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Abstract. Home service robots have a wide range of potential applications, 
such as home security, patient caring, cleaning, etc. The services provided by 
the robots in each application area are being defined as markets are formed and, 
therefore, they change constantly. Thus, robot applications need to evolve both 
quickly and flexibly adopting frequently changing requirements. This makes 
software product line framework ideal for the domain of home service robots. 
Unfortunately, however, robot manufacturers often focus on developing techni-
cal components (e.g., vision recognizer and speech processor) and then attempt 
to develop robots by integrating these components in an ad-hoc way. This prac-
tice produces robot applications that are hard to re-use and evolve when re-
quirements change. We believe that re-engineering legacy robot applications 
into product line assets can significantly enhance reusability and evolvability. 

In this paper, we present our experience of re-engineering legacy home ser-
vice robot applications into product line assets through feature modeling and 
analysis. First, through reverse engineering, we recovered architectures and 
components of the legacy applications. Second, based on the recovered infor-
mation and domain knowledge, we reconstructed a feature model for the legacy 
applications. Anticipating changes in business opportunities or technologies, 
we restructured and refined the feature model to produce a feature model for 
the product line. Finally, based on the refined feature model and engineering 
principles we adopted for asset development, we designed a new architecture 
and components for robot applications. 

1 Introduction 

Home service robots utilize various technology-intensive components such as speech 
recognizers and vision processors to offer services. As markets for home service 
robots are still being formed, however, these technical components undergo frequent 
changes and new services are added and/or existing services are often removed or 
updated to address changing needs of the users. To compete in this rapidly changing 
market, robot manufacturers should be able to evolve robot products quickly with a 
minimal cost. The home service robot industry has strong needs for software devel-



opment framework with which applications can be evolved easily. This situation 
makes software product line ideal for the home service robot industry. 

Due to limited development resources, robot developers focused on technology in-
tensive components at an early stage of product development without careful consid-
eration of how software applications would evolve with changing requirements. 
Without a fore-thought architectural consideration, initial products have often been 
developed by integrating technology components in an ad-hoc way. Consequently, 
products suffered from feature interaction problems and maintenance of applications 
became costly. Re-engineering legacy robot applications into product line assets can 
enhance the competitive power of robot products by both decreasing development 
cost and increasing flexibility of robot applications. Jean-Marc at al [1][2][6] suggest 
an architecture-centric re-engineering process for initial product line asset recovery. 
This approach emphasizes a software architecture as a key to recovery of domain 
concept and relations. Bosch at al [3][4] consider a feature model as a core for creat-
ing product line assets from legacy products. These studies, however, do not suggest 
concrete design principles or guidelines for creating product line assets with adapta-
bility.  

In this paper, we describe our experience of re-engineering home service robot ap-
plications into product line assets via a feature-oriented methodology that is based on 
concrete principles and guidelines [5]. First, we extracted components and architec-
tural information from legacy robot applications [7]. Second, based on the recovered 
information and domain knowledge, we discovered and modeled features of the robot 
applications. Anticipating future evolution of applications by considering potential 
business opportunities and technology changes, we refined the feature model adding 
additional features and variability information [8]. Finally, based on the refined fea-
ture model and three engineering principles we adopted to develop evolvable assets 
[9], we designed a new architecture and components for the product line. This re-
engineering approach is depicted in Fig.1. 

 
Fig. 1. Overview of re-engineering process 

Sect. 2 gives an overview of home service robots. Sect. 3 explains the process of 
recovering architectural information from legacy applications. Sect. 4 describes re-
covery and refinement of a feature model from the legacy applications. Sect. 5 illus-
trates redesign of an architecture and asset components based on the refined feature 
model using the engineering principles we adopted. Sect. 6 validates the re-
engineered product line assets. Finally, Sect. 7 describes the lessons learned from this 
project and Sect. 8 summarizes the paper and suggests future works. 



2. Background on the Home Service Robot (HSR) 

In this section, we briefly overview services of the home service robot (HSR) whose 
applications we re-engineered into product line assets. HSR is developed for daily 
home services such as home surveillance, cleaning, etc. From the HSR manufacturer, 
we received high level specifications of required HSR services such as “Call and 
Come” (locate and come to the user), “User Following” (continuously follow the 
user), “Security Monitoring” (home surveillance), and “Tele-presence” (control HSR 
remotely), etc. 1  In addition, we received two separate HSR applications each of 
which implements the “Call and Come” service and “User Following” service respec-
tively. Of these primary services of HSR, we explain “Call and Come” and “User 
Following" services in detail. 
* Call and Come (CC) 
　 This service first analyzes audio data sampled from microphones attached to the 

surface of the robot and detects predefined sound patterns (e.g., hand clap or voice 
command). Currently, there are two commands “come” and “stop”. Once a “come” 
command is recognized, the robot detects the direction of a sound source. Then, 
the robot rotates to the direction of a sound source and tries to recognize a human 
face by analyzing video data captured through the front camera. If the caller's face 
is detected, the robot moves forward until it reaches within one meter from the 
caller (distance from the caller is measured by a structured light sensor). A “Stop” 
command simply makes the robot stop. If the following operation such as com-
mand recognition, sound source detection, or face recognition fails, CC resets to an 
initial state and waits for a new command.  

* User Following (UF) 
　 The robot uses a front camera and a structured light sensor to locate the user. Once 

UF is triggered, the robot constantly checks the vision data and sensor data from 
the structured light sensor to locate the user. The robot keeps following the user 
within one meter range. If the robot misses the user, the robot notifies the user by 
generating an audio message and UF terminates. The user may give a “come” 
command to let the robot recognize the user and restart UF.  
 
 Based on the given specifications and information extracted from the two legacy 

applications, we recovered a preliminary feature model covering both applications. 
The legacy HSR applications hard-coded most features without considering variation 
points for future extension or refinement. For example, the legacy HSR application 
has features such as “Face Detection Method” and “Object Recognition with SL” for 
user detection and user tracking. These features, however, do not have variations but 
have fixed implementations. For example, “Face Detection Method” is implemented 
based on “Color-based” method, not allowing other detection techniques to be 
adopted. For more detailed of features supported by the legacy HSR applications, see 
Fig. 5. 

                                                           
1 For more information on HSR services and hardware, see [9] 



3. Information Extraction from Legacy HSR Application 

In this section, we explain how architectural information was extracted from the leg-
acy applications and what potential problems were with the architecture.  

3.1 Reverse Engineering Process 

Fig. 2 describes the process of recovering a conceptual architecture as well as a proc-
ess architecture from legacy applications. 
1. From legacy applications, we obtain object relationship diagrams (see Fig. 3) 

mechanically, i.e., using the Rational-Rose2 tool.  
2. Based on the extracted object relationship diagram, we determine objects which 

constitute services (e.g., CC and UF services). This step needs heuristics based 
on domain knowledge and additional data flow analysis. Then, we identify op-
erational units that the service consists of, by analyzing method invocations and 
data flows. By assigning operational units into architectural components, we re-
cover a conceptual architecture. 

3. From the object relationship diagram and identified service/operational units, we 
determine which objects (i.e. active objects) take initiative of invoking other ob-
jects’ operations by creating processes/threads. Then, we identify interactions 
between active objects via a control flow analysis. By capturing these interac-
tions between active objects, we recover a process architecture which shows as-
signment of software components to processes or thread synchronization rela-
tions.  

How this process was applied to CC is explained in the following subsections. 
 

 
Fig. 2. Recovery of conceptual architecture and process architecture 

3.2 Recovery of Operational Units 

Fig. 3 illustrates recovery of operational units from the object relationship diagram 
for CC. Using functional cohesion as a criterion, we classified operational units into 

                                                           
2 Rational-Rose is a trademark of IBM corporation. 



three categories – sensor (input), controller (coordination), and actuator (output). 
Using these categories as a guide, we identified five operational units as follows. 

- sensor units: “Face Detection”, “Clap Recognition”, and “SL Sensing”  
- a controller unit: “CC Command Controller”  
- an actuator unit: “Actuator Controller”  

 
Fig. 3. Recovery of operational units for CC 

3.3 Recovery of Conceptual Architecture and Process Architecture 

Through an additional data flow analysis, the identified operational units are config-
ured into the conceptual architecture depicted in the Fig. 4.a). This conceptual archi-
tecture is hardly adequate for multi-service robots because all service units (e.g. CC 
Command Controller) can access and control “Actuator Controller” directly. This 
architecture can allow services interfere with each other in an indirect way.  

 
Fig. 4. Recovered conceptual architecture and process architecture 



To recover a process architecture, we identified three active objects from the object 
relationship diagram depicted in Fig. 3 by detecting process creation code – 
CEXE_dialogDlg, CRMainControl, and CSL. These objects create three proc-
esses “Motion Controller (MC)” (consisting of “CC Command Controller”, “Face 
Detection”, and “Actuator Controller” operational units), “Clap Recognition (CR)” 
(“Clap Recognition” unit) and “SL Sensing (SLS)” (“Structured Light Sensing” unit) 
respectively as depicted in Fig.4.b). MC receives data such as the distance to an ob-
stacle and the direction of clap sound from SLS and CR respectively. MC determines 
the moving direction based on these data. Thus, without a smart control logic in MC, 
feature interaction between CR and SLS may happen because both processes can 
control MC at the same time.  

4. Refined Feature Model of HSR Product Line  

In this section, we describe a refined feature model of HSR. First, we extracted fea-
tures from the legacy application implementing CC service, which are indicated in 
bold font in Fig. 5. Newly added features and refined features are indicated in italic 
font in Fig. 5. The detailed explanation of the refined feature model is as follows.  

 
 

Fig. 5. Feature model for SH100 including CC service 
 
First, we added new services targeted for different markets. For example, HSR 

supporting only CC service can be produced for a low-end market as a delivery robot, 
while HSR with CC, UF, Tele-presence, and Security Monitoring services can be 
produced for a high-end market as an intelligent home agent. Based on the legacy 



feature model for the CC service, we created a new model by adding features for new 
services, operations, and domain technologies, and also dependency relationships 
between features. Newly added services require operational features not included in 
the original feature model. For example, newly added UF service needs to follow 
user’s footsteps (“Footstep Tracking”). In addition, to follow the user smoothly, UF 
service controls HSR in a velocity oriented way via “Control Velocity Value” (e.g. 
set the velocity of left wheel as 1 m/s, and the right wheel as 0.8 m/s). Furthermore, a 
new operational feature may require new domain technologies. For example, “Foot-
step Tracking” requires “Shape Matching” in order to recognize user’s footsteps.  

Second, we refined the feature model by including optional features to accommo-
date anticipated changes. For example, in the legacy CC application, “Face Detection 
Method” used only a color-based detection algorithm. We refined this feature by 
adding an optional feature “Shape-based” for its improved accuracy adequate for 
high-end markets, but at the cost of high computational resources.  

Third, due to the advances of technologies, some features considered as important 
capabilities can simply be supported by the operational environment as SoC (System 
On Chip) or by OS. In the legacy CC application, “Collision Avoidance (CA)” fea-
ture was implemented in software and placed in the Capability Layer. We moved CA 
to the Operation Environment Layer because of CA SoCs available in the market. 

5. New Architecture Design of HSR  

One of the quality attributes with the new architecture is its flexibility in adding, re-
moving, and/or replacing components as products evolve. For this purpose, we 
adopted C2 architectural style [10] for its substitutability of components. Also, we 
enforced 1:N mapping from features to components whenever possible for easy inclu-
sion/exclusion of features into/from products. Furthermore, through an analysis of 
legacy applications [11] and the refined feature model in Fig. 5, we decided to adopt 
three engineering principles in redesigning the architecture of HSR (for details on 
these principles, see [9]).  

First, the legacy architecture intermixed control components with computational 
components, which caused difficulty in analyzing behaviors of applications. There-
fore, we proposed the first principle – separation of control aspects from computa-
tional aspects. By separating the control plane which consists of control components 
from the data plane with computational components, we could separate data flows 
from control flows, thus making it possible to visualize and analyze behaviors of the 
system. As a consequence, addition/removal of components becomes easier because 
responsibilities of each component become clear. 

Second, we aimed to minimize ripple effects caused when services are added or 
removed - simple integration of new services, without consideration of how features 
should be related with each other, has easily led to feature interaction problems. The 
legacy architecture did not provide careful coordination among service components, 
thus resulted in feature interaction problems when a new service was added. To ad-
dress such problems, we proposed the second principle - separation of global behav-
iors from local behaviors. Service components are separated to be executed locally, 



i.e., independently from other service components. Therefore, effects from addi-
tion/removal of components to other components are localized, which helps imple-
menting variation points. The coordination responsibility among different service 
components is assigned to a special component called Mode Manager which controls 
global system behavior such as interaction policies between service features.  

Finally, we found that there existed hierarchy between some variable features. For 
example, “Object Recognition with SL” feature has three sub-features – “Image 
Grab”, “Obstacle Reflection”, and “Shape Matching” (see Fig. 5). “Image Grab” 
simply captures SL images whereas “Obstacle Reflection” detects objects in front of 
HSR by analyzing the SL images obtained by “Image Grab”. “Shape Matching” 
works more sophisticatedly by analyzing object images obtained from “Obstacle 
Reflection” to recognize user’s legs (e.g., footsteps). Therefore, we made three com-
ponent layers corresponding to these variable features according to the third principle 
- layering in accordance with data refinement hierarchy. Different services may 
request operations from different layers of a single component. By adopting a layered 
architecture for computational components, addition/removal of variable features in 
the Domain Technology Layer could be implemented cleanly because the layered 
architecture provides well-defined interfaces between layers. 

 

 
Fig.6. New architecture for HSR 

 
Fig.6 illustrates the new architecture designed according to the three re-

engineering principles.3 First, we identified four control components: CC, UF, Tele-
presence, and Security Monitoring. And we identified five computational compo-
nents: Navigation, Structured Light, User Interface, Vision Manager, and Audio 
Manager. Mode Manager was specified to control global behavior of HSR by receiv-
ing all up-stream events and managing the control components. Most computational 
components read raw input data from sensors and process them to generate outputs to 

                                                           
3 This architecture reflects typical software architecture of embedded systems (especially 

application layer) such as network gateways or vehicle controllers which distinguish control 
data from computational data. 



other components. The generated outputs are transferred to the control component 
through a data connector/bus. 

Based on the new architecture, we designed components with a macro-processing 
mechanism (to incorporate variable features) [12]. In addition, we extracted sub-
components from the existing code through refactoring techniques [13]. Fig. 7 illus-
trates the structured light component. The left part of Fig.7 shows a layered template 
for computational components and the structured light component instantiated from 
the template. The legacy structured light component was implemented as a long pro-
cedural function. Thus, we extracted reusable portion of the function into “Footstep 
Matcher”, “Obstacle Analyzer”, and “Light Image Grabber” components. These lay-
ered components were instantiated for the selected features using a component speci-
fication [14]. 

 

 
Fig. 7. A design object model and component specification 

 
Lines 1-4 of the right part of Fig. 7 specify instantiation of LayeredStruc-

tureComponent implementing “Object Recognition with SL” feature (with vari-
able feature “ShapeMatching”) from StrcutredLightComponent. Lines 5-12 
describe how structured light and vision manager are instantiated. Especially, lines 9-
11 specify that if a variant feature “Shape Matching” is selected, the instantiated com-
ponent will have “Footstep Matcher” as its topmost layer; otherwise, “Obstacle Ana-
lyzer” as its topmost layer. Lines 13-20 illustrate how a service is selected for the 
service requestor. For example, at line 17, if UF requests service of structured light 
components, the service of topmost layer (i.e. “Footstep Matcher”) should be pro-
vided (with an assumption that “Footstep Matcher” feature is enabled). Lines 21-24 
show a service chain between layers.  



6. Validation of Product Line Assets  

We have generated HSR applications using re-engineered product line assets. First, 
without difficulty, we have instantiated two applications supporting CC and UF re-
spectively by selecting features required by the services. We could check that new 
applications worked successfully according to the given service specifications. For 
these two applications, Mode Manager does not enforce control on global behaviors 
because the HSR applications run only a single service.  

Then, we have instantiated an application supporting both CC and UF services. 
The CC and UF services share computational components. Concurrent accesses to the 
computational components except “Navigation” did not cause any feature interaction 
problem between the CC and UF services; operations requested to the computational 
components by CC and UF are mainly reading analyzed data, not updating data. In 
addition, the layers accessed by the two services are different. For example, CC ac-
cesses the “Obstacle Analyzer” layer while UF accesses the “Footstep Matcher” layer 
of the “Structured Light” component. Operations requested by UF and CC to ”Navi-
gation”, however, are mostly for controlling actuators. Thus, to prevent a feature 
interaction problem, Mode Manager coordinated CC and UF using a priority scheme. 
Code modification required for priority enforcement was not obstructive because CC 
and UF components except Mode Manager did not need to be modified. Therefore, 
we have shown that the re-engineered product line assets for HSR are suitable for 
creating applications of the home service robot. 

7. Lessons Learned 

In this section, we describe lessons we have learned from this re-engineering project. 

7.1 Importance of Pre-planned Asset Integration 

Hardware-oriented or technology-oriented organizations usually consider product 
development/instantiation as a last-minute task that can be achieved by simply inte-
grating technology-intensive components. Without a fore-thought architectural con-
sideration and component integration strategies, however, products often suffered 
from feature interaction problems and maintenance of applications became costly.  

In this case study, we could alleviate these difficulties by providing an architec-
tural framework based on the refined feature model and engineering principles we 
adopted for asset development. In addition, the explicit mapping between features and 
architectural components made the inclusion/exclusion of features visible. We also 
observed that a feature model could play a central role in identifying relationship 
between pre-existing features and new features. For example, for the addition of 
"User Following" feature, the feature model in Fig.5 shows additional new features 
such as “Footstep Tracking” and their relationships with the features of the legacy 
applications.  



Based on the feature analysis results, we could determine component integration 
scheme. For the integration of the "Footstep Tracking" feature, for instance, the com-
ponent that implemented "User Tacking" was modified to accommodate the "Footstep 
Tracking" feature and the modified component could confine the variations between 
"Distance Tracking" and "Footstep Tracking" by providing a common interface.  

7.2 Benefit of a Feature Model in Architecture Layering 

Through the case study, we found that the feature model provided a useful informa-
tion for identifying layers in the component architecture. The feature model has fea-
tures representing different levels of computation. Especially variation points show 
services of different levels. For example, “Shape Matching”, “Obstacle Reflection”, 
and “Image Grab” features (see Fig. 5) are used for UF, CC, and Tele-presence ser-
vices respectively. These features altogether represent computational hierarchy, i.e., 
“Shape Matching” uses result from “Obstacle Reflection” and “Obstacle Reflection” 
from “Image Grab”. Accordingly, these features are implemented as a “Footstep 
Matcher” layer, an “Obstacle Analyzer” layer, and a “Light Image Grabber” layer of 
the structured light component (see Fig. 7). Similarly, we found that “Face Detection 
Method” feature also had a hierarchy among its sub-features and, thus, corresponding 
“Vision Manager” component was built as a layered structure. Therefore, layering 
based on the feature model was very helpful for creating component architecture for 
product line engineering.  

7.3 Analysis Aid of Process Architecture 

Process architecture can help finding possible feature interactions among concurrent 
processes. For example, from the process architecture in Fig. 4.b), we could guess 
that MC might suffer feature interaction problems due to concurrent input data from 
CR and SLS (see Sect. 3.3). Furthermore, process architecture also helps analyzing 
the legacy application design. For example, UF service implemented in the legacy 
application does not use the front camera, not following the UF service specification 
(see Sect. 2). We could find the reason based on the process architecture. In order to 
utilize the front camera for UF, the front camera should capture images continuously 
to detect user’s face. The “Face Detection” operational unit in the legacy application, 
however, was a sequential component of MC, not a separate process running concur-
rently (see Fig. 4.b)). That was the reason why legacy UF application did not use the 
front camera. 

8. Conclusion 

In this paper, we describe re-engineering legacy home service robot applications into 
product line assets via a feature-oriented method. We believe that feature-oriented re-



engineering approach can help robot manufacturers to take advantage of product line 
framework – decrease in development cost and increase in application flexibility.  

As a future work, based on the re-engineered HSR product assets, we plan to study 
evolution of HSR product line assets and evaluate both weaknesses and strengths of 
the current product line assets. Secondly, we will study and develop guidelines for 
evaluating product line assets. 
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