
Empirical Study of Effectiveness of EvoSuite on
the SBST 2020 Tool Competition Benchmark

Robert Sebastian Herlim1, Shin Hong2, Yunho Kim3, and Moonzoo Kim1

1 KAIST, Daejeon, South Korea
robert.herlim@kaist.ac.kr, moonzoo@cs.kaist.ac.kr

2 Handong Global University, Pohang, South Korea hongshin@handong.edu
3 Hanyang University, Seoul, South Korea yunhokim@hanyang.ac.kr

Abstract. EvoSuite is a state-of-the-art search-based software testing
tool for Java programs and many researchers have applied EvoSuite to
achieve high test coverage. However, due to high complexity of object-
oriented programs, EvoSuite still suffers several limitations in terms of
test coverage achievement. In this paper, to improve the effectiveness of
EvoSuite by analyzing EvoSuite’s limitations, we conducted an empirical
study to identify the limitations of EvoSuite on the most recent SBST
2020 Tool Competition benchmark that consists of 70 classes selected
from real-world Java projects. We have manually classified the branches
of the target programs that EvoSuite could not cover and reported cor-
responding limitations of EvoSuite with concrete examples.

Keywords: Empirical study · EvoSuite · SBST Tool Competition

1 Introduction

Automated test case generation has been a prominent research topic for the past
decade [3,6,8–10]. Among several automated test generation techniques, search-
based software testing attracts researchers for its high scalability and high test
coverage. EvoSuite [6] is a state-of-the-art search-based software testing tool
for Java programs and many researchers have used EvoSuite to detect faults in
real-world industrial cases [1, 14] and achieve high test coverage [7, 13].

In this paper, to improve the effectiveness (i.e., test coverage achievement)
of EvoSuite by analyzing the EvoSuite’s limitations, we conducted an empirical
study by applying EvoSuite to the SBST 2020 Tool Competition [5] benchmark
(calling it the SBST 2020 benchmark).4 We replicated the contest setting used by
EvoSuite during the competition to obtain its coverage report. From the report,
we manually analyzed each branch that EvoSuite could not cover and grouped
them into a few categories.

4 SBST 2020 Tool Competition benchmark was the latest available dataset in the
annual SBST Tool Competition series by the time we performed this study. The
SBST 2020 benchmark consists of 70 classes selected from real-world open-source
Java projects. The contest infrastructure for replicating the SBST competition series
is available at https://github.com/JUnitContest/JUGE.

2 Herlim et al.

Table 1: Target subjects & EvoSuite’s achieved coverage

Subject #Classes
#Branches Br. Coverage (%)

Total Mean Median Stdev Mean Stdev

FESCAR 20 490 24.5 11 27.3 66.9 42.9
GUAVA 20 926 46.3 19 61.5 67.5 32.4
PDFBOX 20 1,070 53.5 24 75.6 54.7 36.1
SPOON 10 1,072 107.2 45 12.9 28.0 24.5

There have been several attempts to study the limitations of EvoSuite in
previous works, such as categorizing the kinds of hard-to-detect faults [2] and
bad quality tests [12]. To the best of our knowledge, this is the first attempt
to identify the limitations of EvoSuite exclusively for categorizing reasons of
not-covered branches in the SBST 2020 benchmark. Compared with the original
EvoSuite’s post-mortem report [11], this paper shows a clearer picture of the
challenges of EvoSuite on the SBST 2020 benchmark by reporting the limitations
with concrete examples. The main contributions of this paper are as follows:

1. We performed an empirical study by applying EvoSuite to the recent SBST
2020 benchmark, from which we identified several limitations that EvoSuite
struggles with.

2. We extensively analyzed the branches that EvoSuite could not cover in
the benchmark and classified the corresponding reasons for those branches,
which have not been done previously by other empirical study papers.

The remaining sections are organized as follows: Section 2 describes the study
questions and the empirical study setup. Section 3 reports the answers to the
study questions. Finally, Section 4 concludes this paper with future work.

2 Empirical Study Setup

2.1 Benchmark Overview

The SBST 2020 Tool Competition [5] benchmark contains 70 different classes
selected from the following four real-world open-source projects:

– FESCAR: an open-source distributed transaction library to support trans-
actions in microservice.

– GUAVA: a common Java library developed by Google which provides col-
lection classes.

– PDFBOX: a PDF processing library which provides PDF manipulation
utilities, such as text extraction, splitting, merging, and document signing.

– SPOON: a library for Java source code analysis and transformation.

Table 1 describes the benchmark subjects and the branch coverage on each
subject achieved by EvoSuite following the analysis procedure (see Section 2.2).

Empirical Study of EvoSuite in the SBST 2020 Tool Competition 3

Fig. 1: EvoSuite’s achieved branch coverage per class. Each data point repre-
sents the average score of EvoSuite’s achieved branch coverage in a class of the
respective subject.

For example, FESCAR (see the second row of the table) has 20 classes that
contain total 490 branches and EvoSuite achieved 66.9% branch coverage on
FESCAR on average in the experiment. Note that the benchmark does not
provide any detail of fault existence in the target classes, so fault detection is
beyond the scope of our study.

Figure 1 shows the scatter plot of class coverage on each subject. For exam-
ple, GUAVA has four classes on which EvoSuite achieved around 60% branch
coverage (see the four data points in the middle part of the GUAVA graph) and
six classes on which EvoSuite achieved 100% branch coverage (see the rightmost
six data points in the GUAVA graph).

2.2 Analysis Procedure

The experiments were conducted on one machine equipped with octa-core AMD
Ryzen 7 1700 (up to 3.7 GHz) and 16GB RAM, running a 64-bit version of
Ubuntu 16.04. We used OpenJDK v1.8.0 for the Java SE and Maven v3.3.9
for the project build tool. We used the official Docker infrastructure in the version
with commit hash 2ed9d22. Except the post-processing part5, we followed the
EvoSuite’s contest configurations to use EvoSuite’s default configurations. Three
minutes was set for the time budget, consisting 50% for the search and 50% for
other remaining part. JaCoCo was used to measure the branch coverage, and
by which we generated coverage report (using HTML format) to analyze the

5 For this independent replication study, we disabled the test suite minimization step
to reduce the risk of coverage loss caused by unintended test case reduction.

4 Herlim et al.

Table 2: Reasons/limitations of the not-covered branches

Category Description Mnemonic

1 Construction problem
1A Construction failure EvoSuite failed to construct CUT (Class Under Test) C-CF
1B Complex construction CUT can be instantiated, but in non-trivial ways C-CC

2 OO-related problem
2A Private access on method A method protected by private keyword O-PAM
2B Inheritance instantiation A method needs particular subclasses as argument O-IIP
2C Class<?> as an argument A branch condition checks on special Class<?> type O-CLA
2D Inner class method invocation A method is only callable through its inner classes O-ICM

3 Large search space problem
3A Incomprehensive method testing A method with simple arguments, but left untested L-IMT
3B Specific value in iterable/stream Needs specific values in byte/string/input stream L-ISV
3C Key-value store pattern Uses a dictionary (e.g., java.util.Map) L-KVS
3D Obj. state in an argument An argument state needs to be further modified L-OSA
3E Obj. state in invoking object An object state needs to be further modified L-OSI

4 Other problem
4A File system access A method performs operations on file system FSA
4B JVM’s System.getProperty call A method checks on env. variable stored in JVM JSC
4C Branch unreachable Unfeasible branches by program executions UBR

Listing 1.1: Example of reached but not covered branch

L1:void f(int x,int y) {
L2: ...
L3: if (x>0) { /* br1 */
L4: } else { /* br2 */
L5: if (y>0) { /* br3 */}}}

not-covered branches. To limit the random variance, we performed six repeated
experiment runs on each subject. We counted a branch b as not-covered if b was
not covered by any of the six experiment runs.

Note that we investigated the reached but not covered branches only. For
Listing 1.1, with an input (x,y)=(1,1) for f(), the branch br1 in L3 is reached
and covered, br2 in L4 is reached but not covered, and br3 in L5 is not reached
(and, thus, not covered). In other words, we did not analyze the branches that
were not reached by any test input because the reason for not covering such
unreached branches can be complex to classify. For example, the reason of why
br3 was not covered with (x,y)=(1,1) does not only depend on L5, but its all
predecessor conditions such as L2 and so on. We could hypothesize that the br3
coverage failure was caused by “argument x was always > 0” (the same cause as
failure in br2), but it may not be true because another input where (x,y)=(0,0)
would neither make br3 to be covered.

From now on, we use the term not-covered to represent reached but not
covered branches in this paper. We manually analyzed total 359 not-covered
branches in the SBST 2020 benchmark. The raw data is accessible through
https://bit.ly/evoStudySSBSE2021RENE.

Empirical Study of EvoSuite in the SBST 2020 Tool Competition 5

2.3 Study Questions

After manually analyzing reached but not covered branches by EvoSuite, we clas-
sified the limitations of EvoSuite on the SBST 2020 benchmark into four groups
(i.e., construction problem, OO-related problem, large search space problem, and
other problem) of the 14 categories as shown in Table 2. For the empirical study,
we made the following four study questions:

SQ 1 Object Construction Problem. How much do the object construction
problems impact EvoSuite’s branch covereage?

SQ 2 OO-related Problem. How much do the OO-related problems impact
EvoSuite’s branch coverage?

SQ 3 Large Search Space Problem. How much do the large search space
problems impact EvoSuite’s branch coverage?

SQ 4 Other Problem. How much do the environment-related problem and
unreachable branches impact EvoSuite’s branch coverage?

Second, we tried to identify common major limitations of EvoSuite on the
SBST 2020 benchmark. The term common is used on the limitations that are
observed on all four target subjects of the benchmark. Such common problems
are particularly interesting because they may be general limitations that apply
to not only SBST 2020 benchmark but also other programs. We define common
and major limitations as follows:

– A category becomes a common problem if its occurrences can be found across
all four subjects in the benchmark.

– A category becomes a major problem (in one subject) if it appears in at
least 25% of the classes with not-covered branches (i.e., classes with < 100%
branch coverage).

SQ 5 Common Major Problems. By running EvoSuite on the SBST 2020
Tool Competition benchmark, is there any common major problem found across
all target subjects?

3 Empirical Study Results

Figure 2 shows the distribution of the limitation categories of the branches that
EvoSuite could not cover (see Table 2). For example, the 11 branches of FES-
CAR and the 20 branches of GUAVA were not covered by EvoSuite due to the
construction failure (C-CF) and the complex construction (C-CC) respectively
(see the bar of light blue color (FESCAR) and the bar of green color (GUAVA)
of the two leftmost bars (C-CF and C-CC) in Figure 2).

6 Herlim et al.

Fig. 2: Distribution of the limitation categories of not-covered branches

3.1 SQ1: Object Construction Problem

1A Construction failure (C-CF). The C-CF category indicates that Evo-
Suite fails to instantiate an instance of CUT (class under test). Several interesting
causes of C-CF in the benchmark are as follows:

1. Constructor needs complex arguments:
For example, consider a constructor 6 of PDVisibleSignDesigner (PDFBOX-130)
shown in Listing 1.2. The constructor needs: (1) a PDDocument-typed document
with p pages (p > 0); (2) an InputStream-typed imageStream transformed
from any valid BufferedImage; and (3) an integer page where page ∈ (0, p].
Violating any of the constraints (e.g., page = 0, null imageStream or empty
InputStream such as returned by new ByteArrayInputStream(new byte[5]))
would result an exception raised during the execution. Due to these con-
straints, we found EvoSuite could not construct a PDVisibleSignDesigner
instance during the runs.
Another example is FilteredEntryMultimap (GUAVA-47), where its construc-
tor needs a Predicate-typed instance. We found in eight out of 12 test cases
where EvoSuite used a BloomFilter instance as an argument of a Predicate-
typed instance, in which six out of the eight test cases failed (i.e., raising
exceptions) during the BloomFilter construction. This indicates that gener-
ating a valid Predicate instance is highly complex for EvoSuite. We observed

6 We observed that other six PDVisibleSignDesigner constructors have a similar con-
struction failure problem as described in this paper.

Empirical Study of EvoSuite in the SBST 2020 Tool Competition 7

Listing 1.2: Construction failure in PDFBOX-130

L1: public PDVisibleSignDesigner(PDDocument document ,
L2: InputStream imageStream , int page) throws IOException {
L3: readImageStream(imageStream);
L4: calculatePageSize(document , page); }

that such failures in constructing BloomFilter induced failure constructions
of FilteredEntryMultimap, which causes testing could not reach any other
member methods that needs at least one FilteredEntryMultimap instance
as target object.

2. Dependency on another C-CF class:
For example, the constructor of FilteredMultimapValues (GUAVA-240) needs
a FilteredMultimap-typed argument. Every subclass of FilteredMultimap
needs a Predicate instance (a complex object as described above), causing
EvoSuite to fail at constructing a FilteredMultimapValues instance. As a
result, all seven related member methods were not covered.

3. Accessibility conflict on constructor’s arguments:
For example, the constructor of PDTrueTypeFontEmbedder (PDFBOX-235) re-
ceives a TrueTypeFont-typed instance as a parameter. EvoSuite could not
generate a PDTrueTypeFontEmbedder instance since TrueTypeFont is package-
private and located in a different package.

4. Missing class from the classloader:
The classloader could not find a constructor parameter type (e.g., FESCAR-6,
FESCAR-8, FESCAR-15, FESCAR-41, SPOON-155), which induced an exception
(i.e., NoClassDefFoundError). 7

1B Complex construction (C-CC). Compared to the C-CF category where
object creation entirely fails, this C-CC category applies to the CUTs with suc-
cessful instantiation, but of only simple objects. Several interesting causes of
C-CC in the benchmark are as follows:

1. Implicit object construction convention:
For example, the only way to construct ImmutableEnumSet (GUAVA-206) is
by invoking the static factory method asImmutable as shown in Listing 1.3.
However, asImmutable may not generate a ImmutableEnumSet instance (but
ImmutableSet-typed instead) if the given set argument’s size is ≤ 1 (L3–
L5). To mitigate this case, EvoSuite should infer how to obtain the correct
ImmutableEnumSet instance by invoking asImmutable with an EnumSet in-
stance of > 1 elements (L6).

2. Dependency to other unknown class:
Another example is Graphs (GUAVA-22), whose methods perform graph op-
erations (e.g., transposing, finding reachable nodes) on Graph instances. For

7 We suspect that these limitations were caused by a bug in EvoSuite since those
missing classes had been correctly placed in the same directory and package as the
CUT.

8 Herlim et al.

Listing 1.3: Complex construction problem in GUAVA-206

L1: static ImmutableSet asImmutable(EnumSet set) {
L2: switch (set.size()) {
L3: case 0: return ImmutableSet.of();
L4: case 1: return ImmutableSet.of(
L5: Iterables.getOnlyElement(set));
L6: default: return new ImmutableEnumSet(set); } }

Listing 1.4: Inheritance instantiation problem in SPOON-105

L1: // To cover: pass a CtCatch instance to the first argument
L2: SourcePosition buildPositionCtElement(CtElement e, ...) {
L3: if (e instanceof CtCatch) { // then branch was not covered
L4: return SourcePosition.NOPOSITION;
L5: } ... }

this case, we found EvoSuite generated method call sequences using empty
Graph instances. That is because the standard construction (i.e., through
available constructors) produces empty Graph objects by default. To con-
struct more diverse Graph objects (e.g., adding nodes/edges, cyclic/acyclic,
directed/undirected), EvoSuite has to use a builder class. Since the relation-
ship between the builder class and CUT to construct more complex Graph
instances is unknown to EvoSuite, EvoSuite failed to cover branches relevant
to diverse Graph instances.

3.2 SQ2: OO-related Problem

2A Private access on method (O-PAM):
We observed that 42 methods (from 13 different classes) could not be tested
due to the private access issue. For example, almost 50% (nine out of 20) of the
PositionBuilder’s (SPOON-105) private methods were not covered.

2B Inheritance instantiation problem (O-IIP):
The O-IIP category is mostly encountered in the form of inheritance-checking
conditions, caused by the instanceof operator in Java. An example of O-IIP
category is shown in Listing 1.4. In the example, the return statement at L4
was not covered because EvoSuite could not satisfy the condition at L3. For
example, SPOON suffered from O-IIP severely (i.e., 23 branches in five out of
the ten SPOON classes were affected).

2C Class<?> as a method argument (O-CLA):
Java provides java.lang.Class to represent any class or interface in the appli-
cation, which is commonly utilized by the factory classes. Having a Class<?>
parameter enlarges the search space because all classes in the classpath be-
come candidates for the method’s arguments. For example, DefaultCoreFactory
(SPOON-65) creates a CtElement instance based on the supplied argument klass,
as shown in Listing 1.5. We found that EvoSuite failed to cover any of the 83 (=
3+80) then branches that can be taken if the corresponding equality checking
branch passes (e.g., L2, L4, L6).

Empirical Study of EvoSuite in the SBST 2020 Tool Competition 9

Listing 1.5: Class<?> as method argument in SPOON-65

L1: public CtElement create(Class <? extends CtElement > klass) {
L2: if (klass.equals(CtAnnotationFieldAccess.class))
L3: return createAnnotationFieldAccess ();
L4: if (klass.equals(CtArrayRead.class))
L5: return createArrayRead ();
L6: if (klass.equals(CtArrayWrite.class))
L7: return createArrayWrite ();
L8: /* ... 80 more similar if-statments */ }

Listing 1.6: Inner class method invocation requirement in GUAVA-102

L1: // To cover: use NodeIterator ’s remove API
L2: public class LinkedListMultimap <K, V> {
L3: private void removeNode(Node <K, V> node) {
L4: if (node.previous != null) { /* not covered */ } ... }
L5: ...
L6: // NodeIterator is an inner class of LinkedListMultimap
L7: private class NodeIterator {
L8: public void remove () { ...
L9: removeNode(current);
L10: ... }
L11: } ... }

2D Inner class method invocation requirement (O-ICM):
Although inner classes are located inside the CUT, EvoSuite did not generate
a method call sequence using methods from the inner classes. However, some
of the CUT’s methods can only be invocable though the inner classes of the
CUT. 8 Listing 1.6 shows an example of O-ICM category in LinkedListMultimap
(GUAVA-102). In LinkedListMultimap, a private method removeNode (L3) was
never invoked because it was invocable only through the remove API (L8) of
LinkedListMultimap’s iterator inner classes, such as NodeIterator (L7). Our
coverage report showed that although EvoSuite had constructed NodeIterator
instances (e.g., by generating valueIterator call), no further method invocation
was performed on the resulted iterator instances. Therefore, removeNode was not
covered.

3.3 SQ3: Large Search Space Problem

3A Incomprehensive method testing (L-IMT):
For example, EvoSuite did not generate a call sequence for a member method
createSerializedForm in SparseImmutableTable (GUAVA-129), although the
method is declared as public and takes no argument. We observed L-IMT also
occurred in the caching pattern, whose example is shown in Listing 1.7. This is a
common pattern to prevent multiple creations of expensive objects (L5) by keep-
ing previously-created reference in the class’ field (L6). Through this pattern,
the next invocation of toString does not invoke computeToString if the result

8 We guess that EvoSuite may consider that generating method call sequences using
the methods of the CUT’s inner classes would not increase the coverage of CUT
since the CUT’s inner classes are separate classes from the CUT.

10 Herlim et al.

Listing 1.7: Caching pattern inside class in GUAVA-212

L1: // To cover: invoke toString () twice.
L2: public String toString () {
L3: String result = toString;
L4: if (result == null) {
L5: result = computeToString ();
L6: toString = result;
L7: } // The else branch was not covered
L8: return result; }

has been stored in the toString member field. The benchmark contains sev-
eral methods adopting this caching pattern, such as in MediaType (GUAVA-212),
Graphs (GUAVA-22), and PDType3Font (PDFBOX-265). EvoSuite rarely performed
repeated invocations on such methods, which left the else branches (L4 in List-
ing 1.7) not covered.

3B Specific value in iterable/stream (L-ISV):
The L-ISV category requires some specific input byte sequences to satisfy the
branch condition. Several L-ISV examples are as follows:

– The decode of JPXFilter (PDFBOX-220) needs a valid JPEG2000-formatted
InputStream as an argument. The decode calls another method readJPX,
where readJPX will throw an IOException if the given InputStream in the
method argument is not JPEG2000-formatted. In this case, EvoSuite failed
to supply the valid InputStream, leaving other seven branches in readJPX
method not reached.

– The getEndOfComment of PositionBuilder (SPOON-105) needs a char[] buffer
as an argument. The method searches the end-of-comment token (i.e., ’*/’)
in the char[] buffer. EvoSuite failed to generate a valid test case to cover
the equality checking branch within the getEndOfComment method.

3C Key-value store pattern (L-KVS):
The L-KVS category is related to the use of key-value data structure (e.g., Map)
in branch conditions. Such conditions increase the complexity as they require a
correct guess in three dimensions: key, value, and the key-value pair combination.
For example, consider Predictor (PDFBOX-117) as shown in Listing 1.8. In this
example, branch in L6 was not covered because decodeParams never had an entry
for key = COSName.PREDICTOR as requested at L5-L6. Note that, to put an item
to COSDictionary, EvoSuite has to select a key from 517 available COSName. We
found that L-KVS majorly impacted PDFBOX (i.e., 10 out of 20 classes (50%)
suffered L-KVS as shown in Figure 3)

3D Object state problem in argument (L-OSA):
The L-OSA category requires further alteration of the state of the object passed
as a method argument. L-OSA examples are as follows:

– The visitCtClass of ImportScannerImpl (SPOON-169):
As illustrated in Listing 1.9, the body statement in L5 was not covered

Empirical Study of EvoSuite in the SBST 2020 Tool Competition 11

Listing 1.8: Key-value store problem in PDFBOX-117

L1: // To cover: pass decodeParams argument containing entry
L2: // { key = COSName.PREDICTOR , value = COSNumber > 1 }
L3: static OutputStream wrapPredictor(OutputStream out ,
L4: COSDictionary decodeParams) {
L5: int predictor = decodeParams.getInt(COSName.PREDICTOR);
L6: if (predictor > 1) { /* not covered */ }
L7: else { return out; } }

Listing 1.9: Argument state problem in SPOON-169

L1: // To cover: invoke ctClass.setTypeMembers ()
L2: public <T> void visitCtClass(CtClass <T> ctClass) {
L3: addClassImport(ctClass.getReference ());
L4: for (CtTypeMember t : ctClass.getTypeMembers ()) {
L5: ... // This block was not covered
L6: } super.visitCtClass(ctClass); }

because getTypeMembers (L4) called only returned empty iterables. To cover
the not-covered branch, setTypeMembers invocation on ctClass argument
was necessary prior to the visitCtClass method call (to set the typeMembers
field of ctClass argument). However, EvoSuite did not invoke a such call.

– The setCount of TreeMultiset (GUAVA-39):
As illustrated in Listing 1.10, the setCount method has a then branch (L7)
which was not covered because EvoSuite did not pass an integer value greater
than 0 as an argument to setCount to satisfy the branch condition.

3E Object state problem in invoking object (L-OSI):
The L-OSI category requires to alter the CUT’s object state further for not-
covered branches. Several L-OSI examples are as follows:

– The addClassImport of ImportScannerImpl (SPOON-169) as shown in List-
ing 1.11. The addClassImport has three if statements (L4, L5, L6) whose
conditions check whether the member field targetType is not equal to null.
All three conditions were not satisfied because the targetType field was never
got assigned to non-null value by EvoSuite. To assign the targetType field
with non-null value, EvoSuite should invoke the computeImports prior to
the addClassImport method call since the targetType initialization happens
only in the computeImport call.

– The isEmpty of LinkedListMultimap (GUAVA-102) checks whether the linked
list is empty by the head == null conditional expression. We found EvoSuite
applied only empty lists to the isEmpty method in all attempts, which caused
the negated branch of head == null (i.e., head != null) remain not covered.

3.4 SQ4: Other Problem

4A File system access (FSA):
The FSA category relates to attempts to access files in the file system. EvoSuite
already provides a Virtual File System (VFS) [4] to handle such file accesses

12 Herlim et al.

Listing 1.10: Argument state problem in GUAVA-39

L1: // To cover: argument newCount > 0
L2: public boolean setCount(@Nullable E element , int oldCount ,
L3: int newCount) { ...
L4: AvlNode <E> root = rootReference.get();
L5: if (root == null) {
L6: if (oldCount == 0) {
L7: if (newCount > 0) { /* not covered block */ }
L8: return true;
L9: } else { return false; } } ... }

Listing 1.11: Invoking object state problem in SPOON-169

L1: // To cover: invoke computeImports prior to addClassImport
L2: protected boolean addClassImport(CtTypeReference <?> ref) {
L3: ...
L4: if (targetType != null && ...) { /* not covered */ } ...
L5: if (targetType != null && ...) { /* not covered */ } ...
L6: if (targetType != null) { ... /* not covered */ } ... }
L7:
L8: public void computeImports(CtElement element) { ...
L9: targetType = ... /* targetType was set to non -null here */
L10: ... }

during testing. However, there are still cases where VFS itself is insufficient, for
example when the target program expects files with certain extension, file format,
or possibly existing OS-related files. Several FSA examples in the benchmark are
as follows:

– FileSystemFontProvider (PDFBOX-8) as shown in Listing 1.12. During its
construction, FileSystemFontProvider performs a scan (L3) for existing font
files in the file system. The test failed to find font files in the file system,
causing files (L1) and fonts (L3) became empty lists. Thus, the for loop
in L4 and other six branches within the same class became not covered.

– MavenLauncher (SPOON-32) requires to read a valid Maven’s pom.xml file,
whose path specified in its constructor’s argument. If a valid pom.xml file
does not exist in the file system, the execution will raise an SpoonException
so the test will not cover certain branches.

4B JVM’s System.getProperty call (JSC):
JRE allows JVM to store values through System.setProperty. However, Evo-
Suite provides no mechanism to update those values. For an example of
FileSystemFontProvider (PDFBOX-8) in Listing 1.13, the program queried the
"pdfbox.fontcache" (L2) and "user.home" (L4) property. But the values of
path in L3 and L5 were always null since EvoSuite did not update those values.

4C Branch unreachable (UBR):
The UBR category captures all branches that are infeasible to cover by any ex-
ecution paths. We found that 33 not-covered branches belonged to UBR, which
corresponded to around 9% of the not-covered branches that we manually ana-
lyzed. For an example in the Listing 1.14, getDeclaration in CtLocalVariable-

Empirical Study of EvoSuite in the SBST 2020 Tool Competition 13

Listing 1.12: File system access in PDFBOX-8

L1: List <File > files = new ArrayList <File >();
L2: FontFileFinder fontFileFinder = new FontFileFinder ();
L3: List <URI > fonts = fontFileFinder.find();
L4: for (URI font : fonts) {
L5: files.add(new File(font)); // not covered
L6: } ...

Listing 1.13: JVM’s System.getProperty problem in PDFBOX-8

L1: private File getDiskCacheFile () {
L2: String path = System.getProperty("pdfbox.fontcache");
L3: if (path == null || ...) { // else was not covered
L4: path = System.getProperty("user.home");
L5: if (path == null || ...) { // else was not covered
L6: path = System.getProperty("java.io.tmpdir"); } }
L7: return new File(path , ".pdfbox.cache"); }

ReferenceImpl (SPOON-20) has a null-checking branch (L3) on the return value
of getFactory (L2). The getFactory (L5-L7) never returns a null value, causing
the then branch in L3 not to be covered.

3.5 SQ5: Common Major Problems

Figure 3 shows the distribution of the limitation categories (described in Table 2)
of the not-covered branches per subject in the SBST 2020 benchmark. Note that
Figure 3 shows data aggregated per class (i.e., multiple branches with the same
category within the same class is counted as one) to find a common major
problem in SQ 5.

We found that EvoSuite has no common major problem across all four target
subjects. However, each subject has its own major problem (see the number
of the classes of each subject (Table 1) and Figure 3). For example, the key-
value store pattern (L-KVS) was a major problem in PDFBOX only (i.e., 10
out of 20 classes of PDFBOX suffered L-KVS. But, only one class of GUAVA
(and SPOON) suffered L-KVS and FESCAR had no class that suffered L-KVS).
Similarly, construction failure (C-CF) was a major problem in FESCAR only.

4 Conclusion and Future Work

To improve the effectiveness of EvoSuite by analyzing the EvoSuite’s limita-
tions, this paper presents the limitations of EvoSuite through an empirical study
on the latest SBST 2020 benchmark. Through the manual analysis of the 359
reached-but-not-covered branches, we classified the four groups of the limitations
of EvoSuite (i.e., construction problems, OO-related problems, large search space
problems, and so on (Table 2)). We reported all observed limitations of EvoSuite
on the SBST 2020 benchmark with concrete examples so that researchers and
practitioners can address such limitations more clearly. For future work, we plan

14 Herlim et al.

Listing 1.14: Unreachable branch in SPOON-20

L1: public CtLocalVariable <T> getDeclaration () {
L2: final Factory factory = getFactory ();
L3: if (factory == null) { return null; /* not covered */ }
L4: ... }
L5: public Factory getFactory () {
L6: if (this.factory == null) { return DEFAULT_FACTORY; }
L7: return factory; }

Fig. 3: Limitation category distribution aggregated per class

to apply EvoSuite to more target benchmarks and study the effect of allocat-
ing higher search budget and using different fitness functions towards coverage
attainment.

Acknowledgments. We would like to thank Ahcheong Lee for his effort to dis-
cuss the experiment results. This research work is supported by Basic Research
Program (NRF-2020R1C1C1013512, NRF-2020R1C1C1013996, NRF-2021R1A2C2009384) of Na-
tional Research Foundation (NRF) of South Korea and NRF grant funded by
the Korea government (MSIT) (2021R1A5A1021944).

References

1. Almasi, M.M., Hemmati, H., Fraser, G., Arcuri, A., Benefelds, J.: An indus-
trial evaluation of unit test generation: Finding real faults in a financial appli-
cation. In: 2017 IEEE/ACM 39th International Conference on Software Engineer-
ing: Software Engineering in Practice Track (ICSE-SEIP). pp. 263–272 (2017).
https://doi.org/10.1109/ICSE-SEIP.2017.27

2. Almasi, M.M., Hemmati, H., Fraser, G., Arcuri, A., Benefelds, J.: An indus-
trial evaluation of unit test generation: Finding real faults in a financial appli-
cation. In: 2017 IEEE/ACM 39th International Conference on Software Engineer-
ing: Software Engineering in Practice Track (ICSE-SEIP). pp. 263–272 (2017).
https://doi.org/10.1109/ICSE-SEIP.2017.27

Empirical Study of EvoSuite in the SBST 2020 Tool Competition 15

3. Arcuri, A.: Restful api automated test case generation. In: 2017 IEEE International
Conference on Software Quality, Reliability and Security (QRS). pp. 9–20 (2017).
https://doi.org/10.1109/QRS.2017.11

4. Arcuri, A., Fraser, G., Galeotti, J.P.: Automated unit test generation
for classes with environment dependencies. In: Proceedings of the 29th
ACM/IEEE International Conference on Automated Software Engineering.
p. 79–90. ASE ’14, Association for Computing Machinery, New York,
NY, USA (2014). https://doi.org/10.1145/2642937.2642986, https://doi.org/10.
1145/2642937.2642986

5. Devroey, X., Panichella, S., Gambi, A.: Java unit testing tool competition: Eighth
round. In: Proceedings of the IEEE/ACM 42nd International Conference on Soft-
ware Engineering Workshops. p. 545–548. ICSEW’20, Association for Computing
Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3387940.3392265,
https://doi.org/10.1145/3387940.3392265

6. Fraser, G., Arcuri, A.: EvoSuite: Automatic test suite generation for object-
oriented software. pp. 416–419. Proceedings of the 19th ACM SIGSOFT Sympo-
sium and the 13th European Conference on Foundations of Software Engineering,
ACM, New York, NY, USA (2011)

7. Fraser, G., Arcuri, A.: 1600 faults in 100 projects: Automatically finding faults
while achieving high coverage with evosuite. Empirical Softw. Engg. 20(3),
611–639 (Jun 2015). https://doi.org/10.1007/s10664-013-9288-2, https://doi.
org/10.1007/s10664-013-9288-2

8. Fraser, G., Staats, M., McMinn, P., Arcuri, A., Padberg, F.: Does automated unit
test generation really help software testers? a controlled empirical study. ACM
Trans. Softw. Eng. Methodol. 24(4) (Sep 2015). https://doi.org/10.1145/2699688,
https://doi.org/10.1145/2699688

9. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed random test
generation. In: 29th International Conference on Software Engineering (ICSE’07).
pp. 75–84 (2007). https://doi.org/10.1109/ICSE.2007.37

10. Panichella, A., Kifetew, F.M., Tonella, P.: Automated test case generation
as a many-objective optimisation problem with dynamic selection of the
targets. IEEE Transactions on Software Engineering 44(2), 122–158 (2018).
https://doi.org/10.1109/TSE.2017.2663435

11. Panichella, A., Campos, J., Fraser, G.: Evosuite at the sbst 2020 tool competition.
In: Proceedings of the IEEE/ACM 42nd International Conference on Software
Engineering Workshops. p. 549–552. ICSEW’20, Association for Computing Ma-
chinery, New York, NY, USA (2020). https://doi.org/10.1145/3387940.3392266,
https://doi.org/10.1145/3387940.3392266

12. Panichella, A., Panichella, S., Fraser, G., Sawant, A.A., Hellendoorn,
V.J.: Revisiting test smells in automatically generated tests: Limita-
tions, pitfalls, and opportunities. In: 2020 IEEE International Conference
on Software Maintenance and Evolution (ICSME). pp. 523–533 (2020).
https://doi.org/10.1109/ICSME46990.2020.00056

13. Rojas, J.M., Fraser, G., Arcuri, A.: Seeding strategies in search-based unit test
generation. Software Testing, Verification and Reliability 26, n/a–n/a (03 2016).
https://doi.org/10.1002/stvr.1601

14. Shamshiri, S., Just, R., Rojas, J.M., Fraser, G., McMinn, P., Arcuri, A.:
Do automatically generated unit tests find real faults? an empirical study
of effectiveness and challenges (t). In: 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE). pp. 201–211 (2015).
https://doi.org/10.1109/ASE.2015.86

