
F l V ifi ti f Fl hFormal Verification of a Flash
Memory Device Driver e o y e ce e
- an Experience Report

Moonzoo Kim, Yunho Kim ,
Provable Software Lab. CS Dept. KAIST

Yunja ChoiYunja Choi
School of EECS, Kyungpook National Univ.

Hotae KimHotae Kim
Samsung Electronics

Summary of the TalkSu a y o t e a

D d

Sector
T l i

Demand
Paging

Manager

Unified
Storage
Platform

Flash
Translation

File
System

Low Level
Device Driver

Block
Management

Translation OS
Adapt-
ation

Module

Translation
Layer

OneNAND® Flash Memory Devices

Device Driver

• In 2007, Samsung requested to debug the device driver
f th S O NAND™ fl h b ifor the Samsung OneNAND™ flash memory, by using
model checkers, for 6 months. This presentation
describes a part of the result from the project

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Formal Verification of a Flash Memory Device
Driver – an Experience Report

describes a part of the result from the project.

22

OverviewO e e
• Background

– Overview of the Unified Storage Platform (USP)
– Sector Translation Layer (STL)
– Multi-Sector Read operation (MSR)– Multi-Sector Read operation (MSR)

• Model Checking MSR
– Reports on the following three aspectsg

• Target system modeling
• Environment modeling
• Performance analysis on the verification

• Three different types of model checkers are used
– BDD based symbolic model checking (NuSMV)– BDD based symbolic model checking (NuSMV)
– Explicit model checking (Spin)
– C-bounded model checking (CBMC)

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Formal Verification of a Flash Memory Device
Driver – an Experience Report 33

PART I: Backgroundac g ou d
• Unified Storage Platform (USP)

– Block diagram
– Code statistics

• Logical-to-physical sector translation
– Example of possible data distributions

• Multi-Sector Read operation (MSR)
– Pseudo structure

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Formal Verification of a Flash Memory Device
Driver – an Experience Report 44

Overview of the OneNAND® Flash MemoryOverview of the OneNAND Flash Memory

Source:

App1 App2 App3

Source:
Software Center
of Samsung
Electronics ‘06

• Characteristics of OneNAND®

– Each memory cell can be
written limited number of

Demand
Paging

Manager
(DPM)

Unified
Storage
Platform

written limited number of
times only

• Logical-to-physical sector
mapping

File
System

[ASE 08]
“Unit
Testing of
Flash
Memory

Sector
Translation (STL) OS

pp g
• Bad block management
• Wear-leveling

– Performance enhancement

Flash
Translation

Layer

Memory
Device
Driver
through a
SAT-based

Low Level (LLD)

Block
Management (BML)

Adapt-
ation

Module

Performance enhancement
• Multi-sector read/write
• Asynchronous operations
• Deferred operation result

Model
Checker”

OneNAND® Flash Memory Devices

()
Device Driver

• Deferred operation result
check

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Formal Verification of a Flash Memory Device
Driver – an Experience Report 55

OneNAND Flash Memory Devices

Logical to Physical Sector MappingLogical to Physical Sector Mapping

1:N mapping from a LUN to PUNs

Sector Allocation Map (SAM)

• In flash memory, logical
data are distributed over

h i l
Moonzoo Kim et al

Provable SW Lab. CS Dept.
Formal Verification of a Flash Memory Device
Driver – an Experience Report 66

Sector mapping physical sectors.

Examples of Possible Data Distribution p

1 0
1 1

E
AB F

3 3
0 2

Sector 0

Sector 1

PU0~PU4

B
D

PU0~PU4SAM0~SAM4 SAM0~SAM4

1 0
1 1

B
F E A

PU0~PU4SAM0~SAM4

1 1
2

3
C

D

0 2
3

1
Sector 2

Sector 3

(a) A distribution of

D
F

AC E
(b) Another distribution of (c) A distribution of

1 1
2

3

F E A
D

C

• Assumptions

(a) A distribution of
“ABCDEF”

(b) Another distribution of
“ABCDEF”

(c) A distribution of
“FEDCBA”

Assumptions
– there are 5 physical units
– each unit has 4 sectorseach unit has 4 sectors
– each sector is 1 byte long

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Formal Verification of a Flash Memory Device
Driver – an Experience Report 77

Multi-Sector Read Operations (MSR)
• MSR reads

ti h i l

p ()

consecutive physical
sectors together for
improving readimproving read
performance

• Statistics
– 157 lines long
– 4 level nested loops
– 4 parameters to specify

logical data to read
(from where, to where,(from where, to where,
how long, read flag)

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Formal Verification of a Flash Memory Device
Driver – an Experience Report 88

Loop Structure of MSRoop St uctu e o S
01:curLU = LU0;
02:while(curLU != NULL) { Loop1: iterates over LUs02:while(curLU != NULL) {
03: readScts = # of sectors to read in the current LU
04: while(readScts > 0) {

Loop1: iterates over LUs

Loop2: iterates until the current LU is read completely
05: curPU = LU->firstPU;
06: while(curPU != NULL) {
07: while() {

Loop3: iterates over PUs linked to the current LU

Loop4: identify consecutive PS’s in the current PU07: while(...) {
08: conScts = # of consecutive PS’s to read in curPU
09: offset = the starting offset of these consecutive PS’s in curPU
10 }

Loop4: identify consecutive PS s in the current PU

10: }
11: BML_READ(curPU, offset, conScts);
12: readScts = readScts - conScts;;
13: curPU = curPU->next;
14: }
15: }

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Formal Verification of a Flash Memory Device
Driver – an Experience Report 99

15: }
16: curLU = curLU->next;
17:}

PART II: Model Checking Resultsode C ec g esu ts
• Verification of MSR by using NuSMV, Spin, and CBMC

– NuSMV: BDD-based symbolic model checker
– Spin: Explicit model checker
– CBMC: C-bounded model checker

• The requirement property is to check
– after_MSR -> (∀i. logical_sectors[i] == buf[i])

• We compared these three model checkers empiricallyp p y

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Formal Verification of a Flash Memory Device
Driver – an Experience Report 1010

Verification by NuSMVVerification by NuSMV
• NuSMV was the first choice as a verification tool, since

1. BDD-based symbolic model checkers have been
known to handle large state spaces

2. MSR operates with a semi-random environment (i.e. all
possible configurations of PUs and SAMs analyzed)

3 D f MSR b b d i i l3. Data structure of MSR can be abstracted in a simple
array form with assignments and equality checking
operations onlyoperations only

4. MSR is a single-threaded program

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Formal Verification of a Flash Memory Device
Driver – an Experience Report 1111

Target Model Creation in NuSMVTarget Model Creation in NuSMV
• We had to introduce control points variables, since

– C is control-flow basedC is control flow based
– NuSMV modeling language is dataflow-based

• Linked list is replaced by an array operation.
A i d i bl h ld b t ti ll d d i N SMV– Array index variables should be statically expanded, since NuSMV
does not support index variables

• As a result, the final NuSMV model is more than 1000 lines long

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Formal Verification of a Flash Memory Device
Driver – an Experience Report 1212

Modeling in NuSMV (2/2)ode g uS (/)
• Environment model creation

– The environment of MSR (i.e., PUs and SAMs configurations) can be
described by invariant rules. Some of them are

1. One PU is mapped to at most one LU1. One PU is mapped to at most one LU
2. Valid correspondence between SAMs and PUs:

If the i th LS is written in the k th sector of the j th PU, then the i th
offset of the j th SAM is valid and indicates the k’th PSoffset of the j th SAM is valid and indicates the k th PS ,
Ex> 3rd LS (‘C’) is in the 3rd sector of the 2nd PU, then SAM1[2] ==2

i=3 k=3 j=2
3. For one LS, there exists only one PS that contains the value of the LS:

The PS number of the i th LS must be written in only one of the (i mod
4) th offsets of the SAM tables for the PUs mapped to the) pp
corresponding LU.

1 0
1 1

E
AB F

Sector 0

S t 1

PU0~PU4SAM0~SAM4

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Formal Verification of a Flash Memory Device
Driver – an Experience Report 1313

1 1
2

3

AB F
C

D

Sector 1

Sector 2

Sector 3

Verification Performance of NuSMV
100000

500

600

A l thA l th

10000

ec
on

ds 5

6 300

400

ga
by

te
s 5

6

A length
of data

A length
of data

100

1000Se 7

0

100

200M
ag 7

100
5 6 7 8

A number of physical units

0
5 6 7 8

A number of physical units

(a) Time consumption (b) Memory consumption

• Verification was performed on the machine equipped with
Xeon5160 (3Ghz, 32Gbyte Memory), 64 bit Fedora Linux 7, NuSMV
2.4.3

• The requirement property was proved correct for all the
experiments (i.e., MSR is correct in this small model)

For 7 sectors long data that are distributed over 7 PUs consumes

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Formal Verification of a Flash Memory Device
Driver – an Experience Report

• For 7 sectors long data that are distributed over 7 PUs consumes
more than 11 hours while consuming only 550 mb memory

1414

Performance Analysise o a ce a ys s

Th MSR d l (5 LS’ d 5 PU) h 365 BDD i bl• The MSR model (5 LS’s and 5 PUs) has 365 BDD variables
for its symbolic representation

At least 240 BDD variables are required for PUs and SAMs– At least 240 BDD variables are required for PUs and SAMs
• 5 (# of PUs) x 4 (sectors/PU) x 2 (current/next) x 3 (bits)

The same MSR model generated 1 2 million BDD nodes• The same MSR model generated 1.2 million BDD nodes.
• Dynamic reordering takes more than 90% of total

verification timeverification time
– Time is the bottleneck in this NuSMV verification task

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Formal Verification of a Flash Memory Device
Driver – an Experience Report 1515

Modeling by Spinode g by Sp
• A target model

T l t d f th MSR C d th h M d hi h i– Translated from the MSR C code through Modex which is an
automated C-to-Promela translator with embedded C statements

• Modex translates MSR into the same 4 level-nested loop control p
structure

• An environment model
PU d SAM hi h t k t f t k d b t t– PUs and SAMs, which takes most of memory, are tracked, but not
stored in the state vector through a data abstraction technique
• c track keyword and Unmatched parameter_ y p
• Based on the observation that SAMs and PUs are sparse
• Only a unique signature of the current state of PUs and SAMs is

t d i tl PU0~PU4SAM0~SAM4stored succinctly
– <(0,1),(1,1),(1,2),(2,3),(3,0),(4,1)>
is the signature of the following

1 0
1 1
2

E
AB F

C

Sector 0

Sector 1

PU0 PU4SAM0 SAM4

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Formal Verification of a Flash Memory Device
Driver – an Experience Report

is the signature of the following
PUs and SAMs configuration

1616

2
3

C
D

Sector 2

Sector 3

Verification Performance of Spine cat o e o a ce o Sp
10000

A length 100000 A length

100

1000

nd
s

5(abs)
6(abs)
7(abs)
8(abs)

of data

10000

by
te

s

5(abs)
6(abs)
7(abs)
8(abs)

of data

1

10S
ec

on 8(abs)
5
6
7
8

100

1000

M
eg

ab 8(abs)
5
6
7
8

1
5 6 7 8 9 10

A number of physical units

100
5 6 7 8 9 10

A number of physical units

(a) Time consumption (b) Memory consumption

• The requirement property was satisfied
• The data abstraction technique shows significant performance

(a) Time consumption (b) Memory consumption

improvement upto 78% of memory reduction and 35% time
reduction (for 5 logical sectors data)

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Formal Verification of a Flash Memory Device
Driver – an Experience Report 1717

Modeling by CBMCode g by C C
• CBMC does not require an explicit target model creation
• An environment for MSR was specified using assume

statements and the environment model was similar to the
i t d l i N SMVenvironment model in NuSMV

• For the loop bounds, we can get valid upper bounds from
the loop structure and the environment settingthe loop structure and the environment setting
– The outermost loop: L times (L is a # of LUs)

Th 2nd t t l 4 ti (LU t i 4 LS’)– The 2nd outermost loop: 4 times (one LU contains 4 LS’s)
– The 3rd outermost loop: M times

(M i # f PU) PU0~PU4SAM0~SAM4
L=2, M=5

(M is a # of PUs)
– The innermost loop: 4 times

(PU t i 4 PS’)

1 0
1 1
2

E
AB F

C

Sector 0

Sector 1

S t 2

PU0 PU4SAM0 SAM4

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Formal Verification of a Flash Memory Device
Driver – an Experience Report

(one PU contains 4 PS’s)

1818

2
3

C
D

Sector 2

Sector 3

Verification Performance of CBMCVerification Performance of CBMC
10000.0 1000

A l th

1000.0

nd
s 5

A length
of data

100by
te

s 5

6

A length
of data

100.0 S
ec

on 6

7

8

100

M
eg

ab 6

7

8

10.0
5 6 7 8 9 10

A number of physical units

10
5 6 7 8 9 10

A number of physical units
() Ti ti

• Exponential increase in both time and memory. However, the
slope is much lower than those of NuSMV and Spin which makes

(a) Time consumption (b) Memory consumption

slope is much lower than those of NuSMV and Spin, which makes
CBMC perform better for large problems

• A problem of 10 PUs and 8 LS’s has 8.6x105 variables and 2.9 x 106

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Formal Verification of a Flash Memory Device
Driver – an Experience Report

clauses.

1919

Performance Comparisone o a ce Co pa so

100000 Time complexity LS = 6 100000 Space complexity LS = 6

10000

ds

10000

te
s

1000

Se
co

nd

Spin
NuSMV
CBMC

1000

M
eg

ab
yt

Spin
NuSMV
CBMC

100
CBMC

10

100 CBMC

10
5 6 7 8 9 10

A number of physical units

10
5 6 7 8 9 10

A number of physical units

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Formal Verification of a Flash Memory Device
Driver – an Experience Report 2020

Conclusion Co c us o
• Application of Model Checking to Industrial SW Projectpp g j

– Current off-the-shelf model checkers showed their
effectiveness to debug a part of industrial software, if a
target portion is carefully selected

– Although model checker worked on a small scale
problem, it still contributes due to its exhaustive exploration
which is complementary to the testing result

C i th Th M d l Ch k• Comparison among the Three Model Checkers
Modeling
Difficulty

Memory
Usage

Verification
Speedy g p

NuSMV Most difficult Good Slow
Spin Medium difficult Poor Fast

CBMC E i t B t F t t

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Formal Verification of a Flash Memory Device
Driver – an Experience Report 2121

CBMC Easiest Best Fastest

