
Feature-oriented Re-engineering of Legacy Systems
into Product Line Assets – a Case Study

Kyo Chul Kang, Moonzoo Kim, Jaejoon Lee, and Byungkil Kim

Software Engineering Lab. Computer Science and Engineering Dept.
Pohang University of Science and Technology, South Korea

{kck,moonzoo,gibman,dayfly}@postech.ac.kr
http://selab.postech.ac.kr/

Abstract. Home service robots have a wide range of potential applications,
such as home security, patient caring, cleaning, etc. The services provided by
the robots in each application area are being defined as markets are formed and,
therefore, they change constantly. Thus, robot applications need to evolve both
quickly and flexibly adopting frequently changing requirements. This makes
software product line framework ideal for the domain of home service robots.
Unfortunately, however, robot manufacturers often focus on developing techni-
cal components (e.g., vision recognizer and speech processor) and then attempt
to develop robots by integrating these components in an ad-hoc way. This prac-
tice produces robot applications that are hard to re-use and evolve when re-
quirements change. We believe that re-engineering legacy robot applications
into product line assets can significantly enhance reusability and evolvability.

In this paper, we present our experience of re-engineering legacy home ser-
vice robot applications into product line assets through feature modeling and
analysis. First, through reverse engineering, we recovered architectures and
components of the legacy applications. Second, based on the recovered infor-
mation and domain knowledge, we reconstructed a feature model for the legacy
applications. Anticipating changes in business opportunities or technologies,
we restructured and refined the feature model to produce a feature model for
the product line. Finally, based on the refined feature model and engineering
principles we adopted for asset development, we designed a new architecture
and components for robot applications.

1 Introduction

Home service robots utilize various technology-intensive components such as speech
recognizers and vision processors to offer services. As markets for home service
robots are still being formed, however, these technical components undergo frequent
changes and new services are added and/or existing services are often removed or
updated to address changing needs of the users. To compete in this rapidly changing
market, robot manufacturers should be able to evolve robot products quickly with a
minimal cost. The home service robot industry has strong needs for software devel-

opment framework with which applications can be evolved easily. This situation
makes software product line ideal for the home service robot industry.

Due to limited development resources, robot developers focused on technology in-
tensive components at an early stage of product development without careful consid-
eration of how software applications would evolve with changing requirements.
Without a fore-thought architectural consideration, initial products have often been
developed by integrating technology components in an ad-hoc way. Consequently,
products suffered from feature interaction problems and maintenance of applications
became costly. Re-engineering legacy robot applications into product line assets can
enhance the competitive power of robot products by both decreasing development
cost and increasing flexibility of robot applications. Jean-Marc at al [1][2][6] suggest
an architecture-centric re-engineering process for initial product line asset recovery.
This approach emphasizes a software architecture as a key to recovery of domain
concept and relations. Bosch at al [3][4] consider a feature model as a core for creat-
ing product line assets from legacy products. These studies, however, do not suggest
concrete design principles or guidelines for creating product line assets with adapta-
bility.

In this paper, we describe our experience of re-engineering home service robot ap-
plications into product line assets via a feature-oriented methodology that is based on
concrete principles and guidelines [5]. First, we extracted components and architec-
tural information from legacy robot applications [7]. Second, based on the recovered
information and domain knowledge, we discovered and modeled features of the robot
applications. Anticipating future evolution of applications by considering potential
business opportunities and technology changes, we refined the feature model adding
additional features and variability information [8]. Finally, based on the refined fea-
ture model and three engineering principles we adopted to develop evolvable assets
[9], we designed a new architecture and components for the product line. This re-
engineering approach is depicted in Fig.1.

Fig. 1. Overview of re-engineering process

Sect. 2 gives an overview of home service robots. Sect. 3 explains the process of
recovering architectural information from legacy applications. Sect. 4 describes re-
covery and refinement of a feature model from the legacy applications. Sect. 5 illus-
trates redesign of an architecture and asset components based on the refined feature
model using the engineering principles we adopted. Sect. 6 validates the re-
engineered product line assets. Finally, Sect. 7 describes the lessons learned from this
project and Sect. 8 summarizes the paper and suggests future works.

2. Background on the Home Service Robot (HSR)

In this section, we briefly overview services of the home service robot (HSR) whose
applications we re-engineered into product line assets. HSR is developed for daily
home services such as home surveillance, cleaning, etc. From the HSR manufacturer,
we received high level specifications of required HSR services such as “Call and
Come” (locate and come to the user), “User Following” (continuously follow the
user), “Security Monitoring” (home surveillance), and “Tele-presence” (control HSR
remotely), etc. 1 In addition, we received two separate HSR applications each of
which implements the “Call and Come” service and “User Following” service respec-
tively. Of these primary services of HSR, we explain “Call and Come” and “User
Following" services in detail.
* Call and Come (CC)
　 This service first analyzes audio data sampled from microphones attached to the

surface of the robot and detects predefined sound patterns (e.g., hand clap or voice
command). Currently, there are two commands “come” and “stop”. Once a “come”
command is recognized, the robot detects the direction of a sound source. Then,
the robot rotates to the direction of a sound source and tries to recognize a human
face by analyzing video data captured through the front camera. If the caller's face
is detected, the robot moves forward until it reaches within one meter from the
caller (distance from the caller is measured by a structured light sensor). A “Stop”
command simply makes the robot stop. If the following operation such as com-
mand recognition, sound source detection, or face recognition fails, CC resets to an
initial state and waits for a new command.

* User Following (UF)
　 The robot uses a front camera and a structured light sensor to locate the user. Once

UF is triggered, the robot constantly checks the vision data and sensor data from
the structured light sensor to locate the user. The robot keeps following the user
within one meter range. If the robot misses the user, the robot notifies the user by
generating an audio message and UF terminates. The user may give a “come”
command to let the robot recognize the user and restart UF.

 Based on the given specifications and information extracted from the two legacy

applications, we recovered a preliminary feature model covering both applications.
The legacy HSR applications hard-coded most features without considering variation
points for future extension or refinement. For example, the legacy HSR application
has features such as “Face Detection Method” and “Object Recognition with SL” for
user detection and user tracking. These features, however, do not have variations but
have fixed implementations. For example, “Face Detection Method” is implemented
based on “Color-based” method, not allowing other detection techniques to be
adopted. For more detailed of features supported by the legacy HSR applications, see
Fig. 5.

1 For more information on HSR services and hardware, see [9]

3. Information Extraction from Legacy HSR Application

In this section, we explain how architectural information was extracted from the leg-
acy applications and what potential problems were with the architecture.

3.1 Reverse Engineering Process

Fig. 2 describes the process of recovering a conceptual architecture as well as a proc-
ess architecture from legacy applications.
1. From legacy applications, we obtain object relationship diagrams (see Fig. 3)

mechanically, i.e., using the Rational-Rose2 tool.
2. Based on the extracted object relationship diagram, we determine objects which

constitute services (e.g., CC and UF services). This step needs heuristics based
on domain knowledge and additional data flow analysis. Then, we identify op-
erational units that the service consists of, by analyzing method invocations and
data flows. By assigning operational units into architectural components, we re-
cover a conceptual architecture.

3. From the object relationship diagram and identified service/operational units, we
determine which objects (i.e. active objects) take initiative of invoking other ob-
jects’ operations by creating processes/threads. Then, we identify interactions
between active objects via a control flow analysis. By capturing these interac-
tions between active objects, we recover a process architecture which shows as-
signment of software components to processes or thread synchronization rela-
tions.

How this process was applied to CC is explained in the following subsections.

Fig. 2. Recovery of conceptual architecture and process architecture

3.2 Recovery of Operational Units

Fig. 3 illustrates recovery of operational units from the object relationship diagram
for CC. Using functional cohesion as a criterion, we classified operational units into

2 Rational-Rose is a trademark of IBM corporation.

three categories – sensor (input), controller (coordination), and actuator (output).
Using these categories as a guide, we identified five operational units as follows.

- sensor units: “Face Detection”, “Clap Recognition”, and “SL Sensing”
- a controller unit: “CC Command Controller”
- an actuator unit: “Actuator Controller”

Fig. 3. Recovery of operational units for CC

3.3 Recovery of Conceptual Architecture and Process Architecture

Through an additional data flow analysis, the identified operational units are config-
ured into the conceptual architecture depicted in the Fig. 4.a). This conceptual archi-
tecture is hardly adequate for multi-service robots because all service units (e.g. CC
Command Controller) can access and control “Actuator Controller” directly. This
architecture can allow services interfere with each other in an indirect way.

Fig. 4. Recovered conceptual architecture and process architecture

To recover a process architecture, we identified three active objects from the object
relationship diagram depicted in Fig. 3 by detecting process creation code –
CEXE_dialogDlg, CRMainControl, and CSL. These objects create three proc-
esses “Motion Controller (MC)” (consisting of “CC Command Controller”, “Face
Detection”, and “Actuator Controller” operational units), “Clap Recognition (CR)”
(“Clap Recognition” unit) and “SL Sensing (SLS)” (“Structured Light Sensing” unit)
respectively as depicted in Fig.4.b). MC receives data such as the distance to an ob-
stacle and the direction of clap sound from SLS and CR respectively. MC determines
the moving direction based on these data. Thus, without a smart control logic in MC,
feature interaction between CR and SLS may happen because both processes can
control MC at the same time.

4. Refined Feature Model of HSR Product Line

In this section, we describe a refined feature model of HSR. First, we extracted fea-
tures from the legacy application implementing CC service, which are indicated in
bold font in Fig. 5. Newly added features and refined features are indicated in italic
font in Fig. 5. The detailed explanation of the refined feature model is as follows.

Fig. 5. Feature model for SH100 including CC service

First, we added new services targeted for different markets. For example, HSR

supporting only CC service can be produced for a low-end market as a delivery robot,
while HSR with CC, UF, Tele-presence, and Security Monitoring services can be
produced for a high-end market as an intelligent home agent. Based on the legacy

feature model for the CC service, we created a new model by adding features for new
services, operations, and domain technologies, and also dependency relationships
between features. Newly added services require operational features not included in
the original feature model. For example, newly added UF service needs to follow
user’s footsteps (“Footstep Tracking”). In addition, to follow the user smoothly, UF
service controls HSR in a velocity oriented way via “Control Velocity Value” (e.g.
set the velocity of left wheel as 1 m/s, and the right wheel as 0.8 m/s). Furthermore, a
new operational feature may require new domain technologies. For example, “Foot-
step Tracking” requires “Shape Matching” in order to recognize user’s footsteps.

Second, we refined the feature model by including optional features to accommo-
date anticipated changes. For example, in the legacy CC application, “Face Detection
Method” used only a color-based detection algorithm. We refined this feature by
adding an optional feature “Shape-based” for its improved accuracy adequate for
high-end markets, but at the cost of high computational resources.

Third, due to the advances of technologies, some features considered as important
capabilities can simply be supported by the operational environment as SoC (System
On Chip) or by OS. In the legacy CC application, “Collision Avoidance (CA)” fea-
ture was implemented in software and placed in the Capability Layer. We moved CA
to the Operation Environment Layer because of CA SoCs available in the market.

5. New Architecture Design of HSR

One of the quality attributes with the new architecture is its flexibility in adding, re-
moving, and/or replacing components as products evolve. For this purpose, we
adopted C2 architectural style [10] for its substitutability of components. Also, we
enforced 1:N mapping from features to components whenever possible for easy inclu-
sion/exclusion of features into/from products. Furthermore, through an analysis of
legacy applications [11] and the refined feature model in Fig. 5, we decided to adopt
three engineering principles in redesigning the architecture of HSR (for details on
these principles, see [9]).

First, the legacy architecture intermixed control components with computational
components, which caused difficulty in analyzing behaviors of applications. There-
fore, we proposed the first principle – separation of control aspects from computa-
tional aspects. By separating the control plane which consists of control components
from the data plane with computational components, we could separate data flows
from control flows, thus making it possible to visualize and analyze behaviors of the
system. As a consequence, addition/removal of components becomes easier because
responsibilities of each component become clear.

Second, we aimed to minimize ripple effects caused when services are added or
removed - simple integration of new services, without consideration of how features
should be related with each other, has easily led to feature interaction problems. The
legacy architecture did not provide careful coordination among service components,
thus resulted in feature interaction problems when a new service was added. To ad-
dress such problems, we proposed the second principle - separation of global behav-
iors from local behaviors. Service components are separated to be executed locally,

i.e., independently from other service components. Therefore, effects from addi-
tion/removal of components to other components are localized, which helps imple-
menting variation points. The coordination responsibility among different service
components is assigned to a special component called Mode Manager which controls
global system behavior such as interaction policies between service features.

Finally, we found that there existed hierarchy between some variable features. For
example, “Object Recognition with SL” feature has three sub-features – “Image
Grab”, “Obstacle Reflection”, and “Shape Matching” (see Fig. 5). “Image Grab”
simply captures SL images whereas “Obstacle Reflection” detects objects in front of
HSR by analyzing the SL images obtained by “Image Grab”. “Shape Matching”
works more sophisticatedly by analyzing object images obtained from “Obstacle
Reflection” to recognize user’s legs (e.g., footsteps). Therefore, we made three com-
ponent layers corresponding to these variable features according to the third principle
- layering in accordance with data refinement hierarchy. Different services may
request operations from different layers of a single component. By adopting a layered
architecture for computational components, addition/removal of variable features in
the Domain Technology Layer could be implemented cleanly because the layered
architecture provides well-defined interfaces between layers.

Fig.6. New architecture for HSR

Fig.6 illustrates the new architecture designed according to the three re-

engineering principles.3 First, we identified four control components: CC, UF, Tele-
presence, and Security Monitoring. And we identified five computational compo-
nents: Navigation, Structured Light, User Interface, Vision Manager, and Audio
Manager. Mode Manager was specified to control global behavior of HSR by receiv-
ing all up-stream events and managing the control components. Most computational
components read raw input data from sensors and process them to generate outputs to

3 This architecture reflects typical software architecture of embedded systems (especially

application layer) such as network gateways or vehicle controllers which distinguish control
data from computational data.

other components. The generated outputs are transferred to the control component
through a data connector/bus.

Based on the new architecture, we designed components with a macro-processing
mechanism (to incorporate variable features) [12]. In addition, we extracted sub-
components from the existing code through refactoring techniques [13]. Fig. 7 illus-
trates the structured light component. The left part of Fig.7 shows a layered template
for computational components and the structured light component instantiated from
the template. The legacy structured light component was implemented as a long pro-
cedural function. Thus, we extracted reusable portion of the function into “Footstep
Matcher”, “Obstacle Analyzer”, and “Light Image Grabber” components. These lay-
ered components were instantiated for the selected features using a component speci-
fication [14].

Fig. 7. A design object model and component specification

Lines 1-4 of the right part of Fig. 7 specify instantiation of LayeredStruc-

tureComponent implementing “Object Recognition with SL” feature (with vari-
able feature “ShapeMatching”) from StrcutredLightComponent. Lines 5-12
describe how structured light and vision manager are instantiated. Especially, lines 9-
11 specify that if a variant feature “Shape Matching” is selected, the instantiated com-
ponent will have “Footstep Matcher” as its topmost layer; otherwise, “Obstacle Ana-
lyzer” as its topmost layer. Lines 13-20 illustrate how a service is selected for the
service requestor. For example, at line 17, if UF requests service of structured light
components, the service of topmost layer (i.e. “Footstep Matcher”) should be pro-
vided (with an assumption that “Footstep Matcher” feature is enabled). Lines 21-24
show a service chain between layers.

6. Validation of Product Line Assets

We have generated HSR applications using re-engineered product line assets. First,
without difficulty, we have instantiated two applications supporting CC and UF re-
spectively by selecting features required by the services. We could check that new
applications worked successfully according to the given service specifications. For
these two applications, Mode Manager does not enforce control on global behaviors
because the HSR applications run only a single service.

Then, we have instantiated an application supporting both CC and UF services.
The CC and UF services share computational components. Concurrent accesses to the
computational components except “Navigation” did not cause any feature interaction
problem between the CC and UF services; operations requested to the computational
components by CC and UF are mainly reading analyzed data, not updating data. In
addition, the layers accessed by the two services are different. For example, CC ac-
cesses the “Obstacle Analyzer” layer while UF accesses the “Footstep Matcher” layer
of the “Structured Light” component. Operations requested by UF and CC to ”Navi-
gation”, however, are mostly for controlling actuators. Thus, to prevent a feature
interaction problem, Mode Manager coordinated CC and UF using a priority scheme.
Code modification required for priority enforcement was not obstructive because CC
and UF components except Mode Manager did not need to be modified. Therefore,
we have shown that the re-engineered product line assets for HSR are suitable for
creating applications of the home service robot.

7. Lessons Learned

In this section, we describe lessons we have learned from this re-engineering project.

7.1 Importance of Pre-planned Asset Integration

Hardware-oriented or technology-oriented organizations usually consider product
development/instantiation as a last-minute task that can be achieved by simply inte-
grating technology-intensive components. Without a fore-thought architectural con-
sideration and component integration strategies, however, products often suffered
from feature interaction problems and maintenance of applications became costly.

In this case study, we could alleviate these difficulties by providing an architec-
tural framework based on the refined feature model and engineering principles we
adopted for asset development. In addition, the explicit mapping between features and
architectural components made the inclusion/exclusion of features visible. We also
observed that a feature model could play a central role in identifying relationship
between pre-existing features and new features. For example, for the addition of
"User Following" feature, the feature model in Fig.5 shows additional new features
such as “Footstep Tracking” and their relationships with the features of the legacy
applications.

Based on the feature analysis results, we could determine component integration
scheme. For the integration of the "Footstep Tracking" feature, for instance, the com-
ponent that implemented "User Tacking" was modified to accommodate the "Footstep
Tracking" feature and the modified component could confine the variations between
"Distance Tracking" and "Footstep Tracking" by providing a common interface.

7.2 Benefit of a Feature Model in Architecture Layering

Through the case study, we found that the feature model provided a useful informa-
tion for identifying layers in the component architecture. The feature model has fea-
tures representing different levels of computation. Especially variation points show
services of different levels. For example, “Shape Matching”, “Obstacle Reflection”,
and “Image Grab” features (see Fig. 5) are used for UF, CC, and Tele-presence ser-
vices respectively. These features altogether represent computational hierarchy, i.e.,
“Shape Matching” uses result from “Obstacle Reflection” and “Obstacle Reflection”
from “Image Grab”. Accordingly, these features are implemented as a “Footstep
Matcher” layer, an “Obstacle Analyzer” layer, and a “Light Image Grabber” layer of
the structured light component (see Fig. 7). Similarly, we found that “Face Detection
Method” feature also had a hierarchy among its sub-features and, thus, corresponding
“Vision Manager” component was built as a layered structure. Therefore, layering
based on the feature model was very helpful for creating component architecture for
product line engineering.

7.3 Analysis Aid of Process Architecture

Process architecture can help finding possible feature interactions among concurrent
processes. For example, from the process architecture in Fig. 4.b), we could guess
that MC might suffer feature interaction problems due to concurrent input data from
CR and SLS (see Sect. 3.3). Furthermore, process architecture also helps analyzing
the legacy application design. For example, UF service implemented in the legacy
application does not use the front camera, not following the UF service specification
(see Sect. 2). We could find the reason based on the process architecture. In order to
utilize the front camera for UF, the front camera should capture images continuously
to detect user’s face. The “Face Detection” operational unit in the legacy application,
however, was a sequential component of MC, not a separate process running concur-
rently (see Fig. 4.b)). That was the reason why legacy UF application did not use the
front camera.

8. Conclusion

In this paper, we describe re-engineering legacy home service robot applications into
product line assets via a feature-oriented method. We believe that feature-oriented re-

engineering approach can help robot manufacturers to take advantage of product line
framework – decrease in development cost and increase in application flexibility.

As a future work, based on the re-engineered HSR product assets, we plan to study
evolution of HSR product line assets and evaluate both weaknesses and strengths of
the current product line assets. Secondly, we will study and develop guidelines for
evaluating product line assets.

References

1. DeBaud, J.M., Girard, J.F.: The relationship between the Product Line Development Entry
Points and Reengineering, 2nd International Workshop on Development and Evolution of
Software Architectures for Product Families, LNCS 1492, pp. 132-139, (1998)

2. Bayer, J., Girard, J.F, Wuerthner, M., DeBaud, J.M., Apel, M.: Transitioning Legacy Assets
to a Product Line Architecture, 7th European Software Engineering Conference
(ESEC/FSE'99), LNCS-1687, pages 446-463, (1999)

3. Bosch, J., Ran, A.: Evolution of Software Product Families, Software Architectures for
Product Families: International Workshop(IW-SAPF-3), LNCS 1952, pp. 168-183, (2000)

4. Maccari, A., Riva, C.: Architectural Evolution of Legacy Product Families, Software Prod-
uct Family Engineering: 4th International Workshop (PFE-4 2001), LNCS 2290, pp 64-69,
(2002)

5. Kang, K., Lee, J., Donohoe, P.: Feature Oriented Product Line Engineering, IEEE Software,
19(4), July/August, pp. 58-65, (2002)

6. Eixelsberger, W., Kalan, M., Ogris, M., Beckman, H., Bellay, B., Gall, H.: Recovery of
Architectural Structure: A Case Study, 2nd International ESPRIT ARES Workshop on De-
velopment and Evolution of Software Architectures for Product Families LNCS Vol. 1429.
Springer-Verlag, Berlin Heidelberg New York (2002)

7. Bergey, J., O’Brien, L., Smith, D.: Option Analysis for Reengineering (OAR): A Method for
Mining Legacy Assets (CMU/SEI-2001-TN-013). Pittsburgh, PA:Software Engineering In-
stitute, Carnegie Mellon University (2001)

8. Lee, K., Kang, K., Lee, J.: Concepts and Guidelines of Feature Modeling for Product Line
Software Engineering. In: Gacek, C. (eds.): Software Reuse: Methods, Techniques, and
Tools.Lecture Notes in Computer Science, Vol. 2319. Springer-Verlag, Berlin Heidelberg

9. Kim, M., Lee, J., Kang, K., Hong, Y., Bang., S.: Re-engineering Software Architecture of
Home Service Robots: A Case Study, International Conference on Software Engineering,
Missouri, USA, pp.505-513, (2005)

10.Medvidovic, N., Taylor, R. N.: Exploiting architectural style to develop a family of applica-
tions, Software Engineering. IEE Proceeding, Vol. 144, No 5-6. October/December (1997)

11.Lago, P., Vliet, H.: Observations from the Recovery of a Software Product Family, Soft-
ware Product Line Conference 2004, LNCS Vol 3154 Springer-Verlag, Berlin Heidelberg
New York (2004)

12.Basset, P.G.: Framing Software Reuse: Lessons from the Real World. Prentice Hall, Your-
don Press (1997)

13.Fowler, M., Beck, K., Brant.,J., Opdyke, W., Roberts, D.: Refactoring: Improving the De-
sign of Existing Code, Addison-Wesley (2000)

14.Bosch, J., Hogstrom, M.: Product Instantiation in Software Product Lines: A Case Study.
Second International Symposium on Generative and Component-Based Software Engineer-
ing LNCS 2177 (2001)

