Formal Verification of a Flash
Memory Device Driver
- an Experience Report

Moonzoo Kim, Yunho Kim
Provable Software Lab. CS Dept. KAIST @

Yunja Chol
School of EECS, Kyungpook National Univ. IKNU

Hotae Kim

Samsung Electronics GW’

\ Summary of the Talk \

Fil Demand Unified
Manager Platform
Sector :
. ranslation
Translation Layer oS
mck dapt-
Management tion
%e odule
Low Level
Device Driver

OneNAND® Flash Memory Devices

 In 2007, Samsung requested to debug the device driver
for the Samsung OneNAND™ flash memory, by using
model checkers, for 6 months. This presentation
describes a part of the result from the project.

Formal Verification of a Flash Memory Device Moonzoo Kim et al KAIST
Driver — an Experience Report 2 Provable SW Lab. CS Dept.

\ Overview \

« Background
— Overview of the Unified Storage Platform (USP)
— Sector Translation Layer (STL)
— Multi-Sector Read operation (MSR)
« Model Checking MSR
— Reports on the following three aspects
» Target system modeling
» Environment modeling
» Performance analysis on the verification
 Three different types of model checkers are used
— BDD based symbolic model checking (NuSMV)
— Explicit model checking (Spin)
— C-bounded model checking (CBMC)

Formal Verification of a Flash Memory Device Moonzoo Kim et al KAIST
Driver — an Experience Report 3 Provable SW Lab. CS Dept.

\ PART |: Background \

 Unified Storage Platform (USP)

— Block diagram

— Code statistics
 Logical-to-physical sector translation

— Example of possible data distributions
e Multi-Sector Read operation (MSR)

— Pseudo structure

Formal Verification of a Flash Memory Device Moonzoo Kim et al KAIST
Driver — an Experience Report 4 Provable SW Lab. CS Dept.

(

- - o N = - Z = . = o= = W =2 N = o= o= N =

[Overview of the OneNAND® Flash Memory }

Source:
« Characteristics of OneNAND® @ @ @ e

— Each memory cell can be SRl

written limited number of V4 2 — 1
times onl bk [ASE 08]
. y . File 2a0ing L “Unit
* Logical-to-physical sector System q Testingjof
mapping (DPM) R e

Device

Sector rranslal ﬁriver h
Translation (STL) [,/ v Spr;?-_ubgas:d

Model
Checker”

» Bad block management
* Wear-leveling

— Performance enhancement
e Multi-sector read/write

J

« Asynchronous operations | || | i A— Module
» Deferred operation result ST
check e, —
OneNAND® Flash Memory Devices \

Formal Verification of a Flash Memory Device Moonzoo Kim et al KAIST
Driver — an Experience Report 5 Provable SW Lab. CS Dept.

""" | I J
LUNO; i LUN1; i LUN2: | LUN3i{ i LUN4:i i LUN5: | LUNG CLUNO
Y Y v Y e [T
PUN3| [PUN2| | PUN1 | | PUNG PUN 4 4 SAM1 ' PUN 1
Logical offset | Physical offset
1 1 0 3 LSO
PUN 0 PUN5 1 2 LS 1
2 >~ LS 1
. 3 A LSO
1:N mapping from a LUN to PUNs |
SAM4 PUN 4
Logical offset | Physical offset
0 ¢y LS2
STEP O STEP 1 STEP 2 STEP 3 STEP 4 STEP 5 1
LUNO : [LUNO: {LUNO: [LUNO: {LUNO: { LUNO :
[[[[[[2 0
PUN 1 PUN 1 PUN 1 PUN 1 PUN 1 PUN 1 3
LSO LSO LSO L0 L0 Sector Allocation Map (SAM)
LS 1 LS4 LS4 LS4
LS 1 LS 1 LS 1
LSO LSO
1 ¥ f f f | _
mpty . | ! .
o 5 Writt LSO WriteLS1 Modify LS1 Modify LSO | PuNa4 ° | N ﬂ as h memo ry ’ I o) g IC al
LS 2 i .
data are distributed over
Sector mapping 1 phyS|Ca| SeCtOI’S.
Write LS 2

Formal Verification of a Flash Memory Device

Moonzoo Kim et al
Driver —an Experience Report 6 Provable SW Lab. CS Dept. KAIST

{Examples of Possible Data Distributionj

SAMO~SAM4 PUO~PU4 SAMO~SAM4 PUO~PU4 SAM0O~SAM4 PUO~PU4
Sector 0 1 0] E 3 3 B 1 0] B
Sector1 | 1| | L|WABl | F| O] |]2 D 1 | 0| FE|l | A
Sector2 | [2 C 3 F 2 D
Sector 3 3 D 1 AIC| E 3 C
(a) A distribution of (b) Another distribution of (c) A distribution of
“ABCDEF” “ABCDEF” “FEDCBA”

e Assumptions
— there are 5 physical units
— each unit has 4 sectors
— each sector is 1 byte long

Formal Verification of a Flash Memory Device Moonzoo Kim et al KAIST
Driver — an Experience Report 7 Provable SW Lab. CS Dept.

Multi-Sector Read Operations (MSR)

1032
10232
1024
1025
1026
1037
1028
1025
1040
1041
1042
1042
1044
1045
1046
1047
1048
1045
1050
10581
1082
1053
1054
1055
1056
10587
1058
10585
10&0
1061
1062
10632
1064
1065
1066
1067
1068
1062
1070
1071
1072
10732
1074
1075
107&
1077
1078
1075
1030
1081
1082
1033
1054
1025
1086
1087

nsamId= = [UINT1&]1[NLsn % pstSHPC->=nLOgSCLsFeruUnitl;

while [(ANumMOTSCLts = 0]
{

pstHew = pstSMC-xpstLogUnitInfo[nLun].pstvirlnitInto; ® MSR readS

S* get the number of 1ogical sectors Lo be read in a current logical umni

nReadscts = [[(pstSHRC->=nLogSctsPerUnit - nSamIdx] > nWumdfsScts] 7 (E:ggﬁ C O n S eC u t i Ve p hyS i Cal
ANumBTocts o TReadscth;

1 oo 1= sectors together for
’1;; EEEEEEEﬁEEE?MmESELEM;{ ALun, STL_LRU_POLTCY) != STL_SUCCESS) I m p rOVI n g read

SM_ERR_PRINTILLTEXT("[SM :ERR] _Constructsam fail!l! (wol xd, Part

pstSMZ—=nwol, pstSMC-=nPartI0)]); p erfo rm an C e

SM_LOG_PRINTLLTEXT("[SM 0OUT] --SM_ReadSectors(Jh%rsn'177;
return STL_CRITICAL_ERROR.;

} Qi
o
while [(nReadscts = 0) StatIStICS
B e 2 Birerierr, — 157 lines long
nects = 1;
nReadscts--;
% — 4 level nested loops
{
it [(pstC L-=pSam[nsamIdx] SM_SAM_DELETED) H
g A o — 4 parameters to specify
- EFEEE iEEEEEu?‘r"‘:gEE}*éam[nSaqu:Ix]' &
Mt " ’ logical data to read
%&-?E%EFTEELS;’EEEZ°§f“’“e”“E” seerers (from where, to where,
2 3 4 5 E Y}f ([nFirstaoffset + nscts) = pstCurrent-=pSam[nsaml hOW |0ng’ read ﬂag)
MReadects -
nsamId=++;
else
break;
1
MBErT = BML Mhead(pstunc-smval o 7 MU ZOURC i RS KAIST

PEESMC—»ps ESHEC-= nStartysn + nFirstoff Provable SW Lab. CS Dept.

\ Loop Structure of MSR \

Ol:curLU = LUQO;
02:while(curLU = NULL) { Loopl: iterates over LUs
03: readScts = # of sectors to read in the current LU

04: while(readScts >0){ |Loop2:iterates until the current LU is read completely

05: curPU = LU->firstPU:

06: while(curPU = NULL) {| Loop3: iterates over PUs linked to the current LU
07: while(...) { | Loop4: identify consecutive PS’s in the current PU

08: conScts = # of consecutive PS’s to read in curPU

09: offset = the starting offset of these consecutive PS’s in curPU
10: }

11: BML_READ(curPU, offset, conScts);

12: readScts = readScts - conScts;

13: curPU = curPU->next;

14. }

15 }

16: curLU = curLU->next;
17:}

PART II: Model Checking Results

* Verification of MSR by using NuSMV, Spin, and CBMC
— NuSMV: BDD-based symbolic model checker
— Spin: Explicit model checker
— CBMC: C-bounded model checker
« The requirement property is to check
— after MSR -> (V. logical_sectors[i] == buf{i])
« We compared these three model checkers empirically

Fo_rmal Verificatio_n of a Flash Memory Device Moonzoo Kim et al KAIST
Driver —an Experience Report 10 Provable SW Lab. CS Dept.

Verification by NuSMV

e NuSMV was the first choice as a verification tool, since

1. BDD-based symbolic model checkers have been
known to handle large state spaces

2. MSR operates with a semi-random environment (i.e. all
possible configurations of PUs and SAMs analyzed)

3. Data structure of MSR can be abstracted in a simple
array form with assignments and equality checking

nnaratinne nnhy
U|JCI CAAlLIVIi IO Ul Ily

4. MSR is a single-threaded program

Fo_rmal Verificatiqn of a Flash Memory Device Moonzoo Kim et al KAIST
Driver —an Experience Report 11 Provable SW Lab. CS Dept.

Target Model Creation in NuSMV

« We had to introduce control points variables, since
— C s control-flow based
— NuSMV modeling language is dataflow-based

 Linked listis replaced by an array operation.

— Array index variables should be statically expanded, since NuSMV
does not support index variables

e As aresult, the final NuSMV model is more than 1000 lines long

A fragment of C

Conversion to parallel statements
based on control and data dependency

Corresponding NuSMV code

10 x=x-1; «— DP1
2: while(x>=0}

3 y=x «— DP2
4: x-3} «— DP3

Formal Ve
Driver — ar

0: DP1=0; DP2=0; DP3=0;

1 (IDP1) { x=x-1, DP1=1}

2:if ((DP1 || DP3) && x>=0) {
y =x; DP2=1; DP3=0,

}

3 if(DP2) {
x--: DP3=1;, DP2=0;

}

init{DP1):=0; init{ DP2):=0; init{DP3):=0;

naxt{DF1 = 1;

next{DFZ):= case (DP1 | DP3) & (x ==0): 1;
a {:l

DF2 o I
1 1 DPZ;
2540,
next{DP3):= case (DP1|DP3) & (x >=0): 0;
DP2 1
1 :DP3;
85ac;
nexl(x)i= case IDP1 | DP2 L=
1 -
asac,
next{y):= case (DP1|DP3) & (x>=0) :x;

1 LY
esac,

\ Modeling in NuSMV (2/2) \

e Environment model creation

— The environment of MSR (i.e., PUs and SAMs configurations) can be
described by invariant rules. Some of them are

1.
2.

3.

Sector 0 |1 0] E
Sector 1 1 1! AB F
Sector2 | 2 C

o= an v e 2 13 sector,| | B] | K| | D

One PU is mapped to at most one LU
Valid correspondence between SAMs and PUs:

If the i1 th LS is written in the k th sector of the j th PU, then the i th
offset of the j th SAM is valid and indicates the k’'th PS

Ex> 3 LS (‘C) is in the 3" sector of the 2" PU, then SAM1[2] ==
=3 k=3 j=2
For one LS, there exists only one PS that contains the value of the LS:

The PS number of the i th LS must be written in only one of the (i mod
4) th offsets of the SAM tables for the PUs mapped to the

corresponding LU. SAMO~SAM4 PUO~PU4

Verification Performance of NuUSMV

100000] 600
| 500 /
| Alength / Alength
10000 - of data 400 - of data
3] / -5 |2 / // -5
] 5
§ | / &6 = 300 / / -6
@ 1000 - ==71] €200 // /
z %’/‘ S
100 T T T 0 | I |
5 6 7 8 5 6 7 8
A number of physical units A number of physical units
(a) Time consumption (b) Memory consumption

« Verification was performed on the machine equipped with
Xeon5160 (3Ghz, 32Gbyte Memory), 64 bit Fedora Linux 7, NuSMV

2.4.3
« The requirement property was proved correct for all the
experiments (i.e., MSR is correct in this small model)

 [For 7 sectors long data that are distributed over 7 PUs consumes
more than 11 hours while consuming only 550 mb memory

Fo_rmal Verificatio_n of a Flash Memory Device Moonzoo Kim et al KAIST
Driver —an Experience Report 14 Provable SW Lab. CS Dept.

\ Performance Analysis \

« The MSR model (5 LS’s and 5 PUs) has 365 BDD variables
for its symbolic representation

— At least 240 BDD variables are required for PUs and SAMs
* 5 (# of PUs) x 4 (sectors/PU) x 2 (current/next) x 3 (bits)
« The same MSR model generated 1.2 million BDD nodes.

« Dynamic reordering takes more than 90% of total
verification time

— Time is the bottleneck in this NuSMV verification task

Fo_rmal Verificatio_n of a Flash Memory Device Moonzoo Kim et al KAIST
Driver — an Experience Report 15 Provable SW Lab. CS Dept.

\ Modeling by Spin \

e A target model

— Translated from the MSR C code through Modex which is an
automated C-to-Promela translator with embedded C statements

 Modex translates MSR into the same 4 level-nested loop control
structure

e An environment model

— PUs and SAMs, which takes most of memory, are tracked, but not
stored in the state vector through a data abstraction technique

e c_track keyword and Unmatched parameter
* Based on the observation that SAMs and PUs are sparse

* Only a unique signature of the current state of PUs and SAMS is
stored succinctly SAMO~SAM4 PUO-PUA4

Sector 0
- <OD,(L1,(12,23),60.@1> o L 0L L EL
IS the signature of the following Sector2 | P C
PUs and SAMs configuration Sector 3 3 D
Formal Verification of a Flash Memory Device Moonzoo Kim et al KAIST

Driver —an Experience Report 16 Provable SW Lab. CS Dept.

Verification Performance of Spin

10000 + .
1 / / A length 100000 1 A length
- of data 1 of data
1000 % =/ +5(abS) 10000 : - A / +5(abs)
: / / —=-6(abs) 0 E / —=—6(abs)
8100 | + " | ——7(abs) 3 E I, | ——7(abs)
S] ——8(abs) | |2 1 / ——8(abs)
o . —=5 21000 ~ —-5
" 10 f o6 g %’/ A
. ——7

/ ——7 E
__8 1 _8

e 100 '

5 6 7 8 9 10 5 6 7 8 9 10
A number of physical units A number of physical units
(a) Time consumption (b) Memory consumption

« The requirement property was satisfied

« The data abstraction technique shows significant performance
iImprovement upto 78% of memory reduction and 35% time
reduction (for 5logical sectors data)

of physical units 5 6] 7, 8§ 9] 10

Memory reduction || 17%|38%|57%|68%|74%|78%

Formal Verification of aFlash M| Time reduction ||23%(24%|26%|32%|34% |35% | zoo Kim et al KAIST
Driver — an Experience Report SW Lab. CS Dept.

\ Modeling by CBMC \

« CBMC does not require an explicit target model creation

« An environment for MSR was specified using assume
statements and the environment model was similar to the
environment model in NuSMV

 Fortheloop bounds, we can get valid upper bounds from
the loop structure and the environment setting

— The outermost loop: L times (L is a # of LUS)
— The 2" gutermost loop: 4 times (one LU contains 4 LS’s)

— The 3" outermost loop: M times L=2, M=5
. SAMO~SAM4 PUO~PU4
(M |§ a # of PUs) | sectoro [T =
— The innermost loop: 4 times sector1 | 1] | 1| ABI | E
(one PU contains 4 PS’s) peciy 28 |2 C
Sector 3 3 D

Fo_rmal Verificatio_n of a Flash Memory Device Moonzoo Kim et al KAIST
Driver —an Experience Report 18 Provable SW Lab. CS Dept.

Verification Performance of CBMC

10000.0 - 1000 -
: Alength i A length
-] of data

1000.0 - =" | of data o ——5

@ . —t=—5 %

= . 2100 - —t ——6

3 T ——6 & . /'/"

& 100.0 a— e]2] 7
/ =-8 Thia

10.0 10
54 | G = S5 o) Eo 5 i g | == = ISl | {0
A number of physical units A number of physical units
(a) Time consumption (b) Memory consumption

« EXxponential increase in both time and memory. However, the
slope is much lower than those of NuSMV and Spin, which makes

CBMC perform better for large problems
e A problem of 10 PUs and 8 LS’s has 8.6x10° variables and 2.9 x 10°
clauses.

Fo_rmal Verificatio_n of a Flash Memory Device Moonzoo Kim et al KAIST
Driver —an Experience Report 19 Provable SW Lab. CS Dept.

Performance Comparison

100000 -~ . . 100000 .
Time complexity LS =6 Space complexity LS =6
Iyl
10000 10000 m
" n|
%)]
£ | = v
S 1000 | & 1000
o Spin o B Spin
n — -®-NusMvV || = —NuSMV
/ __________
— — —=CBMC 100 4 —>=CBMC
/‘
10 10
5 6 7 8 9 10 > 6 7 &8 9 10
A number of physical units A number of physical units
Formal Verification of a Flash Memory Device Moonzoo Kim et al KAIST

Driver —an Experience Report 20 Provable SW Lab. CS Dept.

\ Conclusion \

 Application of Model Checking to Industrial SW Project

— Current off-the-shelf model checkers showed their
effectiveness to debug a part of industrial software, if a
target portion is carefully selected

— Although model checker worked on a small scale
problem, it still contributes due to its exhaustive exploration
which is complementary to the testing result

« Comparison among the Three Model Checkers

NuSMV Most difficult Good Slow
Spin Medium difficult Poor Fast
CBMC Easiest Best Fastest
Formal Verification of a Flash Memory Device Moonzoo Kim et al KAIST

Driver —an Experience Report 21 Provable SW Lab. CS Dept.

