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 In 2007, Samsung requested to debug the device driver
for the Samsung OneNAND™ flash memory, by using
model checkers, for 6 months. This presentation
describes a part of the result from the project.
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\ Overview \

« Background
— Overview of the Unified Storage Platform (USP)
— Sector Translation Layer (STL)
— Multi-Sector Read operation (MSR)
« Model Checking MSR
— Reports on the following three aspects
» Target system modeling
» Environment modeling
» Performance analysis on the verification
 Three different types of model checkers are used
— BDD based symbolic model checking (NuSMV)
— Explicit model checking (Spin)
— C-bounded model checking (CBMC)
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\ PART |: Background \

 Unified Storage Platform (USP)

— Block diagram

— Code statistics
 Logical-to-physical sector translation

— Example of possible data distributions
e Multi-Sector Read operation (MSR)

— Pseudo structure
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{Examples of Possible Data Distributionj

SAMO~SAM4  PUO~PU4 SAMO~SAM4 PUO~PU4 SAM0O~SAM4  PUO~PU4
Sector 0 1 0] E 3 3 B 1 0] B
Sector1 | 1| | L|WABl | F| O] | ]2 D 1 | 0| FE|l | A
Sector2 | [2 C 3 F 2 D
Sector 3 3 D 1 AIC| E 3 C
(a) A distribution of (b) Another distribution of (c) A distribution of
“ABCDEF” “ABCDEF” “FEDCBA”

e Assumptions
— there are 5 physical units
— each unit has 4 sectors
— each sector is 1 byte long
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Multi-Sector Read Operations (MSR)
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\ Loop Structure of MSR \

Ol:curLU = LUQO;
02:while(curLU = NULL ) { Loopl: iterates over LUs
03: readScts = # of sectors to read in the current LU

04: while(readScts >0){ |Loop2:iterates until the current LU is read completely

05: curPU = LU->firstPU:

06: while(curPU = NULL ) {| Loop3: iterates over PUs linked to the current LU
07: while(...) { | Loop4: identify consecutive PS’s in the current PU

08: conScts = # of consecutive PS’s to read in curPU

09: offset = the starting offset of these consecutive PS’s in curPU
10: }

11: BML_READ(curPU, offset, conScts);

12: readScts = readScts - conScts;

13: curPU = curPU->next;

14. }

15 }

16: curLU = curLU->next;
17:}




PART II: Model Checking Results

* Verification of MSR by using NuSMV, Spin, and CBMC
— NuSMV: BDD-based symbolic model checker
— Spin: Explicit model checker
— CBMC: C-bounded model checker
« The requirement property is to check
— after MSR -> (V. logical_sectors[i] == buf{i])
« We compared these three model checkers empirically
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Verification by NuSMV

e NuSMV was the first choice as a verification tool, since

1. BDD-based symbolic model checkers have been
known to handle large state spaces

2. MSR operates with a semi-random environment (i.e. all
possible configurations of PUs and SAMs analyzed)

3. Data structure of MSR can be abstracted in a simple
array form with assignments and equality checking

nnaratinne nnhy
U|JCI CAAlLIVIi IO Ul Ily

4. MSR is a single-threaded program
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Target Model Creation in NuSMV

« We had to introduce control points variables, since
— C s control-flow based
— NuSMV modeling language is dataflow-based

 Linked listis replaced by an array operation.

— Array index variables should be statically expanded, since NuSMV
does not support index variables

e As aresult, the final NuSMV model is more than 1000 lines long

A fragment of C

Conversion to parallel statements
based on control and data dependency

Corresponding NuSMV code

10 x=x-1; «— DP1
2: while(x>=0}

3 y=x «— DP2
4: x-3} «— DP3

Formal Ve
Driver — ar

0: DP1=0; DP2=0; DP3=0;

1 (IDP1) { x=x-1, DP1=1}

2:if ((DP1 || DP3) && x>=0) {
y =x; DP2=1; DP3=0,

}

3 if(DP2) {
x--: DP3=1;, DP2=0;

}

init{DP1):=0; init{ DP2):=0; init{DP3):=0;

naxt{DF1 = 1;

next{DFZ):= case (DP1 | DP3) & (x ==0): 1;
a {:l

DF2 o I
1 1 DPZ;
2540,
next{DP3):= case (DP1|DP3) & (x >=0): 0;
DP2 1
1 :DP3;
85ac;
nexl(x)i= case IDP1 | DP2 L=
1 -
asac,
next{y):= case (DP1|DP3) & (x>=0) :x;

1 LY
esac,




\ Modeling in NuSMV (2/2) \

e Environment model creation

— The environment of MSR (i.e., PUs and SAMs configurations) can be
described by invariant rules. Some of them are

1.
2.

3.

Sector 0 |1 0] E
Sector 1 1 1! AB F
Sector2 | 2 C

o= an v e 2 13 sector,| | B] | K| | D

One PU is mapped to at most one LU
Valid correspondence between SAMs and PUs:

If the i1 th LS is written in the k th sector of the j th PU, then the i th
offset of the j th SAM is valid and indicates the k’'th PS

Ex> 3 LS (‘C) is in the 3" sector of the 2" PU, then SAM1[2] ==
=3 k=3 j=2
For one LS, there exists only one PS that contains the value of the LS:

The PS number of the i th LS must be written in only one of the (i mod
4) th offsets of the SAM tables for the PUs mapped to the

corresponding LU. SAMO~SAM4  PUO~PU4




Verification Performance of NuUSMV
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« Verification was performed on the machine equipped with
Xeon5160 (3Ghz, 32Gbyte Memory), 64 bit Fedora Linux 7, NuSMV

2.4.3
« The requirement property was proved correct for all the
experiments (i.e., MSR is correct in this small model)

 [For 7 sectors long data that are distributed over 7 PUs consumes
more than 11 hours while consuming only 550 mb memory
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\ Performance Analysis \

« The MSR model (5 LS’s and 5 PUs) has 365 BDD variables
for its symbolic representation

— At least 240 BDD variables are required for PUs and SAMs
* 5 (# of PUs) x 4 (sectors/PU) x 2 (current/next) x 3 (bits)
« The same MSR model generated 1.2 million BDD nodes.

« Dynamic reordering takes more than 90% of total
verification time

— Time is the bottleneck in this NuSMV verification task
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\ Modeling by Spin \

e A target model

— Translated from the MSR C code through Modex which is an
automated C-to-Promela translator with embedded C statements

 Modex translates MSR into the same 4 level-nested loop control
structure

e An environment model

— PUs and SAMs, which takes most of memory, are tracked, but not
stored in the state vector through a data abstraction technique

e c_track keyword and Unmatched parameter
* Based on the observation that SAMs and PUs are sparse

* Only a unique signature of the current state of PUs and SAMS is
stored succinctly SAMO~SAM4  PUO-PUA4

Sector 0
- <OD,(L1,(12,23),60.@1> o L 0L L EL
IS the signature of the following Sector2 | P C
PUs and SAMs configuration Sector 3 3 D
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Verification Performance of Spin
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« The requirement property was satisfied

« The data abstraction technique shows significant performance
iImprovement upto 78% of memory reduction and 35% time
reduction (for 5logical sectors data)

# of physical units 5 6] 7, 8§ 9] 10

Memory reduction || 17%|38%|57%|68%|74%|78%
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\ Modeling by CBMC \

« CBMC does not require an explicit target model creation

« An environment for MSR was specified using assume
statements and the environment model was similar to the
environment model in NuSMV

 Fortheloop bounds, we can get valid upper bounds from
the loop structure and the environment setting

— The outermost loop: L times (L is a # of LUS)
— The 2" gutermost loop: 4 times (one LU contains 4 LS’s)

— The 3" outermost loop: M times L=2, M=5
. SAMO~SAM4 PUO~PU4
(M |§ a # of PUs) | sectoro [T =
— The innermost loop: 4 times sector1 | 1] | 1| ABI | E
(one PU contains 4 PS’s) peciy 28 |2 C
Sector 3 3 D
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Verification Performance of CBMC
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« EXxponential increase in both time and memory. However, the
slope is much lower than those of NuSMV and Spin, which makes

CBMC perform better for large problems
e A problem of 10 PUs and 8 LS’s has 8.6x10° variables and 2.9 x 10°
clauses.
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Performance Comparison
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\ Conclusion \

 Application of Model Checking to Industrial SW Project

— Current off-the-shelf model checkers showed their
effectiveness to debug a part of industrial software, if a
target portion is carefully selected

— Although model checker worked on a small scale
problem, it still contributes due to its exhaustive exploration
which is complementary to the testing result

« Comparison among the Three Model Checkers

NuSMV Most difficult Good Slow
Spin Medium difficult  Poor Fast
CBMC Easiest Best Fastest
Formal Verification of a Flash Memory Device Moonzoo Kim et al KAIST
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