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Abstract. Flash memory has become virtually indispensable in most mobile de-
vices. In order for mobile devices to operate successfully, it is essential that flash
memory be controlled correctly through the device driver software. However, as
is typical for embedded software, conventional testing methods often fail to de-
tect hidden flaws in the complex device driver software. This deficiency incurs
significant development and operation overhead to the manufacturers.
In order to compensate for the weaknesses of conventional testing, we have ap-
plied NuSMV, Spin, and CBMC to verify the correctness of a multi-sector read
operation of the Samsung OneNANDTM flash device driver and studied their
relative strengths and weaknesses empirically. Through this project, we verified
the correctness of the multi-sector read operation on a small scale. The results
demonstrate the feasibility of using model checking techniques to verify the con-
trol algorithm of a device driver in an industrial setting.

1 Introduction

Flash memory has become a crucial component for mobile devices. Accordingly, in or-
der for mobile devices to operate successfully, it is essential that the device driver of the
flash memory operates correctly. However, as is typical of embedded software, conven-
tional testing methods often fail to detect hidden bugs in the device driver software for
flash memory, since it is infeasible to test all possible scenarios generated from the com-
plex control structure of the device driver. This deficiency incurs significant overhead to
the manufacturers. For example, Samsung spent more project time and resources to test
flash software than in developing the software. Limitations of conventional testing were
manifest in the development of flash software for Samsung OneNANDTM flash mem-
ory [1]. For example, a multi-sector read function was added to the flash software to
optimize the reading speed (see Section 3). However, this function caused numerous er-
rors in spite of extensive testing and debugging efforts, to the extent that the developers
seriously considered removing the feature.
? This work was supported by KAIST Institute for Information Technology Convergence and

Samsung Electronics.



In this project, we have verified the correctness of a multi-sector read (MSR) opera-
tion of the Samsung OneNAND flash device driver by using NuSMV [6], Spin [14], and
CBMC [10] in an exhaustive analysis of a small size flash. These three model checkers
employ three different techniques, namely, BDD-based model checking, explicit model
checking, and SAT-based bounded model checking.

The contributions of this project are three-folds. First, this project addresses an inter-
esting industrial problem to verify the functional correctness of a controller with a large
data structure. To date, there have been studies on verification of device drivers [13, 22,
25] and handling of large data structures such as arrays and linked lists [4, 8, 24]. Nev-
ertheless, they either focus on debugging the compatibility of the hardware-software
interface or checking the correctness of standard operations for the data structure itself,
rather than verification of the functional correctness of the device driver algorithm. The
verification problem we have encountered with MSR is unique in that (1) MSR operates
over a large set (potentially millions) of structured data and (2) It is necessary to verify
MSR as it is, since our goal is to verify the correctness of existing code – optimization
or aggressive abstraction of the algorithm should be minimized.

Second, the model checking results provide a practical alternative verification tech-
nique to testing. Although the model checking results guarantee the correctness of MSR
on a small size flash only, the exhaustive analysis results provide higher confidence
compared to testings previously performed by Samsung. Furthermore, since MSR is
a core logic used for most flash software with variations, the verification framework
and strategy used in this project can be applied to other flash software with only mod-
est efforts. Samsung highly valued the verification results and started to apply model
checking to a flash file system as a subsequent project.

Finally, we conducted a series of experiments to verify MSR by using three pop-
ular model checkers: NuSMV, Spin, and CBMC. The results of the experiments show
that the selection of a model checking technique has a significant effect on the perfor-
mance of verifying MSR. It is further demonstrated that effort to create and maintain
a target model is also a crucial factor for successful application of model checking in
industry. Although a number of case studies involving comparisons between different
model checkers have been reported [26, 9, 12], comparison from the view point of data-
intensive applications has not seen intensive study thus far. We believe that this issue
is crucial to the success of verifying flash software. Furthermore, the present empirical
studies involving the three different model checkers can provide valuable insight into
the relative strengths and weaknesses of these popular model checking techniques.

2 Overview of the OneNAND Verification Project

Our team for this project consists of two professors, one graduate student, and one
senior engineer at Samsung. We worked on this verification project for six months. We
spent the first three months reviewing the design and code of the device driver software
and the characteristics of OneNAND flash. Most parts of the device driver software
are written in C (∼30000 lines) and a small portion of the software is written in ARM
assembly language.



2.1 Overview of the Device Driver Software for OneNAND Flash Memory

A unified storage platform (USP) is a software solution to operate OneNAND device.
Figure 1 presents an overview of USP. USP allows applications to store and retrieve
data on OneNAND through a file system. USP contains a flash translation layer (FTL)
through which data and programs in the OneNAND device are accessed. FTL consists
of three layers - a sector translation layer (STL), a block management layer (BML),
and a low-level device driver layer (LLD). Generic I/O requests from applications are
fulfilled through the file system, STL, BML, and LLD, in order. A prioritized read
request for executing a program is made through demand paging manager (DPM) and
this request goes to BML directly. A prioritized read request from DPM can preempt
generic I/O operations requested from STL.
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Fig. 1. An overview of USP

2.2 Overview of the Sector Translation Layer (STL)

A NAND flash device consists of a set of pages, which are grouped into blocks. A unit
can be equal to a block or multiple blocks. Each page contains a set of sectors. When
new data is written to flash memory, rather than overwriting old data directly, the data
is written on empty physical sectors and the physical sectors that contain the old data
are marked as invalid. Since the empty physical sectors may reside in separate physical
units, one logical unit (LU) containing data is mapped to a linked list of physical units
(PU). STL manages this mapping from logical sectors (LS) to physical sectors (PS).
This mapping information is stored in a sector allocation map (SAM), which returns
the corresponding PS offset from a given LS offset. Each PU has its own SAM.

Figure 2 illustrates a mapping from logical sectors to physical sectors where 1
unit contains 4 sectors. Suppose that a user writes LS0 of LU7. An empty physical
unit PU1 is then assigned to LU7, and LS0 is written into PS0 of PU1 (SAM1[0]=0).
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Fig. 2. Mapping from logical sectors to physical sectors

The user continues to write LS1 of LU7, and LS1 is subsequently stored into PS1 of
PU1 (SAM1[1]=1). The user then updates the LS1 and LS0 in order, which results in
SAM1[1]=2 and SAM1[0]=3. Finally, the user adds LS2 of LU7, which adds a new
physical unit PU4 to LU7 and yields SAM4[2]=0.

3 Multi-sector Read Operation

USP provides a mechanism to simultaneously read as many multiple sectors as possible
in order to improve the reading speed. The core logic of this mechanism is implemented
in a single function in STL. Due to the non-trivial traversal of data structures for logical-
to-physical sector mapping (see Section 2.2), the function for MSR is 157 lines long and
highly complex, having 4-level nested loops. Figure 3 describes simplified pseudo code
of these 4-level nested loops. The outermost loop iterates over LUs of data (line 2-17).
The second outermost loop iterates until the LS’s of the current LU are completely
read (line 4-15). The third loop iterates over PUs mapped to the current LU (line 6-
14). The innermost loop identifies consecutive PS’s that contain consecutive LS’s in the
current PU (line 7-10). This loop calculates conScts and offset, which indicate
the number of such consecutive PS’s and the starting offset of these PS’s, respectively.
Once conScts and offset are obtained, BML READ reads these consecutive PS’s as
a whole fast (line 11).

For example, suppose that the data is “ABCDEF” and each unit consists of four
sectors and PU0, PU1 and PU2 are mapped to LU0 (“ABCD”) in order and PU3 and
PU4 are mapped to LU1 (“EF”) in order as depicted in Figure 4(a). Initially, MSR
accesses SAM0 to find which PS of PU0 contains LS0(‘A’). Then, it finds SAM0[0]=1
and reads PS1 of PU0. Since SAM0[1] is empty (i.e., PU0 does not have LS1(‘B’)),
MSR moves to the next PU, which is PU1. For PU1, MSR accesses SAM1 and finds that
LS1(‘B’) and LS2(‘C’) are stored in PS1 and PS2 of PU1 consecutively. Thus, MSR
reads PS1 and PS2 of PU1 altogether through BML READ and continues its reading
operation.

The requirement for MSR is that the content of the read buffer should correspond
to the original data in the flash memory when MSR finishes reading, as given by the
following invariant formula for INV .

INV : after MSR → (∀i.logical sectors[i] = buf [i])



01:curLU = LU0;
02:while(curLU != NULL ) {
03: readScts = # of sectors to read in the current LU
04: while(readScts > 0 ) {
05: curPU = LU->firstPU;
06: while(curPU != NULL ) {
07: while(...) {
08: conScts = # of consecutive PS’s to read in curPU
09: offset = the starting offset of these consecutive PS’s in curPU
10: }
11: BML_READ(curPU, offset, conScts);
12: readScts = readScts - conScts;
13: curPU = curPU->next;
14: }
15: }
16: curLU = curLU->next;
17:}

Fig. 3. Loop structures of MSR
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Fig. 4. Possible distributions of data “ABCDEF” and “FEDCBA” to physical sectors

In our verification tasks, we assume that each sector is 1 byte long and each unit
has four sectors. Also, we assume that data is a fixed string of distinct characters (e.g.,
“ABCDE” if we assume that data is 5 sectors long, and “ABCDEF” if we assume that
data is 6 sectors long). We apply this data abstraction since the values of logical sectors
should not affect the reading operations of MSR, but distribution of logical sectors into
physical sectors does. For example, for the same data “ABCDEF”, the reading opera-
tions of MSR are different for Figure 4(a) and Figure 4(b), since they have different
SAM configurations (i.e. different distributions of “ABCDEF”). However, for “FED-
CBA” in Figure 4(c) which has the same SAM configuration of Figure 4(a), MSR oper-
ates exactly same way as for Figure 4(a). Thus, if MSR reads “ABCDEF” in Figure 4(a)
correctly, MSR reads “FEDCBA” in Figure 4(c) correctly too.

In addition, we assume that data occupies 2 logical units. The number of possible
distribution cases for l LS’s and n physical units, where 5 ≤ l ≤ 8 and n ≥ 2, increases



exponentially in terms of n, and can be obtained by

n−1∑

i=1

((4×i)C4 × 4!)× ((4×(n−i))C(l−4) × (l − 4)!)

For example, if a flash has 1000 physical units with data occupying 6 LS’s, there exist
a total of 3.9× 1022 distributions of the data.

As you have seen from Figure 4, the operations of MSR depend on the values of
SAM tables and the order of PUs linked to LU. Therefore, MSR has characteristics of
control-oriented program (4-level nested loops) and data-oriented program (large data
structure consisting of SAMs and PUs) at the same time, although the values of PS’s
are not explicitly manipulated.

4 Model Checking MSR using NuSMV

NuSMV [6] is an open-source symbolic model checker branched from SMV. Although
the SMV family has been widely used in the hardware industry, its application to in-
dustrial software has been limited to a couple of case studies [5, 20], mostly in the
area of software specifications. Despite that explicit model checking has been favored
in software verification, MSR has the following attractive characteristics, which have
motivated the present authors to verify it with symbolic model checking.

1. MSR operates with a semi-random environment – sector writing is assumed to be
random except for having some constraints.

2. MSR’s data structure can be abstracted in a simple array form with a couple of
simple operations, such as assignments and equality checking.

3. MSR is a single-threaded program that can be verified independently from other
modules.

Unlike explicit model checking, which requires that the system environment be
modeled explicitly, symbolic model checking allows free-variables to represent envi-
ronmental inputs whose possible values are exhaustively evaluated through symbolic
computation; this is one of the advantages of checking MSR using NuSMV. Whereas
it is generally known that symbolic model checking performs poorly on applications
with a large data structure and arithmetic operations, the main data structure in MSR is
relatively simple two 2-dimensional integer arrays (PUs and SAMs) with no arithmetic
operations. MSR’s single-threaded structure is also suitable for using NuSMV, which is
known to be inefficient in handling interleaves.

4.1 Model Translation

We manually specified a NuSMV model for MSR after reading corresponding design
documents and C code. The first challenge in creating a NuSMV model for MSR arises
from the different modeling paradigms used in C and NuSMV; the NuSMV modeling
language is dataflow-based, whereas C is a control-flow based language. Thus, trans-
lation of a C program into a NuSMV model requires introduction of control points to
reflect control-dependent changes of data variables.



The second challenge is to model the data structure in NuSMV. Even though SAMs
and PUs can be abstracted into simplified two-dimensional integer arrays, modeling
such data structure and operations for NuSMV is not a trivial task, especially because
NuSMV does not support index variables for arrays. Circumventing the expressional
limitations of NuSMV, the resulting translated MSR model consists of more than 1000
lines of code; the original C-code is 157 lines long.

The third challenge involves setting the operational environment of MSR. MSR as-
sumes randomly written logical data on PUs and a corresponding SAM records the
actual location of each LS. Unfortunately, however, the writing is not purely random,
which means the open environment of the symbolic model checking has to be con-
strained according to several rules; the followings are some of the representative rules
applied to the random writing.

1. One PU is mapped to at most one LU.
2. If the ith LS is written in the kth sector of the jth PU, then the (i mod m)th offset

of the jth SAM is valid and indicates the PS number k, where m is a number of
sectors per unit (4 in our experiments).

3. The PS number of the ith LS must be written in only one of the (i mod m)th offsets
of the SAM tables for the PUs mapped to the b i

mcth LU.

For example, for imposing the last two rules, we use the following weaker invari-
ants, which include spurious value combinations in SAMs, to reduce the complexity
of imposing invariants. Note that this weakening of invariants does not produce false
positives when checking the INV property specified in Section 3.

∀i, j, k (logical sectors[i] = PU [j].sect[k] → (SAM [j].valid[i mod m] = true

& SAM [j].offset[i mod m] = k

& ∀p.(SAM [p].valid[i mod m] = false)

where p 6= j and PU [p] is mapped tob i

m
cth LU))

4.2 Performance Analysis

We have performed a series of experiments in order to assess the feasibility and scala-
bility of model checking the invariant property INV .

Experimental settings and verification results We verified MSR using a workstation
equipped with Xeon 5160 (dual core 3 GHz) and 32 gigabytes memory. The worksta-
tion runs 64 bit Fedora Linux 7 and uses NuSMV 2.4.3. The scalability of NuSMV
model checking is assessed by measuring the amount of time and memory required to
verify the INV property as the number of physical units increases from 5 to 8 and
the size of logical data increases from 5 to 7 sectors. Figure 5 shows the growth of
time and memory consumption from these experiments; the verification time grows ex-
ponentially both with the number of physical units and the number of logical sectors
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Fig. 5. Time and space complexities of NuSMV model checking

(Figure 5 (a)). Note that the memory consumption shows better scalability than that of
time consumption (Figure 5 (b)).

Although NuSMV succeeds in verifying that the MSR satisfies the INV property,
the exponential time complexity limits the applicability of NuSMV model checking
to only a small flash memory. As it requires about 11 hours and 550 megabytes of
memory to verify the INV property for the MSR model with 7 physical units and 7
logical sectors, we conclude that further experiments with larger numbers of physical
units and logical sectors would not be feasible due to a large amount of verification
time.

Dynamic reordering and time complexity The exponential growth of verification
time is mainly due to the dynamic reordering of BDD variables to keep the symbolic
representation of the state space as compact as possible. OBDD representations for
a Boolean formula can be quite different in terms of the number of nodes represent-
ing the formula. Since finding optimal BDD variable orderings is an intractable prob-
lem [3], NuSMV periodically attempts to improve the orderings by moving each vari-
able through the ordering to find its best location using the sifting algorithm [23]. While
this ordering process is known to be effective in terms of reducing the state-space, it is
time-consuming, as is clearly seen from our experiments. We observed that more than
90% of verification time was consumed for dynamic reordering.

The NuSMV version of the MSR model (with 5 LS’s, 5 PUs) requires 365 BDD
variables for its symbolic representation and generates more than 1,182,300 BDD nodes
during the verification process, which is 12 times larger in size than the rule-of-thumb-
limit for effective reordering, i.e., 100,000. Note that the number of BDD variables
encoding the MSR is undesirably large, mainly due to the encodings of data variables;
it is necessary to encode at least 20 data variables for 5 PUs with 4 PS’s each. Even
with a restricted domain, e.g., with the size of the data domain 5, each PS needs 6
(=3+3) Boolean variables, resulting in a total of 120. Since MSR also maintains a SAM
of approximately the same size, we can deduce that more than 240 BDD variables are
used for encoding the main data structure alone.



Search depth and performance From the experiments, we note that the long search
depth for checking MSR constitutes a major performance bottleneck. In [26], a case
study on model checking a flight guidance system (FGS) is reported. FGS is encoded in
a larger number of BDD variables, but shows better performance than that of MSR; one
of the FGS models was encoded with 839 BDD variables and the peak number of nodes
was 3,213,168. The major difference is that FGS requires less than 10 iterations for
symbolic fixed-point computation, whereas MSR models require 37 - 53 iterations, be-
cause of the nested loops used in the MSR algorithm. The long search depth exacerbates
memory and time complexity since reordering is performed at each search iteration.

To assess the effect of long search depth on verification performance, we remodeled
the MSR environment such that the random writing environment is explicitly modeled
with non-deterministic random value assignments. Note that adding a random writing
routine increases the complexity of symbolic model checking especially in terms of the
search depth; for 5 LS’s written in 5 PUs, each with 4 sectors, at least 5× 5× 4 = 100
iterations are required to simulate random writing. Experiments show that a model with
a random writing routine requires 169 iterations for fixed-point computation, spending
10 times more verification time than the model with invariants.

4.3 Data Abstraction

In our experiments, we have applied a simple data abstraction on the domain of LS’s to
avoid the state-space explosion problem. Though the original LS’s range over integer
domain, we can reduce the domain to a set of integer values where the total number of
distinct values in the set equals to the number of logical sectors to read, because the
MSR model as well as the INV property requires only equality checking between LS’s
and the read buffer. For example, 6 distinct values, e.g., {0,1,2,3,4,5}, would be enough
for checking the INV property for MSR with 6 logical sectors.

In fact, two distinct values, {0,1}, for each data variable may be enough to check
an equality condition a = b since all possible combinations of values {(a, b)|a, b ∈ N}
can be partitioned into two equivalent classes, A = {(a, b)|a = b}, B = {(a, b)|a 6= b},
and one representative value pair per each equivalent class, e.g., (0,0) for A and
(0,1) for B, is enough to cover all possible cases. Nevertheless, we cannot reduce
our data domain uniformly to {(0,0), (0,1)} because of the constraints we have im-
posed on the MSR models; as mentioned in Section 4.1, we have imposed several
constraints for setting the operational environment of MSR instead of explicitly mod-
eling the sector writing routine for performance reasons. One example of such in-
variants, as introduced in Section 4.1, constrains that no two logical sectors con-
tain the same data. For example, suppose logical sectors[0] = logical sectors[1]
and logical sectors[0] = PU [0].sect[0] & logical sectors[1] = PU [0].sect[1],
then we can imply that logical sectors[0] = PU [0].sect[0] = PU [0].sect[1]. This
implies to a contraction, SAM [0].offset[0] = 0 & SAM [0].valid[0] = 1 and
SAM [0].offset[0] = 1 & SAM [0].valid[0] = 1, by the invariants introduced in Sec-
tion 4.1. Therefore, we need at least k distinct values to distinguish k logical sectors.



5 Model Checking MSR using Spin

Due to common characteristics of Promela and C, creation of a formal Promela model
from MSR is more convenient compared to NuSMV. Furthermore, the Promela model
of MSR was semi-automatically generated by using Modex [15] which is a general
purpose translation tool from C to Promela.

5.1 Model Translation

In a Promela model, the MSR environment (i.e., logical sectors, physical sectors and
SAM) is specified such that all possible distributions of data into physical sectors are
generated exhaustively through non-deterministic guarded commands. 4

Modex [15] translates the control structure of MSR such as if and while into
corresponding Promela control structures. Other C statements are inserted as embedded
C code into the Promela model starting with a keyword c expr{...} for Boolean
expressions and c code{...} for assignments and function calls [15]. As a result,
the Promela model generated by Modex has the same 4-level nested loops as MSR
does. The embedded C codes are blindly copied from the text of the Promela model
into the code of the verifier that Spin generates.

In addition, we modified the original MSR C code to work correctly and ef-
ficiently under the Spin verification environment. For example, the linked lists of
PUs and SAMs in the original MSR C code were replaced with arrays of PUs
and SAMs. These modifications were performed through an explicit translation ta-
ble given to Modex. Modex textually replaces C patterns in the table with the cor-
responding Promela codes specified in the table. The requirement property is spec-
ified by the assert statement assert( logical sectors[0]==buf[0] &&
logical sectors[1]==buf[1]...) located at the end of the MSR process.

5.2 Data Abstraction

In explicit model checking, all system states are stored in a huge hash table explicitly.
Thus, data structures in the model do not incur extra overhead, since data structures are
stored into the state vector as they are, not through complex BDD encoding.

MSR traverses a large amount of memory, most of which are taken by PUs and
SAMs. The PUs and SAMs in embedded C code are tracked throughout the verification
process, but are not stored in the state vector. 5 Instead, we add a new signature that rep-
resents the state of PUs and SAMs and put that signature into a state vector so that verifi-
cation produces the correct result with this data abstraction. The signature is an ordered
list of the physical locations of logical sectors (i.e. pairs of a PU number and a PS num-
ber). For example, the signature for Figure 4(a) is 〈(0,1),(1,1),(1,2),(2,3),(3,0),(4,1)〉
since ‘A’ is located at PU0’s PS1 and ‘B’ is located at PU1’s PS1 and so on. Therefore,

4 Note that this operational environment for model checking can be used to set up the actual
testing environment. For more detail, see [21]

5 This data abstraction on embedded C data is achieved through c track keyword with
Unmatched parameter. This feature has been available since Spin 4.1.



there exists an one-to-one relation between signatures and states of PUs and SAMs and
this abstraction preserves logical soundness according to the soundness theorem in [15].

Considering that the size of PUs is much larger than that of data, a significant
amount of memory is reduced through this abstraction. For example, if 5 sectors long
data is distributed over 10 physical units, the state vector should contain at least 80 (=2
× (10 PUs × 4 sectors)) bytes for PUs and SAMs. The corresponding signature is 4
bytes long (= 5 × (dlog210ebits + dlog24ebits)), resulting in a 95% reduction of the
state vector size for PUs and SAMs.

5.3 Performance Analysis

We used Spin 4.3.0 on the same computing platform where NuSMV experiments were
performed. We have performed two series of experiments with different lengths of data
as well as different numbers of physical units. The first series of experiments are per-
formed without the data abstraction described in Section 5.2 and the second series of
experiments are performed with the data abstraction. 6 Figure 6 illustrates performance
data for checking the requirement property. In all of the experiments, Spin shows that
the requirement property is satisfied.
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Fig. 6. Time and space complexities of Spin model checking

For experiments without the data abstraction, Spin verified a flash containing 10
PUs and 5 logical sectors in 356 seconds, consuming 9.6 gigabytes of memory. In com-
parison, experiments with the data abstraction, denoted as “n(abs)” in Figure 6, Spin
consumes 2.1 gigabytes of memory in 230 seconds, which reduces the memory con-
sumption by 78% and the verification time by 35%, as shown in Table 1. Data abstrac-
tion reduces not only memory consumption but also verification time, since the time
taken to store and retrieve state space is reduced as well.

6 These experiments were performed without lossy compression such as bitstate hashing. For
experiments without data abstraction, the -DCOLLAPSE option was used.



# of physical units 5 6 7 8 9 10
Memory reduction 17% 38% 57% 68% 74% 78%

Time reduction 23% 24% 26% 32% 34% 35%

Table 1. Memory and time reductions for 5 logical sectors due to the data abstraction

As can be seen in Figure 6, the memory consumption and verification time increase
exponentially in relation to the number of physical units. The bottleneck in this ver-
ification task is its memory consumption. Spin handles states explicitly, and thus the
exponentially increasing number of possible distribution cases accordingly causes an
exponential increase of memory. Compared to NuSMV, however, Spin is significantly
faster for the verification tasks of this type. For example, for a case of 7 logical sectors
and 7 physical units, Spin takes 27 minutes with 11.4 gigabytes with the data abstrac-
tion, while NuSMV takes more than 11 hours with 550 megabytes. In Spin, scalability
on memory consumption is a larger problem while verification time is a more serious
problem in NuSMV.

6 Model Checking MSR using CBMC

CBMC [10] automatically translates a target C program into a corresponding SAT for-
mula, then checks whether the C program satisfies a given requirement or not by solving
the SAT formula through an external SAT solver. Although SAT is a NP-complete prob-
lem and a generated SAT formula can be huge including millions of Boolean variables
and clauses, many structured problem instances can be solved in an acceptable time [2]
with help of heuristics such as VSIDS or random restart [18].

6.1 Model Translation

CBMC does not need an explicit model translation, since it can directly analyze MSR
C code. However, to obtain meaningful verification result, we have to build an envi-
ronment that provides only valid configurations of a flash memory to MSR, as we did
for NuSMV experiments. We specified an environment model using assume statements
( CPROVER assume(Boolean expression)) and the environment model is similar
to that of NuSMV experiments since both of them share most of the invariants (e.g.
invariants in Section 4.1). In addition, a target C code was modified to use an array
representation of SAMs and PUs for fair performance comparison with the other model
checkers.

For the numbers of loop unwindings for bounded model checking, we can get a
valid upper bound of each loop from the loop structures described in Section 3.

– The outermost loop iterates at most L times, where L is a number of LUs.
– The second outermost loop iterates at most 4 times, since one LU contains 4 LS’s

(i.e., readScts≤ 4) and at least one LS is read at each iteration.
– The third loop iterates at most M times where M is a total number of PUs.



– The innermost loop iterates at most 4 times, since one PU contains 4 PS’s.

For example, L = 2 and M = 5 for Figure 4(a).

6.2 Performance Analysis

We used CBMC 2.6.0 (with MiniSAT 1.1.4 [11]) on the same computing plat-
form where NuSMV and Spin experiments were performed. We performed a se-
ries of experiments with different lengths of data as well as different num-
bers of PUs. In all of these experiments, the requirement property speci-
fied by the assert statement assert( logical sectors[0]==buf[0] &&
logical sectors[1]==buf[1]...) is satisfied.

Figure 7 illustrates the performance results of this series of experiments. In addition,
Table 2 enumerates the sizes of SAT instances of the MSR problems. For example, if
8 sectors long data is distributed over 10 PUs, then the corresponding SAT formula
contains 8.6× 105 Boolean variables and 2.9× 106 clauses.
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Fig. 7. Time and space complexities of CBMC model checking

5 6 7 8 9 10
×105 var clause var clause var clause var clause var clause var clause

5 1.9 6.3 2.4 7.7 2.8 9.2 3.2 11 3.7 12 4.2 14
6 3.6 12 4.4 15 5.3 17 6.2 21 7.1 24 8.0 27
7 3.8 12 4.6 15 5.5 18 6.4 21 7.4 25 8.3 28
8 3.9 13 4.8 16 5.7 19 6.7 22 7.6 26 8.6 29

Table 2. The sizes of the SAT CNF instances of MSR with different configurations



Compared to the results of the Spin experiments, CBMC demonstrates better perfor-
mance in both verification time and memory consumption for large problem instances.
For example, when data is 7 sectors long and the number of PUs is 7, CBMC takes 203
seconds and consumes 148 megabytes of memory while Spin with the data abstrac-
tion takes 1604 seconds and consumes 11.4 gigabytes of memory. CBMC demonstrates
better performance compared to NuSMV for large problem instances, too 7; NuSMV
takes 11 hours and consumes 550 megabytes of memory for the problem of the same
size. Detailed analysis on these CBMC based experiments will be reported in a separate
article.

7 Discussion

In this section, several issues are discussed on the basis of our experience in this project.

7.1 Application of Model Checking in Industrial Software Projects

Formal verification techniques are being evaluated for experimental purposes for soft-
ware projects in major electric device manufacturers such as Samsung, as a comple-
ment of software testing, which has thus far been the software verification technique.
Samsung performed the majority of testing for the OneNAND device driver randomly,
which does not provide sufficient coverage for detecting bugs even with a huge number
of test cases, since there are astronomically many possible scenarios (see Section 3).
Even with a scalability limitation, this OneNAND verification project was evaluated
as a success as it confirmed the correctness of the MSR, which could not be assumed
through testing, for a small flash memory; exhaustive exploration through model check-
ing provides high confidence in the correctness of MSR.

7.2 Advanced Abstraction Techniques

We have applied a basic data abstraction (e.g. a fixed string “ABCDE” serves for all 5
sectors long strings) described in Section 3 to reduce state space of MSR. In addition,
we used weaker invariants to model the environment of MSR with reduced complexity,
which does not produce false positives (see Section 4.1). However, more aggressive
abstractions based on symmetry turned out to be hard to apply for this project, since
we have to validate several assumptions on the MSR code to exploit symmetry, which
requires inductive proof techniques which are beyond the scope of the project.

For the experiments in NuSMV, only primitive data type reductions are applied to
reduce the search space. Other aggressive abstraction techniques, such as predicate ab-
straction [16], counter-example-guided abstraction-refinement (CEGAR) [7], and tem-
poral case splitting [19], might be applied to enhance the performance of the NuSMV
verification. Nevertheless, their effectiveness on MSR is questionable due to the follow-
ing reasons:

7 We could not use the SAT-based bounded model checking capability of NuSMV in this project,
since the smallest problem instance took more than 3 hours.



1. A simple trial experiment shows that case-splitting does not always improve the
verification performance for MSR. For example, we have checked each sub-case
of the INV property, after MSR → logical sector[i] = buf [i], separately for
each i, where 0 ≤ i ≤ 4 and a flash has 7 PUs. The verification time required for
the case i = 1 is about 840 seconds. Note that the time required for checking the
original INV property for the same setting is only 530 seconds.

2. The predicate abstraction or CEGAR approach can be effective when checking the
safety or compatibility of a software module whose unrelated branches of control
flow and/or large data domains can be safely abstracted away. In the case of MSR,
however, each control branch contributes to its functional correctness, leaving small
chances for reducing complexity by abstraction. We also note that the data domain
in MSR has already been reduced to a minimal set (e.g. {0,1,2,3,4} for 5 sectors
long data) for the verification using NuSMV.

For the Spin experiments, besides the one-to-one data abstraction described in Sec-
tion 5.2, there exist other data abstraction techniques that have yet to be applied. For
example, [17] proposes a memory-efficient hash table that implements a sophisticated
hash table structure which uses less memory at the cost of operation time overhead. To
apply this technique, however, we should modify the Spin source code to change its
hash table structure, which is beyond the scope of the project.

For the CBMC experiments, there exist not much room to apply aggressive abstrac-
tion to MSR itself, since the MSR C code should not be modified much for abstraction
purpose. However, the environment model of MSR can be built in an efficient way. For
example, the environment model can be built using weaker invariants to reduce com-
plexity (see Section 4.1).

7.3 Scalability of Model Checking

Even with the abstraction techniques noted in Section 7.2, it is not clear that model
checking can be an overall solution for verifying software similar to MSR. For software
handling a large data structure, model checking has an inherent scalability limitation,
since the size of the environment to be modeled and analyzed is extremely large, even
with symmetry reduction or state partitioning. Thus, for software similar to MSR, it
still seems appropriate to utilize human expertise through a theorem prover, constraint
solving, or inductive proofs. For this aspect, invariant based modeling is preferable since
invariant based model can be adapted to specify a target system for theorem proving.
We are planning to study this problem further by using a theorem prover.

8 Conclusion and Future Work

We have shown that a difficult verification problem in industrial software can be tack-
led using automated formal verification tools. Though the project was conducted on a
small-scale, Samsung highly valued the verification result. It was also confirmed that
comprehensive verification techniques have feasible use and that they can complement
testing or provide an alternative solution. This has motivated our next project; we plan to
analyze a flash file system to check data consistency at the events of random power-off.



At the same time, we could understand relative strengths and weaknesses of the
three popular model checking techniques empirically - BDD-based one, explicit one,
and SAT-based one. We will analyze the experimental results of CBMC further, since
CBMC demonstrated the best verification performance in this project and requires min-
imal verification effort due to the capability of verifying C code. The experience gained
in this project also led the authors to realize the practical limitations on the scalability
of model checking and the necessity of conducting further research to address the issue
through the use of smart abstraction techniques and/or by utilizing human expertise.
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