

Pair
+

PSet-
FF

Bloc
ked

Pair
+

PSet-
SZ

Foll
ow

s+

DefU
se

-F
F

Foll
ow

s+

DefU
se

-S
Z

Foll
ow

s+

PSet-
FF

Foll
ow

s+

PSet-
SZ

Syn
cP

air
+

DefU
se

-F
F

Syn
cP

air
+

DefU
se

-S
Z

Syn
cP

air
+

PSet-
FF

Syn
cP

air
+

PSet-
SZ

Size
-F

F
0.0
0.1
0.2
0.3
0.4
0.5
0.6

C
or

re
la

ti
on

(b) Boundedbuffer

Bloc
ked

Pair
+

DefU
se

-F
F

Bloc
ked

Pair
+

DefU
se

-S
Z

Bloc
ked

Pair
+

PSet-
FF

Bloc
ked

Pair
+

PSet-
SZ

Foll
ow

s+

DefU
se

-F
F

Foll
ow

s+

DefU
se

-S
Z

Foll
ow

s+

PSet-
FF

Foll
ow

s+

PSet-
SZ

Syn
cP

air
+

DefU
se

-F
F

Syn
cP

air
+

DefU
se

-S
Z

Syn
cP

air
+

PSet-
FF

Syn
cP

air
+

PSet-
SZ

Size
-F

F

0.0
0.2
0.4
0.6
0.8

C
or

re
la

ti
on

(c) Vector
Figure 3.11: Correlations across mutants, combined metrics.

FF = fault detection, SZ = test suite size.

effectiveness of the reduced test suite with respect to a combined coverage metric is higher than or

equal to that of an orignal coverage metric. Naturally, the fault detection for a given coverage metric

can only remain the same or increase by combining it with another metric (the concurrency coverage

metrics studied, like typical sequential coverage metrics, are monotonic). Therefore, the existence of

improvements is not especially interesting.

Instead, we wish to determine whether combinations either offer improvements over both metrics

simultaneously, indicating a clear improvement in fault detection for some objects and indicating less

variability in the effectiveness of the metric as a test generation target; or alternatively, whether combi-

nations offer improvements over each metric in different scenarios. In other words, we wish to determine

whether, for some combined metric A+B, improvements are found over only A for one object, while

improvements are found over only B for some other object.

Based on Table 3.9, we can see that statistically significant examples of both types of improve-

ments exist. For example, when applying the Blocked-Pair+PSet coverage metric over the Piper object,

improvements over PSet and Blocked-Pair of 62.5% and 78.4% exist.

Additionally, for the Follows+Def-Use combination, we can see that for both Alarmclock and Clean,

the combined metric is an improvement over Follows by 76.4% and 3150.0%, while for the Piper and

Stringbuffer objects it is a comparable improvement over Def-Use. Similar patterns can be seen for all

other combinations of metrics, indicating that the combined metrics do frequently reduce variability as

– 63 –

Table 3.8: Maximum achievable coverage test suite statistics, combined metrics
MFF = maximum coverage fault detection, RFF = random fault detection, Cv = % increase in coverage over

random, Sz = Test suite size (* = Not statistically significant difference at α = 0.05)
Blocked-Pair+Def-Use Blocked-Pair+PSet Follows+Def-Use

MFF RFF Cv Sz MFF RFF Cv Sz MFF RFF Cv Sz

Accountsubtype 0.15 0.40 18.8% 3.28 0.36* 0.46* 23.7% 6.85 0.17* 0.28* 13.6% 3.12

Alarmclock 0.92 0.30 22.4% 3.88 0.92 0.45 32.0% 5.56 0.92 0.35 19.7% 4.32

Clean 1.0 0.18 11.6% 3.72 1.0 0.23 26.8% 4.16 1.0 0.11 4.1% 2.22

Groovy 0.65* 0.60* 17.3% 3.99 0.69* 0.58* 23.8% 4.00 0.30 0.41 10.0% 3.00

Piper 0.4 0.01 4.3% 2.06 0.7 0.02 18.7% 2.10 0.68 0.06 12.7% 3.59

Producerconsumer 1.0 0.60 8.2% 4.61 1.0 0.69 20.7% 4.83 1.0 0.55 7.4% 4.01

Stringbuffer 1.0 0.87 26.7% 6.89 1.0 0.89 69.0% 6.9 1.0 0.79 12.2% 4.38

Twostage 0.92 0.13 22.5% 3.76 0.92 0.16 228.0% 3.73 0.92 0.11 15.1% 2.92

Wronglock 0.34* 0.43* 17.7% 2.17 0.54* 0.56* 40.6% 2.97 0.41* 0.42* 17.1% 2.16

Follows+PSet Sync-Pair+Def-Use Sync-Pair+PSet

MFF RFF Cv Sz MFF RFF Cv Sz MFF RFF Cv Sz

Accountsubtype 0.36* 0.47* 19.3% 6.64 0.21 0.35 13.4% 3.14 0.4* 0.42* 18.5% 6.68

Alarmclock 0.92 0.46 13.6% 5.93 0.92 0.41 0.9%* 4.38 0.92 0.53 27.1% 6.00

Clean 1.0 0.08 9.5% 2.97 1.0 0.11 0.9% 2.17 1.0 0.07 7.6% 2.93

Groovy 0.46* 0.42* 15.7% 3.0 0.38* 0.46* 10.1% 3.01 0.33* 0.39* 14.6% 3.02

Piper 0.68 0.03 48.3% 3.57 0.70 0.08 18.9% 3.56 0.68 0.1 16.0% 3.53

Producerconsumer 1.0 0.55 52.5% 4.13 1.0 0.43 15.8% 3.99 1.0 0.55 10.5% 4.22

Stringbuffer 1.0 0.80 54.8% 4.56 1.0 0.72 12.8% 4.52 1.0 0.82 15.8% 4.61

Twostage 0.92 0.13 111.2% 2.92 0.92 0.09 0.0% 2.92 0.92 0.10 29.9% 2.92

Wronglock 0.52* 0.61* 41.6% 2.97 0.32 0.46 17.6% 2.14 0.48 0.6 43.0% 3.01

compared to the use of individual metrics.

This reduction in variability is further illustrated by examining the fault detection rates for original

test suites (Section 3.3.4). While the fault detection effectiveness across combined metrics are consistent

within each object, the fault detection effectiveness for original metrics sometimes vary strongly across

metrics. For example, within pairwise metrics (i.e., those used to create combined metrics) test suites

generated for the Clean object vary in average fault detection from 0.0 to 1.0 as shown in Table 3.6, while

the average fault detection for combined metrics is always 1.0. Other objects exhibit similar behavior.

As noted in Section 3.3.4, there is no best original metric to use as a test case generation target.

However, several combined metrics when used as test case generation targets always produce, on average,

higher fault detection than any single original metric (excluding fault detection values which are not

statistically significant). In fact, every combined metric containing PSet exhibits this behavior. Note

that these test suites are typically larger than those generated solely from original metrics, but given the

small size of all test suites (less than seven tests on average), this seems acceptable.

This result also supports our conjecture that there are other factors that influence testing effective-

ness beyond those that the concurrency coverage metrics studied capture (see Section 3.4.2).

In summation, while the predictive value of combined metrics differs from that of original metrics

in ways that is not necessarily positive or negative, combined metrics as test case generation targets —

in particular those metrics based on a combination of PSet with a pairwise, synchronization metric —

are clearly superior to any original metric studied.

3.3.6 Effectiveness of difficult-to-cover test requirements

Our analysis has clearly demonstrated that increasing coverage levels of the presented concurrency

coverage metrics tends to result in practically significant increases in fault detection effectiveness. Nev-

ertheless, this does not necessarily imply that all test requirements are worth the effort required to cover

– 64 –

Table 3.9: Relative improvement in fault detection using combined metrics

(* = Not statistically significant difference at α = 0.05)

Blocked-Pair+Def-Use Blocked-Pair+PSet Follows+Def-Use

Blocked-Pair Def-Use Blocked-Pair PSet Follows Def-Use

Accountsubtype 5.2%* 11.1%* 147.3% 0.0%* 0.0%* 27.7%*

Alarmclock 0.0%* 0.0%* 0.0%* 0.0%* 76.4% 0.0%*

Clean inf% 0.0%* inf% 0.0%* 3150.0% 0.0%*

Groovy 2.4%* 84.7% 8.4%* 104.5% 14.2%* 0.0%*

Piper 1.9%* inf% 78.4% 62.5% 0.0%* inf%

Producerconsumer 56.6% 0.0%* 56.6% 0.0%* 100.0% 0.0%*

Stringbuffer 0.0%* 195.4% 0.0%* 0.0%* 0.0%* 195.4%

Twostage 0.0%* 0.0%* 0.0%* 0.0%* 0.0%* 0.0%*

Wronglock 60.7% 0.0%* 153.5% 18.3%* 20.0%* 20.0%*

Follows+PSet Sync-Pair+Def-Use Sync-Pair+PSet

Follows PSet Sync-Pair Def-Use Sync-Pair PSet

Accountsubtype 50.0% 0.0%* 0.0%* 55.5%* 85.7% 8.3%*

Alarmclock 76.4% 0.0%* 71.4% 0.0%* 71.4% 0.0%*

Clean 3150.0% 0.0%* 1344.4% 0.0%* 1344.4% 0.0%*

Groovy 71.4% 36.3%* 0.0%* 8.6%* 0.0%* 0.0%*

Piper 0.0%* 58.9% 9.5%* inf% 5.9%* 58.9%

Producerconsumer 100.0% 0.0%* 100.0% 0.0%* 100.0% 0.0%*

Stringbuffer 0.0%* 0.0%* 0.0%* 195.4% 0.0%* 0.0%*

Twostage 0.0%* 0.0%* 0.0%* 0.0%* 0.0%* 0.0%*

Wronglock 51.1% 13.3%* 2.4%* 0.0%* 53.6% 5.0%*

them. Per RQ4, we would like to determine whether difficult-to-cover test requirements — those that

are satisfied by only a small percentage of tests — yield fault detection gains beyond those found in the

other, easier to cover test requirements. This is key to establishing if specialized techniques which target

hard to cover test requirements are likely to yield improvements in fault detection (akin to techniques

for covering branches in structural coverage metrics).

First, we begin by establishing that difficult-to-cover test requirements exist. In Figure 3.13, we

plot, for each covered test requirement, the percentage of test executions covering the requirement, i.e.,

difficulty of covering the test requirement (Figure B.3 for all objects, in Appendix). Requirements have

been ordered from least likely to be covered, to mostly likely to be covered. (The x-axis represents

the difficulty percentile, i.e., at 40% the requirement plotted is easier than 40% of all requirements and

more difficult than 60%.) For each object and coverage criteria, there exists significant variation in the

difficulty of covering test requirements – most objects contain several requirements that are covered by

few executions (less than 1%), with most test executions being relatively easily covered (with greater

than 10% covering the test executions).

Having established that difficult-to-cover test requirements exist, we would like to determine whether

these test requirements are, on average, particularly effective at detecting faults. Towards this, in Ta-

ble 3.10 we present the average fault detection of test executions covering difficult-to-cover requirements

(defined as the 10% most difficult requirements to cover) as compared to other test requirements. We

selected the 10% threshold as it frequently resulted in one or fewer test executions being selected, while

larger thresholds were too easy to cover to be considered “difficult”. Note that “NA” indicates that the

number of requirements was less than 10, i.e. there was no bottom 10%.

Here we see that in some instances there does appear to be a practically and statistically significant

– 65 –

M
FF

RFF
M

FF
RFF

M
FF

RFF
M

FF
RFF

M
FF

RFF
M

FF
RFF

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ul

t
D

et
ec

ti
on

BlockedPair +
DefUse

BlockedPair +
PSet

Follows +
DefUse

Follows +
PSet

SyncPair +
DefUse

SyncPair +
PSet

(a) Arraylist

M
FF

RFF
M

FF
RFF

M
FF

RFF
M

FF
RFF

M
FF

RFF
M

FF
RFF

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ul

t
D

et
ec

ti
on

BlockedPair +
DefUse

BlockedPair +
PSet

Follows +
DefUse

Follows +
PSet

SyncPair +
DefUse

SyncPair +
PSet

(b) Boundedbuffer

M
FF

RFF
M

FF
RFF

M
FF

RFF
M

FF
RFF

M
FF

RFF
M

FF
RFF

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ul

t
D

et
ec

ti
on

BlockedPair +
DefUse

BlockedPair +
PSet

Follows +
DefUse

Follows +
PSet

SyncPair +
DefUse

SyncPair +
PSet

(c) Vector

Figure 3.12: Maximum fault detection, greedy versus random, across mutants, combined metrics.

MFF = maximum fault detection, RFF = random fault detection.

difference in the fault detection rate of test executions satisfying difficult-to-cover test requirements rela-

tive to other test requirements. For example, for the Arraylist object, difficult-to-cover test requirements

of all coverage metrics are better than other test requirements, with the relative differences in fault

detection effectiveness ranging from 91.5% to 942.4%. Clearly, for many objects, the effort needed to

satisfy difficult-to-cover requirements is potentially worthwhile.

In other cases, however, the relative difference between difficult-to-cover and easy-to-cover test

requirements is either practically marginal (for example for the Vector where differences are small and

often close to zero) or not statistically significant (for example the Groovy and Stringbuffer object). Given

these results, it is difficult to draw any conclusions concerning the value of difficult-to-cover requirements

in testing a particular program. In some cases the extra effort is clearly unlikely to be rewarded as the

relative differences are minor. On the other hand, in many cases the relative difference is quite large,

but (due to the small number of test requirements) not statistically significant. Thus it appears that

studies with objects which produce larger numbers of test requirements are required to better address

this question. We discuss the implications of this for concurrent test case generation approaches in the

next section (see Section 3.4.4).

– 66 –

0 20 40 60 80 100

Trace #

0

20

40

60

80

100
%

C
ov

er
in

g
R

eq
. Blocked

BlockedPair
Blocking
DefUse
Follows
LRDef
PSet
SyncPair

(a) Accountsubtype

0 20 40 60 80 100

Trace #

0

20

40

60

80

100

%
C

ov
er

in
g

R
eq

.

Blocked
BlockedPair
Blocking
DUR
Follows
LRDEF
PSet
SyncPair

(b) Alarmclock

0 20 40 60 80 100

Trace #

0

20

40

60

80

100

%
C

ov
er

in
g

R
eq

.

Blocked
BlockedPair
Blocking
DUR
Follows
LRDEF
PSet
SyncPair

(c) ArrayList

0 20 40 60 80 100

Trace #

0

20

40

60

80

100

%
C

ov
er

in
g

R
eq

.

Blocked
BlockedPair
Blocking
DUR
Follows
LRDEF
PSet
SyncPair

(d) Boundedbuffer

0 20 40 60 80 100

Trace #

0

20

40

60

80

100

%
C

ov
er

in
g

R
eq

.
Blocked
BlockedPair
Blocking
DUR
Follows
LRDEF
PSet
SyncPair

(e) Vector

Figure 3.13: Relative difficulty of covering individual coverage requirements for four single fault objects

and all mutation objects.

The x-axis represents the difficulty percentile. Requirements covered by the fewest number of executions are

leftmost on the x-axis; requirements covered by the largest number of executions are rightmost. The y-axis

indicates the percentage of executions that cover the requirement.

3.4 Discussions

Our results have addressed our original research questions as follows. Per RQ1 and RQ2, we have

shown that for every coverage metric, for some programs (1) the metric is a moderate, independent

predictor of fault detection, and (2) the testing process can be made more effective by using test suites

that achieve maximum coverage instead of random test suites of equal size.

In short, we have provided evidence that existing concurrency coverage metrics can be useful. Con-

sequently, testers can use concurrency coverage metrics as part of their testing process with confidence,

either to estimate testing effectiveness, or as a goal for the testing process. Furthermore, testing re-

searchers can justify as worthwhile the effort spent developing tools and techniques based on concurrency

coverage metrics.

Nevertheless, the variation in the relative effectiveness of coverage metrics raises issues concerning

how to apply these metrics in practice. Additionally, the generally moderate levels of correlation and fit

observed hint that while these metrics appear effective, improvements to these metrics are both possible

and desirable.

Towards addressing this variability and to better understand how test generation should be ap-

proached to improve fault detection, we proposed and addressed research questions RQ3 and RQ4. Per

RQ3, we have seen that using two coverage metrics combined can, in some cases, improve the reliabil-

ity of coverage metrics as estimators of testing effectiveness and particularly as test generation targets.

Per RQ4 we have shown that at least in some cases, satisfying difficult-to-cover test requirements of-

– 67 –

Table 3.10: Fault detection effectiveness for difficult and easy to cover test requirements.

DFF = difficult-to-cover fault detection, EFF = easy-to-cover fault detection, % = % increase in average fault

detection for DFF over EFF coverage requirements (* = Not Statistically Significant at p = 0.05).

Blocked Blocked-Pair Blocking

DFF EFF % DFF EFF % DFF EFF %

Arraylist 0.75 0.05 1259.3% 0.15 0.08 91.5% 0.46 0.04 942.4%

Boundedbuffer 0.19* 0.30* 0.0%* 0.23* 0.26* 0.0%* 0.17* 0.26* 0.0%*

Vector 0.13* 0.10* 31.8%* 0.06 0.08 0.0% 0.10* 0.09* 2.9%*

Accountsubtype 0.07* 0.07* 0.0%* 0.07* 0.07* 0.0%* 0.07* 0.07* 0.0%*

Alarmclock NA NA NA 1.0* 0.28* 254.9%* NA NA NA

Clean NA NA NA 0.0* 0.0* 0.0%* 0.0* 0.0* 0.0%*

Groovy 0.34* 0.23* 46.5%* 0.34* 0.23* 47.6%* 0.34* 0.23* 50.2%*

Piper NA NA NA 0.47* 0.04* 978.3%* NA NA NA

Producerconsumer NA NA NA 0.31 0.17 79.8% 0.21* 0.18* 18.8%*

Stringbuffer NA NA NA 0.79* 0.50* 58.7%* 0.88* 0.49* 77.5%*

Twostage 1.0 0.10 854.7% 1.0* 0.21* 356.1%* 1.0 0.25 294.7%

Wronglock NA NA NA NA NA NA NA NA NA

Def-Use Follows LR-Def

DFF EFF % DFF EFF % DFF EFF %

Arraylist 0.10 0.05 106.1% 0.19 0.06 181.5% 0.18 0.04 345.5%

Boundedbuffer 0.39 0.30 30.0% 0.28* 0.25* 11.3%* 0.21 0.29 0.0%

Vector 0.04 0.07 0.0% 0.04 0.06 0.0% 0.11* 0.10* 19.5%*

Accountsubtype 0.07* 0.07* 5.3%* 0.07* 0.07* 0.0%* 0.07* 0.07* 0.0%*

Alarmclock 0.14* 0.16* 0.0%* 1.0* 0.17* 464.2%* 0.21 0.11 90.9%

Clean 0.5* 0.03* 1490.9%* 0.0* 0.00* 0.0%* 0.0* 0.03* 0.0%*

Groovy 0.23 0.21 8.1% 0.19* 0.22* 0.0%* 0.22* 0.21* 2.9%*

Piper 0.01 0.01 0.0% 0.19* 0.08* 123.5%* 0.01 0.02 0.0%

Producerconsumer 0.32* 0.18* 69.9%* 0.35 0.18 93.8% 0.67 0.19 248.3%

Stringbuffer 0.0 0.30 0.0% 0.0* 0.40* 0.0%* 0.16* 0.32* 0.0%*

Twostage 0.75 0.04 1611.9% 1.0* 0.19* 407.4%* 0.03 0.04 0.0%

Wronglock 0.28* 0.26* 4.7%* NA NA NA 0.29* 0.26* 10.3%*

PSet Sync-Pair

DFF EFF % DFF EFF %

Arraylist 0.16 0.06 176.5% 0.19 0.06 181.5%

Boundedbuffer 0.35* 0.32* 10.8%* 0.28* 0.25* 11.3%*

Vector 0.07 0.08 0.0% 0.04 0.06 0.0%

Accountsubtype 0.09 0.07 19.9% 0.07* 0.07* 0.0%*

Alarmclock 0.48* 0.26* 82.7%* 1.0* 0.17* 464.2%*

Clean 0.5* 0.02* 2289.7%* 0.0* 0.00* 0.0%*

Groovy 0.23* 0.21* 7.5%* 0.19* 0.22* 0.0%*

Piper 0.18 0.01 867.2% 0.19* 0.08* 123.5%*

Producerconsumer 0.39 0.19 107.2% 0.35 0.18 93.8%

Stringbuffer 0.5* 0.30* 65.5%* 0.0* 0.40* 0.0%*

Twostage 1.0 0.10 839.7% 1.0* 0.19* 407.4%*

Wronglock 0.31 0.27 13.0% NA NA NA

ten returns meaningful improvements in fault detection. These results provide some guidance how test

generation for concurrency testing can be improved with respect to the resulting fault detection rates.

In the remainder of this section, we discuss the practical implications of the study and highlight

additional areas of research that we believe should be explored.

– 68 –

3.4.1 Practical implications for testers

Following a study of several coverage metrics, the question every tester naturally asks is: which

metric should I use? Examining the correlation with fault detection (Table 3.4 and Figure 3.6) and the

fault detection effectvieness of maximum test suite result (Table 3.6 and Figure 3.9), we see that if a

tester must select a single “best” metric, PSet seems to be the only possible choice. For seven objects

among nine single fault objects, PSet coverage’s correlation with fault detection is over 0.57. PSet always

achieved a greater correlation with fault detection than size (S-FF). Additionally, the reduced test suites

with respect to PSet achieve higher fault detection than random test suites of equal size for six objects,

and achieve lower fault detection than random test suite for only one object (Wronglock). PSet is clearly

not ideal in many scenarios – Def-Use was similarly effective as a generation target for Boundedbuffer

while requiring fewer test executions and Blocking was more effective as a generation target for Groovy

– but on the whole it was consistently effective as both a predictor and for test case generation.

With respect to the other metrics, our results suggest basic guidelines. Recall from Table 3.2 the

coverage metric properties of singular/pairwise. Comparing the results for singular and pairwise metrics

while holding the other metric property (synchronization/data access) constant reveals two patterns.

First, the fault detection for maximum coverage test suites for pairwise metrics tends to be equal

to or higher than when using singular metrics. Thus as test case generation target, it is preferable to

select pairwise metrics. Second, pairwise metrics generally have higher correlation with fault detection

and more reliable overall tendency across programs than singular metrics. For every single fault object,

the correlation of Blocked-Pair is higher than or equal to the correlations of its singular versions Blocked

and Blocking. In contrast, LR-Def often shows as high correlations as Def-Use or PSet do. But, the

maximum test suites of LR-Def shows significantly less fault detection than Def-Use and PSet, which

indicates its practical limitation.

Of course, as noted previously, pairwise metrics have more requirements, and thus require more

test executions to achieve maximum coverage. Nevertheless, the stronger correlation between pairwise

coverage metrics and fault detection indicates that investing the effort needed to satisfy a pairwise

coverage metric is preferable to investing the same amount of effort satisfying a singular metric. When

a test reaches a likely saturation point in a singular coverage metric, we recommend achieving as many

pairwise coverage requirements as possible rather than targeting a few remaining singular requirements.

The above advice relates to the previously proposed individual metrics. Based on the results given in

Section 3.3.5 related to RQ3, if we are primarily interested in selecting a test generation target, we would

do well to use combined metrics. While the correlations for combined metrics, shown in Table 3.7, are

not always improvements over those for the original metrics, fault detection rates for test suites achieving

maximum coverage are typically improved. In particular, we recommend a metric combining PSet and

a pairwise synchronization coverage metric (e.g., Follows), as this provides a somewhat reliable testing

estimator and more effective test generation target than any of the original metrics used. As with the

move from singular to pairwise metrics, this increases the number of requirements (being a combination

of two pairwise metrics), but as shown in Table 3.8, for the systems studied the size of the resulting test

suites is not significantly larger than the size of suites defined over the original metrics.

A final note: for some objects, there was a large difference in fault detection depending on the

code constructs (synchronization/data access) used to define the metrics. For example, when using data

access based coverage metrics with Wronglock, the correlation with fault detection was roughly four

times that of synchronization based metrics. However, for Piper the opposite was true; data-access

based metrics show poor fault detection in the reduced test suites. Even among combined metrics, which

– 69 –

are intended to reduce these variations by combining metrics based on different constructs, this behavior

was still observed, for example, Follows+PSet as compared to Blocked-Pair+PSet for the Arraylist and

Boundedbuffer systems.

We found this surprising: while in theory such behavior can also exist between foundationally

different sequential coverage metrics (e.g., metrics defined over def-use pairs versus those defined over

branch constructs), in our experience such dramatic differences do not occur in practice.

3.4.2 Limitations of existing concurrency metrics

As noted, in some cases the concurrency coverage metrics explored exhibited low correlation with

fault detection and/or poor fit during linear regression. These results stand in sharp contrast to results

related to sequential coverage criteria, where for example much better linear regression fit has been

achieved using only test suite size and coverage levels, with adjusted R2 values over 0.90 being typical [4,

69]. In contrast, we observed few adjusted R2 values greater than 0.8, indicating that a great deal of

effectiveness is unaccounted for by test suite size and coverage. By uncovering additional factors that

contribute to fault detection effectiveness, we may be able to improve our concurrency coverage metrics

and testing techniques.

As an initial step towards this, we extended our linear regression analysis to consider two additional

factors: the probability of a delay being inserted (PB), and the length of the delay inserted (DL) (see

Section 3.2.2). These factors were controlled for during test execution, and have been observed to impact

the effectiveness of concurrent testing in previous work [41,51]. We then repeated our regression analysis,

selecting the model with the highest fit for each combination of coverage metric and program.

Following this, we compared each selected model’s fit against the same model with PB and DL

omitted as explanatory variables. We found that while sometimes the improvement when using PB and

DL as explanatory variables was small (< 0.01), often the improvement was significant: the average

relative increase in adjusted R2 was 50.5% (maximum 814%) and the average improvement in adjusted

R2 was 0.05 (maximum 0.37). In some cases, PB and DL account for the bulk of the predictive power;

for example, for Alarmclock the best adjusted R2 for the (usually effective) PSet metric increased from

0.45 to 0.78, an improvement of 75.1%.

We believe these results highlight the need to further improve concurrency coverage metrics to pro-

vide better guidance to testers and testing techniques. Ideally, a coverage metric should perfectly capture

the effectiveness of the testing process, providing a highly accurate estimate of testing effectiveness, upon

which techniques for improving coverage can be built. At a minimum, we would like concurrency cov-

erage metrics to be better predictors than PB and DL, as the most effective set of parameters — much

like the metrics explored — varies unpredictably depending on program.

3.4.3 Relation between metric effectiveness and fault type

One potential factor that may account for the variability in testing is the types of faults present.

Concurrency faults, in contrast to sequential faults — which can take nearly any form — are errors in

specific constructs: for example, data races, e.g., unsynchronized accesses to a shared variable with at

least one write operation, and deadlocks, e.g., incorrect synchronization orders such as wait(m) after

notify(m). Thus, detecting these faults can be easier or more difficult depending on the metric used, as

different metrics focus on different code constructs.

To investigate this, in Table 3.11 we again present the best metrics, as measured by correlation and

– 70 –

Table 3.11: Relation between fault types and concurrency coverage metrics

Fault type Study object

Coverage metrics of Coverage metrics of

highest correlation w/ highest fault detection

fault detection with maximum test suites

Stringbuffer PSet (LR-Def)
Blocked-pair, Follows, PSet,

Atomicity
Sync-pair

violation
Twostage

PSet, Sync-Pair, (Blocked, Blocked, Blocked-Pair,

Blocked-Pair, Blocking, Def-Use, Blocking, Def-Use, Follows,

Follows, LR-Def, Sync-Pair) PSet, Sync-Pair

Accountsubtype Def-Use Follows

Data race
Alarmclock Blocked

Blocked, Blocked-pair,

Def-Use, PSet

Wronglock PSet NA

Deadlock
Clean Def-Use (Blocked-Pair, LR-Def, PSet) Def-Use, PSet

(with wait)
Groovy Follows, Sync-Pair Blocking

Piper PSet Follows

Order violation Producerconsumer Def-Use Def-Use, LR-Def, PSet

the effectiveness of maximum coverage test suites, for each object grouped by the type of fault present.

The best metrics with respect to correlation are presented in the third column, while the best metrics with

respect to fault detection rate for maximum achievable coverage test suites are presented in the fourth

column (”NA” indicates no metric was better than random with statistical significance) 5. In the case of

ties for best, all metrics are presented. Furthermore, in the case of correlation, all metrics achieving high

correlation (> 0.7) are listed in parentheses. Note that we present only the single fault objects as the

type of faults present are already known from previous work [26,71,75]; when using mutation operators,

we cannot be certain of the type of fault without a large amount of effort, an infeasible task for each

mutant. Additionally, note that this (like the previous subsection) is an exploratory ad-hoc analysis;

additional work will be required to verify the observations made.

Our expectation was that if the test requirements of a coverage metric M are formulated over

constructs matching those involved with fault type T , metric M should perform well over objects of

exhibiting fault type T . For example, we expected that Def-Use and PSet should perform well over

objects exhibiting data race and atomicity violations, as the test requirements generated by these coverage

metrics are based upon data access operations. We also expected that Blocked-Pair, Follows, and Sync-

Pair metrics should perform well on objects exhibiting deadlock faults, as the test requirements of these

coverage metrics are based on lock operations.

As shown in Table 3.11, there is no clear relationship between the fault type and the most effective

coverage with respect to correlation. For example, for data race faults, Def-Use, Blocked, and PSet have

the highest correlations on Accountsubtype, Alarmclock, Wrongclock, respectively. Indeed, even the best

type of metric (synchronization/data access) varies depending on the program. Clearly, there is no best

coverage metric for any fault type.

We see similar results with respect to fault detection effectiveness for maximum coverage test suites.

For example, for deadlock faults, Def-Use and PSet have the highest fault detection with maximum test

suites for Clean. However, for Groovy and Piper, Blocking and Follows have the highest fault detection

with maximum achievable coverage test suites, respectively. Again, not only is there no best metric,

5To select the best metric with respect to fault detection, we exclude coverage metrics whose fault detection is not

statistically significantly different than randomly generated test suites of equal size

– 71 –

01 event1.count=0

02 synchronized(m){//b1
03 if(event1.count==1)
04 wait(m)
05 }

11 synchronized(m){//b2
12 event1.count=1
13 notifyAll(m)
14 }

[Thread 1] [Thread 2]

Error: deadlock

01 event1.count=0
02 synchronized(m){//b1
03 if(event1.count==1)
04 wait(m)
05 }

11 synchronized(m){//b2
12 event1.count=1
13 notifyAll(m)
14 }

[Thread 1] [Thread 2]

(a) a correct execution that covers a Sync-Pair test re-

quirement 〈b2, b1〉

01 event1.count=0

02 synchronized(m){//b1
03 if(event1.count==1)
04 wait(m)
05 }

11 synchronized(m){//b2
12 event1.count=1
13 notifyAll(m)
14 }

[Thread 1] [Thread 2]

Error: deadlock

01 event1.count=0
02 synchronized(m){//b1
03 if(event1.count==1)
04 wait(m)
05 }

11 synchronized(m){//b2
12 event1.count=1
13 notifyAll(m)
14 }

[Thread 1] [Thread 2]

(b) an execution that covers a Sync-Pair test require-

ment 〈b2, b1〉, which raises a deadlock

Figure 3.14: Two execution scenarios of Clean

there is no best type.

One possible reason why we observed no relationship between fault type and concurrency coverage

metrics is because test requirements for concurrency coverage metrics do not capture concurrency faults

precisely. To better understand why, consider Figure 3.14. In the figure, (a) and (b) show two executions

that cover Sync-Pair requirement 〈b2, b1〉 (i.e., a synchronization block b2 happens before a b1) where b2

is a synchronized block of Thread 2 (lines 11 to 14) containing notifyAll(m) and b1 is a synchronized

block of Thread 1 (lines 2 to 5) containing wait(m). Since wait(m) and notifyAll(m) should be used

inside a synchronized block on m, we expect to detect the deadlock caused by calling wait(m) after

notify(m) by covering the test requirements for Sync-Pair coverage, including 〈b2, b1〉. However, no

test requirement for Sync-Pair coverage is guaranteed to capture the deadlock situation precisely, as

shown in Figure 3.14. In this case, both Figure 3.14(a) and (b) cover 〈b2, b1〉, but only Figure 3.14(b)

raises a deadlock.

In contrast, to detect this specific deadlock fault, the sequence of data accesses on the variable

event1.count is more important than the sequence of lock operations. Figure 3.14 shows that the fault

appears when Thread 1 executes a waiting operation on the lock m (line 04) after Thread 2 executes a

notification on the same lock (line 13). The fault detection depends on the sequence of data accesses on

event1.count (i.e., line 01→ line 12→ line 03). We suspect that this is the reason that the data access

coverage metrics PSet and Def-Use show high correlation with the fault detection for Clean. This case

implies that not only the coverage metric that captures a faulty thread interaction is important for fault

detection, but also the coverage metric that captures execution paths up to the faulty thread interaction

is important.

Such issues on concurrency coverage metrics again highlight the need to better understand how to

capture what represents effective testing. Additionally, they help explain why using multiple concurrency

coverage criteria, per Section 3.3.5, can be an effective strategy to improve fault detection.

3.4.4 Implications for concurrent test generation research

Work on test case generation methods for concurrency testing is an active — but relative to work

on sequential testing — young area of research. In sequential test case generation, several techniques

focus on methods for satisfying difficult-to-cover test requirements (e.g. symbolic execution, genetic

approaches), and many, if not most approaches center around a single metric, branch coverage. In

contrast, current approaches to concurrent test generation have little ability to target specific difficult-to-

cover requirements, and the coverage metric used to evaluate these approaches has not been standardized.

– 72 –

Given this, it seems reasonable to consider whether, as in sequential testing, effort to develop new

techniques for covering difficult-to-cover requirements is warranted, and if so what coverage metric(s)

should be targeted. We have already largely addressed the latter question above in Section 3.4.1: PSet,

combined with any of three pairwise, synchronized metrics already proposed, offers the most consistently

high levels of fault detection. As noted previously in Section 3.3.3 and 3.4.3, however, there exist

additional factors that current concurrency coverage metrics fail to capture. Thus, future work on

concurrent test generation could be greatly improved by first considering how we can better (or perhaps

more consistently) capture effective concurrent testing as a metric.

The answer to the former question — whether to target difficult test requirements — is similarly

ambiguous. Given our results for RQ4, it seems that while in some cases difficult requirements do offer

improved fault detection relative to other requirements (e.g. for the Arraylist object), in most cases no

statistically significant improvements were found. Nevertheless, no statistically significant decreases in

fault detection were observed, and thus if a test generation method could be found that increased the

likelihood of satisfying difficult requirements, it would certainly improve testing effectiveness. Of course,

the details of any new technique — specifically, whether the technique would slow the overall rate of

test case generation — would determine whether it represents an improvement over existing approaches;

there is little doubt that the potential to improve fault detection via targeting of difficult requirements

exists.

3.5 Summary of this chapter

In this work, we have evaluated the relationship between eight previously proposed concurrency

coverage metrics and fault detection effectiveness using twelve concurrent programs drawn from previous

work in concurrency testing. We observed moderate correlations between coverage and fault detection

effectiveness, established via linear regression that each coverage metric has a predictive value separate

from test suite size, and found statistically and practically significant increases in fault detection effec-

tiveness when using test suites reduced to achieve maximum coverage relative to random test suites of

equal size. In addition, we confirmed that combinations of these coverage metric provide more reliable

performance across different programs, particularly with respect to test generation, and that difficult-

to-cover test requirements may be particularly effective with respect to fault detection. These results

demonstrate that existing concurrency coverage metrics — in particular combinations of PSet and a

pairwise synchronization based coverage metrics — can be effective metrics for evaluating concurrency

testing effectiveness, and thus provide key evidence supporting the construction of techniques based on

these metrics.

Nonetheless, while each metric explored was useful in some contexts, the predictive and test case

generation value of each metric, even combined metrics which were proposed specifically to avoid this

variation, often varied considerably from program to program, indicating that more work in this area is

required. We hope to explore methods for improving these metrics in the future and encourage others

to do the same.

– 73 –

Chapter 4. Test Generation Using Concurrency

Coverage Metrics

4.1 Introduction 1

Research on utilizing coverage criteria (e.g., branch coverage) to measure the quality of sequential

program tests has been very active because of the strong correlation between test suites with high cover-

age and the fault-detection ability of those test suites [15,69,78]. For concurrent programs, concurrency

coverage metrics (e.g., sync-pair coverage and statement-pair coverage [11,102,115]) have been proposed

to capture the interleaving behaviors between multiple threads and the strong correlation between con-

currency coverage and fault-detection ability is empirically shown [43]. However, there has been little

research that aims to achieve high concurrency coverage to detect faults more effectively.

CUVE (Combinatorial concUrrent coVerage based tEst generation) is a technique that alleviates

the limitations of the conventional testing techniques and detects fault effectively and efficiently. First,

I have defined a new concurrency coverage criterion, combinatorial concurrency coverage (Section 4.2).

Combinatorial concurrency coverage captures more diverse interleaving executions than conventional

concurrency coverage. Second, I have developed a new testing technique CUVE, which generates diverse

test executions fast by utilizing the combinatorial concurrency coverage (Section 4.3). I have performed a

series of experiments to evaluate the effectiveness and efficiency of CUVE over conventional techniques by

testing 65 mutated faulty versions of three Java programs and six real-fault Java programs (Section 4.4).

In addition, I have compared CUVE with 12 random noise-injection techniques, a random scheduling

technique, a systematic testing technique, and three bug pattern-directed testing techniques. The results

demonstrate that CUVE is more effective and more efficient than any of the other testing techniques on

most subjects (Section 4.5). Last, I analyze the experiment results in detail (Section 4.6).

4.2 Combinatorial concurrency coverage

4.2.1 Definition

A set of test requirements for the combinatorial coverage of a coverage C in a target program P is

defined as follows:

∀ri, rj ∈ TR(C) : ri 6= rj ↔ {ri, rj} ∈ TR(C(C))

where TR(C) is a set of test requirements of C for P and C(C) is a combinatorial coverage of C for P

(from here on, we call C as a ‘singular’ coverage to distinguish from the combinatorial coverage and omit

P if context is clear). In other words, a test requirement for the combinatorial coverage of C is defined as

a set of two distinct test requirements for C. For example, suppose that a Sync-Pair coverage [41] for a

target program P has four test requirements {r1, r2, r3, r4}. The test requirements of the corresponding

combinatorial coverage are {{r1, r2}, {r1, r3}, {r1, r4}, {r2, r3}, {r2, r4}, {r3, r4}}. In general, for n test

requirements of a singular coverage, we have C(n, 2) = n× (n− 1)/2 combinatorial test requirements.

1 A part of this chapter was presented in ISSTA 2012 [41]

– 74 –

The main motivation for constructing the combinatorial coverage is that sets/combinations of two

test requirements for a coverage criterion C can capture more diverse behaviors of P . For example, sup-

pose that we have four test executions σ1, σ2, σ3, and σ4 for P which cover r1, r2, r3, and r4, respectively.

Each of these test executions may not cover two different test requirements together (e.g., {r1, r2} or

{r1, r3}). 2 Thus, we have to generate more diverse test executions to cover the test requirements of a

combinatorial coverage of a singular coverage C than to cover the test requirements of C. In order to

generate more diverse test executions to cover the combinatorial test requirements for a singular coverage

C, we have developed the combinatorial concurrency coverage. In particular, we utilize a combinatorial

concurrency coverage (calling it CC) of the union of Sync-Pair metric (SP) [41] and Def-Use metric

(DU)) [98]. In other words,

∀ri, rj ∈ TR(SP) ∪ TR(DU) : ri 6= rj ↔ {ri, rj} ∈ TR(CC)

SP has a test requirement for every pair of two synchronized blocks (i.e., two locking operators), which is

satisfied when the two synchronized blocks consecutively holds a same lock. DU has a test requirement for

every pair of write-read (and/or write-write [98]) operators that manipulate a same variable consecutively.

There are the two reasons to use the union of SP and DU to define the combinatorial concurrency

coverage. First, a recent empirical study on concurrency coverage metrics shows that SP and DU show

strong correlation with fault detection [43]. Second, targeting the test requirements of SP and DU

together detects more faults than targeting the test requirements of SP and DU separately [43]. Note

that a set of SP test requirements and a set of DU test requirements do not overlap with each other

because test requirements of SP are defined over synchronization operators and test requirements of DU

are defined over data access operators.

4.2.2 Advantages of the combinatorial concurrency coverage

In this section, we explain the advantages of the combinatorial concurrency coverage over singular

concurrency coverages with examples. First, we show the shortcomings of a (singular) concurrency cov-

erage in detecting concurrency errors. The previous empirical study on concurrency coverage metrics

shows that tests achieving all feasible (singular) concurrency coverage requirements can still miss con-

currency errors [43]. Then, we show how the combinatorial concurrency coverage metric can solve these

issues.

Atomicity violation error

An atomicity violation error can occur when using the three statements that access the same shared

variable by two different threads. Figure 4.1(c) shows an atomicity violation error, which may not be

detected by covering test requirements of DU, but can be detected by covering test requirements of the

combinatorial DU coverage.

The program has Thread1 that reads x (line 1) and then writes x (line 2) and Thread2 that writes

x (line 3). We also present the last statement that writes x before the statements causing atomicity

violation error (line 0). The set of the DU test requirements for the example is as follows:

{< 0, 1 >,< 0, 2 >,< 0, 3 >,< 2, 3 >,< 3, 1 >,< 3, 2 >}
2We say that an execution σ covers/satisfies a combinatorial requirement {r1,r2} (denoted by σ |={r1,r2}) if σ covers

r1 and r2 (the order of covering r1 and r2 does not matter).

– 75 –

Figure 4.1: Example of atomicity violation error

arr[0..1] // array of size 2

len=2 ; // length of arr

p=0 ;

11 thread1() { 21 thread2() { 31 thread3() {

12 lock(m); 22 lock(m); 32 lock(m);

13 if(p+1<len) 23 if(p < len) 33 z = arr[p];

14 p++; 24 arr[p++]=y; 34 if(p > 0)

15 unlock(m);} 25 unlock(m);} 35 p--;

36 unlock(m);}

Figure 4.2: Example of general race error

σ1 (Fig. 4.1(a)) and σ2 (Fig. 4.1(b)) cover all DU test requirements (i.e., σ1 covers < 0, 1 >, < 0, 2 > and

< 2, 3 > and σ2 covers < 0, 3 >, < 3, 1 > and < 3, 2 >) and do not raise an atomicity violation error.

Thus, singular DU coverage based testing misses the error because the testing process will not generate

σ3 after it generates σ1 and σ2 which already covered all DU test requirements.

In contrast, a combinatorial DU requirement {¡0,1¿, ¡3,2¿} captures the erroneous execution because

this combinatorial DU requirement cannot be covered by σ1 nor σ2, but by σ3 that causes the atomicity

violation error.

General race error

Figure 4.2 shows a concurrent program that has an out-of-bound array access fault (line 33). This

error occurs when thread1() (lines 12-15), thread2() (lines 22-25), and thread3() (lines 32-36) are

executed in order (i.e., when p is 2 at line 33). This fault cannot be detected by using bug pattern-directed

techniques such as data race detector [84], atomicity violation detector [32], and atomic-set serializability

violation detectors [39] because all data accesses are protected by the lock m, and also executions involve

three threads instead of just two.

Moreover, test executions that cover all SP requirements of the program can still miss the error. For

example, consider the set of the SP requirements for the program in the following:

{< 12, 22 >,< 12, 32 >,< 22, 12 >,< 22, 32 >,< 32, 12 >,< 32, 22 >}

Suppose that a singular SP based test process generated the following executions:

σ0: lines 12–15; lines 32–36; lines 22–25

σ1: lines 22–25; lines 32–36; lines 12–15

– 76 –

σ2: lines 32–36; lines 12–15; lines 22–25

σ3: lines 22–25; lines 12–15; lines 32–36

Although σ1 to σ4 cover all six SP test requirements (i.e., σ0 covers <12, 32> and <32, 22>; σ1 covers

<22, 32> and <32, 12>; σ2 covers <32, 12> and <12, 22>; σ3 covers <22, 12> and <12, 32>), they

do not detect the fault.

In contrast, the combinatorial SP coverage has combinatorial test requirements for every pair of

SP requirements (e.g., {< 12, 22 >, < 22, 32 >} and a test execution that covers this combinatorial

requirement will detect the error.

4.3 CUVE framework

4.3.1 Overview

To make test executions cover targeted test requirements for concurrency coverage, CUVE generates

thread schedule which is the execution order of multiple threads through a test execution. The CUVE

framework has two major modules – thread model analyzer and test generator. The thread model analyzer

monitors runtime information of the target program to construct an execution model, based on which

CUVE estimates the feasible singular concurrency coverage requirements. The estimated feasible test

requirements are transferred to the test generator.

To achieve high concurrency coverage, the test generator module repeatedly generates test executions

by manipulating thread scheduling at runtime. CUVE has two testing phases–Singular coverage based

Testing Phase (STP) and Combinatorial coverage based Testing Phase (CTP). CUVE runs STP first

and then CTP. This is because the singular coverage is “coarser” than the combinatorial coverage and,

thus, targeting to achieve high singular coverage at early testing period generates more diverse thread

schedules. When CUVE does not increase singular coverage for 10 consecutive test executions in STP

(i.e., the singular coverage based test generation is saturated), CUVE advances to CTP and use the

combinatorial concurrency coverage for the thread schedule generation.

4.3.2 Estimator of Feasible Test Requirement

To explain the dynamic analysis that estimate feasible test requirements of concurrency coverage

metrics, I first define a thread model M of a multithreaded program as a finite set of threads, each of

which consists of a finite sequence of atomic actions, where an action p has the following attributes:

• thread(p) is a thread executing p.

• operator(p) ∈ Sync ∪ Thread ∪ Data indicates a type of p.

– Sync = {lock-hold, lock-acquire, unlock}
– Thread = {thread-creation, thread-join}
– Data = {read, write}

• operand(p) indicates an operand of p.

– For operator(p) ∈ Sync, operand(p) is the corresponding lock.

– For operator(p) ∈ Thread, operand(p) is the corresponding thread.

– For operator(p) ∈ Data, operand(p) is the variable/memory location to read or write.

• loc(p) is the corresponding code location of p.

– 77 –

• lockset(p) is the set of locks held by thread(p) when p begins to execute.

• next(p) is the lock-hold actions of thread(p) that first accesses operand(p) after p.

I define the functions that relate two lock-hold actions p and p′ of the same thread (i.e., operator(p)

=operator(p′)=lock-hold and thread(p)=thread(p′)) as follows: 3

• lockset(p, p′) is a set of locks that continuously guards p and p′.

• next-lock(p) is the lock-hold action of thread(p) that first holds operand(p) after p.

• prev-lock(p) is the lock-hold action of thread(p) that most recently holds operand(p) before

p.

• next-write(p) is the write action of thread(p) that first writes operand(p) after p.

• prev-lock(p) is the write action of thread(p) that most recently writes operand(p) before p.

In addition, I define a precedence relation ≺ on the actions ofM that represents ordering constraints

between actions of two different threads t and t′. The ordering constraints are imposed at the time of

thread creations.

For any action p of thread t that occurs before t creates a new thread t′ and for any action

p′ of t′, p ≺ p′.

I define an interleaved execution σ of a target multithreaded program as a sequence of actions of the

all threads. During an interleaved execution σ, the program is at any program point with a state s. We

introduce the following functions regarding σ and s:

• σ[i] indicates ith action of σ.

• enabled(s) is a set of executable actions at s, through which s changes to another state s′.

Based on the thread model and the interleaved execution model, we define test requirements for the

synchronization-pair (SP) coverage metric and the def-use (DU) coverage metric.

The definitions are as follows:

Definition 6. Synchronization-Pair (SP) Test Requirement

A pair of code locations ¡l1, l2¿ is an SP requirements, if the following conditions hold for σ:

1. l1 and l2 have lock statements that are executed on the same lock m (i.e., there is σ such that

loc(σ[i])=l1, loc(σ[j])=l2, operator(σ[i])=operator(σ[j])=lock-hold,

and operand(σ[i])=operand(σ[j])=m for some i < j).

2. There is no lock-hold action on m between σ[i] and σ[j] (i.e., there is no k such that i < k < j,

operand(σ[k])=lock-hold, and operand(σ[k])=m).

Definition 7. Def-Use (DU) Test Requirement

A pair of code locations ¡l1, l2¿ is an DU requirements, if the following conditions hold for σ:

1. l1 is a write statement on a shared variable v and l2 is a read or write statement on the same

variable. (i.e., there is σ such that loc(σ[i])=l1, loc(σ[j])=l2, operator(σ[i])=write,

operator(σ[j])=write or operator(σ[j])=read, and operand(σ[i])=operand(σ[j])=v for some

i < j).

3next-lock(p), next-write(p), prev-lock(p) and prev-write(p) might be undefined when p is the last/first access of

operand(p) by thread(p).

– 78 –

2. There is no write action on v between σ[i] and σ[j] (i.e., there is no k such that i < k < j,

operand(σ[k])=write, and operand(σ[k])=v).

Next, we discuss the conditions, under which SP and DU requirements can be covered during

execution. We formally define the satisfaction criterion as follows:

Definition 8. SP Test Requirement Satisfaction Criteria

For an execution σ of a program P and an SP requirement ¡l1, l2¿, σ |=< l1, l2 > if there exist i and j

(i < j) such that

1. loc(σ[i]) = l1 and loc(σ[j]) = l2

2. operator(σ[i])=operator(σ[j])=lock-hold

3. operand(σ[i])=operand(σ[j])

4. there is no k such that i < k < j, operator(σ[k])=lock-hold, and operand(σ[k])=operand(σ[i])=

operand(σ[j])

Definition 9. DU Test Requirement Satisfaction Criteria

For an execution σ of a program P and an DU requirement ¡l1, l2¿, σ |=< l1, l2 > if there exist i and j

(i < j) such that

1. loc(σ[i]) = l1 and loc(σ[j]) = l2

2. operator(σ[i])=write

3. operator(σ[j])=write or operator(σ[j])=read

4. operand(σ[i])=operand(σ[j])

5. there is no k such that i < k < j, operator(σ[k])=write, and operand(σ[k])=operand(σ[i])=

operand(σ[j])

The estimation phase computes and reports a set of SP and DU requirements that can be satisfied

by possible thread interleavings. To do this, the technique builds a thread model M by executing a

program once and collecting data such as actions and threads. M has a set of executed threads, where

each thread has a sequence of actions, and lock-hold actions have their dynamic lockset information.

From M, the technique attempts to create every possible SP and DU test requirements as pairs of lock

statements and data access statements. Then, the technique filters out some pairs that are definitely

infeasible by checking (1) dynamic lockset relations, and (2) precedence relations. The pairs that are

not filtered out (i.e., accepted) are reported as likely feasible.

I formally define the acceptance conditions of the SP requirements as follows. For SP requirement

¡loc(p),loc(q)¿ of lock-hod actions p and q on the same lock m, the technique accepts the pair when

the following conditions hold:

• If thread(p)=thread(q),

(SP1) q=next-lock(p)

• If thread(p)6=thread(q),

(SP2) lockset(p, next-lock(p)) ∩ lockset(q) = ∅
(SP3) lockset(p) ∩ lockset(prev-lock(q), q) = ∅

– 79 –

(SP4) q 6≺ p

SP1 accepts consecutive lock statements executed from the same thread as a feasible pair. SP2,

SP3, and SP4 define the conditions for the pairs from different threads. SP2 implies that p, next(p),

and q should not be protected by a common lock, so that q can execute consecutively after p (i.e., before

next(p)). For example, suppose there exists m such that m ∈ lockset(p, next(p)) ∩ lockset(q).

Then, p and next(p) are continuously protected by m, and thus, q cannot execute consecutively after

p. Hence, ¡loc(p),loc(q)¿ is filtered out. SP3 filters out infeasible conditions in a similar manner. SP4

filters out pairs that violates the precedence relation. If q ≺ p, p cannot execute before q so that the

corresponding pair is infeasible.

Similarly, I formally define the acceptance conditions of the SP requirements as follows. For DU

requirement ¡loc(p),loc(q)¿, the technique accepts the pair when the following conditions hold:

• If thread(p)=thread(q),

(DU1) q=next-write(p)

• If thread(p)6=thread(q),

(DU2) lockset(p, next-write(p)) ∩ lockset(q) = ∅
(DU3) lockset(p) ∩ lockset(prev-write(q), q) = ∅
(DU4) q 6≺ p

4.3.3 Test generator

To generate an execution to cover target test requirements, CUVE controls the execution orders of

read, write, and synchronization operations in a thread at runtime. Algorithm 1 describes how CUVE

generates various test executions by controlling the execution orders of the multiple threads according

to the STP or CTP thread schedule decision algorithms. These algorithms decide which thread to run

at a time, based on the target test requirements.

The test generation algorithm (Algorithm 1) receives an initial state of a target program s0, a test-

ing phase flag phase (phase is STP or CTP), a set of estimated feasible singular coverage requirements

estimatedS , and singular and combinatorial test requirements already covered in the previous test exe-

cutions (i.e., coveredS , and coveredC). The algorithm initiates an execution by setting program state to

s0 (line 3).

To control thread execution order, CUVE suspends every enabled action p of a thread (line 5) by

adding p to paused (line 7) if p synchronizes or accesses data (line 6). When all running threads are

suspended (i.e., paused=enabled(s) at line 9), CUVE invokes a scheduling decision algorithm to se-

lect one action from paused to execute in the next step (lines 10–14). In other words, depending on

the current testing phase (i.e., phase), CUVE executes either SingularDecision() (line 11), or Combi-

natorialDecision() (line 13) to select an action that may increase target coverage (Sections 4.3.4 and

4.3.5).

The test generation algorithm resumes the paused thread by executing the paused action selected

(line 18). After the action is executed, CUVE determines a singular test requirement achieved by the

action (SP requirement in lines 20–21 and DU requirement in lines 22–23). last locks(l) returns the code

location of the last lock action on the lock l at state s. operator(p) returns a type of p and operand(p)

returns an operand of p (i.e., a lock variable for synchronization action and a data variable for read or write

action). loc(p) returns the code location of p. last writes(v) returns the code location of the last write

– 80 –

Input: s0: an initial state

phase: the testing phase in a testing run, either STP or CTP

estimatedS : estimated feasible singular test requirements

coveredS : singular test requirements covered in a test

coveredC : combinatorial requirements covered in a test

Output: Updated coveredS and coveredC

1 curr ← ∅; /* a set of singular coverage requirements covered in this execution.*/

2 paused← ∅; /* a set of paused actions */

3 s← s0;

4 while enabled(s) 6= ∅ do
5 p← an action in enabled(s)\ paused;

6 if operator(p) is lock, read, or write then

7 Add p to paused ;

8 end

9 if paused = enabled(s) then

10 if phase = STP then

11 p← SingularDecision(paused, s, curr, coveredS ,estimatedS);

12 else if phase = CTP then

13 p← CombinatorialDecision(paused, s, curr, coveredS , coveredC);

14 end

15 Remove p from paused ;

16 end

17 if p 6∈ paused then

18 s←execute(s, p); // updates s by executing p ;

19 c← undefined; // singular coverage information

20 if operator(p) is lock then

21 c← < last locks(operand(p)), loc(p) > ;

22 else if operator(p) is read or write then

23 c← < last writes(operand(p)), loc(p) > ;

24 end

25 if c 6= undefined then

26 Add the elements of comb(curr, c) to coveredC ;

27 Add c to coveredS and curr ;

28 end

29 end

30 end

Algorithm 1: Test execution generation algorithm

action for a variable v at state s. Then, CUVE updates the achieved combinatorial concurrency coverage

(line 26) and the achieved singular concurrency coverage (line 27) correspondingly. comb(S, c) returns a

set of sets {{s1, c}, ...{sn, c}} where S = {s1, ...sn} (for example comb({1, 2}, a) = {{1, a}, {2, a}}). This

process repeats until no enabled action remains (line 4), which corresponds to the program termination

or a deadlock. 4

4This test generation technique is inspired by the randomized scheduler in Sen [87]. The main difference is that CUVE

decides an action to schedule using the coverage-based algorithms while Sen [87] decides randomly.

– 81 –

Input: paused: a set of paused actions

s: a current state

curr: singular requirements covered in this execution

coveredS : singular requirements covered in a test

estimatedS : estimated feasible singular test requirements

Output: An action act in paused to execute

SingularDecision(paused, s, curr, coveredS , estimatedS){
1 // The first rule

2 if ∃p ∈ paused : covs(p) 6∈ coveredS then

3 act← p;

4 else

5 // The second rule

6 if ∃p, q ∈ paused : covs(p, q) /∈ coveredS then

7 act← p;

8 else

9 // The third rule

10 act← p ∈ paused such that |{t ∈ rel(estimatedS , loc(p)) | t 6∈ coveredS}| is the smallest;

11 end

12 end

13 return act ; }
Algorithm 2: Scheduling decision algorithm for the singular concurrency coverage

4.3.4 Singular coverage based scheduler

Algorithm 2 is a scheduling decision algorithm (i.e., selecting an action from a set of paused actions

to execute) to achieve high singular concurrency coverage fast. The algorithm receives a set of paused

actions (paused), a current state (s), a set of singular test requirements covered in the current execution

(curr), a set of singular test requirements covered in the previous test executions (coveredS), and a set

of likely feasible singular test requirements (estimatedS). The algorithm uses several auxiliary functions.

A function covs(p) returns a singular test requirement that is covered if an action p is executed at a state

s. A function covs(p, q) returns a singular test requirement that is covered when q executes right after p

executes at a state s.

The algorithm runs three rules to select an action to execute in order. The algorithm uses the

first rule to select an action whose execution at a state s can immediately cover a new singular test

requirement (i.e., a singular test requirement that has not been covered) (lines 1–3). If there are multiple

choices of such actions, the algorithm arbitrary chooses one of those. If the first rule fails (i.e., if no

paused action to increase coverage), the algorithm uses the second rule (lines 5–7) which selects an action

p whose immediate subsequent action q can cover a new test requirement.

If the second rule fails, the algorithm uses the third rule which is heuristics to select an action of the

least possibility to cover a new test requirement in later steps of the current test execution (lines 9–12).

Specifically, for each action p in paused, the algorithm counts the number of the feasible test requirements

which may be covered by p later (i.e., < l1,l2 > may be covered by p later if l1 = loc(p) or l2 = loc(p)).

The third rule selects an action whose count is the smallest because such action has the least possibility

to increase coverage (i.e., the other actions in paused have more possibility to increase coverage in later

step), thus, least potential benefit to hold. rel(estimatedS , loc(p)) returns a subset of estimatedS each

of whose elements has loc(p) as a component (for example, < l1,l2 > has two components l1 and l2).

– 82 –

Input: paused: a set of paused actions

s: a current state

curr: singular requirements covered in this execution

coveredS : singular requirements covered in a test

coveredC : combinatorial requirements covered in a test

Output: An action act in paused to execute

CombinatorialDecision(paused, s, curr, coveredS , coveredC){
1 // The first rule

2 if ∃p ∈ paused : comb(curr, covs(p)) \ coveredC 6= ∅ then
3 act← p ∈ paused such that |comb(curr, covs(p)) \ coveredC | is the largest ;

4 else

5 // The second rule

6 if ∃p, q ∈ paused : comb(curr, covs(p, q)) \ coveredC 6= ∅ then
7 act← p ∈ paused such that ∃q ∈ paused \ {p}, |comb(curr, covs(p, q)) \ coveredC | is the largest ;

8 else

9 // The third rule

10 act← p ∈ paused such that |{t ∈ rel(coveredS , loc(p))| comb(curr, t) \ coveredC 6= ∅}| is the

smallest;

11 end

12 end

13 return act ; }
Algorithm 3: Scheduling decision algorithm for the combinatorial concurrency coverage

4.3.5 Combinatorial coverage based scheduler

Algorithm 3 is a scheduling decision algorithm of CTP to achieve high combinatorial concurrency

coverage fast. It receives a set of paused actions (paused), a current state (s), a set of singular require-

ments covered in this execution (curr), a set of singular requirements and a set of combinatorial coverage

requirements covered in the previous test executions (coveredS and coveredC). The algorithm makes

the scheduling decision according to the following three rules in order.

The first rule is to select an action that covers the largest number of new combinatorial requirements

(lines 1–4). A set of combinatorial coverage requirements achieved by an action p includes combinations

of the set of singular requirements covered in this execution (curr) and the singular requirement covered

by p at s (covs(p)). Thus, the number of new combinatorial coverage requirements covered can be

computed by counting the combinatorial requirements in comb(curr, covs(p)) that are not in coveredC .

If there are multiple choices of such actions, the algorithm arbitrary chooses one of those.

The second rule selects an action whose immediate subsequent action can cover the largest number of

new combinatorial test requirements in the next turn (lines 6–9). The algorithm first finds two different

actions p and q in paused that can cover a new singular requirement covs(p, q). For such p and q, the

algorithm checks if covering covs(p, q) achieves new combinatorial requirements (line 7).

The third heuristic rule selects an action that can cover the smallest number of new combinatorial

requirements in later steps in this execution (lines 11–14). The algorithm selects an action p such that

rel(coveredS , loc(p)) has the smallest number of the covered singular coverage requirements that compose

new combinatorial requirements which will be covered later in a running execution. CUVE selects such

p as such action has the least possibility to increase coverage soon, thus, least potential benefit to hold.

– 83 –

4.4 Experiment design

4.4.1 Research questions

We designed a series of experiments to evaluate how much CUVE improves the effectiveness and

efficiency of concurrent program testing in terms of concurrency coverage achievement (RQ1 and RQ2)

and fault detection (RQ3 and RQ4) compared to the conventional concurrent program testing techniques.

Also, we investigated the impact of the combinatorial concurrency coverage based test generation fea-

ture (i.e., CTP) of CUVE with regard to the coverage achievement effectiveness and fault detection

effectiveness (RQ5).

RQ1: Coverage achievement effectiveness. To what extent does CUVE achieve higher cov-

erage than the other conventional testing techniques do in the combinatorial concurrency coverage?

RQ2: Coverage achievement efficiency. How fast does CUVE achieve certain levels of the

combinatorial concurrency coverage, compared to the other conventional testing techniques?

RQ3: Fault detection effectiveness. To what extent does CUVE detect more faults than the

other conventional testing techniques?

RQ4: Fault detection efficiency. How fast does CUVE detect a fault compared to the other

conventional testing techniques?

RQ5: Impact of CTP of CUVE on coverage achievement and fault detection. To what

extent does CUVE achieve higher coverage and detect more faults than the CUVE without CTP

(i.e., with only STP)?

To answer these research questions, we studied 19 different test generation techniques (Section 4.4.2)

on 65 mutated faulty versions of three Java programs and six real-fault objects used in related literature

(Section 4.4.3).

4.4.2 Test generation techniques

The independent variable of the experiment is the technique used for concurrent program test gen-

eration. We used 12 random noise-injection techniques, a randomized scheduling technique, a systematic

test generation technique, and three bug pattern-directed scheduling techniques as conventional concur-

rent program test generation techniques to compare with CUVE. Also, to answer RQ5, we used a variant

of CUVE that uses only STP without CTP.

Random noise-injection techniques. We used 12 versions of a random noise-injection tech-

nique [27, 51]. These techniques insert artificial time delay before synchronization operations and read-

/write operations that may access shared variables to induce diverse thread scheduling in repeated test

executions. We constructed 12 different techniques by controlling the maximum amount of random delay

at a target operation as 5, 10, and 15 milliseconds and controlling the probability of a noise-injection

per target operation as 10%, 20%, 30%, and 40%.

Randomized scheduling technique. We used a randomized scheduling technique presented

by Sen [87]. This technique suspends running threads before every synchronization operation and data

access, and then randomly selects and resumes one thread at a time.

Systematic testing technique. We used Java PathFinder core (JPF-core) version 7 as a sys-

tematic testing technique. We used JPF with the depth-first search strategy and the maximum depth

– 84 –

bound 106. We configured JPF to terminate when JPF finds a violation (i.e., an uncaught exception) to

measure time for detecting a fault. We used JPF only for study on fault detection ability, not for cover-

age achievement because modifying JPF to measure combinatorial concurrency coverage would require

heavy extra effort.

Bug pattern-directed testing techniques. We used RaceFuzzer [88], AtomFuzzer [75], and

DeadlockFuzzer [49], which generate thread schedules of specific patterns based on bug prediction in-

formation targeting data race bugs, atomicity violations, and cyclic deadlock bugs, respectively. 5 We

operated each technique to obtain fault prediction information prior to test generation, and then fed the

information to generate test executions. Since these tools originally terminated when it had tried test

generation with all fault prediction information, we re-executed the test generations for 1000 seconds

of testing time in the experiments. We used these bug pattern-directed techniques only for study on

fault detection ability, not for on coverage achievement because these tools do not measure combinatorial

concurrency coverage and we used them off the shelf.

CUVE-c. To assess the impact of the combinatorial concurrency coverage based test generation

feature, we used a variant of CUVE that does not use CTP but STP only. 6

4.4.3 Study objects

We applied the techniques to two groups of objects. First, to study the testing techniques with

regard to various concurrency faults, we used mutation objects each of which has systematically mutated

faulty versions. Second, to study the testing technique with regard to real faults, we used real-fault

objects that have been used for concurrent program testing research.

Mutation objects

As mutation objects, we used three Java programs ArrayList, HashMap, and TreeSet in Java Util

library (see Table 4.1). We selected these programs because they are often used as benchmark programs

in study on testing techniques for concurrent programs [46,48,75,88]. In addition, these programs contain

many synchronization blocks from which a large number of mutants can be generated. Each program

is used with the synchronization wrapper to provide thread-safe behaviors. For example, ArrayList is

always wrapped with Collections.SynchronizedList in the test cases used for our study. We fixed all

known faults of the programs before the experiments.

Like other concurrent program testing studies [46, 49, 75, 88, 88], we set a test case (test driver) to

initialize shared data structures of a target program and then create multiple threads each of which runs

a corresponding method with fixed input values and terminates. We used the same test case for the

faulty mutants too.

Each mutant of the mutation object is generated by seeding one fault to an original target program.

We used both synchronization mutation operators [9, 36] and expression mutation operators [3, 25]. 7

Synchronization mutation operators transform a synchronization operator (e.g., synchronized block) of

5We chose these three tools because they are the only publicly available tools for Java programs. We could not use

PECAN [46] whose result was often different from its description. We reported this issue to the PECAN developers.
6CUVE-c is similar to the thread scheduling algorithm of Hong et al. [41] except that CUVE-c utilizes both SP and DU

coverages while Hong et al. [41] uses SP only.
7 We used the following synchronization mutation operators: exchange synchronized block parameters, remove syn-

chronized block, shrink synchronized block, and split synchronized block. Also we used the following expression mutation

operators: access flag change, argument order change, arithmetic operator change, logical connector change, and relational

operator change (Table 4.2).

– 85 –

Table 4.1: Study objects used for the CUVE experiments

Type Program
Size Number of Number of

(LOC) threads faulty versions

Mutation ArrayList 3090 27 18 (4, 179)

objects HashMap 3941 27 12 (19, 169)

TreeSet 4049 22 35 (26, 190)

Real Airlines 487 9 1

fault Crawler 1281 17 1

objects Log4j-509 16425 3 1

Log4j-1507 16301 3 1

Pool-146 5735 3 1

Pool-184 4718 3 1

a target program [9]. An expression mutation operator changes one expression of a target program such

as an arithmetic operator or a method call [25]. We applied expression mutation operators as well as

synchronization mutation operators because expression mutation operators can induce a fault which can

be detected only at specific thread scheduling.

We removed mutants whose faults were not detected by any testing technique in 1000 seconds

(i.e., likely equivalent mutants). We also removed mutants whose faults were detected by all testing

techniques in less than one second. The fifth column of Table 4.1 shows the number of mutants used in

the experiments. The numbers in the parenthesis are the number of (likely) equivalent mutants and the

number of mutants killed in less than one second by all techniques.

Real-fault objects

As real-fault objects, we chose six real-world Java applications with already known real faults (Ta-

ble 4.1). We collected these programs from an existing testing benchmark [25] and the study objects

used for related literature [45,71]. Among many candidates, we selected the six programs whose testing

results vary depending on the testing techniques (i.e., the testing results of these objects are useful to

compare the different techniques).

The first two objects Airlines and Crawler are the study objects used in Hrubá et al. [45]. Airlines

is a flight schedule simulator. It has a high-level data race and violates the assert statement. Crawler

is a web crawling system, and it has a data race bug that leads to null pointer dereference errors. To

run these objects, we used the original test cases provided in their distributions. The other five objects

and their test cases are obtained from Apache open-source projects. Log4j-509 is a Java logging system

(Apache Commons Log4j ver. 1.0) and it causes null pointer dereference errors due to unsynchronized

consequent accesses to a shared variable (i.e., atomicity violation (reported as Issue# 509)). Log4j-1507

is a later version of Log4j (ver. 1.1) that has a data race bug (Issue# 1507) and causes null pointer

dereference errors. Pool-146 is a later version of Pool (ver. 1.5) that causes deadlock at wait operation

(Issue# 146). Pool-184 is another version of Pool (ver 1.5.5) where a race condition causes livelocks

(i.e., infinite loop). The first four of the five real-fault objects are compiled in the SIR benchmark [25].

Logj4j-509, Logj4j-1507, Pool-146, and Pool-184 are used as study objects in the literature [71].

– 86 –

Table 4.2: Mutation operators used for the study

Category Mutation operator description

Synchro- Exchange synchronized block parameters

nization Remove synchronized block

mutation Shrink synchronized block

operator Split synchronized block

Expression Access flag change

mutation Argument order change

operator Arithmetic operator change

Logical connector change

Relational operator change

4.4.4 Testing runs and measurement

In one testing run, we applied a testing technique to one version of a mutation object or one real-

fault object for 1000 seconds (our preliminary experiment results did not change much after 1000 seconds

in most cases. See Figure 4.3 and 4.4 for example). We performed 30 testing runs per every version of

a mutation object and per a technique to obtain statistical reliability in the result [82]. Similarly, we

performed 30 testing runs per a real-fault object. We consider that a test execution detects a fault if

a target object raises an uncaught exception, violates assertions, or exceeds given time bounds (i.e., to

detect deadlock/livelock). For each pair of a technique and a study object, we measured the coverage

achievement and the fault detection ability as follows:

Coverage achievement. For a mutation object, we measured the average numbers of the combi-

natorial test requirements covered over the 30 testing runs for the correct version of the object by each

testing technique. Similarly, we measured the average numbers of the combinatorial test requirements

covered over the 30 testing runs for a real-fault object by each testing technique.

Fault detection ability. For a mutation object, the fault detection ability Fx(p, t) of a testing

technique x on a target program p at time t in one testing run is defined as follows:

Fx(p, t) =
Σm∈M(p)fx(m, t)

|M(p)|

where M(p) is a set of mutated faulty versions of p, fx(m, t) ∈ {0, 1} indicates if the fault of a mu-

tated faulty version m has been detected by the time instant t (1 if detected, 0 otherwise) in a testing

run. For example, suppose that the average fault detection ability Fcuve(ArrayList, 100) is 0.94 (see

Figure 4.4) where M(ArrayList)={m1,...,m18}, fCUV E(m1, 100) = 1,..., fCUV E (m18, 100) = 0 for 18

faulty mutants m1 to m18 of ArrayList. This means that the probability that CUVE detects a fault

in ArrayList after testing ArrayList for 100 seconds is 94%. We measure the average fault detection

ability of a testing technique over the 30 testing runs on each mutation object.

For a real-fault object p, we measure the average fault detection ability by using fx(p, t) over 30

testing runs.

– 87 –

Table 4.3: Coverage achievements of the testing techniques

Program
RN-5ms RN-10ms RN-15ms

RS CUVE

min avg max min avg max min avg max

ArrayList 82874.7 91632.9 101041.0 80782.6 90269.7 100808.9 78835.4 89051.4 100902.6 75945.1 117030.1

HashMap 58895.3 74667.7 92323.5 56313.2 73923.6 92117.8 56364.0 72978.4 91677.6 49691.7 98785.4

TreeSet 98223.7 122941.8 149261.9 96508.3 120977.7 144711.3 95313.4 118603.2 141005.5 83186.9 215772.1

Airlines 14266.1 14354.1 14486.3 14093.0 14256.9 14470.8 14006.6 14186.3 14442.7 14354.1 14572.3

Crawler 28296.4 29221.1 30326.3 28366.2 29240.0 30170.0 28352.1 29064.1 29879.3 28247.7 30105.7

Log4j-509 12956.8 13102.6 13251.5 13100.5 13192.8 13317.0 13083.4 13141.9 13253.6 13239.3 13257.0

Log4j-1507 3494.4 3528.6 3540.0 3529.9 3537.5 3540.0 3532.4 3538.1 3540.0 3540.0 3540.0

Pool-146 40349.3 40640.7 41104.5 40350.0 40679.2 41168.8 40368.8 40617.8 41190.5 39949.6 41215.1

Pool-184 63310.9 68993.0 75046.0 55677.3 66547.9 71861.1 51550.9 64621.4 73093.6 75925.4 74562.8

4.4.5 Tool implementation

CUVE has 78 Java classes (15 KLOC). CUVE is compiled and executed with Java 7 (1.7.0 40). To

monitor and control thread scheduling of an execution at runtime, CUVE inserts probes using Soot [103]

before and after every synchronization actions (e.g., monitor enter/exit, wait/notify, thread create/join)

and every data access actions (e.g., read/write) that may access to a shared variable in bytecode level.

4.4.6 Threat to validity

External. The conclusion of the study might be different for other objects. However, we believe

that the conclusion is still valid for other programs that are interesting for the concurrent program

testing research because the study objects in our study have been widely used for evaluating concurrent

program testing techniques. In addition, testing runs are generated using one test case/input, as the

most concurrent program testing techniques do. With multiple test cases, however, the conclusion will be

still valid if intensive testing for each test case is necessary, which is often the case for testing concurrent

programs whose unintended interleaving behaviors trigger errors.

Internal. To avoid incorrect results due to a bug in the CUVE implementation, we have tested the

CUVE implementation intensively. Also, although we implemented the random noise-injection techniques

and the randomized scheduling technique faithful to the original descriptions (corresponding tools for

Java were not available), our implementation may not be equivalent to the original techniques.

Construct. The mutation operators used for the study may not generate all types of concurrent

program faults. However, we used as many mutation operators as possible for Java so to generate

many faulty versions. In addition, we conducted the experiment with real-fault objects to alleviate this

limitation.

4.5 Experiment results

4.5.1 RQ1. coverage achievement effectiveness

Table 4.3 shows the average coverage achievements of the studied techniques over 30 testing runs.

The first column shows the study object name. The second to the four columns show the minimum,

the average, and the maximum coverages achieved after 1000 seconds by the four random noise-injection

techniques (RN) with the delay probability 10% to 40% and the maximum random delay of 5 milliseconds

(RN-5ms). The fifth to the tenth columns show the coverage results of RN-10ms and RN-15ms similarly.

– 88 –

Table 4.4: Time to reach certain level of coverage achievement (in seconds)

Program
70% 80% 90% 100%

RNW RNB RS CUVE RNW RNB RS CUVE RNW RNB RS CUVE RNW RNB RS CUVE

ArrayList n/a 58.8 n/a 24.7 n/a 306.3 n/a 57.2 n/a n/a n/a 133.4 n/a n/a n/a 772.9

HashMap n/a 35.3 n/a 6.3 n/a 99.9 n/a 12.2 n/a 422.3 n/a 39.6 n/a n/a n/a 407.6

TreeSet n/a n/a n/a 138.4 n/a n/a n/a 226.9 n/a n/a n/a 426.4 n/a n/a n/a 995.5

Airlines 33.2 3.4 0.4 1.0 38.5 3.7 0.4 1.1 126.6 14.7 1.7 4.8 n/a n/a n/a 997.2

Crawler 3.7 0.5 1.0 1.6 7.0 0.5 2.9 1.9 77.8 2.4 24.5 7.7 n/a 993.1 n/a n/a

Log4j-509 1.9 0.3 0.2 0.6 3.5 0.4 0.4 0.6 7.8 0.8 0.5 0.8 n/a 949.0 n/a n/a

Log4j-1507 0.7 0.1 0.1 0.2 0.8 0.1 0.1 0.2 44.8 0.9 6.3 0.8 n/a 28.3 501.2 380.8

Pool-146 10.8 0.5 0.1 10.6 11.5 10.0 0.1 31.4 31.2 10.4 11.7 72.6 n/a n/a n/a 977.0

Pool-184 n/a 21.0 10.5 11.8 n/a 40.3 12.9 12.2 n/a 95.0 26.1 53.3 n/a n/a 975.0 n/a

C
om

bi
na

to
ria

l c
ov

er
ag

e

ArrayList

RNW RNB RS CUVE

HashMap TreeSet
Time (sec)

200 400 600 800
Time (sec)

200 400 600 800 1000
Time (sec)

200 400 600 800 1000
0

30000

60000

90000

120000

0

20000

40000

60000

80000

100000

1000
0

40000

80000

120000

160000

200000

240000

Figure 4.3: Coverage achievement over time per testing technique

The 11th column describes the result of the randomized scheduling technique (RS). The last column

shows the results of CUVE. The highest coverage per object is marked in a bold font.

The coverage of CUVE is up to 53.0% higher (= (215772.1-141005.5)/141005.5 on TreeSet compared

with the maximum coverage of the RN-15ms techniques) or equal to all maximum coverages of the RN-

5ms, the RN-10ms, and the RN-15ms techniques for all objects except Crawler and Log4J-509; the

maximum coverage of the RN-5ms techniques is 0.7% higher than CUVE for Crawler and the maximum

coverage of the RN-10ms techniques is 0.5% higher than CUVE for Log4j-509. Compared with RS,

CUVE achieves up to 159.4% higher coverage (= (215772.1-83186.9)/83186.9 on TreeSet) than RS for

all objects except Pool-184 for which the coverage of RS is 1.8% higher than CUVE.

4.5.2 RQ2. coverage achievement efficiency

Table 4.4 shows how much time each technique spends on average over 30 testing runs to achieve

70%, 80%, 90%, and 100% of the highest combinatorial concurrency coverage observed in the experiment.

For example, the highest combinatorial coverage of ArrayList is 117030.1 achieved by CUVE (see the

second row of Table 4.3). The columns RNW and RNB indicate the worst (i.e., the longest time taken)

and the best (i.e., the shortest time taken) results of the 12 RNs to reach certain levels, respectively.

‘n/a’ indicates that a testing technique did not reach the coverage level in 1000 seconds. The least time

to reach a certain coverage level per object is marked in a bold font.

For the three mutation objects, CUVE achieves all levels of coverage faster than the 12 RNs and

RS. For example, CUVE reaches 70% coverage level in 6.3 seconds for HashMap, which is 5.6 (=35.3/6.3)

times faster than RNB which achieves 70% coverage level in 35.3 seconds. Figure 4.3 illustrates this

– 89 –

Table 4.5: Fault detection abilities of the testing techniques

Program
RN-5ms RN-10ms RN-15ms

RS JPF RF AF DF CUVE

min avg max min avg max min avg max

ArrayList 0.58 0.70 0.84 0.59 0.74 0.95 0.58 0.72 0.91 0.55 0.44 0.68 0.00 0.00 1.00

HashMap 0.42 0.64 0.88 0.39 0.64 0.92 0.38 0.63 0.91 0.34 0.17 0.58 0.00 0.00 0.92

TreeSet 0.75 0.81 0.87 0.75 0.81 0.87 0.75 0.81 0.87 0.62 0.17 0.25 0.00 0.00 0.94

Airlines 0.75 0.83 0.94 0.31 0.66 1.00 0.19 0.53 0.88 1.00 1.00 1.00 0.00 0.00 1.00

Crawler 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.91 0.00 1.00 1.00 0.00 1.00

Log4j-509 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00

Log4j-1507 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00

Pool-146 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

Pool-184 0.87 0.97 1.00 0.57 0.89 1.00 0.37 0.83 1.00 1.00 1.00 1.00 0.00 0.00 1.00

superior efficiency of CUVE on the three mutation objects clearly; the CUVE line is always above the

12 RNs and RS lines on all three mutation objects during the entire 1000 seconds.

For the six real-fault objects, CUVE increases coverage slower than RNB during the early period of

testing, but continues to increase coverage even after the coverage of RNB is saturated and eventually

achieves higher coverage than RNB on the three real-fault objects. Similarly, CUVE increases coverage

slower than RS during the early testing period, but continues to increase coverage after the coverage

of RS is saturated and eventually achieves higher coverage than RS for all real-fault objects except

Pool-184.

In other words, CUVE continues to generate various distinct test executions to satisfy explicit thread

scheduling goals to cover diverse combinatorial test requirements for relatively long time while the 12

RN techniques and RS generate redundant test executions after the early test period.

4.5.3 RQ3. fault detection effectiveness

Table 4.5 shows the average fault detection abilities of the studied techniques over 30 testing runs.

The second to the forth columns show the minimum, the average, and the maximum fault detection

abilities of the four RN-5ms after testing a target program for 1000 seconds (the fifth to the tenth

columns are similar). The 11th to the 15th columns describe the fault detection abilities of RS, a

systematic testing technique (JPF), the three bug pattern-directed techniques (RandomFuzzer (RF),

AtomFuzzer (AF), and DeadlockFuzzer (DF)), respectively. The last column is for CUVE.

Table 4.5 shows that CUVE achieves the highest fault detection abilities (i.e., 1.00 indicating that

CUVE always detects a fault) on all studied objects except HashMap and TreeSet. For HashMap, CUVE

still achieves higher or equal fault detection abilities (i.e., 0.92 indicating that CUVE detects a fault in

HashMap with the probability 0.92 over all mutants/faults and over 30 testing runs) compared to all the

other techniques. For example, CUVE achieves 2.7 (=0.92/0.34), 5.4 (=0.92/0.17), and 1.6 (=0.92/0.58)

times higher fault ability for HashMap compared to RS, JPF, and RF, respectively. For TreeSet, CUVE

achieves higher fault detection abilities (i.e., 0.94) than all the other techniques.

For the real-fault objects, CUVE consistently achieves the highest fault detection abilities (i.e., 1.00),

whereas the fault detection abilities of the other techniques except RF varies for different objects/faults.

For example, all RN techniques except the max RN-10 ms sometimes fail to detect a fault in Airlines

(i.e., fault ability is less than 1.00). RF shows high fault detection (i.e., 1.00) for all real-fault objects,

even when an object has no data race bugs. This is because RF predicts 2–18 data race bugs for

every real-fault object. We guess that RF could detect the faults of the other types because data race

predictions nearby the actual fault may lead RF to generate thread schedules useful to detect the actual

– 90 –

Table 4.6: Time to reach certain level of fault detection ability (in seconds)

Program
70% 80% 90% 100%

RNW RNB RS JPF RF CUVE RNW RNB RS JPF RF CUVE RNW RNB RS JPF RF CUVE RNW RNB RS JPF RF CUVE

ArrayList n/a 24.0 n/a n/a n/a 7.6 n/a 65.9 n/a n/a n/a 13.0 n/a 511.7 n/a n/a n/a 40.6 n/a n/a n/a n/a n/a 169.2

HashMap n/a 69.7 n/a n/a n/a 3.4 n/a 121.2 n/a n/a n/a 8.9 n/a 221.7 n/a n/a n/a 22.7 n/a 748.1 n/a n/a n/a 301.4

TreeSet 340.9 25.1 n/a n/a n/a 22.8 n/a 68.8 n/a n/a n/a 70.3 n/a 511.9 n/a n/a n/a 117.7 n/a n/a n/a n/a n/a 763.3

Airlines n/a 536.5 50.2 90.0 5.7 44.0 n/a 605.9 63.3 181.0 8.3 45.0 n/a 662.2 100.6 200.0 9.0 74.7 n/a 977.1 154.9 253.0 22.7 76.1

Crawler 40.7 2.7 375.2 n/a 9.4 1.9 208.0 2.8 655.0 n/a 10.2 1.9 436.6 3.5 843.1 n/a 10.5 2.5 642.7 10.7 n/a n/a 37.6 4.5

Log4j-509 4.0 0.4 0.4 0.5 0.9 1.0 5.3 0.5 0.5 0.5 1.1 1.2 7.2 0.8 0.6 0.5 15.3 1.4 16.0 1.0 1.3 0.5 374.7 2.0

Log4j-1507 49.2 3.0 29.6 0.5 1.0 0.9 82.6 5.0 35.1 0.5 1.9 0.9 109.1 6.6 46.5 0.5 3.0 0.9 254.2 14.8 96.5 0.5 4.2 1.3

Pool-146 15.0 10.8 10.6 0.5 11.2 10.9 16.8 11.0 11.6 0.5 11.5 11.3 17.4 13.0 11.7 0.5 12.8 11.8 25.4 14.1 12.4 0.5 17.0 13.3

Pool-184 n/a 37.0 20.5 0.5 53.4 12.0 n/a 42.3 24.1 0.5 59.0 12.1 n/a 57.7 27.9 0.5 95.8 12.3 n/a 97.8 32.8 0.5 159.1 12.6

Time (sec)
200 400 600 800 1000

Fa
ul

t d
et

ec
tio

n
ab

ili
ty

Time (sec) Time (sec)
200 400 600 800 1000 200 400 600 800 1000

ArrayList HashMap TreeSet
RNW RNB RS JPF RF CUVE

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Figure 4.4: Fault detection abilities over time per testing technique

fault.

Note that DF completely miss faults in all objects including Pool-146 which has a deadlock fault.

Similarly, AF completely miss faults in all objects (except Crawler and Pool-146) including Log4j-509

which has an atomicity violation fault. We guess that AF and DF may generate imprecise fault prediction

information due to complex target program structure and focus to generate improper (i.e., correct) test

executions instead of the erroneous ones.

4.5.4 RQ4. fault detection efficiency

Table 4.6 shows how much time each technique spends on average over 30 testing runs to achieve

70%, 80%, 90%, and 100% of the highest fault detection ability observed in the experiment. For example,

for HashMap, CUVE reaches the 70% fault detection ability level (i.e., achieves fault detection ability 0.65

(=0.92×70%)) in 3.4 seconds on average. The columns RNW and RNB indicate the worst and the best

results of the 12 RNs to reach certain levels, respectively. ‘n/a’ indicates that a testing technique did

not reach the fault detection ability level in 1000 seconds. We omit AF and DF from Table 4.6 because

these techniques failed to reach the lowest fault detection ability level (i.e., 70%) on most objects in 1000

seconds.

For the three mutation objects, CUVE achieves all fault detection ability levels faster than all the

other techniques. For example, CUVE reaches the 70% level in 3.4 seconds for HashMap, which is 20.5

(=69.7/3.4) times faster than RNB which achieves 70% level in 69.7 seconds. Figure 4.4 illustrates this

superior fault detection efficiency of CUVE on the three mutation objects clearly; the CUVE line is

always above the lines of the other techniques on all three mutation objects except TreeSet where the

RS line is slightly above the CUVE line before 50 seconds.

– 91 –

Table 4.7: Comparison between CUVE-c and CUVE on coverage achievement and fault detection ability

Program
Coverage Fault detection

CUVE-c CUVE CUVE-c CUVE

ArrayList 109786.2 117030.1 0.88 1.00

HashMap 98844.1 98785.4 0.90 0.92

TreeSet 116146.8 215772.1 0.70 0.94

Airlines 14554.6 14572.3 1.00 1.00

Crawler 29713.7 30105.7 1.00 1.00

Log4j-509 13256.0 13257.0 1.00 1.00

Log4j-1507 3540.0 3540.0 1.00 1.00

Pool-146 38582.9 41215.1 1.00 1.00

Pool-184 71686.6 74562.8 1.00 1.00

For the six real-fault objects, compared to RNB and RS, CUVE is constantly faster (up to 13.5 and

344.7 times faster than RNB and RS on Airlines and Crawler to reach the 80% level respectively) to

reach all levels of fault detection ability on all objects except Log4j-509 and Pool-146. On Pool-146,

CUVE is faster than RNB to reach 90% and 100%. Compared to RF, CUVE is constantly faster (up to

12.6 times faster on Pool-184 to reach the 100% level) to reach all levels of fault detection ability on

all objects except Airlines and Log4j-509. On Log4j-509, CUVE is faster than RF to reach 90% and

100%. JPF is faster to reach all fault detection ability levels than CUVE on all objects except Airlines

and Crawler. 8 We guess that JPF detects real faults in the study fast because the test cases for the

real-fault objects were created by the original developers to manifest the faults for debugging/bug-report

purpose. Thus, JPF can detect such faults quickly without exploring the search space deeply. Note

that all test cases of the real-fault objects use only three threads except the test cases of Airlines and

Crawler which uses 9 and 17 threads respectively (Table 4.1) and JPF is slower than CUVE for these

two objects (JPF completely fail to detect a fault in Crawler that uses 17 threads).

4.5.5 RQ5. impact of CTP on CUVE performance

Table 4.7 shows that CUVE achieves up to 85.8% (=(215772.1-116146.8)/116146.8 on TreeSet)

higher or equal combinatorial concurrency coverage compared to CUVE-c for all objects except HashMap,

for which CUVE-c achieves 0.1% higher coverage than CUVE. 9 In addition, Table 4.7 shows that CUVE

achieves up to 34% (=(0.94-0.70)/0.70 on TreeSet) higher or equal fault detection ability compared to

CUVE-c for all objects. Therefore, we can conclude that the combinatorial concurrency coverage can be

an effective method to improve both coverage achievement and fault detection ability of CUVE.

– 92 –

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Fa
ul

t d
et

ec
tio

n
ab

ili
ty

ArrayList

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 91011121314151617181920212223242526272829303132333435363718 mutants 12 mutants 35 mutants

HashMap TreeSet

RNW RNB RS JPF CUVE-c CUVERF

Figure 4.5: Fault detection abilities of the testing techniques per mutant

4.6 Discussion

4.6.1 High effectiveness of CUVE for various faults

We have generated diverse mutants to study the effectiveness of the testing techniques with regard

to various types of faults (Section 4.4.3). Figure 4.5 shows fault detection abilities of the studied testing

techniques per mutant. Figure 4.5 shows that the big circles representing the fault detection abilities

of CUVE are on top of the graphs (i.e., 1.00 meaning that every testing run (out of total 30 testing

runs) detects a fault) for all three objects except for the 12th one out of the 12 mutants of HashMap

and the four (the 30th, the 31th, the 34th, and the 35th mutants) out of the 35 mutants of TreeSet.

This indicates that CUVE detects all types of faults under study completely on ArrayList and most

completely on HashMap and TreeSet.

In contrast, the other techniques are not effective to detect specific types of faults (see the symbols

representing the other techniques at the bottom/middle of the figure). For example, all techniques

almost completely miss the 32nd mutant/fault of TreeSet while CUVE detects the fault completely. In

addition, the figure shows that CUVE has higher fault detection ability than CUVE-c which sometimes

fail to generate fully diverse executions that can reveal the faults.

Furthermore, Table 4.5 shows that CUVE detects all faults of the real-fault objects completely

while the other techniques miss specific faults frequently (e.g., faults in Airlines and Pool-184). These

observations imply that CUVE is a general technique to detect various concurrency faults more effectively

and more consistently than the other techniques.

4.6.2 Benefits of the combinatorial concurrency coverage

Figure 4.6 shows singular coverage achievement on TreeSet using several testing techniques including

CUVE and CUVE-c. The figure shows that CUVE achieves higher singular coverage than CUVE-c

after 80 seconds, which indicates that the combinatorial coverage-based thread scheduling algorithm

(Algorithm 3) can improve singular coverage achievement more than the singular coverage-based thread

scheduling algorithm (Algorithm 2). This is because CTP continues to generate various test executions

to satisfy many diverse combinatorial test requirements explicitly, which enables CUVE to escape the

pitfall of local optimum of STP that targets to cover singular test requirements in a greedy manner.

Thus, we can expect that CTP will improve the fault detection ability because of the strong correlation

between the singular concurrency coverage and fault detection ability [43]. Thus, these observations can

8Since JPF reports execution time only in seconds, we write 0.5 when JPF reports an execution time as zero second.
9All differences between CUVE and CUVE-c on coverage achievement (except Log4j-509) and fault detection ability

are statistically significant (Wilcoxen test with α=0.05).

– 93 –

Si
ng

ul
ar

 c
ov

er
ag

e
TreeSet

RNW RNB RS CUVE

Time (sec)
200 400 600 800 1000

0

150

300

450

600

750

CUVE-c

Figure 4.6: Singular coverage achievement over time

another evidence that the combinatorial concurrency coverage can be an effective tool to improve fault

detection.

4.6.3 Comparison with Maple

The most similar technique to CUVE is Maple [120] which tests multithreaded C/C++ programs.

Similar to CUVE, Maple utilizes concurrency coverage that defines test requirements over two to four

statements of data access and synchronization actions. Although direct empirical comparison between

CUVE and Maple is not feasible due to different target programming languages, we conjecture that

CUVE has advantages over Maple for the following two reasons:

First, CUVE generates thread schedules to achieve as many new combinatorial requirements as

possible for every test execution (Section 4.2) while Maple targets one test requirement for one test

execution. Thus, we expect that CUVE is faster to detect a fault than Maple. Second, a test requirement

used for Maple is defined for interleaving between two threads while the combinatorial requirements for

CUVE can represent interleavings of more than two threads (for example, see the general race bug in

Section 4.2.2). Thus, we expect that the combinatorial coverage can be used to generate more diverse

test executions than the coverage metric by Maple.

4.7 Summary of this chapter

In this chapter, I present the combinatorial concurrency coverage and a new concurrent program

test generation technique CUVE that utilizes the combinatorial concurrency coverage to improve testing

effectiveness and efficiency. The experiment result shows that CUVE is more effective and efficient

forachieving coverage, and also for detecting faults than the other conventional techniques studied. In

addition, through the experiments, I show that the combinatorial concurrency coverage is more useful

than the existing concurrency coverage metrics for CUVE to achieve high fault detections.

– 94 –

Chapter 5. Regression Testing Using Concurrency

Coverage Metric

5.1 Introduction

Many software developers today write multithreaded programs to make their software to utilize

multi-core processors for high performance. Multithreaded programs, like all other types of software,

evolve through code changes as their requirement changes over time. In addition, a code change is often

made to reduce synchronization overhead and increase the number of concurrent threads to improve

performance. A challenge in revising code of multithreaded programs is that seemingly insignificant

code change in multithreaded code may easily introduce new concurrency bugs if the code change affects

interactions among threads. Thus, developers must carefully validate each change of a multithreaded

program.

Unfortunately, developers often fail to recognize subtle and adverse changes that introduce concur-

rency bugs in evolving multithreaded programs. A concurrency bug is difficult to detect because the

failure may or may not appear depending not only on program input, but also non-deterministic thread

schedule. A recent study on evolving software found that concurrency bugs is the most popular type of

long-living bugs introduced by adverse program changes (i.e., called dormant bugs which survive through

many revisions) [18]. Moreover, concurrency bugs are difficult to fix correctly. Studies on the patches

in evolving software show that patches for concurrency bugs are often not complete or introduce new

bugs due to side-effects [58, 117]. For this reason, Lu et al. [58] claims that concurrency bug fixes are

non-trivial in practice and developers need new techniques to ensure the correctness of multithreaded

program changes.

For last two decades, many regression testing techniques have been proposed for sequential (single-

threaded) programs and become standard testing methods in practice [118]. Regression testing focuses

the changed part of an evolving software to detect new bugs introduced by the change effectively and

efficiently. A regression testing technique selects/generates test inputs that are expected to explore the

changed part of the target program. To identify such test inputs, regression testing techniques analyze

the target program code and the test coverage results.

To detect adverse program changes of multithreaded programs (i.e., regression bugs), regression

testing should exercise various thread schedules that explore different concurrency behaviors related

to the code changes. In contrast to the sequential program domain, there are only few regression

testing techniques for multithreaded programs (see Section 5.2); most regression testing techniques do

not consider thread schedule as a part of test cases. Moreover, for effective regression testing, a regression

testing technique for multithreaded programs should precisely identify the thread schedules that exercise

changed behaviors of a target multithreaded program, and then generate specific thread schedules to

exercise the changed behaviors.

In this chapter, I present a new regression testing technique Recurve for multithreaded programs

which utilizes combinatorial concurrency (CC) coverage metric to systematically explore different thread

schedules related to the changed code. A key idea of Recurve is to identify the changed program behaviors

– 95 –

due to code change in terms of the test requirements of the concurrency coverage metric, and then

generate thread schedules toward achieving more test requirements. In other words, as Recurve covers

more test requirements, it will detect adverse program change with higher probability. The experiment

result confirms that Recurve detects regression bugs with higher probability faster than the other related

techniques for the study objects. In summary, the contribution of the new regression testing technique

is the following:

• I present a new thread scheduling technique that effectively tests code changes in multithreaded

programs.

• I define an effective coverage metric for regression testing of multithreaded programs (i.e., CC).

• The carefully designed empirical study demonstrates that Recurve is more effective and efficient to

find concurrency bugs introduced by program changes, compared to the existing testing techniques

for multithreaded programs.

5.2 Existing approaches

5.2.1 Static and dynamic analyses for finding regression bugs

Several researchers have investigated regression bugs in evolving multithreaded programs, and im-

proved the existing dynamic and static analysis techniques to efficiently detect/predict concurrency bugs

in evolving multithreaded programs.

Deng et al. [23] proposes to utilize dynamic/static analysis techniques for detecting specific types of

concurrency bugs (e.g., data race, atomicity violation) to identify program behaviors changes in evolving

multithreaded programs. Sadowski and Yi [83] reports the cases of predicting data race bugs over

multiple program versions of multithreaded programs, and suggest to utilize data race prediction history

on the previous versions for better concurrency bug prediction.

RECONTEST [100] is a dynamic bug prediction technique that reports concurrency bugs introduced

by a program change. In particular, RECONTEST utilizes AssetFuzzer [52] for detecting a set of

suspicious interleaving patterns (i.e., atomic-set bugs) as bugs, and then selects the regression bugs

based on the program changes in sequential logics as well as synchronizations.

SimRT [121] extends a dynamic data race detection/testing technique RaceFuzzer [88] to support

efficient data race detections in evolving multithreaded programs. SimRT analyzes a code change in two

versions of a multithreaded program, and generates a multithreaded test driver for RaceFuzzer, which

is likely to reveal data race bugs caused by the program change. SimRT uses the thread scheduler of

RaceFuzzer off-the-shelf. Since RaceFuzzer generates specific thread schedules targeted for given data

race information, SimRT may not be effective for detecting different types of concurrency bugs in a

regression testing (see Section 5.5.1).

Since the aforementioned techniques rely on specific bug prediction patterns/techniques, these tech-

niques are limited for detecting particular types of concurrency bugs, rather than generating effective

and efficient thread schedules to detect broad range of concurrency bugs in regression testing.

5.2.2 Thread schedule generation for regression testing

CAPP [47] is a thread scheduling technique to explore new behaviors caused by program change.

CAPP utilizes a search strategy to guide a model-checker to explore the program states impacted by

– 96 –

a code change prior to the other states. The key idea of CAPP is that a preempted interleaving (i.e.,

making a context-switch from a current thread to another thread) at the changed code is more likely

to explore new behavior of the modified program. To generate such interleavings in model-checking,

CAPP analyzes the program code changes and defines certain statements related to the changes as “im-

pacted”. Then, CAPP assigns high priorities to state transitions caused by preemption at the impacted

statements/locations.

There are two heuristics to assign high priority (i.e., prioritization mode): SOME and ALL. The

SOME option assigns a high priority to every context-switch where one thread is at the impacted lo-

cation. The CAPP with the ALL option assigns a higher priority to a context-switch if all concur-

rent threads are at the impacted locations (i.e., a context-switch occurs from the impacted location

to another impacted location). In addition, CAPP has the seven heuristics to identify the impacted

locations: CLASS, METHOD, LINE, CLASS-ON-STACK, METHOD-ON-STACK, LINE-ON-STACK, and FIELD. The

CLASS/METHOD/LINE heuristics consider all code elements of a Java class/method/line as impacted if

at least one code element in the target class/method/line is changed. 1 The FIELD heuristic consid-

ers a code element is impacted if the code line accesses a variable/field whose declaration is changed.

The CLASS-ON-STACK/METHOD-ON-STACK/LINE-ON-STACK heuristic considers a current location in an

execution is impacted if any element in the call stack as an impacted location with respect to the

CLASS/METHOD/ LINE heuristic.

However, CAPP may not be effective for regression testing because injecting a preemption at the

impacted locations may not cover a new behavior if a current thread and the other concurrent threads

do not access the same data structure at the time. Moreover, a model-checking technique with CAPP

has a limited scalability with respect to a target program size, due to the state-explosion problem of

underlying model-checker such as JPF [105]. To the best of the authors’ knowledge, CAPP is the only

thread scheduling technique to explore new behaviors of a modified program.

5.2.3 Coverage-guided testing of multithreaded programs

Coverage-guided testing techniques for multithreaded programs utilizes concurrency coverage met-

rics to enumerate various thread interaction cases, and generate tests to achieve high coverage for effective

and efficient testing of multithreaded programs. A recent empirical study on the concurrency coverage

metrics shows that increasing concurrency coverage achievement in a tests is highly correlated with

improving fault detections of multithreaded programs [44].

Wang et al. [109] presents a coverage-based search strategy for systematic testing technique. The

search strategy utilizes a concurrency coverage metric PSet to enumerates different cases of interleavings

in a target program, and intends the state exploration to cover more new interleaving cases. Hong

et al. [41] presents a dynamic thread scheduling algorithm that achieves high concurrency coverage

fast. Hong et al. utilizes a dynamic analysis to estimate feasible test requirements and targets only

likely feasible test requirements for efficient testing. Similarly, Maple [120] utilizes a dynamic analysis to

obtain the test targets which are expected to be achievable, and then generates a specific thread schedule

for achieving each test requirement.

However, there is no application of coverage-guided testing techniques to effective regression testing

of multithreaded programs to date. A similar yet different application with the regression testing is

memoization of thread scheduling [22,120]. These techniques aim to support better utilization of multiple

1If a synchronized block is changed, CAPP considers all statements inside the block as changed.

– 97 –

Coverage‐guided test generation
Cov. info
on P Selection of target test requirements

Test
targets

Selection of
target test
requirementcode change

analysis

coverage
estimation

Original
version P

Modified
version P’

Achieved
coverage

Coverage‐guided
thread scheduler

Thread exec. of P’

…

Figure 5.1: Overall process of Recurve

program inputs for testing a single version of a target program. However, they are not applicable for

regression testing where the target program code is changed.

5.3 Recurve: a coverage based regression testing technique

I present Recurve which is a coverage based regression testing technique for multithreaded pro-

grams. For the original version and a modified version of a target program, Recurve selectively generates

thread schedules to explore the new concurrent behaviors of the modified version. Particularly, Recurve

compares the test requirements of the Combinatorial Concurrency (CC) metric (Section 5.3.2) for the

original and the modified versions and then Recurve controls thread schedules targeted for achieving the

new test requirements for the modified version because the new test requirements can capture the new

behaviors effectively.

5.3.1 Overview

Figure 5.1 describes the overall process of Recurve. There are two sub-processes: test target se-

lections and coverage-guided test generation. In the test target selection process, Recurve selects the

test requirements of the CC metric that are likely feasible and relevant to the new behavior of the mod-

ified version as test targets. For the given original version P and the modified version P ′ of a target

program, Recurve first estimates the feasible test requirements on P ′ and prioritizes the estimated test

requirements in order of the relevance to the new behavior of P ′ (see Section 5.3.3).

In the coverage-guided test generation process, Recurve generates a sequence of test executions

based on the test targets and the test requirements achieved in the testing so far. To test the modified

version with various thread schedules, Recurve repeatedly executes P ′ while controlling thread schedules

to cover as many test targets as possible. In particular, the thread scheduler of Recurve dynamically

decides an execution order of operations in multiple threads based on the runtime status of P ′ and the

target test requirements covered so far.

5.3.2 Combinatorial Concurrency (CC) coverage metric

The Combinatorial Concurrency (CC) metric is a concurrency coverage metric that generate various

test requirements of different execution orders in synchronization, data accesses, and their combinations

for a multithreaded program. The CC metric basically defines two types of test requirements: singular

test requirements and combinatorial test requirements.

– 98 –

Thread 1

tmp=1
…

1: x=0

2: tmp=x

3: x=x+tmp

Thread 2

4: y=x

(a) original program execution (b) modified program execution

Thread 1

tmp=1
…

1: x=0

2: tmp=x

3: x=x+tmp

Thread 2

4: y = x

Figure 5.2: Examples of multithreaded programs and executions

A singular test requirement is defined as an ordered pair of two code locations whose statements

access the same variable or hold the same lock. A singular test requirement for the two statements p

and q that access the same shared variable v is denoted as (loc(p), loc(q)). For two statements that

access the same shared variable v, an execution σ covers singular test requirement (loc(p), loc(q)) if p

executes before q, p and q access v, and no statement that reads or writes v executes between p and q. 2.

Similarly, for two statements that hold the same lock m, an execution σ covers singular test requirement

(loc(p), loc(q)) if p executes before q, p and q access m, and no statement holds m between p and q.

The singular test requirement of the CC metric is a generic form of pairwise concurrency coverage

metrics [44] such as Sync-Pair [41] and PSet [119]. The CC metric subsumes Sync-Pair by definition.

In addition, the singular test requirement of the CC metric subsumes the concurrency coverage metrics

defined over shared variable accesses such as PSet [119] and Def-Use [98] because the CC metric consider

all kinds of two adjacent data accesses on the same shared variable. PSet and Def-Use do not define a

test requirement for a pair of operations in the same thread or a pair of two reads on the same shared

variable. However, in the regression testing context, these pairs are useful to capture changed concurrent

behavior (explained later with Figure 5.2).

A combinatorial test requirement is defined as an ordered pair of two singular test requirements.

For two singular test requirements (loc(p0), loc(q0)) and (loc(p1), loc(q1)), a combinatorial test require-

ment is denoted as 〈(loc(p0), loc(q0)), (loc(p1), loc(q1))〉. The satisfaction relation of a combinatorial test

requirement by an execution σ is defined as follows:

σ |= 〈(loc(p0), loc(q0)), (loc(p1), loc(q1))〉 if

1. σ |= (loc(p0), loc(q0)), and

2. σ |= (loc(p1), loc(q1)), and

3. ∃ i, j : i < j ∧ σ[i] = q0 ∧ σ[j] = q1 where σ[i] indicates (i-1)-th operation of σ

In other words, a combinatorial test requirement 〈(loc(p0), loc(q0)), (loc(p1), loc(q1))〉 is satisfied by an ex-

ecution if the execution satisfies the two singular test requirements (loc(p0), loc(q0)) and (loc(p1), loc(q1))

and q0 precedes q1 in the execution. The main motivation for constructing the combinatorial test re-

quirements is the pairs/combinations of test requirements of a coverage metric can capture more diverse

behaviors of a target program than the set of singular test requirements.

Figure 5.2 explains why the CC metric is more effective to capture the changed concurrent behavior

than the other concurrency coverage metrics. Figure 5.2 shows two versions of a program and their

2I assume sequentially consistent memory model as our technique is not aid for detecting sequential consistency violations

with weak memory models.

– 99 –

Table 5.1: Test requirements covered in the example executions

Coverage metric
Test req. covered Test req. covered

in Figure 5.2(a) in Figure 5.2(b)

PSet (3,4) (3,4)

Def-Use (1,3),(2,3),(3,4) (1,3),(3,4)

CC

Singular TR (1,2),(2,3),(3,4) (1,3),(3,4)

〈(1,2),(2,3)〉
Comb. TR 〈(1,2),(3,4)〉 〈(1,3), (3,4)〉

〈(2,3),(3,4)〉

interleaved executions. The program has two threads Thread1 and Thread2 and two shared variables

x and y. In addition, Thread1 has a local variable tmp. The program change from the original version

(Figure 5.2(a)) to the modified version (Figure 5.2(b)) is that tmp=x at Line 2 is removed. This code

change affects the execution result as y values of the original version and the modified version are 0 and

1 respectively.

Note that an effective concurrency coverage metric cm for regression testing should have test re-

quirements that can guide a regression testing technique to generate new executions of the modified

version that do not exist for the original version (i.e., cm should have at least one test requirement that

is covered by Figure 5.2(b) but not by Figure 5.2(a)).

Table 5.1 shows the covered test requirements of PSet, Def-Use and the CC for the two executions

in Figure 5.2. For Figure 5.2, PSet does not have any useful test requirement that can guide to generate

different executions caused by the program change since both executions cover the same test requirements

(i.e., (3,4)) (i.e., PSet is not an effective coverage metric for regression testing of multithreaded programs).

This deficiency of PSet is mainly because PSet does not consider a case of data accesses within the same

thread. Def-Use does not have a useful test requirement either as the set of test requirements covered

by the modified version is a subset of those covered by the original version. In contrast, CC has a new

singular test requirement (1,3) which is covered by the modified version but not covered by the original

version. The combinatorial test requirement of the CC metric is even more useful because a combinatorial

test requirement 〈(1,3),(3,4)〉 precisely captures the new execution of the modified version. This example

demonstrates that the CC metric is more effective for regression testing of multithreaded programs than

PSet and Def-Use because test requirements of CC can capture new multithreaded behaviors of the

modified version effectively.

5.3.3 Selection of test targets

Recurve selects test targets as the test requirements of the CC metric on P ′ that are likely to be

covered (i.e., feasible). 3 Recurve determines whether or not a test requirement on P ′ is feasible based

on the result of a dynamic analysis on P ′, the source code of P and P ′, and the coverage measured in

a test of P . Recurve first selects likely feasible singular test requirements, then selects combinatorial

test requirements each of which consists of two likely feasible singular test requirements. Recurve selects

3As a sequential program may have an unreachable branch and it is a undecidable problem to identify unreachable

branches in a target program, some test requirement of a concurrency coverage metric may be infeasible and it is difficult

to check if a given test requirement is feasible [92].

– 100 –

target singular test requirements in the following three steps:

Obtaining test requirements

Recurve first obtains the following three sets of the test requirements on P ′ based on the dynamic

analysis on P ′, the coverage information on P and the source code of P and P ′ 4 :

• CP : a set of test requirements on P ′ that correspond to the covered test requirements on P .

Recurve considers that a test requirement r′ of P ′ corresponds to a test requirement r of P if all

code lines of r′ correspond to those of r.

• EP : a set of test requirements on P ′ that correspond to the estimated test requirement on P by

the dynamic analysis.

• EP ′ : a set of test requirements on P ′ estimated as feasible to cover by the dynamic analysis

Recurve obtains the correspondence between the code lines of P and P ′ by textual comparison. In

particular, Recurve computes the longest common sequence of code lines for every pair of source code

files in the P and P ′. 5 Two code lines in different versions are corresponding if their texts are identical

and they appear at the same index of the longest common sequence. The dynamic analysis used by

Recurve is an extension of coverage estimation algorithm proposed in Hong et al. [41] by adding analyses

on data access information.

Selecting target test requirements

Recurve selects the target test requirements that belong to EP ′ or CP but do not belong to EP \CP
(i.e., (EP ′ ∪ CP) \ (EP \ CP)) which are marked grey in Figure 5.3. 6 This selection is based on the

following conjectures:

1. A test requirement r′ ∈ EP ′ is likely covered because the dynamic analysis concludes so. Also,

a test requirement r′′ ∈ CP is likely covered as the corresponding test requirement r on P was

actually covered. This is because the logics/structures of P and P ′ are similar to each other.

2. A test requirement r′ on P ′ that corresponds to r on P that was estimated as feasible to cover but

not actually covered (i.e., EP \ CP) is likely infeasible to cover.

Prioritizing selected test requirements

To detect regression errors fast, Recurve classifies the test targets into the following three classes

according to the relevance to the new behaviors of P ′:

Class A: EP ′ \ (EP ∪ CP)

Class B: EP ′ ∩ CP
Class C: CP \ EP ′

Class A is more related to the new behaviors of P ′ than Class B and Class C because Class B and

Class C capture the behaviors of P ′ that correspond to the old behaviors of P . Note that every test

requirement on the new code lines in P ′ belongs to EP ′\Class B. Class B is more related to the new

4 I assume that the coverage achievement in a test of P is given.
5 Recurve utilize the diff utility of Linux.
6A \B indicates a subset of A that does not overlap with B.

– 101 –

Figure 5.3: Selected test requirements among CP , EP and EP ′

behaviors of P ′ than Class C since the dynamic analysis does not consider Class C as feasible to cover

(i.e., Class C ∩ EP ′ = ∅). Thus, Recurve tries to cover the test targets in Class A, Class B, and Class

C in order.

5.3.4 Coverage guided test generation

Recurve generates test executions by repeatedly executing P ′ with a coverage-guided thread sched-

uler. As shown in Figure 5.1, the thread scheduler runs in a middle of test executions to decide ordering

of thread executions at runtime. Based on the test targets (i.e., target test requirements to cover) and

the coverage achieved by the previous executions, the thread scheduler generates thread scheduling de-

cisions to lead the execution to cover not-yet-covered test targets. Recurve targets the test requirements

of Class A, Class B, and Class C in order (Section 5.3.3). Recurve changes a class of test targets if the

coverage increase during the last few test executions is below a given threshold.

Recurve uses a test generation algorithm which extends the one in Hong et al. [41] in the following

two ways:

1. Recurve utilizes the CC metric which subsumes the Sync-Pair metric used in [41].

2. It operates in two modes targeting to cover two different types of test requirements (i.e., targeting

singular test requirement phase (STP) or targeting combinatorial test requirement phase (CTP)).

Algorithm 4 describes how the thread scheduler controls the execution orders of read, write, and

synchronization operations of threads by deciding which thread to run at runtime. Algorithm 4 receives

the following inputs: an initial state of a target program s0, a testing phase flag phase (either STP or

CTP), a set of singular target test requirements targetS , a set of combinatorial target test requirements

targetC a set of singular test requirements covered in the previous test executions coveredS , and a set

of combinatorial test requirements covered in the previous test executions coveredC .

Recurve invoke the algorithm with an initial state s0, phase = STP, targetS = ClassA, targetC =

ClassA × ClassA, coveredS = coveredC = ∅. The algorithm initializes a current program state s as

s0 (Line 3). To control thread execution order, Recurve suspends every enabled operation p of threads

at s (i.e., p ∈enabled(s)) (Line 5) by adding p to paused (Line 7) if p synchronizes or accesses data

(Line 6). 7 When all running threads are suspended (i.e., paused=enabled(s) at Line 9), the algorithm

invokes SingularDecision() at Line 11 (Section 32), or CombinatorialDecision() at Line 13 (Section 13) to

select an operation from paused to execute in the next step (Lines 10–14). Then, the algorithm resumes

the paused thread by executing the selected operation (Line 18). After the operation is executed, the

7We denote system dependent auxiliary functions in a typewriter font such as enabled() and execute().

– 102 –

Input: s0: an initial program state

phase: the testing phase in a testing run, either STP or CTP

targetS : a set of singular test targets

targetC : a set of combinatorial test targets

coveredS : a set of singular test requir. covered so far

coveredC : a set of combinatorial test requir. covered so far

Output: Updated coveredS , coveredC , targetS , targetC

1 curr ← ∅; /* a set of singular requirements covered in this execution.*/

2 paused← ∅; /* a set of paused operations */

3 s← s0; /* a current state */

4 while enabled(s) 6= ∅ do
5 p← an operation in enabled(s)\ paused;

6 if operator(p) is lock, read, or write then

7 Add p to paused ;

8 end

9 if paused = enabled(s) then

10 if phase = STP then

11 p← SingularDecision(paused, s, coveredS ,targetS);

12 else if phase = CTP then

13 p← CombinatorialDecision(paused, s, curr, coveredS , coveredC , targetC);

14 end

15 Remove p from paused ;

16 end

17 if p 6∈ paused then

18 s←execute(s, p); // updates s by executing p ;

19 c← undefined; // singular coverage information

20 if operator(p) is lock then

21 c← (last locks(operand(p)), loc(p)) ;

22 else if operator(p) is read or write then

23 c← (last accs(operand(p)), loc(p)) ;

24 end

25 if c 6= undefined then

26 Add comb(curr, c) to coveredC ;

27 Remove comb(curr, c) from targetC ;

28 Add c to coveredS and curr ;

29 Remove c from targetS ;

30 end

31 end

32 end

Algorithm 4: Test execution generation algorithm

algorithm identifies a new covered singular requirement c (Lines 20–23). operator(p) and returns a type

of p. last locks(l) returns the code location of the last lock operation on the lock l at state s. operand(p)

returns an operand of p (i.e., a lock variable for synchronization operation and a data variable for read or

write operation). loc(p) returns the code location of p. last accs(v) returns the code location of the last

write or read operation for a variable v at state s. Then, Recurve updates the covered combinatorial test

requirements (Line 26) and the combinatorial test targets (Line 27). comb(S, c) is a set of combinatorial

– 103 –

Input: paused: a set of paused operations

s: a current program state

coveredS : a set of singular test requir. covered so far

targetS : a set of singular test targets

Output: An operation op in paused to execute

SingularDecision{
1 // The first rule

2 if ∃p ∈ paused : covs(p) ∈ targetS ∨ covs(p) 6∈ coveredS then

3 op← p;

4 else

5 // The second rule

6 if ∃p, q ∈ paused : covs(p, q) ∈ targetS ∨ covs(p, q) /∈ coveredS then

7 op← p;

8 else

9 // The third rule

10 op← p ∈ paused such that |rel(targetS , loc(p))| is the smallest;

11 end

12 end

13 return op; }
Algorithm 5: Scheduling decision algorithm based on the singular coverage

test requirements obtained by combining a set of singular test requirements S with c (i.e., S × {c}) (for

example comb({a, b}, c) = {〈a, c〉, 〈b, c〉}). Similarly, the achieved singular coverage and curr (Line 28)

and the singular test targets (Line 29) are updated. This process repeats until no enabled operation

remains (Line 4), which corresponds to the program termination or a deadlock. 8

Singular coverage based scheduler

Algorithm 5 selects an operation from a set of paused operations to execute to achieve high singular

concurrency coverage fast. covs(p, q) returns a singular test requirement that is covered when q executes

right after p at a state s.

The algorithm applies the following three rules to select an operation to execute in order:

1. The first rule selects an operation at a state s that will immediately cover a singular test target or

uncovered singular test requirement (Lines 1–3). 9 If there are multiple such operations, the algorithm

arbitrarily chooses one of them. If the first rule fails (i.e., no paused operation to increase target

coverage immediately), the algorithm uses the second rule.

2. The second rule (Lines 5–7) selects an operation p whose immediate subsequent operation q will cover

a uncovered singular test target. If the second rule fails, the algorithm uses the third rule.

3. The third rule selects to release an operation that has least potential benefit to hold (i.e., most unlikely

to cover a uncovered singular test target later) (Lines 9–12). For each operation p in paused, the

algorithm counts the number of the test targets which may be covered by p later (i.e., (l1,l2) may be

8This algorithm description is inspired by Sen [87].
9 The first and the second rules allow to select an operation that covers an already covered test target since there can

be many different executions covering the test target some of which may reveal a regression error.

– 104 –

Input: paused: a set of paused operations

s: a current program state

curr: a set of singular requirements covered in this execution

coveredS : a set of singular test requir. covered so far

coveredC : a set of combinatorial test requir. covered so far

targetC : a set of combinatorial test targets

Output: An operation op in paused to execute

CombinatorialDecision{
1 // The first rule

2 if ∃p ∈ paused : comb(curr, covs(p)) ∩ targetC 6= ∅ ∨ comb(curr, covs(p)) \ coveredC 6= ∅ then
3 op← p ∈ paused such that |(comb(curr, covs(p)) ∩ targetC) ∪ (comb(curr, covs(p)) \ coveredC)| is

the largest ;

4 else

5 // The second rule

6 if ∃p, q ∈ paused : comb(curr, covs(p, q)) ∩ targetC 6= ∅ ∨ comb(curr, covs(p, q)) \ coveredC 6= ∅ then
7 op← p ∈ paused such that ∃q ∈ paused \ {p},

|(comb(curr, covs(p, q)) ∩ targetC) ∪ (comb(curr, covs(p, q)) \ coveredC)| is the largest ;

8 else

9 // The third rule

10 op← p ∈ paused such that |{t ∈ rel(coveredS , loc(p))| comb(curr, t) ∩ targetC 6= ∅}| is the

smallest;

11 end

12 end

13 return op; }
Algorithm 6: Scheduling decision algorithm based on the combinatorial coverage

covered by p later if l1 = loc(p) or l2 = loc(p)). The third rule selects an operation whose count is the

smallest because such operation has the least possibility to cover uncovered test targets (i.e., the other

operations in paused have more possibility to cover uncovered test targets later). rel(targetS , loc(p))

returns a subset of targetS each of whose elements has loc(p) as a component (for example, (l1,l2)

has two components l1 and l2).

Combinatorial coverage based scheduler

Algorithm 6 selects an operation from a set of paused operations to execute to achieve high combi-

natorial concurrency coverage fast. The algorithm applies the following three rules to select an operation

to execute in order:

1. The algorithm selects an operation that will immediately cover the largest number of combinatorial test

requirements which are either test targets or not-yet-covered test requirements (Lines 1–3). If there

are multiple such operations, the algorithm arbitrary chooses one of them. If the first rule fails, the

algorithm uses the second rule.

2. The second rule selects an operation whose immediate subsequent operation will cover the largest

number of combinatorial test requirements which are either test targets or not-yet-covered test re-

quirements (Lines 4–7). If the second rule fails, the algorithm uses the third rule.

– 105 –

Table 5.2: Study objects used for the Recurve experiments

Type Program
of faulty Size # of changed # of

versions (LOC) lines threads

Mutation ArrayList 18 (4,179) 3090 1.33 27

object HashMap 12 (19,169) 3941 1.42 27

TreeSet 35 (26,190) 4049 1.29 22

Real Groovy 1 361 60 3

fault Lang 1 990 3 3

object Pool-107 1 1693 148 3

Pool-120 1 1614 201 3

Pool-146 1 5735 29 3

3. The third rule selects an operation that can cover the smallest number of combinatorial test targets

later in this execution (Lines 8–10) since the operation has least potential benefit to hold.

5.4 Experiment design

I have empirically evaluated the effectiveness and the efficiency of Recurve for detecting regression

faults in multithreaded programs. I conducted a series of test generations with Recurve and six testing

techniques including CAPP [47], and measured fault detections in the generated tests. These experiments

use real faulty programs and mutated programs (i.e., programs containing various synthetic faults) as

target programs to examine if a technique can detect various types of regression faults. The experiment

results demonstrate that Recurve is more effective and more efficient for detecting regression faults for

most cases in the experiments.

5.4.1 Research questions

I have studied the following two research questions:

• RQ1 (fault detection effectiveness): To what extend does Recurve detect regression faults in

multithreaded programs, compared to the other testing techniques?

• RQ2 (fault detection efficiency): How fast is Recurve to detect a regression fault, compared

to the other test generation techniques?

To answer these questions, we applied total 29 test generation techniques of six types with 70

regression faults in 8 target Java programs. For each technique and a target program, we if the technique

detects the faults, and how much time is spent for generating the failing executions.

5.4.2 Target programs

I generated total 65 faulty versions of 3 programs for the mutation objects. I used three Java library

programs ArrayList, HashMap, and TreeSet as the original programs and then generate multiple faulty

versions systematically (i.e., through a mutation tool) as the modified versions. I selected these programs

because they are often used as study objects in concurrent program testing research [46, 48, 75, 88]. In

– 106 –

addition, these three programs contain many synchronization blocks from which mutants with various

concurrent behaviors can be generated. 10 Like other concurrent program testing studies [46,49,75,88,88],

we set a test case (test driver) to initialize shared data structures of a target program and then create

multiple threads each of which runs a corresponding method with fixed input values and terminates.

A mutant of a target program is generated by seeding one fault to an original target program. I

used both synchronization mutation operators [9, 36] and expression mutation operators [3, 25]. I used a

mutation tool Sofya [1] and applied our own implementation of synchronization mutation operators. 11.

Each mutant is generated by applying a unique mutation operator for a target statement/expression.

Synchronization mutation operators transform a synchronization statement (e.g., synchronized block)

of a target program [9]. For example, the remove synchronized block mutation operator [9] moves

the statements in a synchronized block to the outer code block, and deletes the synchronized block

statement. An expression mutation operator changes one expression of a target program such as an

arithmetic operator or a method call [25]. I removed mutants whose faults were not detected by any

testing technique in 1000 seconds (i.e., likely equivalent mutants). I also removed mutants whose faults

were detected by all testing techniques in less than one second.

As real fault objects, we used the five faulty Java applications used for the experiments with

CAPP [47]. Note that these programs are all real fault objects that are used in [47] and at the same time

publicly available for controlled experiments [1]. Groovy is a concurrent data structure from a dynamic

language system Groovy. Lang is from a math library in the Apache Commons project. Pool-107,

Pool-120, and Pool-146 are from an object-pooling library Apache Pool. Pool-107 is the bug reported

at Issue 107 in the Apache Pool bug repository. Pool-120 and Pool-146 are the bugs reported at Issues

120 and 146, respectively. Groovy and Pool-146 have deadlock faults, and the other three objects show

assertion violations as failures12 Each of the real fault objects from SIR [1] consists of a faulty version,

a test case that can replay a failure with certain thread schedules, and the patched version. As in the

CAPP experiments [47], we used the faulty version of a real-fault object as the modified version, and

the patched version as the original version.

Table 5.2 presents the target programs that are used for the test generation experiments. I used 65

faulty versions of 3 programs that are generated by mutations, and 5 real-world faulty programs that

are used by the related work including CAPP. The third column in Table 5.2 reports the number of

faulty versions used for the experiments. For the mutation objects, the numbers in the parenthesis are

the number of (likely) equivalent mutants and the number of mutants killed in less than one second by

all techniques. These two kinds of mutants are generated, but not used for the experiments. The fourth

and the fifth columns in Table 5.2 show the number of code lines and the number of changed lines of the

target program. For the mutation objects, the fourth and the fifth columns represent the number of code

lines in the original program, and the average number of code lines that are modified or added in the

faulty versions of each target program. The number of changed line is less than 1.5 on average because

the mutation operators change one statement in most cases. 13 For the real fault objects, the fourth and

10 Each program is used with the synchronization wrapper to provide thread-safe behaviors. For example, ArrayList is

always wrapped with Collections.SynchronizedList in the test cases used for our study. I fixed all known faults of the

programs before mutation.
11 I used the following synchronization mutation operators: exchange synchronized block parameters, remove synchro-

nized block, shrink synchronized block, and split synchronized block. I used the following expression mutation operators:

access flag change, argument order change, arithmetic operator change, logical connector change, and relational operator

change.
12Full details and the code are available at the SIR benchmark. [1]
13The only exception is the “exchange synchronized block parameters” mutation operator which targets a pair of syn-

– 107 –

the fifth columns show the number of code lines in the modified version, and the number of code lines

that are modified or added in the modified version (i.e., faulty version). The last column presents the

number of threads in a test execution for each program.

5.4.3 Test generation techniques

I applied Recurve and six types of testing techniques to the target programs. Recurve and CAPP [47]

are specific to detecting regression faults, thus these techniques utilize the information on the original

versions. In contrast, the other techniques generate test executions for the modified version without any

information of the original version.

• Random noise injection techniques

A random noise injection technique (calling it “RN”) generates arbitrary time-delays to perturb

thread scheduling of target program executions [27, 51]. A RN technique instruments a target

program to insert a noise probe before every synchronization and data access statement. A probe

injects a random time delay in 0 to m milliseconds with probability p whenever the probe is reached

in a test execution. I used 5 milliseconds, 10 milliseconds, 15 milliseconds for m and 10%, 20%, and

30% for p to construct 9 RN techniques for the experiments.

• Randomized scheduling technique

I used a random thread scheduling technique (calling it “RS”), similar to Sen [87]. RS first suspends

a running thread before every synchronization and data access operation. Once all running threads

are suspended, RS randomly selects and resumes one suspended thread.

• Race-driven scheduling technique

I used RaceFuzzer [88] (calling it “DR”) for the experiment. RaceFuzzer first predicts data race bugs

in the target program, each of which is a pair of statements that may read and write (or write and

write) the same variable concurrently without any synchronization. For each predicted data race

bug, RaceFuzzer executes the target program while controlling a thread scheduler to make the two

statements access the same variable concurrently. In this experiment, we configured RaceFuzzer to re-

peatedly generate test executions for a given amount of time. Note that a regression testing technique

SimRT [121] uses RaceFuzzer off-then-self for generating thread schedules in test executions.14

• Coverage-guided thread scheduling technique

I used a thread scheduling technique that achieves high concurrency coverage fast (calling it “CT”) [41].

CT first estimates test requirement feasible to cover in a target program testing, and then repeats

target program executions while controlling thread schedules to increase coverage achievements. CT

utilizes PSet [119] together with Sync-Pair [41] following the suggestion for the coverage-driven test

generation (see Chapter 3).

• CAPP with ReEx [47]

As regression testing techniques, we used CAPP with a systematic testing technique ReEx15 ReEx is

chronized blocks.
14I also had used AtomFuzzer and DeadlockFuzzer for the experiments, but these techniques fail to detect any faults in

most cases.
15I used the ReEx tool at http://mir.cs.illinois.edu/reex but found that ReEx crashes with the mutation objects.

I had reported this issue to the authors, and we fixed the bugs by ourselves for the experiments. I could not use CAPP on

JPF since the tool is not publicly available.

– 108 –

 http://mir.cs.illinois.edu/reex

a stateless model checker that systematically explore all thread schedules for a target program. In the

experiments, we used 8 CAPP modes by combining 4 basic heuristics of impacted code identifications

(CLASS, METHOD, LINE, FIELD) and 2 prioritization heuristics ALL and SOME (see Section 5.2.2). In

addition, we used two ReEx search orders Default and Random which results in 16 different techniques

of CAPP-ReEx. In the experiments, we provided the information of the program changes for each

mutant and real-fault object as described in [47].

• Recurve

I implemented Recurve for Java (15 Java classes, 10 KLOC). Recurve uses the diff utility to de-

termine code changes between two versions of a target program. To measure coverage and control

thread schedules at runtime, Recurve inserts scheduling probes before/after every synchronization or

data access statement in the target program by using Soot [103]. Recurve is compiled and executed

on Java 7 (1.7.0). Recurve determines that coverage increase is not significant if the number of newly

covered test requirements at the last test execution is less than 1% of the total number of test re-

quirements covered so far. Recurve changes the class of test targets when the coverage increase is

not significant for last ten executions in a row.

In the experiment, Recurve receives the source code of the both original and the modified versions,

and the testing result of the original version which is the set of test requirements covered in 1000

seconds of test executions. I created the testing result of the original version by running the coverage

guided test generation for the original version, as similar to CT.

5.4.4 Test runs

I applied each test generation technique to automatically generate test executions for 1000 seconds

with each mutant or a real fault object. A testing run is generated for 1000 seconds because, according

to our preliminary experiment, the results do not change much after 1000 seconds. I generate 30 testing

runs for each pair of a testing technique and a target program (i.e., a mutant or a real-fault object) to

obtain statistical reliability in the resulting data [82]. All experiments were performed on 30 machines

with Intel i5 3.6GHz CPU and 8GB main memory, and running 64-bit Debian Linux 3.2.0.

For those techniques with dynamic analyses prior to test generation (i.e., DR, CT, and Recurve), we

ran the dynamic analyses with ten executions prior to test generation, and then fed the analysis results

to test generations.

5.4.5 Measurement

To assess fault detection effectiveness and efficiency, we first compute average fault detection over

test generation time. The fault detection ability Fx(p, t) of mutation object m and testing technique x

at time t in one testing run is defined as follows:

Fx(p, t) =
Σm∈M(p)fx(m, t)

|M(p)|

where M(p) is a set of mutated faulty versions of p, fx(m, t) ∈ {0, 1} indicates if the fault of a mu-

tated faulty version m has been detected by the time instant t (1 if detected, 0 otherwise) in a testing

run. If a technique crashes (e.g., due to exceeding memory) at t before detecting the fault, the fault

detection is 0 for test generation time. For example, suppose that the average fault detection abil-

ity FRecurve(ArrayList, 100) is 0.94 (=17/18) whereM(ArrayList)={m1,...,m18}, fRecurve(m1, 100) =

– 109 –

Table 5.3: Fault detection effectiveness

Program

RN

RS CT DR

CAPP (default) CAPP (random)

Recurve5ms 10 ms 15 ms Any All Any All

High Low High Low High Low High Low High Low High Low High Low

ArrayList 0.77 0.63 0.85 0.64 0.95 0.63 0.55 0.95 0.93 0.00 0.00 0.11 0.11 0.20 0.19 0.38 0.25 1.00

HashMap 0.81 0.55 0.92 0.54 0.91 0.49 0.29 0.92 0.58 0.15 0.15 0.16 0.15 0.32 0.32 0.33 0.32 0.97

TreeSet 0.82 0.74 0.87 0.79 0.82 0.73 0.62 0.66 0.25 0.29 0.27 0.07 0.06 0.57 0.57 0.67 0.64 0.94

Groovy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Lang 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Pool-107 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.83 0.07 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Pool-120 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Pool-146 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1,..., fRecurve(m17, 100) = 1, and fRecurve (m18, 100) = 0 for m1 to m18 of ArrayList. I measure the

average fault detection ability of a testing technique over the 30 testing runs on each mutation object.

For a real-fault object p, we measure the average fault detection ability by using fx(p, t) over 30 testing

runs. I define the fault detection effectiveness of a technique for a target program as the fault detection

ability at 1000 seconds.

To assess fault detection efficiency, we measure average test generation time required for each tech-

nique to achieve fault detection abilities 0.7, 0.8, 0.9, 1.0 with each target program. If no testing technique

achieves fault detection ability 1.0 for an object in the study, we measured average time for achieving

70%, 80%, 90%, and 100% of the highest fault detection ability observed in the study.

5.5 Experiment results

5.5.1 RQ1. fault detection effectiveness

Table 5.3 show the fault detection results of the techniques and the studied objects. The second to

the seventh column show the results of the nine random noise injection-based techniques (RN). The nine

techniques are grouped according to the maximum time per noise noise (5 milliseconds, 10 milliseconds,

and 15 milliseconds), and present only the highest and the lowest fault detections of each group. The

eighth column is for the result of the randomized scheduling technique (RS), the ninth column for the

coverage based thread scheduling technique (CT), and the tenth column for the data race-based technique

(DR). The eleventh to the eighteenth columns present the results of the CAPP techniques, grouped by

the search mode (‘Default’ or ‘Random’) and the context-switching condition (ALL or SOME). For each

group of the CAPP technique, the table shows the highest fault detection (High) and the lowest fault

detection (Low). The last column shows the result of our technique Recurve.

In overall, Table 5.3 shows that Recurve achieves higher or equivalent fault detections compared to

the other techniques in the experiments. For three mutation objects (the second to the forth rows at

Table 5.3), Recurve achieves much higher fault detections than all the other techniques. Recurve achieves

fault detections 1.05 times (=(1.0-0.95)/0.95) to 14.7 times (=(0.94-0.06)/0.06) higher than the other

techniques. The CAPP techniques achieve fault detections no more than 0.70 for all mutation objects.

For the five real-fault objects (the fifth to the ninth rows at Table 5.3), most techniques achieve the

maximum fault detection (i.e., 1.00) except CT on Pool-107 and DR on Groovy, Pool-107, and Pool-146.

I conjecture that these two techniques fail to detect the faults because the given test generation targets

– 110 –

Table 5.4: Time for achieving high levels of fault detection effectiveness (in second)

Program
70% 80% 90% 100%

RN CT DR CAPP Recurve RN CT DR CAPP Recurve RN CT DR CAPP Recurve RN CT DR CAPP Recurve

ArrayList 36 5 8 - 9 164 7 20 - 12 595 13 80 - 24 - - - - 517

HashMap 89 5 - - 7 163 13 - - 22 348 36 - - 84 - - - - 758

TreeSet 26 51 - - 33 68 - - - 56 654 - - - 181 - - - - 897

Groovy 12 11 - 1 11 12 11 - 1 11 12 11 - 1 12 18 12 - 1 13

Lang 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2

Pool-107 17 595 - 1 117 30 797 - 1 169 53 - - 1 278 80 - - 2 704

Pool-120 1 6 1 1 3 1 6 1 1 3 1 6 1 1 4 2 8 1 1 5

Pool-146 11 11 - 1 12 11 11 - 1 13 12 12 - 1 14 13 13 - 1 16

(a) ArrayList (b) HashMap (c) TreeSet

0

0.2

0.4

0.6

0.8

1

200 400 600 800 1000
Time (sec)

200 400 600 800 1000
Time (sec)

200 400 600 800 1000
Time (sec)

+ RN × RS □ DR CT×｜ CAPP△ Recurve○

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Figure 5.4: Fault detection over time per technique, for the three mutation objects

(e.g., a test requirement or a data race pattern) are not effective for generating the failure-inducing

thread schedules. For example, RaceFuzzer does not generate any execution for Groovy and achieves

poor fault detection (e.g., 0.00 for Groovy) because RaceFuzzer does not predict any data race in Groovy

that has a deadlock bug.

Note that all CAPP techniques achieve the highest fault detections for all real-fault programs in

contrast to the results with the mutation objects. I conjecture that the performance of CAPP may

depend on the number of threads in a test execution, because all real-fault programs have 3 threads,

while the mutation objects have 22 to 27 threads.

RaceFuzzer shows low to moderate fault detections for two mutation objects (HashMap and TreeSet)

and does not achieve the maximum fault detection for two real-fault objects (Groovy and Pool-107). This

result implies that the regression testing technique with the data race-based thread scheduling such as

SimRT [121] may fail to detect regression faults if the regression fault is not related to data race.

5.5.2 RQ2. fault detection efficiency

Table 5.4 describes the time required for each technique to reach four levels of fault detections: 70%,

80%, 90%, and 100% of the highest fault detection observed in the study. For example, as the highest

fault detection of TreeSet is 0.94 in the experiment (see the last column of fourth row of Table 5.3), a

number of the second to the sixth columns is the first time for a technique to reach fault detection 0.658

(=0.7×0.94). The columns of RN represent the shortest times among the nine random noise injection-

based techniques for each level. Similarly, the columns of CT, DR, CAPP, and Recurve represent their

shortest times at each fault detection level. I omitted RS since the technique does not achieve fault

detection of 70% for all three mutation objects.

– 111 –

For the three mutation objects, a number at x% fault detection level in Table 5.4 indicates the

time for a technique to generate a failing execution for x% of the mutants. For reaching the 100% level,

only Recurve achieves the fault detection level in 1000 seconds. For the lower levels, Recurve takes less

time to achieve all cases than the RN techniques except TreeSet for 70% level. Compared to the CT

technique, Recurve spent more times for ArrayList and HashMap for 70% to 90% levels but CT failed

to achieve fault detection level higher than 70% for TreeSet.

Figure 5.4 is the plots of fault detection over times per technique for the three mutation objects. 16

The plots in the figures show that Recurve and RN continuously increase fault detection over 1000

seconds. Conversely, the other techniques (i.e., RS, DR, CT, and CAPP) do not effectively increase

fault detection once the technique reaches certain levels of fault detections (i.e., saturation points). For

example, CT achieves the 90% level for HashMap in 36 seconds, and no further increase is observed for

the remaining time. This result implies that the fault detection capability of RS, DR, CT and CAPP

can vary depending on target concurrency bugs. Thus, we conjecture that Recurve and RN can be more

suitable for broad range of concurrency bugs than the other techniques.

For the real-fault objects, a number n at x% fault detection level in Table 5.4 means that the

probability for a technique to generate the failing execution in n seconds is x%. Note that all techniques

except for CAPP take at least 10 seconds to detect the deadlock faults in Groovy and Pool-146 (because

timeout to determine deadlock is 10 seconds). CAPP can immediately detect a deadlock by checking

state condition.

The results shows that the CAPP techniques achieve the maximum fault detections (i.e., 1.0) for

all five real-fault objects in 2 seconds. For Groovy and Pool-146, RN, CT, Recurve takes no more than

20 seconds to detect the deadlock faults. For Lang and Pool-120, RN, CT, DR, and Recurve detect the

faults in no more than 8 seconds. For Pool-107, Recurve requires far more time to detect the failure than

RN and CAPP. I found that the fault of Pool-107 induces a failure only if a context-switch occurs at a

specific iteration of a loop in a thread. CT does not reach the 90% level in 1000 seconds, and CT takes

more time for reaching 70% and 80% than Recurve. I conjecture that the limitation of coverage-based

thread scheduling is more severe for CT because the PSet and Sync-Pair metric used by CT is more

coarse-grained than the CC metric used by Recurve.

5.5.3 Impact of test target prioritization

To check the benefit of the test target prioritization scheme, we additionally experiment RecurveNP ,

a variant of Recurve that does not prioritize the test targets, but uses all test targets (i.e., Class A ∪
Class B ∪ Class C) from the beginning. The experiment results show that RecurveNP shows lower

fault detection effectiveness than Recurve for HashMap (as 0.95) and TreeSet (as 0.92). For all three

mutation objects, RecurveNP is slower to reach high levels of fault detections. For example, with TreeSet,

RecurveNP takes 33, 77, 231 seconds for reaching 70%, 80%, 90% levels, respectively and does not reach

100% level within 1000 seconds. This result implies that the test target prioritization contributes the

high fault detection efficiency of Recurve substantially.

16RN in each figure is the one with the highest fault detection among the nine random noise-based techniques. Similarly,

we plot the CAPP technique that achieves the highest fault detections for each object.

– 112 –

5.6 Summary of this chapter

This chapter presents a concurrency coverage-based thread schedule generation technique for regres-

sion testing of multithreaded programs. I propose a new coverage metric effective for regression testing

of multithreaded programs, and present a test generation technique that detect and target the changed

behavior of a target program based on the new coverage metric. The experiment result shows that the

proposed test generation technique is more effective and efficient for detecting regression faults than

existing regression testing techniques and conventional testing techniques for multithreaded programs.

– 113 –

Chapter 6. Conclusion

Despite the widespread of multithreaded programming in practice, effective testing of multithreaded

programs is still challenging for developers since no proper testing methodologies or tools have been

supported. In this dissertation, I show that generating multithreaded program tests to achieve high

concurrency coverage is effective and efficient at detecting concurrency errors in real-world multithreaded

programs. As a first step toward supporting effective multithreaded program testing, I show empirical

evidence that the existing concurrency coverage metrics are actually useful to guide test generation to

improve fault detection ability. This result implies that the existing concurrency coverage metrics are

proper testing effectiveness predictors and also proper test targets for automated testing techniques.

This empirical investigation is the first comprehensive study on the testing effectiveness of concurrency

coverage metrics.

Based on the positive empirical evidence on concurrency coverage metrics, I present new automated

testing techniques that utilize concurrency coverage metrics to generate highly effective and efficient

multithreaded program tests. First, in order to detect concurrency errors effectively and efficiently, I

present CUVE, a new testing technique that achieves high concurrency coverage quickly. In particular, I

propose a new concurrency coverage metric for test generation called combinatorial concurrency coverage,

and new thread scheduling algorithms that dynamically coordinate execution order over threads to

make test executions that can achieve high combinatorial coverage efficiently. Through experiments

with various buggy multithreaded programs, I show that CUVE detects concurrent errors in a more

effective and efficient manner than do the existing multithreaded program testing techniques. In addition,

I extend the concurrency coverage-based testing techniques to support effective regression testing of

evolving multithreaded programs. In particular, I develop Recurve, a regression testing technique for

multithreaded programs, that utilizes a concurrency coverage metric to effectively target the new program

behaviors introduced by code changes. The empirical evaluation results show that the proposed technique

is more effective and efficient at detecting regression faults in multithreaded programs than are existing

techniques.

Concurrency coverage metrics are promising testing methods that can associate advanced program

analyses and testing practices because they provide intuitive and concrete abstractions of a target

program behavior that can be understood by both developers and automated analysis techniques. I ex-

pect that many sophisticated coverage-based testing ideas originally developed in the sequential program

domain can be extended to the multithreaded program domain. concurrency coverage metrics are promis-

ing methods to associate advanced program As future work, I will investigate effective input value

generation for multithreaded program testing. Together with thread schedules, program input value

is an important factor that influences multithreaded program testing effectiveness. I plan to combine

coverage-based thread schedule generation and symbolic execution for effective and efficient test input

value generation.

– 114 –

References

[1] Software-artifact Infastructure Repository. http://sir.unl.edu.

[2] S. Adve. Data races are evil with no exceptions: Technical perspective. Communications of the

ACM, 53(11):84–84, 2010.

[3] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropriate tool for testing experi-

ments? In Proceedings of the International Conference on Software Engineering (ICSE), 2005.

[4] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin. Using mutation analysis for assessing

and comparing testing coverage criteria. IEEE Transactions on Software Engineering (TSE),

32(8):608–624, Aug. 2006.

[5] C. Artho, K. Havelund, and A. Biere. High-level data races. In Proceedings of the International

Workshop on Verification and Validation of Enterprise Information Systems (VVIES), 2003.

[6] C. Artho, K. Havelund, and A. Biere. Using block-local atomicity to detect stale-value concurrency

errors. In Proceedings of the International Symposium on Automated Technology for Verification

and Analysis (ATVA), 2004.

[7] E. Bodden and K. Havelund. Aspect-oriented race detection in Java. IEEE Transactions on

Software Engineering (TSE), 36(4):509–527, Jul 2010.

[8] H.-J. Boehm. Position paper: nondeterminism is unavoidable, but data races are pure evil. In

Proceedings of ACM Workshop on Relaxing Synchronization for Multicore and Manycore Scalability

(RACES), 2012.

[9] J. S. Bradbury, J. R. Cordy, and J. Dingel. Mutation operators for concurrency Java (J2SE 5.0).

In Proceedings of the Workshop on Mutation Analysis (MUTATION), 2006.

[10] J. S. Bradbury and K. Jalbert. Defining a catalog of programming and anti-patterns for concurrent

Java. In Proceedings of the International Workshop on Software Patterns and Quality (SPAQu),

2009.

[11] A. Bron, E. Farchi, Y. Magid, Y. Nir, and S. Ur. Applications of synchronization coverage. In

Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP), 2005.

[12] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte. A randomized scheduler with prob-

abilistic guarantees of finding bugs. In Proceedings of the International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS), Mar. 2010.

[13] J. Burnim, K. Sen, and C. Stergiou. Testing concurrent programs on relaxed memory models. In

Proceedings of the International Symposium on Software Testing and Analysis (ISSTA), 2011.

[14] C. Cadar, D. Dunbar, and D. Engler. KLEE: unassisted and automatic generation of high-coverage

tests for complex systems programs. In Proceedings of the USENIX Conference on Operating

Systems Design and Implementation (OSDI), 2008.

– 115 –

http://sir.unl.edu

[15] X. Cai and M. R. Lyu. The effect of code coverage on fault detection under different testing profiles.

In Proceedings of International Workshop of Advances in Model-based Testing (A-MOST), 2005.

[16] F. Chen and G. Rosu. Parametric and sliced causality. In Proceedings of the International Con-

ference on Computer Aided Verification (CAV), 2007.

[17] Q. Chen, L. Wang, Z. Yang, and S. D. Stoller. HAVE: integrated dynamic and static analysis for

atomicity violations. In Proceedings of the International Conference on Fundamental Approaches

to Software Engineering (FASE), 2009.

[18] T.-H. Chen, M. Nagappan, E. Shihab, and A. E. Hassan. An empirical study of dormant bugs. In

Proceedings of the Working Conference on Mining Software Repositories (MSR), 2014.

[19] L. Chew and D. Lie. Kivati: fast detection and prevention of atomicity violations. In Proceedings

of the European Conference on Computer Systems (EuroSys), 2010.

[20] J. D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Sridharan. Efficient and

precise datarace detection for multithreaded object-oriented programs. In Proceedings of the ACM

SIGPLAN Conference on Programming Language Design and Implementation (PLDI), 2002.

[21] M. Christiaens and K. D. Bosschere. TRaDe, a topological approach to on-the-fly race detection

in Java programs. In Proceedings of the Symposium on JavaTM Virtual Machine Research and

Technology Symposium (JVM), 2001.

[22] D. Deng, W. Zhang, and S. Lu. Efficient concurrency-bug detection across inputs. ACM SIGPLAN

Notices, 48(10):785–802, 2013.

[23] D. Deng, W. Zhang, B. Wang, P. Zhao, and S. Lu. Understanding the interleaving-space overlap

across inputs and software versions. In Proceedings of the USENIX Workshop on Hot Topics in

Parallelism (HotPar), 2012.

[24] R. J. Dias, V. Pessanha, and J. M. Lourenço. Precise detection of atomicity violations. In Proceed-

ings of the International Conference on Hardware and Software: Verification and Testing (HVC),

2012.

[25] H. Do and G. Rothermel. A controlled experiment assessing test case prioritization techniques via

mutation faults. In Proceedings of the IEEE International Conference on Software Maintenance

(ICSM), 2005.

[26] M. B. Dwyer, S. Person, and S. G. Elbaum. Controlling factors in evaluating path-sensitive error

detection techniques. In Proceedings of the ACM SIGSOFT International Symposium on Founda-

tions of Software Engineering (FSE), 2006.

[27] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur. Multithreaded Java program test generation.

In Proceedings of the Joint ACM-ISCOPE Conference on Java Grande (JGI), 2001.

[28] M. Emmi, S. Qadeer, and Z. Rakamarić. Delay-bounded scheduling. In Proceedings of the 38th

annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages (POPL),

2011.

[29] D. Engler and K. Ashcraft. RacerX: effective, static detection of race conditions and deadlocks. In

Proceedings of the ACM Symposium on Operating Systems Principles (SOSP), 2003.

– 116 –

[30] J. Fiedor, B. Křena, Z. Letko, and T. Vojnar. A uniform classification of common concurrency

errors. In Proceedings of the International Conference on Computer Aided Systems Theory (EU-

ROCAST), 2012.

[31] C. Flanagan and S. N. Freund. Type-based race detection for java. In Proceedings of the ACM

SIGPLAN Conference on Programming Language Design and Implementation (PLDI), 2000.

[32] C. Flanagan and S. N. Freund. Atomizer: a dynamic atomicity checker for multithreaded programs.

Science of Computer Programming, 71(2):89–109, 2008.

[33] C. Flanagan and S. N. Freund. FastTrack: efficient and precise dynamic race detection. In Pro-

ceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI), 2009.

[34] C. Flanagan and S. N. Freund. The RoadRunner dynamic analysis framework for concurrent

programs. In Proceedings of Workshop on Program Analysis for Software Tools and Engineering

(PASTE), 2010.

[35] C. Flanagan, S. N. Freund, and J. Yi. Velodrome: a sound and complete dynamic atomicity checker

for multithreaded programs. In Proceedings of the ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), 2008.

[36] M. Gligoric, V. Jagannath, and D. Marinov. MutMut: efficient exploration for mutation testing of

multithreaded code. In Proceedings of International Conference on Software Testing, Verification

and Validation (ICST), 2010.

[37] P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated random testing. Proceedings of

the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI),

2005.

[38] P. Godefroid and N. Nagappan. Concurrency at Microsoft: an exploratory survey. In Proceedings

of CAV Workshop on Exploiting Concurrency Efficiently and Correctly, 2008.

[39] C. Hammer, J. Dolby, M. Vaziri, and F. Tip. Dynamic detection of atomic-set-serializability

violations. In Proceedings of the International Conference on Software Engineering (ICSE), 2008.

[40] D. P. Helmbold and C. E. McDowell. A taxonomy of race conditions. Journal of Parallel and

Distributed Computing, 33(2):159–164, 1996.

[41] S. Hong, J. Ahn, S. Park, M. Kim, and M. J. Harrold. Testing concurrent program to achieve high

synchronization coverage. In Proceedings of the International Symposium on Software Testing and

Analysis (ISSTA), 2012.

[42] S. Hong and M. Kim. A survey of race bug detection techniques for multithreaded programmes.

Software Testing, Verification and Reliability (STVR), 25(3):191–217, 2015.

[43] S. Hong, M. Staats, J. Ahn, M. Kim, and G. Rothermel. The impact of concurrent coverage metrics

on testing effectiveness. In Proceedings of the IEEE International Conference on Software Testing,

Verification and Validation (ICST), 2013.

– 117 –

[44] S. Hong, M. Staats, J. Ahn, M. Kim, and G. Rothermel. Are concurrency coverage metrics effective

for testing: A comprehensive empirical investigation. Software Testing, Verification and Reliability

(STVR), 25(4):334–370, 2015.

[45] V. Hrubá, B. Křena, Z. Lekto, S. Ur, and T. Vojnar. Testing of concurrent programs using genetic

algorithms. In Proceedings of the International Conference on Search Based Software Engineering

(SSBSE), 2012.

[46] J. Huang and C. Zhang. Persuasive prediction of concurrency access anomalies. In Proceedings of

the International Symposium on Software Testing and Analysis (ISSTA), 2011.

[47] V. Jagannath, Q. Luo, and D. Marinov. Change-aware preemption prioritization. In Proceedings

of the International Symposium on Software Testing and Analysis (ISSTA), 2011.

[48] P. Joshi, M. Naik, C.-S. Park, and K. Sen. CalFuzzer: an extensible active testing framework for

concurrent programs. In Proceedings of International Conference on Computer Aided Verification

(CAV), 2009.

[49] P. Joshi, C.-S. Park, K. Sen, and M. Naik. A randomized dynamic program analysis technique for

detecting real deadlocks. ACM SIGPLAN Notices, 44(6):110–120, 2009.

[50] P. Kvam and B. Vidakovic. Nonparametric Statistics with Applications to Science and Engineering.

Wiley, 2007.

[51] B. Křena, Z. Letko, T. Vojnar, and S. Ur. A platform for search-based testing of concurrent

software. In Proceedings of the Workshop on Parallel and Distributed Systems: Testing, Analysis,

and Debugging (PADTAD), 2010.

[52] Z. Lai, S.-C. Cheung, and W. K. Chan. Detecting atomic-set serializability violations in multi-

threaded programs through active randomized testing. In Proceedings of the ACM/IEEE Interna-

tional Conference on Software Engineering (ICSE), 2010.

[53] Z. Letko, T. Vojnar, and B. Křena. AtomRace: data race and atomicity violation detector and

healer. In Proceedings of the Workshop on Parallel and Distributed Systems: Testing, Analysis,

and Debugging (PADTAD), 2008.

[54] D. Li, W. Srisa-an, and M. B. Dwyer. SOS: saving time in dynamic race detection with station-

ary analysis. In Proceedings of the ACM SIGPLAN Conference on Object-oriented Programming,

Systems, Languages, and Applications (OOPSLA), 2011.

[55] B. Long and P. Strooper. A classification of concurrency failures in Java components. In Proceedings

of the International Symposium on Parallel and Distributed Processing (IPDPS), 2003.

[56] S. Lu, W. Jiang, and Y. Zhou. A study of interleaving coverage criteria. In Proceedings of the Joint

Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on

the Foundations of Software Engineering (ESEC/FSE), 2007.

[57] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa, and Y. Zhou. MUVI: automatically

inferring multi-variable access correlations and detecting related semantic and concurrency bugs.

In Proceedings of the ACM Symposium on Operating Systems Principles (SOSP), 2007.

– 118 –

[58] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: a comprehensive study on real world

concurrency bug characteristics. In Proceedings of the International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS), 2008.

[59] S. Lu, J. Tucek, F. Qing, and Y. Zhou. AVIO: Detecting atomicity violations via access inter-

leaving invariants. In Proceedings of the International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS), 2006.

[60] B. Lucia, L. Ceze, and K. Strauss. ColorSafe: architectural support for debugging and dynamically

avoiding multi-variable atomicity violations. In Proceedings of the Annual International Symposium

on Computer Architecture (ISCA), 2010.

[61] B. Lucia, J. Devietti, K. Strauss, and L. Ceze. Atom-Aid: Detecting and surviving atomicity vio-

lations. In Proceedings of the Annual International Symposium on Computer Architecture (ISCA),

2008.

[62] C. Mallows. Some comments on Cp. Technometrics, 1973.

[63] D. Marino, M. Musuvathi, and S. Narayanasamy. LiteRace: effective sampling for lightweight

data-race detection. In Proceedings of the ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI), 2009.

[64] V. Mekkat, A. Holey, and A. Zhai. Accelerating data race detection utilizing on-chip data-parallel

cores. In Proceedings of the International Conference on Runtime Verification (RV), 2013.

[65] M. Musuvathi and S. Qadeer. Iterative context bounding for systematic testing of multithreaded

programs. SIGPLAN Not., 42(6), June 2007.

[66] A. Muzahid, N. Otsuki, and J. Torrellas. AtomTracker: a comprehensive approach to atomic

region inference and violation detection. In Proceedings of the Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), 2010.

[67] S. Nagarakatte, S. Burckhardt, M. M. K. Martin, and M. Musuvathi. Multicore acceleration of

priority-based schedulers for concurrency bug detection. In Proceedings of the ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI), 2012.

[68] M. Naik, A. Aiken, and J. Whaley. Effective static race detection for Java. In Proceedings of the

ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), 2006.

[69] A. S. Namin and J. H. Andrews. The influence of size and coverage on test suite effectiveness. In

Proceedings of the International Symposium on Software Testing and Analysis (ISSTA), 2009.

[70] R. H. B. Netzer and B. P. Miller. What are race conditions?: some issues and formalizations. ACM

Letters on Programming Languages and Systems, 1(1):74–88, Mar 1992.

[71] A. Nistor, Q. Luo, M. Pradel, T. R. Gross, and D. Marinov. BALLERINA: automatic genera-

tion and clustering of efficient random unit tests for multithreaded code. In Proceedings of the

International Conference on Software Engineering (ICSE), 2012.

[72] R. O’Callahan and J. D. Choi. Hybrid dynamic data race detection. In Proceedings of the ACM

Symposium on Principles and Practice of Parallel Programming (PPoPP), 2003.

– 119 –

[73] S. Okur and D. Dig. How do developers use parallel libraries? In Proceedings of the ACM SIGSOFT

Foundation of Software Engineering (FSE), 2012.

[74] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-directed random test generation. In

Proceedings of the International Conference on Software Engineering (ICSE), 2007.

[75] C. S. Park and K. Sen. Randomized active atomicity violation detection in concurrent programs.

In Proceedings of the ACM SIGSOFT International Symposium on Foundations of Software Engi-

neering (FSE), 2008.

[76] S. Park, S. Lu, and Y. Zhou. CTrigger: exposing atomicity violation bugs from their hiding

places. In Proceedings of the International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2009.

[77] S. Park, R. W. Vuduc, and M. J. Harrold. Falcon: fault localization in concurrent programs. In

Proceedings of the International Conference on Software Engineering (ICES), 2010.

[78] P. Piwowarski, M. Ohba, and J. Caruso. Coverage measurement experience during function test.

In Proceedings of the International Conference on Software Engineering (ICSE), 1993.

[79] E. Pozniansky and A. Schuster. MultiRace: efficient on-the-fly data race detection in multithreaded

C++ programs. Concurrency and Computation: Practice and Experience, 19(3):327–340, 2007.

[80] S. Qadeer and S. Tasiran. Runtime verification of concurrency-specific correctness. Software Tools

for Technology Transfer, 14(3):291–305, 2012.

[81] A. Raza. A review of race detection mechanisms. In Proceedings of the International Computer

Science Conference on Theory and Applications (CSR), 2006.

[82] J. A. Rice. Mathematical Statistics and Data Analysis. Cengage Learning, 2006.

[83] C. Sadowski, J. Yi, and S. Kim. The evolution of data races. In Proceedings of the IEEE Working

Conference on Mining Software Repositories (MSR), 2012.

[84] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A dynamic data

race detector for multithreaded programs. ACM Transactions on Computer Systems (TOCS),

15(4):391–411, 1997.

[85] J. Schimmel, K. Molitorisz, and W. F. Tichy. An evaluation of data race detectors using bug

repositories. In Proceedings of the Federated Conference on Computer Science and Information

Systems, 2013.

[86] P. Seibel. Coders at work. Apress, 2009.

[87] K. Sen. Effective random testing of concurrent programs. In Proceedings of the IEEE International

Conference on Automated Software Engineering (ASE), 2007.

[88] K. Sen. Race directed random testing of concurrent programs. In Proceedings of the ACM SIG-

PLAN Conference on Programming Language Design and Implementation (PLDI), 2008.

[89] K. Sen and G. Agha. A race-detection and flipping algorithm for automated testing of multi-

threaded programs. In Proceedings of the International Conference on Hardware and Software:

Verification and Testing (HVC), 2006.

– 120 –

[90] K. Serebryany and T. Iskhodzhanov. ThreadSanitizer – data race detection in practice. In Pro-

ceedings of the Workshop on Binary Instrumentation and Applications (WBIA), 2009.

[91] T. Sheng, N. Vachharajani, S. Eranian, R. Hundt, W. Chen, and W. Zheng. RACEZ: a lightweight

and non-invasive race detection tool for production applications. In Proceedings of the International

Conference on Software Engineering (ICSE), 2011.

[92] E. Sherman, M. B. Dwyer, and S. Elbaum. Saturation-based testing of concurrent programs. In

Proceedings of the Joint Meeting of the European Software Engineering Conference and the ACM

SIGSOFT Symposium on the Foundations of Software Engineering(ESEC/FSE), 2009.

[93] Y. Shi, S. Park, Z. Yin, S. Lu, Y. Zhou, W. Chen, and W. Zheng. Do I use the wrong definition?

DeFuse: definition-use invariants for detecting concurrency and sequential bugs. In Proceedings

of the ACM International Conference on Object-oriented Programming Systems Languages and

Applications (OOPSLA), 2010.

[94] F. Sorrentino, A. Farzan, and P. Madhusudan. PENELOPE: weaving threads to expose atomicity

violations. In Proceedings of the ACM SIGSOFT International Symposium on Foundations of

Software Engineering (FSE), 2010.

[95] S. R. S. Souza, M. A. S. Brito, R. A. Silva, P. S. L. Souza, and E. Zaluska. Research in concurrent

software testing: a systematic review. In Proceedings of the Workshop on Parallel and Distributed

Systems: Testing, Analysis, and Debugging (PADTAD), 2011.

[96] S. D. Stoller. Testing concurrent Java programs using randomized scheduling. In Proceedings of

the International Workshop on Runtime Verification (RV), 2002.

[97] W. N. Sumner, C. Hammer, and J. Dolby. Marathon: Detecting atomic-set serializability violations

with conflict graphs. In Proceedings of the International Conference on Runtime Verification (RV),

2011.

[98] S. Tasiran, M. E. Keremoglu, and K. Muslu. Location pairs: a test coverage metric for shared-

memory concurrent programs. Empirical Software Engineering (ESE), 17(3):129–165, 2012.

[99] G. M. Tchamgoue, O.-K. Ha, K.-H. Kim, and Y.-K. Jun. A taxonomy of concurrency bugs in event-

driven programs. In Proceedings of International Conference on Advanced Software Engineering

and Its Applications (ASEA), 2011.

[100] V. Terragni, S.-C. Cheung, and C. Zhang. Recontest: Effective regression testing of concurrent

programs. In Proceedings of the International Conference on Software Engineering (ICSE), 2015.

[101] N. Tracey, J. Clark, K. Mander, and J. McDermid. An automated framework for structural test-

data generation. In Proceedings of the IEEE International Conference on Automated Software

Engineering (ASE), 1998.

[102] E. Trainin, Y. Nir-Buchbinder, R. Tzoref-Brill, A. Zlotnick, S. Ur, and E. Farchi. Forcing small

models of conditions on program interleaving for detection of concurrent bugs. In Proceedings of

the Workshop on Parallel and Distributed Systems: Testing, Analysis, and Debugging (PADTAD),

2009.

– 121 –

[103] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan. Soot - a Java bytecode

optimization framework. In Proceedings of the Center for Advanced Studies Conference (CASCON),

1999.

[104] M. Vaziri, F. Tip, and J. Dolby. Associating synchronization constraints with data in an object-

oriented language. In Proceedings of the Annual ACM SIGPLAN-SIGACT Symposium on Princi-

ples of Programming Languages (POPL), 2006.

[105] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking programs. Automated

Software Engineering Journal, 10(2):203–232, 2003.

[106] C. von Praun and T. Gross. Static detection of atomicity violations in object-oriented programs.

Journal of Object Technology, 3(2):103–122, Mar-Apr 2004.

[107] C. von Praun and T. R. Gross. Object race detection. In Proceedings of the ACM SIGPLAN

Conference on Object-oriented Programming, Systems, Languages, and Applications (OOPSLA),

2001.

[108] J. W. Voung, R. Jhala, and S. Lerner. RELAY: static race detection on millions of lines of code. In

Proceedings of the joint meeting of the European Software Engineering Conference and the ACM

SIGSOFT Symposium on The Foundations of Software Engineering (ESEC-FSE), 2007.

[109] C. Wang, M. Said, and A. Gupta. Coverage guided systematic concurrency testing. In Proceedings

of the International Conference on Software Engineering (ICSE), 2011.

[110] C. Wang, Y. Yang, A. Gupta, and G. Gopalakrishnan. Dynamic model checking with property

driven pruning to detect race conditions. In Proceedings of the International Symposium on Auto-

mated Technology for Verification and Analysis (ATVA), 2008.

[111] L. Wang and S. D. Stoller. Accurate and efficient runtime detection of atomicity errors in con-

current programs. In Proceedings of the ACM Symposium on Principles and Practice of Parallel

Programming (PPoPP), 2006.

[112] L. Wang and S. D. Stoller. Runtime analysis for atomicity for multithreaded programs. IEEE

Transactions on Software Engineering (TSE), 32(2):99–110, 2006.

[113] X. Xie, J. Xue, and J. Zhang. ACCULOCK: accurate and efficient detection of data races. Software–

Practice and Experience, 43(5):543–576, 2012.

[114] Z. Xu, Y. Kim, M. Kim, G. Rothermel, and M. Cohen. Directed test suite augmentation: Tech-

niques and tradeoffs. In Proceedings of the ACM SIGSOFT International Symposium on Founda-

tions of Software Engineering (FSE), 2010.

[115] C. D. Yang, A. L. Souter, and L. L. Pollock. All-du-path coverage for parallel programs. In

Proceedings of the International Symposium on Software Testing and Analysis (ISSTA), 1998.

[116] J. Yi, C. Sadowski, and C. Flanagan. Cooperative reasoning for preemptive execution. In Pro-

ceedings of the ACM Symposium on Principles and Practice of Parallel Programming (PPoPP),

2011.

– 122 –

[117] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. Bairavasundaram. How do fixes become bugs? In

Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on Founda-

tions of Software Engineering (ESEC/FSE), 2011.

[118] S. Yoo and M. Harman. Regression testing minimization, selection and prioritization: a survey.

Software Testing, Verification and Reliability (STVR), 22(2):67–120, 2012.

[119] J. Yu and S. Narayanasamy. A case for an interleaving constrained shared-memory multi-processor.

In Proceedings of the Annual International Symposium on Computer Architecture (ISCA), 2009.

[120] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam. Maple: a coverage-driven testing tool for

multithreaded programs. In Proceedings of the ACM International Conference on Object Oriented

Programming Systems Languages and Applications (OOPSLA), 2012.

[121] T. Yu, W. Srisa-an, and G. Rothermel. SimRT: an automated framework to support regression

testing for data races. In Proceedings of the International Conference on Software Engineering

(ICSE), 2014.

[122] Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: efficient detection of data race conditions via

adaptive tracking. In Proceedings of the ACM Symposium on Operating Systems Principles (SOSP),

2005.

[123] R. Zeng, Z. Sun, S. Liu, and X. He. McPatom: a predictive analysis tool for atomicity violation

using model checking. In Proceedings of the International Workshop on Model Checking Software

(SPIN), 2012.

[124] H. Zhu, P. Hall, and J. May. Software unit test coverage and adequacy. ACM Computing Surveys

(CSUR), 29(4):366–427, 1997.

– 123 –

Appendices

124

Chapter A. Formal Definitions of Concurrency

Coverage Metrics

In this chapter I formally present the coverage satisfaction relation definitions of the eight con-

currency coverage metrics (Section 2.2.2). I use the thread model presented in Section 4.3.2 with the

following additional functions on an execution E:

• lock-holderE(i,m) returns the thread of the lock-hold action that holds lock m at execution

of σ[i].

• last-lockE(i,m) returns an index j such that σ[j] is the lock − hold action that most recently

holds lock m at execution of σ[i].

• last-writeE(i,v) returns an index j such that σ[j] is the write action that most recently writes

variable v at execution of σ[i].

Definition 10 (Blocked Test Requirement Satisfaction Condition). For an execution E = 〈s0, σ〉 and

a Blocked test requirement Blocked(l), E |= Blocked(l) if there exists σ[i] such that loc(σ[i]) = l ∧
operator(σ[i]) = lock-acquire ∧ ∃ t ∈ T.(t 6= thread(σ[i]) ∧ lock-holderE(i,operand(σ[i])) = t).

Definition 11 (Blocked-Pair Test Requirement Satisfaction Condition). For an execution E = 〈s0, σ〉
and a Blocked-Pair test requirement Blocked-Pair(l1, l2), E |= Blocked-Pair(l1, l2) if there exist an action

σ[i] and another σ[j] (i < j) such that loc(σ[i]) = l1 ∧ operator(σ[i]) = lock-hold ∧ loc(σ[j]) =

l2 ∧ operator(σ[j]) = lock-acquire ∧ last-lockE(j,operand(σ[j])) = σ[i].

Definition 12 (Blocking Test Requirement Satisfaction Condition). For an execution E = 〈s0, σ〉 and

a Blocking test requirement Blocking(l), E |= Blocking(l) if there exist an action σ[i] and an action σ[j]

(i < j) such that loc(σ[i]) = l1 ∧ operator(σ[i]) = lock-hold ∧ operator(σ[j]) = lock-acquire ∧
lock-holderE(i,operand(σ[i])) = thread(σ[i]) ∧ last-lockE(j,operand (σ[j])) = loc(σ[i]).

Definition 13 (Follows Test Requirement Satisfaction Condition). For an execution E = 〈s0, σ〉 and a

Follows test requirement Follows(l1, l2), E |= Follows(l1, l2) if there exist an action σ[i] and an action

σ[j] (i < j) such that loc(σ[i]) = l1 ∧ operator(σ[i]) = lock-hold ∧ loc(σ[j]) = l1 ∧ operator(σ[j])

= lock-hold ∧ thread(σ[i]) 6= thread(σ[j]) ∧ last-lockE(j,operand(σ[j])) = loc(σ[i]).

Definition 14 (Sync-Pair Test Requirement Satisfaction Condition). For an execution E = 〈s0, σ〉 and

a Sync-Pair test requirement Sync-Pair(l1, l2), E |= Sync-Pair(l1, l2) if there exist an action σ[i] and

another action σ[j] (i < j) such that loc(σ[i]) = l1 ∧ operator(σ[i]) = lock-hold ∧ loc(σ[j]) = l1

∧ operator(σ[j]) = lock-hold ∧ last-lockE(j,operand(σ[j])) = loc(σ[i]).

Definition 15 (Def-Use Test Requirement Satisfaction Condition). For an execution 〈s0, σ〉 and a Def-

Use test requirement Def-Use(l1, l2), E |= Def-Use(l1, l2) if there exist an action σ[i] and an action σ[j]

(i < j) such that loc(σ[i])=l1 ∧ operator(σ[i]) =write ∧ loc(σ[j])=l2 ∧ (operator(σ[j])=read ∨
operator(σ[i]) =write) ∧ last-writeE(j,operand(σ[i])) =loc(σ[i]).

Definition 16 (L-Def Test Requirement Satisfaction Condition). For an execution 〈s0, σ〉 and a L-Def

test requirement L-Def(l), E |= L-Def(l) if there exists an action σ[i] and an action σ[j] (i < j) such

– 125 –

that loc(σ[j]) = l ∧ operator(σ[j]) = read ∧ σ[i] = last-writeE(j,operand(σ[j])) ∧ thread(σ[i])

= thread(σ[j])

Definition 17 (R-Def Test Requirement Satisfaction Condition). For an execution 〈s0, σ〉 and a R-Def

test requirement R-Def(l), E |= R-Def(l) if there exists an action σ[i] and an action σ[j] (i < j) such

that loc(σ[j]) = l ∧ operator(σ[j]) = write ∧ i = last-writeE(j,operand(σ[j])) ∧ thread(σ[i])

6= thread(σ[j])

Definition 18 (PSet Test Requirement Satisfaction Condition). For an execution E = 〈s0, σ〉 and a

PSet(l1, l2) test requirement, E |= PSet(l1, l2) for the following the three situations:

Case 1: for a data write statement of l1 and a data read statement of l2: there exist an action σ[i] and

an action σ[j] (i < j) such that loc(σ[j]) = l2 ∧ operator(σ[j]) = read ∧ i= last-writeE(σ[j]) ∧
loc(σ[i]) = l1 ∧ thread(σ[i]) 6= thread(σ[j])

Case 2: for a data write statement of l1 and a data write statement of l2: there exist an action σ[i] and

an action σ[j] (i < j) such that loc(σ[j]) = l2 ∧ operator(σ[j]) = write ∧ i = last-writeE(σ[j])

∧ loc(σ[i]) = l1 ∧ thread(σ[i]) 6= thread(σ[j])

Case 3: for a data read statement of l1 and a data write statement of l2: there exist an action σ[i] and an

action σ[j] (i < j) such that loc(σ[i]) = l1 ∧ operator(σ[i]) = read ∧ j = next-lockE(i,operand(σ[i]))

∧ 6 ∃k (i < k < j).(operator(σ[k])=read ∧ operand(σ[k])=operand(σ[i]))

– 126 –

Chapter B. Complete Experiment Result Data of

Empirical Evaluation on Concurrency Coverage

Metrics

This section present the full results (discussed in Section 3.3) for all study objects.

0 200 400 600 800 1000

Test Suite Size

60

70

80

90

100

A
vg

.C
ov

er
ag

e
(%

)

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(a) Accountsubtype

0 200 400 600 800 1000

Test Suite Size

40
50
60
70
80
90

100

A
vg

.C
ov

er
ag

e
(%

)

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(b) Alarmclock

0 200 400 600 800 1000

Test Suite Size

50

60

70

80

90

100

A
vg

.C
ov

er
ag

e
(%

)

Blocked
BlockedPair
Blocking
DefUse
Follows
LRDef
PSet
SyncPair

(c) Clean

0 200 400 600 800 1000

Test Suite Size

20
30
40
50
60
70
80
90

100

A
vg

.C
ov

er
ag

e
(%

)

Blocked
BlockedPair
Blocking
DefUse
Follows
LRDef
PSet
SyncPair

(d) Groovy

0 200 400 600 800 1000

Test Suite Size

60

70

80

90

100

A
vg

.C
ov

er
ag

e
(%

)

Blocked
BlockedPair
Blocking
DefUse
Follows
LRDef
PSet
SyncPair

(e) Piper

0 200 400 600 800 1000

Test Suite Size

50

60

70

80

90

100

A
vg

.C
ov

er
ag

e
(%

)

Blocked
BlockedPair
Blocking
DefUse
Follows
LRDef
PSet
SyncPair

(f) Producerconsumer

0 200 400 600 800 1000

Test Suite Size

20

40

60

80

100

A
vg

.C
ov

er
ag

e
(%

)

Blocked
BlockedPair
Blocking
DefUse
Follows
LRDef
PSet
SyncPair

(g) Stringbuffer

0 200 400 600 800 1000

Test Suite Size

5

10

15

20

A
vg

.C
ov

er
ag

e
(%

)

Blocked
BlockedPair
Blocking
DefUse
Follows
LRDef
PSet
SyncPair

(h) Twostage

0 200 400 600 800 1000

Test Suite Size

65
70
75
80
85
90
95

100

A
vg

.C
ov

er
ag

e
(%

)

Blocked
BlockedPair
Blocking
DefUse
Follows
LRDef
PSet
SyncPair

(i) Wronglock

Figure B.1: Size versus coverage, all single fault objects

– 127 –

50 60 70 80 90 100

Coverage (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

.F
au

lt
D

et
ec

ti
on

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(a) Accountsubtype

0 20 40 60 80 100

Coverage (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

.F
au

lt
D

et
ec

ti
on

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(b) Alarmclock

0 20 40 60 80 100

Coverage (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

.F
au

lt
D

et
ec

ti
on

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(c) Clean

20 40 60 80 100

Coverage (%)

0.2

0.4

0.6

0.8

1.0

A
vg

.F
au

lt
D

et
ec

ti
on

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(d) Groovy

50 60 70 80 90 100

Coverage (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

.F
au

lt
D

et
ec

ti
on

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(e) Piper

40 50 60 70 80 90 100

Coverage (%)

0.2

0.4

0.6

0.8

1.0

A
vg

.F
au

lt
D

et
ec

ti
on

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(f) Producerconsumer

0 20 40 60 80 100

Coverage (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

.F
au

lt
D

et
ec

ti
on

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(g) Stringbuffer

0 5 10 15 20 25

Coverage (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

.F
au

lt
D

et
ec

ti
on

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(h) Twostage

50 60 70 80 90 100

Coverage (%)

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

A
vg

.F
au

lt
D

et
ec

ti
on

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(i) Wronglock

Figure B.2: Coverage versus fault detection effectiveness, all single fault objects

– 128 –

0 20 40 60 80 100

Trace #

0

20

40

60

80

100
%

C
ov

er
in

g
R

eq
. Blocked

BlockedPair
Blocking
DefUse
Follows
LRDef
PSet
SyncPair

(a) Accountsubtype

0 20 40 60 80 100

Trace #

0

20

40

60

80

100

%
C

ov
er

in
g

R
eq

.

Blocked
BlockedPair
Blocking
DUR
Follows
LRDEF
PSet
SyncPair

(b) Alarmclock

0 20 40 60 80 100

Trace #

0

20

40

60

80

100

%
C

ov
er

in
g

R
eq

.

Blocked
BlockedPair
Blocking
DUR
Follows
LRDEF
PSet
SyncPair

(c) Arraylist

0 20 40 60 80 100

Trace #

0

20

40

60

80

100

%
C

ov
er

in
g

R
eq

.

Blocked
BlockedPair
Blocking
DUR
Follows
LRDEF
PSet
SyncPair

(d) Boundedbuffer

0 20 40 60 80 100

Trace #

0

20

40

60

80

100
%

C
ov

er
in

g
R

eq
.

Blocked
BlockedPair
Blocking
DUR
Follows
LRDEF
PSet
SyncPair

(e) Clean

0 20 40 60 80 100

Trace #

0

20

40

60

80

100

%
C

ov
er

in
g

R
eq

.

Blocked
BlockedPair
Blocking
DUR
Follows
LRDEF
PSet
SyncPair

(f) Groovy

0 20 40 60 80 100

Trace #

0

20

40

60

80

100

%
C

ov
er

in
g

R
eq

.

Blocked
BlockedPair
Blocking
DUR
Follows
LRDEF
PSet
SyncPair

(g) Piper

0 20 40 60 80 100

Trace #

0

20

40

60

80

100

%
C

ov
er

in
g

R
eq

.

Blocked
BlockedPair
Blocking
DUR
Follows
LRDEF
PSet
SyncPair

(h) Producerconsumer

0 20 40 60 80 100

Trace #

0

20

40

60

80

100

%
C

ov
er

in
g

R
eq

.

Blocked
BlockedPair
Blocking
DUR
Follows
LRDEF
PSet
SyncPair

(i) Stringbuffer

0 20 40 60 80 100

Trace #

0
10
20
30
40
50
60
70

%
C

ov
er

in
g

R
eq

.

Blocked
BlockedPair
Blocking
DUR
Follows
LRDEF
PSet
SyncPair

(j) Twostage

20 40 60 80 100

Trace #

20

40

60

80

100

%
C

ov
er

in
g

R
eq

.

Blocked
BlockedPair
Blocking
DUR
Follows
LRDEF
PSet
SyncPair

(k) Wronglock

0 20 40 60 80 100

Trace #

0

20

40

60

80

100

%
C

ov
er

in
g

R
eq

.

Blocked
BlockedPair
Blocking
DUR
Follows
LRDEF
PSet
SyncPair

(l) Vector

Figure B.3: Percentage of test executions covering test requirements, sorted, all single fault and mutation

objects

– 129 –

Summary

Effective and Efficient Test Generation for Multithreaded Programs
Using Concurrency Coverage Metrics

오늘날 많은 소프트웨어는 멀티코어 하드웨어를 효과적으로 활용할 수 있는 멀티쓰레드 프로그램

(multithreaded program) 형태로 개발되고 있다. 멀티쓰레드 프로그램 개발의 난점 중 하나는 기존의

소프트웨어 테스팅(software testing) 방법이 멀테쓰레드 프로그램의 동시성 오류 검출과 동작정확성

검증에 효과적이지 않다는 점이다. 프로그램 입력 값에 의해서만 동작이 결정되는 비 멀티쓰레드 프로

그램(단일쓰레드 프로그램)과 달리, 멀티쓰레드 프로그램의 동작은 입력 값뿐만 아니라 쓰레드 스케쥴

(thread schedule), 즉 쓰레드 간 실행순서에 의해서도 영향을 받는다. 일반적인 멀티쓰레드 프로그램

의 경우, 쓰레드 스케쥴이 실행 시점에 비결정적(non-deterministic) 쓰레드 스케쥴러에 의해 결정되기

때문에, 규모가 작은 프로그램에 대해서조차 발생 가능한 쓰레드 스케쥴이 극심히 많고, 별도의 장치

없이 쓰레드 스케쥴의 의도적 생성이 어렵기 때문에, 기존의 비 멀티쓰레드 프로그램을 대상으로 한

테스팅 방법으로는 효과적이고 효율적인 테스팅 수행이 어렵다. 멀티쓰레드 프로그램의 오류검출과

동작정확도 검증을 위해 현재까지 개발된 여러 기법은, 분석 능력이 제한적이거나 검증 대상 프로그램

크기에 대한 확장성이 낮아 실제 소프트웨어 개발에서 실용성이 낮은 실정이다.

본 논문은 동시성 커버리지 메트릭(concurrency coverage metric)을 활용하여 멀티쓰레드 프로그

램을 효과적이고 효율적으로 테스팅하는 자동 테스팅 기법을 제안한다. 동시성 커버리지 메트릭은,

현재널리쓰이는분기/구문커버리지메트릭과유사하게, 검증대상프로그램에서대한테스팅조건을

생성함으로써멀티쓰레드프로그램의체계적인테스팅을지원하고자제안된방법론이다. 반면,동시성

커버리지 메트릭이 실제 소프트웨어 테스팅에서 어느 정도 효용성을 제공하는 지 실증적으로 입증되

지 않았으며, 그동안 동시성 커버리지 메트릭을 활용한 자동 테스팅 기법도 제한적인 수준이었다. 본

논문은 우선, 동시성 커버리지 메트릭이 테스트 메트릭으로서 멀티쓰레드 프로그램 테스팅에 효과적인

기능을 제공하는지를 실험적 방법으로 검토하였다. 여러 멀티쓰레드 프로그램을 이용한 실험 결과에

따르면, 현재 제안된 대부분의 동시성 커버리지 메트릭은 멀티쓰레드 프로그램 테스팅의 오류 검출능

력을추정하고유용한테스트생성지표를제공하는데효과적인기능을제공한다. 본논문은두번째로,

테스팅 과정에서 높은 동시성 커버리지를 단시간에 달성하는 쓰레드 스케쥴 생성 알고리즘을 제시하

고, 이를 기반으로 한 자동 테스팅 기법을 소개한다. 본 논문이 제시한 자동 테스팅 기법은, 기존에

제안된 동시성 커버리지 메트릭의 한계점을 개선한 새로운 메트릭인 조합적 동시성 커버리지 메트릭

(combinatorial concurrency coverage metric)를 활용한다. 본 논문이 제시한 자동 테스팅 기법을 기존의

멀티쓰레드 프로그램 테스팅 기법과 비교한 실험 결과에 따르면, 본 논문의 기법이 기존 기법보다 향

상된 멀티쓰레드 프로그램 오류 검출 효용성과 효율성을 달성함을 알 수 있다. 마지막으로, 본 논문은

동시성 커버리지 메트릭을 활용하여 멀티쓰레드 프로그램에 대해 효과적으로 회기 테스팅(regression

testing)을 수행하는 동시성 커버리지 기반 회기 테스팅 기법을 제시한다. 본 논문이 제시한 기법을 기

존 기법과 비교한 실험결과에 따르면, 동시성 커버리지 기반 회기 테스팅 기법은 멀티쓰레드 프로그램

수정 과정에서 발생하는 동시성 회기 오류를 기존 기법보다 효과적이고 효율적으로 검출한다.

– 130 –

Acknowledgement

I praise my Lord Jesus Christ for his presence in my Ph.D study. I thank that His words teach me

the enduring mercy on this son of little faith and his good wills in the everlasting love all through the

years. His faithfulness protected me and made me proceed. I hope that his lead always be in my life.

I would like to express my sincere appreciation to my advisor, Prof. Moonzoo Kim for his guidance,

support, trust, care and prayer. He knows me and offers me best opportunity at every step of my

Ph.D course. His enthusiastic and professional attitude to research and education will keep teach me

along my career. I also thank my Ph.D committee members, Prof. Sukyoung Ryu, Prof. Taisook Han,

Prof. Jaehyuk Huh at KAIST, and Prof. Chao Wang at Virginia Tech. With their valuable comments,

I could improve my dissertation.

I was pleased to meet and work with talented researchers through my Ph.D study. Prof. Gregg

Rothermel teaches me empirical software engineering in his visiting at KAIST, which promotes me to

start empirical investigations into the concurrency coverage metrics. Through research collaboration

and discussion, I had learned many aspects of research from Dr. Matt Staats. Thanks for being a great

co-worker and many cups of coffee. I thank Dr. Sangmin Park for his collaboration at the initial work

of coverage-guided multithreaded program testing. I appreciate my research partners, Mr. Jaemin Ahn

and Mr. Yongbae Park for their devotional collaborations on the experiments. I was fortunate to work

with great colleagues in Software Testing and Verification Group at KAIST. Especially, I am grateful to

have Mr. Yunho Kim as the running mate of my graduate study. Without his constant encouragement

and help, I cannot imagine how would I pass through all steps of my research.

Lastly but most importantly, I would express my deepest appreciation to my lovely wife, Eun-

jeong Lee and my son, Yeh-June Hong; unspeakable love, trust and endurance always fill my heart and

power. I am so proud of my family, who always support me in everything. Special thanks to my mother

and father, and my parent in law for their love and encouragements. I also thank my brothers and sisters

in Jesus at Daedukhanbit Church for the care and prayer.

This work is supported in part by the National Research Foundation of Korea (NRF) Mid-career Re-

search Program (NRF-2012R1A2A2A01046172) and the ITRC (Information Technology Research Cen-

ter) Support Program supervised by the NIPA (National IT Industry Promotion Agency), funded by the

Ministry of Science, ICT and Future Planning (MSIP), Korea.

– 131 –

이 력 서

이 름 : 홍신

생 년 월 일 : 1985년 6월 18일

주 소 : 대전시 유성구 농대로 41 궁동 카이스트 아파트 102동 405호

E-mail 주 소 : hongshin@kaist.ac.kr

학 력

2001. 3. – 2003. 2. 부산과학고등학교 졸업 (現 Korea Science Academy of KAIST)

2003. 3. – 2007. 2. KAIST 전산학과 학사 (B.S.)

2007. 3. – 2010. 2. KAIST 전산학과 석사 (M.S.)

2011. 2. – 현재 KAIST 전산학과 박사과정 (Ph.D)

경 력

2007. 3. – 2008. 12. KAIST 전산학과 조교

2010. 3. – 2011. 1. KAIST 전산학과 연구원

2011. 2. – 2014. 12. KAIST 전산학과 조교

학회활동

1. Y. Park, S. Hong, M. Kim, D. Lee, and J. Cho, Systematic Testing of Reactive Software with Non-

deterministic Events: A Case Study on LG Electric Oven, International Conference on Software

Engineering (ICSE), Software Engineering In Practice Track (SEIP), May 2015.

2. S. Hong, Y. Park, M. Kim, Detecting Concurrency Errors in Client-side JavaScript Web Applica-

tions, IEEE International Conference on Software Testing, Verification and Validation (ICST), Mar

2014.

3. S. Hong, M. Staats, J. Ahn, M. Kim, and G. Rothermel, The Impact of Concurrent Coverage

Metrics on Testing Effectiveness, IEEE International Conference on Software Testing, Verification

and Validation (ICST), Mar 2013.

4. M. Staats, S. Hong, M. Kim, and G. Rothermel, Understanding User Understanding: Determin-

ing Correctness of Generated Program Invariants, Intl. Symp. on Software Testing and Analysis

(ISSTA), Jul 2012.

5. S. Hong, J. Ahn, S. Park, M. Kim, and M. J. Harrold, Testing Concurrent Programs to Achieve

High Synchronization Coverage, Intl. Symp. on Software Testing and Analysis (ISSTA), Jul 2012.

– 132 –

6. M. Kim, S. Hong, C.Hong and T.Kim, Model-based Kernel Testing for Concurrency Bugs through

Counter Example Replay, Model-based Testing (ENTCS vol 253, no 2), Mar 2009.

연구업적

1. S. Hong, M. Staats, J. Ahn, M. Kim, G. Rothermel, Are Concurrency Coverage Metrics Effective

for Testing: A Comprehensive Empirical Investigation, Journal of Software Testing, Verification and

Reliability (STVR), volume 25, issue 4, pages 334-370, Jun 2015.

2. S. Hong and M. Kim, A survey of race bug detection techniques for multithreaded programs,

Journal of Software Testing, Verification and Reliability (STVR), volume 25, issue 3, pages 191-217,

May 2015.

3. S. Hong and M. Kim, Effective Pattern-driven Concurrency Bug Detection for Operating Systems,

Journal of Systems and Software (JSS), volume 86, issue 2, pages 377-388, Feb 2013.

– 133 –

