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ABSTRACT

Programmers maintain and evolve their software in a variety of programming languages to take
advantage of various control/data abstractions and legacy libraries. The programming language ecosys-
tem has diversified over the last few decades, and non-trivial programs are likely to be written in more
than a single language. Unfortunately, language interfaces such as Java Native Interface and Python/C
are difficult to use correctly and the scope of fault localization goes beyond language boundaries, which
makes debugging multilingual bugs challenging. Moreover, since existing fault localization techniques
mostly focus on small-size monolingual programs, the techniques show low accuracy on localizing the
fault of large-size multilingual programs.

To overcome the aforementioned limitations, I propose a mutation-based fault localization technique
for real-world multilingual programs. The key intuition behind the mutation-based approach is that
mutation testing results will be largely different depending on whether mutation is on correct statement
or mutation is on faulty statement. To improve the accuracy for locating multilingual bugs, I have
developed and applied new mutation operators as well as conventional mutation operators.

The evaluation of the proposed approach is performed on six non-trivial multilingual bugs which
are obtained from bug repositories for real-world open-source projects, such as Eclipse SWT, SQLite-
jdbe, Java-gnome, and Azureus. The size of target projects is ranging from 6KLOC to 341KLOC. The
result is promising in that the proposed technique identifies the faulty statements as the most suspicious
statements for all six bugs. Even in the worst case a programmer can locate the faulty statement within 8
statements recommended by the proposed technique. Especially, I describe a detailed experiment result
to suggest that mutation-based approach often provides the mutants which can be served as a hint to

fix the multilingual bug.
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Chapter 1. Introduction

As software evolves, many software systems are written in multiple programming languages to reuse
legacy code and leverage the languages best suited to the developers’ needs. Over the last few decades
language designers have made various choices in designing the syntax and semantics of their languages.
The result is a robust ecosystem where a few languages cover the most use in part due to open source
libraries and legacy code while many languages exist for niche uses [37]. This ecosystem is likely to make
developers write a multilingual program which is a non-trivial program written in more than a single
language. High-level languages such as Java, Python, and OCaml provide standard libraries, which
typically call legacy code written in low-level languages (e.g., C) to interface with the operating system.
A number of projects for the legacy libraries that have evolved for decades provide language bindings for
each language. A large scale software project employs a number of libraries written in multiple languages.

Correct multilingual programs are difficult to write in general in part due to the complex language
interfaces such as Java Native Interface (JNI) and Python/C, which require the programs to respect
a set of thousands of interface safety rules over hundreds of application interface functions [29}(33].
Moreover, once a bug occurs at interactions of code written in different languages, programmers are
required to understand the cause-effect chains across language boundaries. Despite the advances of
automated testing techniques for complex real-world programs [19,24}26|44], debugging multilingual
bugs in real-world programs is still challenging and requires significant human effort. For instance, Bug
322222 in the Eclipse bug repository crashes JVMs with a segmentation fault in C as an effect when
the program throws an exception in Java as the cause (Chapter . Locating and fixing this bug took a
heroic debugging effort of more than a year from 2009 to 2010 with hundreds of comments from dozens
of programmers before the patch went into Eclipse 3.6.1 in September 2010.

The most time-consuming step in debugging activity is to find the root cause of a bug (i.e., fault
localization). When a developer faces a program error (e.g., an assertion failure and a rule violation),
the developer should spend a lot of time on fault localization before fixing the error. More particularly,
as the complexity of a program increases like multilingual programs, the difficulty of fault localization
on the program also increases. For example, the Eclipse bug 322222 took 99% of the debugging time
to perform fault localization. However, many researchers did not conduct a study on fault localization
targeting multilingual bugs.

This dissertation presents a mutation-based fault localization (MBFL) technique for multilingual
programs which is effective (i.e., it identifies the locations of bugs precisely) and language agnostic (i.e.,
extensible for combination of various programming languages). The technique takes multilingual source
code of a target program and a set of test cases including at least one failing test case as input; it then
and generates a list of statements ordered by their relevance to the error (i.e., suspiciousness score).
To calculate the suspiciousness score of a statement, a MBFL technique first generates diverse variants
of target programs by systematically changing each statement (i.e., mutants), and then observes how
testing results change if a certain statement is mutated. In addition, to improve the accuracy of localizing
multilingual bugs (e.g., bugs whose causes and effects are located in code segments written in different

languages), I have developed new mutation operators focusing on localizing multilingual bugs B

IThe proposed technique is an extension for multilingual bugs based on MUSE which targets to localize C bugs [38].



The empirical evaluation of six real-world Java/C bugs demonstrates that the proposed technique
locates the bugs in non-trivial real-world multilingual programs far more precisely (i.e., the technique
identifies the buggy statements as the most suspicious statements for all six bugs) than do the state-of-
the-art spectrum based fault localization (SBFL) techniques (Chapter |4). For example, for Bug 322222
in the Eclipse bug repository, the technique indicates the statement at which the developer made a fix

as the most suspicious statement among a total of 3482 candidates (Chapter [7)).

1.1 Limitations of Previous Approaches

A number of bug detection techniques targeting multilingual program errors [27}/29-32,[45H47, 49
have been proposed. However, the techniques are not effective in debugging, because they can only
report certain kinds of safety rule violations; they cannot indicate the root cause of the bug, especially
when the bug does not explicitly involve any known safety rule violations. Moreover, these bug detectors
do not scale well to a large number of languages and various kinds of program errors since they have to
deeply analyze the semantics of each language for each kind of bug.

On the other hand, to indicate the root cause of a bug, many techniques |11}22}38,|51,[54] which
is only for fault localization have been suggested. Among them, a well-known approach is spectrum-
based fault localization (SBFL) technique which utilizes program spectrum (i.e., execution traces of the
program) collected by the coverage measurement tool for the program. SBFL takes source codes and
test cases as an input and then reports suspiciousness score of each program element to guide a good
starting point to localize the bug.

However, existing SBFL techniques only focus on monolingual program bugs. If a developer applies
existing SBFL techniques to multilingual programs, program spectrum written in different language is
not collected. Since multilingual bugs may be involved with code fragments of different languages, SBFL
techniques show bad precision for multilingual program bugs. Despite such weakness, until now, there
is no work to extend SBFL techniques to cover multilingual programs.

In addition, since the accuracy of SBFL techniques depends on the quality of a test suite, SBFL
techniques often show low accuracy under the poor quality of a test suite in real-world programs. If
SBFL techniques cannot collect diverse execution paths of the program due to the poor quality of the
test suite, SBFL techniques are more likely to assign the same suspiciousness score for multiple program
elements. A developer does not know which program element is more suspicious among the program
elements sharing same suspiciousness score, in the worst case, the developer may inspect all of the
program elements in the score group.

In the view point of manual debugger, recently Blink [28] combining Java debugger and C debugger
is suggested. However, multilingual bugs often have a long propagation path between the root cause of
the bug and its symptom, A developer may consume a lot of effort to indicate the buggy line (i.e., root

cause) without any suggestion of a good starting point to perform quickly debugging the bug.

1.2 Proposed approach

To overcome aforementioned limitations, I suggest a fault localization technique, called MUSEUM
(MUtation baSEd fault localization for mUltilingual prograMs), which shows a promising results on
real-world multilingual bugs and operates on the basis of two observations regarding the impact analysis

of mutants. MUSEUM reports suspiciousness score of program elements precisely in multilingual bugs
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that can reduce the human effort in debugging activity. In the fault localization field, MUSEUM is a
novel approach in terms of targeting multilingual bugs.

MUSEUM extends a mutation based fault localization technique, MUSE [38], which is restricted to
target monolingual bugs. To add multilingual features, I have analyzed JNI specification, and the result
is 15 new mutation operators that assist to localize the root cause of multilingual bugs. MUSEUM finally

works together with conventional mutation operators for C, Java and 15 new mutation operators.

1.3 Contribution

This dissertation provide the folliwing contributions:

e New mutation operators targeting multilingual program errors which are highly effective at locating
multilingual bugs (Section [3.3])

e Empirical demonstration of the high accuracy of the mutation-based fault localization technique

for the six real-world multilingual bugs (Chapter 4]

e Detailed report on three case studies to determine why and how the proposed technique can pre-
cisely localize real-world multilingual bugs (Chapter |§| and @

1.4 Structure of the dissertation

The remaining dissertation is structured as follows.

Chapter [2| describes the background on multilingual debugging and fault localization techniques.
It begins by explaining safety rules in multilingual programs, then introduces existing multilingual bug
checkers with static and dynamic approach. Next, I describe fault localization techniques with an
illustrative example.

Chapter (3| explains our mutation based fault localization technique for multilingual bug. I first
describe a motivating example for the proposed approach. Then, I deliver the details of the proposed
approach with new mutation operators.

Chapter |4 provides an overview of the empirical study on the six real-world multilingual bugs. I
first explain the experiment setup, then I demonstrate the superior accuracy of the proposed technique
through the experiment results.

Chapter [5] [6, and [7] describe three case studies on real-world multilingual bugs in detail. For
each bug, the bug overview and a buggy line causing the bug are described. Then, I illustrate actual
mutants that assist the proposed technique to infer the buggy line.

Chapter (8] discusses observations made through the experiment. I address advantages of mutation
based approach and effectiveness of new mutation operators for localizing multilingual bugs

Chapter [9] concludes this dissertation with future work.



Chapter 2. Background and Related Work

2.1 Multilingual Bugs

A multilingual program is composed of code segments in different languages that execute each
others through language interfaces (e.g., JNI [33] and Python/C). These language interfaces require the
multilingual programs to follow safety rules across language boundaries. Lee et al. [29] classifies safety
rules in Java/C and Python/C programs into three classes: (1) state constraints, (2) type constraints,

and (3) resource constraints.

e State constraints ensure that the runtime system of one language is in a consistent state before transiting
to/from a system of another language. For instance, JNI requires the program to not propagate a Java
exception before executing a JNI function from a native method in C. Python/C requires C code to

not acquire a global lock in Python twice because the global lock causes deadlock.

e Type constraints ensure that the programs in different languages exchange valid arguments and return
values of expected types at a language boundary. For instance, the NewStringUTF function in JNI

expects its arguments not to be NULL in C.

e Resource constraints ensure that the program manages resources correctly. These resource constraints
are comparable to the contracts of calling the free function for dynamically allocated memory in C.
For example, a local reference [ to an Java object obtained in a native method m; should not be reused
in another native method ms since ! becomes invalid when m; terminates [33] (see Chapter [ as an

example of a multilingual bug that violates this resource constraint).

A multilingual bug is caused by violating safety rules at language interface (i.e., foreign function
interface (FFI) bugs), and/or by unintended interactions of code across language boundaries. When a
program breaks an interface safety rule, the program crashes or generates undefined behaviors. Multilin-
gual programs respecting all interface safety rules still can have multilingual errors when the cause-effect
chain goes through languages interfaces. For instance, a program would leak a C object referenced by a
Java object that is garbage collected at some point. The cause of the memory leak is in Java at the last

reference to this Java object while the effect is in C because Java code is expected to free the C object

(Section [3.1]).

2.2  Multilingual Bug Checkers

There are several static or dynamic approaches to check the constraints described in Section [2.1
The majority of approaches targets the constraint violations in JNI because the most used language

combination is Java/C.

2.2.1 Static approach

Furr et al. |18] presents multilingual type inference system (called JSaffire) to ensure the type safety of
multilingual programs which use JNI. Some JNI functions (e.g., FindClass, GetFieldID, GetMethodID)

_4-



use constant strings as a parameter to indicate a class name, a field name or a method signature in
Java. Since the constant string does not contain any type information, it is easy to get wrong. JSaffire
infers the type assumption of the constant strings in C and checks that the type assumption is consistent
with actual Java definition. However, JSaffire only checks statically type constraint violations at JNI
invocations while state constraint violations (e.g., pending exception) are still not resolved.

Tan et al. [49] proposes a framework (calling it ILEA) that enables existing Java analysis tools
to understand the behavior of C code. To do that, ILEA partially compiles the target C code into a
specification which is based on Java so that an existing Java analysis tools can understand the behavior
of C code through the Java specification and finally the tools can be extended to cover C code. However,
ILEA is suffer from its compilation precision, and also from the effectiveness of the Java analysis tools.

Although various static checkers for multilingual bug including above works exist, they are hard to
use in practice because they have trouble with a lot of false positives [18}|27]. Also, since the specification

of interface languages natively include dynamic properties, static approaches themselves have limitations.

2.2.2 Dynamic approach

Dynamic approach detects interface errors by inserting codes at a languague boundary [48] or by
monitoring language transitions between different languages [29].

Tan et al. [48] proposes a framework called Safe Java Native Interface (SafeJNI) to ensure type safety
of multilingual programs which contain Java and C components. SafeJNI explains several pitfalls in JNI
(e.g., direct access through Java references, exception handling) and then suggests three methodologies
to prevent these vulnerabilities. (1) a pointer type system based on CCured [40], which statically enforces
usage of C pointers according to their capability (e.g., read-only pointer) (2) inserting dynamic checks
which are performed before and after a JNI function is invoked (3) a memory management scheme which
ensures safe memory management by additional validity tag for C pointers referencing Java object.
However, even though SafeJNI shows acceptable effectiveness and performance in its evaluation, SafeJNI
is difficult to use in practice because it needs source-code rewriting.

Lee et al. [29] suggests a JNI bug detector, called Jinn, which checks violation of all constraints in
Section dynamically at runtime. Jinn is based on 11 finite-state machines each of which describes
JVM states regarding JNI function invocations. Each state in the finite-state machines is moved to
another state according to a corresponding language transition in JNI function invocations. If a state
is transited to predefined error state, Jinn reports an error message and the program is terminated.
However, Jinn cannot detect unintended interactions of code across language boundaries (i.e., program
semantic error which does not violate any pre-defined constraints)

JVMs, such as HotSpot [7] and IBM J9 [17], support a built-in dynamic JNI checker (calling it
checkJNT) in a command-line option (i.e., -Xcheck:jni). checkJNT detects automatically some JNT rule
violations (e.g., null value passed to JNI function, invalid JNT reference is used) at the cost of slower
execution. Since checkJNI does not handle all JNT rule violations as a critical error, in some cases (e.g.,

pending exception error), checkJNI just reports warning messages and does not kill the program.

2.3 Fault Localization Techniques

Fault localization techniques [35,/50] aim to locate the root cause of an error in the target program

(i.e., the second step of debugging) by observing test runs. Fault localization has been extensively



studied for monolingual programs both empirically [111/22//38] and theoretically [51/54]. Among the fault
localization techniques, spectrum-based fault localization (SBFL) techniques are widely used due to its
intuitive approach. However, recently mutation-based fault localization techniques are introduced to

overcome the low accuracy of spectrum-based fault localization techniques.

2.3.1 Spectrum-Based Fault Localization

SBFL technique utilizes program spectrum, which is a collection of execution information of a
program, to infer that a code entity of the program (i.e., a program element) is suspicious for an error
if the code entity is likely executed when the error occurs. Note that SBFL techniques are language
agnostic because they calculate the suspiciousness scores of target code entities by using information on
the testing results (i.e., fail/pass) of test cases and the code coverage of these test cases without complex
semantic analyses.

Suppose that a program P = {ey,...,e,}, which contains a set of program elements e;, is executed
by a set of test cases T = {t1,...,tm}, and the execution result is pass or fail. SBFL techniques’ scoring
metric that calculating suspiciousness score of a program element e can be expressed by 4 notations:
T¢(e), Tp(e), Ty, T, where Ty(e) is a set of test cases that covers e and fails on P, T),(e) is a set of test
cases that covers e and passs on P, Ty is a set of test cases that fails on P, and T} is a set of test cases
that passes on P.

In the empirical study by Lucia et al. [34], effectiveness of 40 spectrum-based fault localization
techniques is evaluated on programs from Siemens test suite and three larger programs from Software
Infrastructure Repository (SIR) benchmark. As a result, Ochiai [41] outperforms other SBFL techniques
in terms of the average percentage of code inspected for localizing the root cause of a buggy program.
Ochiai is derived from a product term P(P fails|e covered) x P(e covered|P fails), where first term rep-
resents precision, second term indicates recall, and through the derivation the following metric is used

for calculating suspiciousness of a program element e.

y 1T ()
Ochiai(e) = 21
) = (T T G ®1)

According to the other empirical evaluation for 42 SBFL techniques by Hofer et al. [20], Jaccard [21]

as well as Ochiai is the best performing metric for fault localization in spreadsheet applications. Jac-

card matric originates from an intuitive approach which is the number of matches over the number of

; : T (&) |+]Tp(—e)] —e) i
attributes, that is T T o)+ T (@ T, (o) where T’ (—e) is a set of test cases that does not cover e
and fails on P and T),(—e) is a set of test cases that does not cover e and passes on P. For this formula,
since Jaccard considers that |T,(—e)| is an irrelavent property to infer the root cause of a fault, |T,(—e)|

is discarded and then finally Jaccard metric is defined as follows:

Ty (e)
Jaccard(e) = (2.2)
Ty (e)] + [Ty (=e)| + Tp(e)]

Instead of empirical evaluation for effectiveness of SBFL techniques, Naish et al. [39] theoretically
analyzes 30 SBFLs on a sample program that simulates a single fault program. As a result, an optimal
ranking matric (called Op2) is proposed, which is effective for the given model in terms of that the matric
gives different ranks when necessary. Op2 metric is defined as follows:

Op2(e) = 115(6)] = 11 (2.)



However, the accuracy of SBFL techniques is often too low to localize faults in large real-world
programs. The reason is that although SBFL technique are premised on the availability of a high-quality
test suite that provides good coverage of the program entities |14], the quality of a test suite in real-world

programs is in general poor to support SBFL techniques.

2.3.2 Mutation-Based Fault Localization

To improve the accuracy of fault localization, mutation-based fault localization (MBFL) techniques
have been proposed recently. These techniques can analyze diverse program behaviors using mutants
(i.e., target program versions that are generated by applying simple syntactic code changes such as
replacing if (x>10) with if (x<10)). MBFL techniques are also language agnostic since they utilize only
information on the testing results (i.e., pass or fail) of test cases on the original target program and
its mutants. Moon et al. |38] demonstrate that their MBFL technique (calling it MUSE) is 6.5 times
more precise than state-of-the-art SBFL techniques such as Ochiai and Op2 on the 15 versions of the
SIR subjects. The key idea of MUSE is as follows. Consider a faulty program P whose execution with
some test cases results in error. Let my be a mutant of P that mutates the faulty statement, and m.
be one that mutates a correct statement. MUSE assesses the suspiciousness of a statement based on the

following two observations:

Observation 1 : a failing test case for P is more likely to pass on my than on m.. Mutating a faulty statement
is more likely to cause the tests that failed on P to pass on my than on m,. because a faulty program
might be partially fixed by modifying (i.e., mutating) a faulty statement, but not by mutating a correct
one. Therefore, the number of test cases whose results change from fail to pass will be larger for my

than for m..

Observation 2 : a passing test case for P is more likely to fail on m. than on my. A program is more easily
broken by mutating a correct statement than by mutating a faulty statement. Thus, the number of

the test cases whose results change from pass to fail will be greater for m. than for m;.

For a statement s of P and given test suite T', let Ty(s) be the set of tests that covered s and
failed on P, and T,(s) the set of tests that covered s and passed on P. With respect to a fixed set
of mutation operators, let mut(s) = {my,...,mg} be the set of all mutants of P that mutates s with
observed changes in test results. For each mutant m, € mut(s), let T}m and 7" be the set of failing
and passing tests on m; respectively. And let T2, and Tpor be the set of tests that their results are
changed from failure to pass and vice versa between before and after executing all mutants of P on the
test suite T. Then, MUSE(s) is defined as follows:

1 Te(s)NTM T,(s)nTy
MUSE(s) = ———— Z (| £(s) p‘_|p() f| (2.4)
maut(s)] | o= 0 Tral [Tposl
The first term, maisf’m, reflects the first observation: it is the proportion of the number of tests

that failed on P but now pass on a mutant m that mutates s over the total number of all failing tests
that pass on a some mutant (it increases the suspiciousness of s if mutating s causes failing tests to
pass). Similarly, the second term, %;T’m, reflects the second observation, being the proportion of the
number of tests that passed on P but now fail on a mutant m that mutates s over the total number of all

passing tests that fail on a some mutant (it decreases the suspiciousness of s if mutating s causes passing



Execution Traces of Test Cases (x, y) ‘ Jaccard Ochiai Op2
int max; TC, TC, TC; TCyq4 TCs [fp(s)|| lpp(s)|| Susp. | Rank | Susp. | Rank | Susp. | Rank
void setmax(int x, int y){ (3,1) (5,4)  (0,-4) (0,7)  (-1,3)
1 max = —X; //should be ‘max = x;’ . . . . . 2 3 0.40 5 0.63 5 1.25 5
821 if (max < y){ . . . . . 2 3| 0.40 5| 0.63 5] 1.25 5
S3: max = y; . . . . 2 2 0.50 2 0.71 2 1.50 2
S4: if (xxy<0) . . . . 2 2 0.50 2 0.71 2 1.50 2
S5t print (" diff .sign”);} . . 1 1| 033 6| 0.50 6| 0.75 6
Se: print (max);} . . . . . 2 3| 040 5| 0.63 5] 1.25 5
Test Results ‘ Fail Fail Pass Pass Pass ‘
‘ ‘ Test Result Changes ‘ ‘ MUSE
Statements Mutants TC, TC, TC; TCy TCs [fe(s) | lpp(s) Suspiciousness Rank
B1) G4 049 07 (1L3) | Npwl | N ful
ml: max —= x—1; P—F 0 1
s1: max = —X; 0.475 1
m2: max=x; F—-P F—P 2 0
m3: if (/( max<y P—»F P—>F P=F 0 3
So: if (max < y){ . (x A -0.125 6
md: if (max==y){ P—F P—F 0 2
mb: max = —y; P—F P=F 0 2
S3: max =y; -0.100 4
m6: max = y+1; P—F P-F 0 2
m7:if (I(xxy<0 P—F P—=F 0 2
si if (xey<0)] i ({(xeey <0) 20.075 3
m8:if(x/y<0) P—F 0 1
o o m9:return; P—F 0 1
S5t print (7 diff . sign”);} -0.050 2
ml0:; P—F 0 1
m11:printf(0); P—F P—=F 0 2
S6t print (max);} P ©0):} -0.125 6
ml2:;} P—F P—=F P—=F 0 3

Figure 2.1: Example of how fault localization techniques work

tests to fail). When averaged over |mut(s)|, the first term and the second term become the probability
of test result change per mutant, from failing to passing and vice versa respectively.

There exist a few other MBFL approaches. Papadakis et al. [42,43] utilizes the similarity between
the behavior of generated mutants and the behavior of a program with an ”unknown fault”. If a mutant
(i.e., a mutated program where single statement is transformed) behaves like non-mutated program (i.e.,
test results are same), then the mutated statement is suspected of faulty. This approach is different from

MUSE in that not considering test result changes comes from mutant executions.

2.3.3 An Illustrative Example

Figure Elproscnts an example of how SBFL techniques (e.g., Jaccard, Ochiai, Op2) and MBFL
technique (e.g., MUSE) localize a fault. The example code is a function called setmax(), which sets a
global variable max (initialized to 0) with y if x < y, or with x otherwise. Statement s; contains a fault,
as it should be max=x. Let us assume that we have five test cases (tcl to tcb): the coverage of individual
test cases are marked with black bullets (o). TC; and TC, fail because setmax () updates max with the
smaller number, y. The remaining test cases pass. Thus, |fp| =2 and |pp| = 3.

First, MUSE generates mutants by mutating only one statement at a time. For the sake of simplicity,
here we assume that MUSE generates only two mutants per statement, resulting in a total of 12 mutants,
{mq,...,m12} (listed under the “Mutants” column of Figure 2.1)). Test cases change their results after

the mutation as noted in the middle column. For example, TCy, which used to fail, now passes on the

1This example is originally presented in [38]



mutant m?2.

Since there are two changes from failure to pass, f2p = 2 (TC; and TCy on ms) while |fp| = 2.
Similarly, p2f = 20 (see the changed results of TC3, TCy, and TCs), while |pp| = 3.

MUSE calculates the suspiciousness of s; as 3-{(3— 55)+ (2 —25)} = 0.475, where | fp(s1)Npm,| =0
and |pp(s1) N fin,| =1 for my and |fp(s1) N pm,| = 2 and |[pp(s1) N fim,| = 0 for ma. MUSE calculates
the suspiciousness scores of the other five statements as -0.125, -0.100, -0.075, -0.050, and -0.125. The
suspiciousness of the s; is the highest. In contrast, Jaccard, Ochiai, and Op2 choose s3 and s4 as the
most suspicious statements, while assigning the fifth rank to the actual faulty statement s;. The example

shows that MUSE can precisely locate certain faults that the state-of-the-art SBFL techniques cannot.



Chapter 3. MUSEUM: Mutation-Based Fault

Localization for Real-world Multilingual Programs

To alleviate the difficulty of debugging multilingual programs, we have developed a MUtation-baSEd
fault localization technique for real-world mUltilingual prograMs (MUSEUM). MUSEUM is language-
independent because it generates syntactic mutants and statistical reasoning with testing results on a
target program and its mutants. MUSEUM does not require special build/runtime environments but
only a mutation tool and a coverage measurement tool for target programming languages. This is a great
advantage over other debugging techniques which require specific infrastructure such as virtual machines
or compilers.

MUSEUM targets both monolingual and multilingual bugs. To localize multilingual bugs precisely,
MUSEUM utilizes conventional mutation operators and new mutation operators designed for directly
mutating interactions between language interfaces. These new mutation operators (Section improve
the accuracy of MBFL by generating mutants whose testing results are informative to locate multilingual
bugs (Chapter [6)).

3.1 Motivating Example

Target program

Figure presents a target Java/C program with a memory leak bug failing the assertion at
Line 71 E The program is composed of source files in C and Java defining three Java classes: CPtr,
Client, and ClientTest.

CPtr (Lines 2-31) characterizes the peer class idiom [33, p. 123] of wrapping native data structures,
which is widely used in language bindings for legacy C libraries. The peer field (Line 4) is an opaque
pointer from Java to C to point to a dynamically allocated integer object in C. The CPtr constructor
(Line 9) executes the nAlloc native method (Lines 17-21) to allocate an integer object in C and stores
the address of the integer object in peer. While JVMs automatically reclaim a CPtr object once the
object becomes unreachable in the Java heap, the clients of CPtr are required to dispose manually the
integer object by executing dispose (Line 12) on the CPtr object. If the client does not dispose an CPtr
object before it becomes unreachable, the peer integer object becomes a unreachable memory leak in C.

Client (Lines 34-45) is a client Java class of using CPtr. The m field (Line 35) holds a reference to
a CPtr object. add (Lines 36-39) and remove (Lines 40-45) write/read a value to/from the CPtr object
respectively. add instantiates a CPtr object, assigns the reference of the new object to m, and then writes
a value to the object. remove reads the value of the CPtr object pointed by m, disposes the CPtr object,
deletes the reference to the object, and returns the value of the CPtr object.

ClientTest (Lines 48-73) is a Java class of driving test cases directly for Client and indirectly
for CPtr. It contains one passing test passingTest (Lines 55-63) and one failing test failingTest
(Lines 64—73). The testing oracle validates a program execution by using (1) the assertion statements

(Lines 59 and 69) and (2) the exception handler statements (Lines 61 and 71). The assertion statements

1This example is a simplified version of a real-world bug found in Azureus 3.0.4.2 (Bugl in Table .

~10 -



Sy

: /* CPtr.java */
: public class CPtr {

static {System.loadLibrary("CPtr");}
private final long peer;

private native long nAlloc();

private native void nFree(long pointer);
private native int nGet(long pointer);

private native void nPut(long pointer, int x);

public CPtr(){peer = nAlloc();}
public int get(){return nGet(peer);}
public void put(int x){nPut(peer, x);}
public void dispose(){nFree(peer);} }

: /* CPtr.c */

: #include <jni.h>

: #include <stdlib.h>
: jlong Java_CPtr_nAlloc(JNIEnv *env, jobject o){

jint *p;

p =(jint *)malloc(sizeof (jint)); /*Mutant mlx/

return (jlong)p;

free((void *)p);

: )
: jint Java_CPtr_nGet (JNIEnv *env,jobject o,jlong p){

return *(jint *)p;

1
: void Java_CPtr_nPut(JNIEnv *env,jobject o,jlong p,

jint x){
*((jint *)p) = x;

: 3

: /* Client.javax/
: public class Client {

CPtr m = null;

void add(int x){
m = new CPtr(); /*Mutant m2x/
m.put (x);

int remove(){

int x = m.get();
m.dispose();

m = null;

return x; /*Mutant m3*/

: /* ClientTest.java */
: import java.util.x;
: public class ClientTest {

: void Java_CPtr_nFree(JNIEnv *env,jobject o,jlong p){

static final List pinnedObj=new LinkedList();

public static Object pinObject(Object o){
pinnedObj.add(o);
return o;

}
void passingTest(){ // passing test case
try {
Client d = new Client() ;
d.add(1)

assert d.remove() == 1;
} catch(VirtualMachineError e) {

assert false; /*potential memory leak in C*/

}
}
void failingTest(){ // failing test case
try {
Client d = new Client() ;
d.add(1) ;
d.add(2) ;

assert d.remove() == 2;
} catch (VirtualMachineError e) {

assert false; /*potential memory leak in C*/

}

:r}

Figure 3.1: A Java/C program leaking memory in C after garbage collection in Java
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at Line 59 and Line 69 validate the program state after executing a sequence of add and remove by
checking if remove correctly returns the last value given by add. On the other hand, the exception
handler statements at Line 60 and Line 70 detect failures at arbitrary locations. For instance, runtime
monitors such as QVM [13] and Jinn [29] would throw an asynchronous Java exception either at GC safe

points or at language transitions.

Passing test

passingTest executes successfully. It satisfies the assertion statement at Line 59 because both the
CPtr object and the peer integer object in Java and C are reachable, and remove at Line 59 returns 1
stored at Line 58. The runtime monitor does not throw any Java exception indicating a memory leak in

C because the native integer object is released in the call to remove.

Failing test

failingTest fails at Line 71 because the runtime monitor throws an exception due to a memory
leak in C. The test case creates one Client object (Line 66) and two CPtr objects (Lines 67-68), and
two native integer objects. The first native peer integer object is a leak in C heap while all the other
objects are reclaimed automatically by garbage collectors and manually by C memory deallocator (i.e.,
dispose). The first CPtr object and its peer integer object are created in a call to add at Line 67. Both
become unreachable after the second call to add at Line 68. The CPtr object would be garbage collected
while the program does not manually execute dispose on the unreachable native integer peer object.
The runtime monitor would perform a garbage collection and find out the native integer peer object is a
unreachable memory leak. This memory leak bug appears because add does not call dispose if m already

points to a CPtr object. Thus, we indicate Line 37 as the buggy statement.

Our approach

MUSEUM generates mutants each of which is obtained by mutating one statement of the target
code. Then, MUSEUM checks the testing results of the mutants to localize buggy statements. For
example, suppose that MUSEUM generates the following three mutants my, msy, and ms by mutating
each of Lines 19, 37, and 44.

m1, a mutant obtained by removing Line 19
This mutation resolves the memory leak as the mutant will not allocate any native memory. However,
both test cases fail with the mutant because an access to p raises an invalid memory access (at

nGet/nPut of CPtr).

ma, a mutant obtained by inserting a statement of pinning the Java reference before Line 37E|
This mutation inserts a statement of pinning the object: ClientTest.pinObject (m) ; before Line 37,
where pinObject stores the Java reference m into a global data structure pinned0bj. This mutation
intends to prolong the lifetime of the Java object referenced by m to the end of the program run.
This mutation resolves the memory leak in failingTest because the first CPtr object will not be
reclaimed and, thus, will not leak its peer native integer object. The two test cases pass with the

mutant because the mutation does not introduce any new bug.

2 See Pin-Java-Object mutation operator in Table
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Figure 3.2: Fault localization process of MUSEUM

ms, a mutant obtained by replacing the return value with 0 in Line 44
This mutation replaces the variable x with an integer constant 0 at Line 44. This mutation fails the

assertion at Lines 59 and 69 since the return value of remove is always 0.

From these testing results, MUSEUM concludes that Line 37 is more suspicious than Line 19 and Line 44
because the failing test case passes only with my and the passing test case fails with m; and mgs (see
Step 4 of Section .

Locating the root cause of this memory leak poses challenges in runtime monitoring and fault lo-
calization techniques. Memory leak detectors [23}|53] locate memory leaks and their allocation sites not
the cause of the leaks in general. While some leak chasers |13}|15/52] locate the cause of memory leak,
they do not scale well across language boundaries since they do not track opaque pointers and their stal-
eness values across languages. SBFL techniques cannot localize the bug because both passingTest and
failingTest cover the same branches/statements in their executions. Consequently, SBFL techniques

cannot indicate any code element that is more correlated with the failure than the others.

3.2 Fault Localization Process of MUSEUM

Figure [3:2] describes how MUSEUM localizes faults. MUSEUM takes the target source code and the
test cases of the target program as input, and returns the suspiciousness scores of the target code lines

as output. MUSEUM has the following basic assumptions on a target program P and test suite T":

1. Existence of test oracles
A target program has explicit or implicit test oracle mechanism (i.e., user-specified assert, runtime
failure such as null-pointer dereference, and/or runtime monitor such as Jinn [29]) which can detect

errors clearly.

2. Existence of a failing test case

A target program has test cases, at least one of which violates a test oracle.

MUSEUM operates in the following four steps:
Step 1: MUSEUM receives P and T and selects target statements S; and test cases Ts. Sy is the set
of the statements of P that are executed by at least one failing test case in T. MUSEUM selects S; as
target statements for bug candidates. Also, MUSEUM selects and utilizes a set of test cases T, each of
which covers at least one target statement because the other test cases may not be as informative as test
cases in T for fault localization. To select S; and Ty, MUSEUM first runs P with T while storing the test

results and the test coverage for each test case. Testing results are obtained from the user given assert
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statements, runtime failures, and multilingual bug checkers such as CheckJNI, Jinn [29], and QVM [13]
(Section [2.1)).

Step 2: MUSEUM generates mutant versions of P (i.e., my,ma,...mg) each of which is generated
by mutating each of the target statements. MUSEUM may generate multiple mutants from a single
statement since one statement may contain multiple mutation points [12]. E|

Step 3: MUSEUM tests all generated mutants with T's and records the testing results. Since a mutation
may induce an infinite loop, we consider a test fails if the testing time exceeds a given time limit.

Step 4: MUSEUM compares the test results of Ts on P with the test results of Ts on all mutants.
Based on these results, MUSEUM calculates the suspiciousness scores of the target statements of P as
follows.

For a statement s of P, let f(s) be the set of tests that covers s and fails on P, and p(s) the set
of tests that covers s and passes on P. Let mut(s) = {mq,...my} be the set of all mutants of P that
mutates s.

For each mutant m; € mut(s), let f,,, and p,,, be the set of failing and passing tests on m;
respectively. And let f2p and p2f be the numbers of changed test result from fail to pass and vice versa

between P and all mutants of P. The suspiciousness metric of MUSEUM is defined as follows:

_ 1 [£(8)0pm; | p(8)0fm, |
S’LLSp(S) - |mut(s)|2mi€mut(s)( f2p o p2f )
The first term, w, reflects the first observation: it is the proportion of the number of tests

that failed on P but now pass on a mutant m; that mutates s over the total number of all failing tests

that pass on a some mutant (the suspiciousness of s increases if mutating s causes failing tests to pass).

Ip(s)Nfm,
p2f

of tests that passed on P but now fail on a mutant m; that mutates s over the total number of all passing

Similarly, the second term, , reflects the second observation, being the proportion of the number
tests that fail on a some mutant (the suspiciousness of s decreases if mutating s causes passing tests to
fail). After dividing the sum of the first term and the second term by |mut(s)|, Susp(s) indicates the
probability of s to be a faulty statement based on the changes of test results on P and mut(s). E|

3.3 New Mutation Operators for Multilingual Bugs

In addition to the conventional mutation operators, MUSEUM utilizes new mutation operators to
effectively localize multilingual bugs because these mutation operators can directly mutate interactions
between language interfaces. We have made 15 new mutation operators, which change semantics of a
target program regarding the JNI constraints based on the previous JNI bug studies [5,[17,[29}/48] and
JNI specifications [33]. Table shows the list of the new mutation operators. The description of the

new mutation operators are as follows:

1-3. These mutation operators clear, propagate, or generate a pending exception in a native method
to ensure the JVM state constraints. Targets of the three mutation operators are all JNI function
calls (i.e., (xenv)->< JNIFunction>(...);). For example, Clear-pending-exceptions clears

a pending exception in currrent thread by inserting

SMUSEUM can localize a bug spanning on multiple statements (not limited for locating a single-line bug). This is
because mutating a part of a bug (i.e., one statement among multiple statements that constitute a bug) can still change a

failing test case into passing one, which will increase the suspiciousness of the statement constituting the bug [38].
4 If a target statement has no mutant (i.e., |mut(s)|=0), Susp(s) is defined as 0. MUSEUM defines the first term as 0 if

f2pis 0. Similarly, the second term is defined as 0 if p2f is 0. For a concrete example of how to calculate the suspiciousness
score of MBFL, see Section II.C of Moon et al. [38].
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(*env) ->ExceptionClear (env) ;

immediately before a JNI function call and immediately after a JNI function call that may throws
a Java exceptionﬂ Propagate-pending-exceptions propagates a pending exception to the caller

by inserting
if ((*env)->ExceptionOccurred(env)) return;

immediately before a JNI function call and immediately after a JNI function call that may throws

a Java exception. Throw-new-exceptions creates a new Java exception by inserting
Throw New_Java Exception(env, "java/lang/Exception");

immediately before a JNI function call and immediately after a JNI function call that may throws
a Java exception. The first and the second mutation operators are defined based on a best practice
in JNI programming |17] and a general solution for JNI exception bugs [30]. The third mutation
operator is motivated by a case of a real-world multilingual bug regarding exception handling across

language boundaries [10].

4. Type-cast-to-jboolean explicitly converts an integer expression to JNI_TRUE or JNI_FALSE when
the expression is assigned to a jboolean variable. ﬂ In other words, Type-cast-to-jboolean

changes an assignment jbool_var = int_expr; with
jbool_var=int_expr?JNI_TRUE:JNI_FALSE;
This mutation operation is motivated by the common pitfall of JNI programming 33}, pp.132-133].

5. Type-cast-to-superclass changes a JNI call to get the reference of a class with the JNI call to get
the reference of its superclass by mutating jclass cls = (*env)->GetObjectClass(env,obj);
with

jclass cls = (*env)->GetSuperclass(env, ((xenv)->GetObjectClass(env,obj)));
This mutation operator is motivated by a report of a real-world bug found in Eclipse 3.4 [29].

6. Replace-array-elements-with-constants replaces a Java array reference with another constant
Java array. This mutation operator changes a Java array reference used at a JNI function call
to the reference to the predefined constant array. For example, this mutation operator change

(*env) ->GetIntArrayElements(env, arr, null); into
(*env) ->GetIntArrayElements(env, IntConstArr, null);

This mutation is inspired by a real-world bug with an incorrect array data transfer from Java to
C 6].

7. Replace-target-Java-member replaces a target field in a class member access with the field of
a different class member with the same type, by mutating (*env)->GetFieldID(env, class,
NAME1, SIG); with

(*env)->GetFieldID(env, class, NAME2, SIG);

5154 among total 229 JNT functions may throw an exception [33].
6 jboolean is an 8 bit integer type. If a 32 bit integer value is assigned to a jboolean variable, the variable can have an

unintended Boolean value due to the truncation (e.g., jboolean_var = 256 will make jboolean var as false).
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14.

15.

where NAME1, NAME2, and SIG are the strings of the original and the changed field names and their
type signature, respectively. This mutation operator is motivated by a common pitfall in JNI

programming |33, pp.131-132].

. These mutation operators increase or decrease the life time of a reference to a Java object (and

probably the life time of the referenced Java objects too). For example, Make-global-reference
increases the life time of a local reference [ by making the reference as a global one. In other words,
Make-global-reference inserts the following statement after an assignment statement to a local

reference [ (i.e., [ = expr):
| = (*env)->NewGlobalRef (env,l);

In contrast, Remove-global-reference decreases the life time of a global reference g (and probably

the referenced Java object too) by inserting the following statement for a global reference g:
(*env)->DeleteGlobalRef (env,g) ;

We have developed four other mutation operators for local references and weak global references.
These mutation operators are related to a bug fix pattern regarding reference errors in native
code [5].

Pin-Java-object prevents garbage collectors from reclaiming a Java object by placing a Java
reference to the object into a class variable in Java before a reference to the object is removed
by an assignment statement. Before an assignment statement x = obj;, the mutation operator

inserts a statement:
Test.pinnedObjects.add(x) ;

where Test .pinnedObjects is a Java class variable of a list container type. The Java object pointed
by x is transitively reachable from the class variable, and Java garbage collectors cannot reclaim the
object. This mutation operator intends to extend the lifetime of Java objects in a target program
and influence interactions of Java and native memory managements. This mutation operator is

inspired by a safe memory management scheme of SafeJNT [48].

Switch-array-release-mode alternates the release mode of a Java array access. The release mode
decides whether an updated native array will be copied back to the Java array or discarded. For
every (xenv)->Release<Type>ArrayElements(env, arr, elems, mode), this mutation operator
changes the mode value from O to JNI_ABORT, or vice versa. This mutation operator is motivated

by a best practice in JNI programming [17].

3.4 Implementation

We have implemented MUSEUM targeting programs written in Java and C (support for other lan-

guages will be added later). MUSEUM is composed of the existing mutation testing tools for C and

Java, together with the fault localization module that analyzes testing results and computes suspicious-
ness scores. MUSEUM counsists of 1,500 lines of C/C++ code and 1,802 lines of Java code.

MUSEUM uses gcov and PIT [16] to obtain the coverage information on C code and Java code of

a target program, respectively. MUSEUM uses existing mutation tools Proteum [36] and PIT, together
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Table 3.1: New mutation operators of MUSEUM

Mutation operator

Corresponding language

interface rule (Section

w

Clear-pending-exceptions
Propagate-pending-exceptions

Throw-new-exceptions

JVM state constraints

EN - NS, SN

Type-cast-to-jboolean
Type-cast-to-superclass
Replace-array-elements-with-constants

Replace-target-Java-member

Type constraints

Qo

10
11
12
13
14
15

Make-global-reference
Remove-global-reference
Make-weak-global-reference
Remove-weak-global-reference
Make-local-reference
Remove-local-reference
Pin-Java-object

Switch-array-release-mode

Resource constraints

with the 15 new mutation operators for multilingual bugs (Section . Proteum implements 107
mutation operators defined in Agrawal et al. [12] which mutate C code in source level. Among the
107 mutation operators, MUSEUM uses 75 mutation operators that change only one statement. To
reduce the runtime cost of the experiments, MUSEUM generates only one mutant for every applicable
operator at each mutation point ﬂ MUSEUM generates Java mutants by using PIT which mutates Java
bytecode. MUSEUM uses all 14 mutation operators of PIT. Among the 15 new mutation operators, 14

new mutation operators for C code are implemented with Clang, and the one new mutation operator for

Java (i.e., Pin-Java-object) is built with the ASM bytecode engineering tool.

7 For example, if (x+2>y+1) has one mutation point (>) for ORRN (mutation operator on relational operator) and two
points (2 and 1) for CCCR (mutation operator for constant to constant replacement) [12]. MUSEUM generates only one
mutant like if (x+2<y+1) using ORRN and only if (x+0>y+1) and if (x+2>y+0) using CCCR. The selection of a mutant

to generate using a mutation operator depends on the Proteum implementation. Note that MUSEUM generates multiple

mutants for a code location when multiple mutation operators are applied to the code location .
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Table 4.1: Target multilingual Java/C bugs, sizes of the target code, the number of test cases used, and

references
Size of target program # of
- Bug report or
Bug | Target program Symptom Java NativeC TC . .
- - bug-fixing revision

Files | LOC | Files | LOC | used
Bugl | Azureus 3.0.4.2 Memory leak in C 2,705 | 340.6K | N/A | N/A 8 | CVS revision 1.64 of ListView.java [1]
Bug2 | sqlite-jdbc 3.7.8 | Assertion violation in Java 20 4.6K 3| 1.8K | 150 | Issue 16 [8]
Bug3 | sqlite-jdbc 3.7.15 | Assertion violation in Java 19 42K 2 1.7K | 159 | Issue 36 |9
Bug4 | java-gnome 4.0.10 | Invalid JNI reference in C | 1,097 | 64.2K | 496 | 65.6K | 170 | Bug 576111 in Bugzilla database |3]
Bugb | java-gnome r-658 Double free in C 1,134 | 67.1K 514 | 69.2K 184 | Subversion revision 659 |[2]
Bugb | SWT 3.7.0.3 Segmentation fault in C 582 | 118.7K 29 | 34.4K 50 | Bug 322222 in the Eclipse bug repo. 4]

Chapter 4. Empirical Evaluation

This chapter evaluates MUSEUM on the six bugs in four real-world multilingual programs to demon-
strate its effectiveness. Section describes the experiment setup, and Section presents the fault

localization results. [

4.1 Experiment Setup

4.1.1 Real-world multilingual program bugs

Table [£.1] presents the six multilingual bugs in four real-world programs with their programs, symp-
toms, line of code (LOC) in Java and C, the number of the test cases used to localize the fault, and
bug reports or bug-fixing revisions of the target programs. As described in the assumption 1 for fault
localization (Section , the bug reports and commit logs in the last column describe the symptoms of
the target bugs so that our test oracle detects test failures. A corresponding bug report indicates both
buggy version and its fixed version. We have applied MUSEUM to Java code and native C code of the
target program, not library code nor external system code. All target programs are written in Java and
C except for Azureus. While Azureus is a pure Java program, it triggers a memory leak in C when it

misuses the application program interface of the Eclipse SWT library written in Java and C.

4.1.2 Real-world Test Cases

Regarding test cases, we have used the test cases maintained by the developers of the target pro-
grams. We utilize the test cases of the fixed version, at least one of which reveals the target bug in the
buggy version (see the assumption 2 in Section . If the fixed version does not have a test case that
fails on the buggy version (e.g., Azureus memory leak bug), we create a failing test case based on the
bug report. In addition, to localize a fault precisely, we focus to localize one bug at a time by building
a new test suite out of the original test suite. The new test suite consists of one failing test case and all

passing test cases that cover at least one statement executed by the failing test case.

1 The full experiment data and the target program code are available at http://swtv.kaist.ac.kr/data/museum.zipl
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4.1.3 System Platform

The experiments were performed on the 30 machines equipped with Intel i5 3.4 GHz with 8 GB main
memory (we performed experiment on one core per machine). All machines run Ubuntu 8.10 32-bits,
gee 4.3.2, and OpenJDK 1.6.0. MUSEUM distributes tasks of testing each mutant to the 30 machines. E|

4.2 Experiment Results

Table reports the experiment data on the six bugs. The second row counts the number of the
source target lines which are executed by the failing test case (see Step 1 of Section. The third row
shows the total number of the mutants generated by MUSEUM, and the forth row describes the total
number of the target lines on which at least one mutant is generated. The fifth and sixth rows show the
number of the mutants on which testing results have changed. The last row describes the runtime cost.
For example, to localize the fault in Bug4 (an invalid JNI reference in C), we built a test suite containing
one failing test case and 169 passing test cases out of the original test suite (see the eighth column of the
fifth row at Table . For Bug4, MUSEUM generated 718 mutants with at least one mutant for 70%
of the target lines (=130/186). Among the 718 mutants, there are two mutants on which the failing test
case passes (see the sixth row of Table . E| We call such mutants as “partial fix” because the failing
test case passes on the mutant (but passing test cases may fail on these mutants). The table shows that
only 0.28% of the mutants are partial fixes (=2/718). However, these mutants contribute significantly to
localize a fault precisely because a partial fix increases the first term of the suspiciousness metric formula
much (see the metric formula in the Step 4 of Section .

Regarding time cost, although MUSEUM consumes large amount of computing resources to compile
and execute a large number of mutants, the overall elapsed time can be modest. This is because tasks
of testing mutants can be distributed to a large number of machines (e.g., Amazon EC2) as these tasks
are independent to each other. For example, it takes around 90 minutes (=(12+66+544+96+60+252)/6)
to localize each bug of the six multilingual bugs on average by utilizing 30 machines.

Table compares the fault localization results of MUSEUM and the cutting-edge SBFL techniques
including Jaccard [21], Ochiai [41], and Op2 [39]. Each entry reports the suspiciousness score ranking
which is the maximum number of statements to examine until finding a faulty statement described
in the bug report. The percentage number in the parentheses indicates the normalized rank of the
faulty statement out of the total target statements (i.e., Zof he tarragél; <ntomanis)- The second row of the
table clearly shows that MUSEUM precisely identifies the buggy statement. MUSEUM ranks the buggy

statements in Bugl, Bug3, and Bugd as the most suspicious statements (i.e., the first rank). Even for

Bug2, Bugh, and Bug6, MUSEUM identifies the buggy statement as the most suspicious statement with
the other one, seven, and two statements together, respectively (e.g., for Bug5, the suspiciousness scores
of the eight statements including the buggy statement are equal). Thus, from these experiments, we
conclude that MUSEUM localizes a multilingual bug precisely.

In contrast, SBFL techniques fail to localize multilingual bugs precisely. For Bug6, Op2 ranks the
buggy statement as the 3,494th among the 3,494 target statements (see the fifth row of Table, which

means that a developer has to examine all target statements (i.e., 100%) to identify the bug. One main

2 We set the time limit (10 seconds) at each test run on a mutant to avoid the infinite loop problem caused by mutation.

Time taken to execute a test run was less than one second on the six subjects on average.
3The number of mutants that make the failing test case pass is equal to f2p since the test suite contains only one failing

test case in our experiments.
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Table 4.2: Overview of the experiment data

‘ Bugl ‘ Bug2 ‘ Bug3 ‘ Bug4 ‘ Bugb ‘ Bugb6

# of the target lines

. 1,939 299 443 186 186 | 3,494
(executed by the failing test case)

# of mutants 2,861 691 965 718 369 | 9,479

# of lines which have a mutant 1,575 219 327 132 103 | 2,524

# of mutants that make a passing
. . 305 555 793 358 311 | 3,617
test case fails (breaking)

# of mutants that make a failing
1 3 7 2 51 32

test case passes (partial fix)

Time cost (min) | 12| 66| s4| 96| 60| 252

Table 4.3: The ranks of the buggy line identified by MUSEUM and other SBFL techniques

‘ Bugl ‘ Bug2 ‘ Bug3 ‘ Bug4 ‘ Bugb ‘ Bug6
1 2 1 1 8 3
MUSEUM
(0.1%) | (0.7%) | (0.2%) (0.1%) (4.3%) (0.2%)
80 4 5 83 61 3,494
Jaccard
(41%) | (1.3%) | (1.1%) | (44.6%) | (32.8%) | (100.0%)
80 4 5 83 61 3,494
Ochiai
(41%) | (1.3%) | (1.1%) | (44.6%) | (32.8%) | (100.0%)
On2 80 4 5 83 61 3,494
P (4.1%) | (1.3%) | (1.1%) | (44.6%) | (32.8%) | (100.0%)

deficiency of traditional SBFL techniques is the low resolution in fault localization (i.e., all statements in
the same branch have same suspiciousness scores because the statements in the same branch are covered
by the same test cases). This is one reason why those SBFL techniques assign the same suspicious ranks
to the buggy statements in the experiments. In contrast, MUSEUM mutates each statement in multiple

different ways and can assign different suspiciousness scores to the statements in the same branch.
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Chapter 5. Case Study 1: Azureus Memory Leak
Bug (Bugl)

5.1 Bug Overview

Azureus is a popular P2P file-sharing application. Azureus 3.0.4.2 has a memory leak bug because
Azureus may allocate native memory for an Image object, but never de-allocate the memory. In more
detail, Image class uses native C methods to allocate/de-allocate native memory for its member objects.
Such allocated native memory should be explicitly freed by calling Image.disposed() before an Image
object is not used anymore and garbage collected. Otherwise (i.e., Image object is garbage collected
without calling Image.dispose()), the allocated native memory is not reclaimed and the native memory
leak occurs. A problem is that ListView.handleResize() of Azureus allows an Image object to be
garbage collected without calling Image .disposed(). The memory leak bug in Azureus 3.0.4.2 was fixed
on Jan 12, 2008 [1] (used as an example in the QVM case study [13]).

The QVM parper 13| describes that the following code in ListView.java as the memory leak bug
because the code misses imgView.dispose() before the line 523 where the old Image object referenced

by imgView is not used anymore.

496:public void handleResize(boolean bForce) {
508: if (imgView == null || bForce){

523: imgView = new Image(...) ;

A developer might introduce this bug because he or she might fail to recognize the necessity of
freeing the native memory in Java code, which is necessary for multilingual programs written in both
Java and C.

5.2 Detailed Experiment Result

Since Azureus code has no test case, we created a failing test based on the bug report. Also, we
built additional seven passing test cases which covers handleResize (). In addition, we add the following
test oracle to detect memory leak on Image objects by using the isDisposed() method of Image class

which checks if all members get freed:

public final class Image ... {
protected void finalize() throws Throwable {
if (!isDisposed()) reportLeak();

super.finalize();}}

Finally, we make all test cases to invoke System.gc() and Thread.sleep(10) so that JVM can

garbage collect all unused objects before the execution terminates.
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MUSEUM identifies the line 523 of ListView. java as the most suspicious statement (i.e., the first
rank). As shown in the second column of Table the line 523 has four mutants. Mutant m4 is
generated by the new mutation operator Pin-Java-Object designed for multilingual bugs (particularly
targeting resource constraints, see Table [3.1). m4 adds the corresponding new statement in Table
before the target statement. Mutants m1, m2 and m3 are generated by the mutation operators provided
by PIT which replace the target statement with the statements in the table.

m4 makes the failing test case as a passing one (the third column) because it adds an extra reference
to the old object pointed by imgView, which prevents the old object from being garbage collected. As
a result, the native memory leak does not occur. m4 make the failing test case as a passing one (the
third column), which makes the first term of the MUSEUM suspiciousness metric large and increases
the suspiciousness score significantly. In contrast, m1 and m3 make two and four passing test cases as
failing ones (the fourth column), which increases the second term but in only limited degree due to the
large denominator (i.e., p2f=1961).

Among the 1939 target statements, only the line 523 has a mutant that fixes the bug (i.e., m4)
with regard to the given test cases and the given test oracle (i.e., making the failing test case passes).
Consequently, the line 523 has the highest suspiciousness score. Thus, through the case study for the
bug 1, we confirm that the new mutation operators such as Pin-Java-0bject can increase the precision
of MUSEUM.

Table 5.1: The four mutants generated at the buggy statement of the bug 1

No. Mutant generated from imgView = new Image(listCanvas.getDisplay(), | |f(s) | |p(s)
clientArea); at line 523 of ListView.java N pm| | N [l
ml ‘ imgView = null; ‘ 0 ‘ 2
m2 ‘ imgView = new Image(null, clientArea); ‘ 0 ‘ 0
m3 ‘ new Image(listCanvas.getDispaly(),clientArea); ‘ 0 ‘ 4
m4 ‘ global ref_list.add(imgView) ; ‘ 1 ‘ 0
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Chapter 6. Case Study 2: Locating The Cause of
Invalid Use of JNI References (Bug4)

This case study illustrates how MUSEUM localizes the cause of dangling JNI references (Bug4)
accurately by using the new mutation operators (Table .

6.1 Bug Overview

Dynamic error detectors [29] detect Bug4 and report the calling context at the fault location of using
the dangling JNI reference as an argument to a JNI function. However, they cannot report the cause
location where the JNI reference was stored into a callback object in C heap, which occurs at Line 524

of binding _java_signal.c as indicated as the buggy statement in the bug report:

387: GClosure* bindings(JNIEnv *env,

jobject handler, jclass receiver, ... ) {

524 bjc->rec = receiver;

When bindings at Line 387 is invoked, the receiver parameter is assigned with a local JNI reference.
Line 524 stores the local reference in a data structure in the C heap pointed by bjc. However, once
bindings returns back to Java, the local reference stored in bjc->rec is not valid anymore (i.e., becoming
a dangling reference, see Resource constraints in Section . Later, when the application calls a JNI
function with an argument containing the dangling reference, the application crashes with a JNI invalid

argument error.

6.2 Detailed Experiment Result

MUSEUM localizes the fault exactly by ranking Line 524 as the most suspicious statement (i.e., the
first rank without a tie). Table describes nine mutants (ml to m9) that are generated by mutating
Line 524. The second column shows the changed statement of each mutant. The third and the forth
columns report the number of tests that failed on the original program but pass on the mutant (i.e.,
|f(s) N pm|), and the number of tests that passed on the original program but fail on the mutant (i.e.,
|p(s)N fin]), respectively (Section. ml, m2, m4, m6, m8, and m9 are generated by applying our new
multilingual mutation operators in Table[3.1] These mutants are generated by inserting the statements of
changing the life time of JNI references right after the target statement. m3, m5 and m7 from Proteum
terminate the control flow at the level of procedure, statement, and whole program.

In the testing runs, our new mutation operators prevent mutated programs m1 and m4 from crashing
in the failing test case (i.e., Make-weak-global-reference and Make-global-reference in Table
respectively). m1 and m4 turn the failing test case into a passing one (the third column) because they

keep bjc->rec to store a weak global reference and a global reference respectively and eliminate the

—923 —



Table 6.1: The nine mutants generated by mutating the buggy statement of Bug4

Mutant generated by mutating Line 524 of lf(s) | |p(s)
bindings_java signal.c Pl | O fim]

bjc->rec=receiver;
ml 1 0
bjc->rec=(*env)->NewWeakGlobalRef (env,bjc->rec);

bjc->rec=receiver;
m2 0 0
bjc->rec=(*env)->NewLocalRef (env,bjc->rec);

m3 | return; // return back to the caller. 0 0

bjc->rec=receiver;
m4 1 0
bjc->rec=(*env)->NewGlobalRef (env,bjc->rec) ;

mb | ; // remove a statement at Line 524 0 2

bjc->rec=receiver;
mb 0 2
(*env)->DeleteGlobalRef (env, bjc->rec);

m7 | kill(getpid(), 9); //terminate the process 0 2

bjc->rec=receiver;
m8 0 2
(*env)->DeleteLocalRef (env, bjc->rec);

bjc->rec=receiver;
m9 0 2
(*env) ->DeleteWeakGlobalRef (env,bjc->rec) ;

dead reference problem caused by the short-lived local reference. On the other hand, the conventional
mutation operators (i.e., m3, m5, and m7) do not affect the test results. ml and m4 make the first
term of the MUSEUM suspiciousness metric large and increase the suspiciousness score of Line 524
significantly because the denominator of the first term is small (i.e.,f2p=2) (Section . In contrast,
each of the mutants m5 to m9 make two passing test cases fail (the fourth column), which increases the
second term but in only limited degree due to the large denominator (i.e., p2f=6034).

Among the 186 target statements, only Line 524 has mutants that fix Bugd with regard to the
given test cases and the given test oracle (i.e., making the failing test case pass). Consequently, Line
524 has the highest suspiciousness score due to the new mutation operators which generate partial
fixes. Thus, through the case study for Bug4, we confirm that the new mutation operators such as
Make-global-reference can increase the accuracy of MUSEUM (Section .

In contrast, the SBFL techniques rank the buggy statement as the 83rd suspicious one among the
186 target statements. Such poor result is due to the two coincidentally correct test cases (CCTs) that
execute Line 524 but pass because the target program does not use bjc->rec as an argument to a
JNI function call later with these test cases. Thus, the SBFL techniques considers Line 524 has low
correlation with the failure and assign low suspiciousness score to Line 524.

Note that these CCTs do not make adverse effect to MUSEUM. This is because the mutants (i.e.,
ml to m9) obtained by mutating the buggy statement (i.e., Line 524) do not make these two CCTs fail
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as the target program and the mutants do not use bjc->rec as an argument to a JNI function call later
with these CCTs (i.e., the mutation on the buggy statement is inactive with CCTs because the buggy
statement is dormant with CCTs). Thus, these CCTs do not increase the second term of the MUSEUM

suspiciousness metric (Section [3.2)) and do not lower the suspiciousness score of the buggy statement.
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Chapter 7. Case Study 3: Locating the Cause of a
Segmentation Fault in Eclipse SWT (Bug6)

This case study in this chapter demonstrates how MUSEUM accurately localizes a complex mul-
tilingual bug whose cause-effect chain is long and complicated, which is often the case for multilingual

bugs and makes debugging multilingual bugs very difficult.

7.1 Bug Overview

Bug 322222 (Bug6) in the Eclipse bug repository for Standard Widget Toolkit (SWT), a standard
open-source GUI development library for Java programs crashes JVMs with a fatal segmentation fault

by dereferencing NULL at Line 271 of pango-layout.c:

262: PangoLayout *
263: pango_layout_new (PangoContext *context)

264: {
271: layout->context = context;
275: }

The origin of NULL is the native C function (callback) that acts as a gateway from C to Java in the
SWT library. callback returns NULL when a Java exception is pending in the current thread. While
the detection of this bug is trivial, locating the root cause took a heroic debugging effort for more than
a year with hundreds of comments from dozens of programmers. This bug was difficult for experts to
debug since the cause-effect chain goes through Java exception propagation and language transitions.
Although the multilingual debuggers [28] aid programmers to locate the origin of NULL, they do not
locate the root cause of the bug.

The root cause is turned out to be an immature implementation of a callback handler at Line 2602

of Display. java. E]

// Simplified patch for Bug6
2595 :if (0S.GTK_VERSION>= 0S.VERSION(2,4,0)) {

2601--: 0S.G_OBJ_CONSTRUCTOR (PLClass);

2602--: 0S.G_OBJ_SET_CONSTRUCTOR(PLClass, newProc);

2601++: p = 0S.G_OBJ_CONSTRUCTOR(PLClass);

2602++: 0S.G_OBJ_SET_CONSTRUCTOR (PLClass, new NewProcCB(p));

IThe bug report on Bug6 does not describe the root cause of the crash but only its symptom, which is often the case

for real-world applications. Thus, we had to identify the buggy statement by analyzing the bug patch.
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Table 7.1: The top four statements of the SWT target code whose suspiciousness scores are high

Susp. | |f(s) | Ip(s)
score Pl | Nfom]

Rank Statement Mutant

/*Display. java:2602%/ ; /* the function
0S.G_0OBJ_SET_CONSTRUCTOR (PLClass,NewProc) ; call is removed */

3| 0.0313 1 0

/*0S.java:8115%/
31 0.0313 1 0 ] ) return 0;
return _major_version;

/*0S.java:8125%/
31 0.0313 1 0 . . return O;
return _minor_version;

/*Display. java:2392%/ ; /* the function
41 0.0306 1 1

initializeSubclasses(); call is removed */

This patch replaces the newProc that calls callback at Line 2602 with a new NewProcCB(p) object that
calls another callback function that never returns NULL at the presence of a pending exception. Although
the location of the failure in C at the segmentation fault is fairly far away from the callback handler in
Java, MUSEUM locates the root cause of the failure as most suspicious (i.e., the suspiciousness rank of
Line 2602 is 3 as Line 2602 is tied with other two statements).

7.2 Detailed Experiment Result

We utilize a test suite consisting of one failing test case and 49 passing test cases. We selected these
49 passing test cases that cover the display module of SWT because all error traces in the bug report
contain a method in the display module.

Table [7.1] presents the top four suspicious statements and their mutants, which increase the suspi-
ciousness scores. Bl MUSEUM ranks the first three statements in a tie as rank 3 that include the location
of the root cause of the failure: Display.java:2602. The mutants for the top three statements change
the failing test case into passing one without affecting passing test cases (see the third and the fourth
columns).

These mutants disable the immature callback handler that transitively calls callback. The first
mutant eliminates Line 2602 of Display. java that registers the immature callback handler. The second
and the third mutants change the return value with zero, which in turn reverses the control flow decision
at Line 2595 of Display. java, deactivates transitively Line 2602 of registering the immature callback
handler, and avoids the segmentation fault. The fourth mutant disables the immature callback handler
at the cost of turning one passing test case into a failing one, which decreases the suspiciousness of Line
2392 and lowers its rank to 4.

2 All of the top four statements have only one mutant due to the limitation of PIT which supports only small number

of mutation operators for Java code compared to Proteum for C code.
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Table 8.1: Statistics on the mutation operators that generate mutants in the experiments

| Bugl | Bug2 | Bug3 | Bug4 | Bug5 | Bug6

# of tests where the failing TC passes on the mutants 1 3 7 2 51 32

# of mutation operators that generate a mutant

. . 1 3 6 2 12 14
on which a failing TC passes
# of tests where the failing TC passes on the mutants ) 0 0 5 5 0
generated by the new mutation operators
# of the new mutation operators that generate a mutant
1 0 0 2 1 0

on which a failing TC passes

Chapter 8. Discussions

8.1 Advantages of Mutation-based Fault Localization for Real-
world Multilingual Programs

One of the issues that make debugging real-world programs difficult is the poor quality of a test suite
because fault localization can be more accurate if a test suite covers more diverse execution paths. For
large real-world programs, however, it is challenging to build test cases that exercise diverse execution
paths because it is non-trivial to understand and control a target program. In addition, generating diverse
test cases for multilingual programs has additional burden to learn and satisfy constraints for foreign
function interface such as JNI constraints. Therefore, it is often the case that multilingual programs are
developed with a set of similar test cases. As a result, as shown in Table the SBFL techniques fail
to precisely localize the six real-world multilingual programs.

For example, the statement coverages of the test suites used for Bug2 and Bug3 are around 85%
and 86% and the SBFL techniques localize these bugs somehow precisely (i.e., the suspiciousness rank
of Bug2 and Bug3 are 4 and 5, respectively). However, the statement coverages of the test suites used
for Bugl, Bug4, Bugh, and Bug6 are around 1%, 22%, 24%, and 19% and the accuracy of the SBFL
techniques for these bugs are very low (Table . In contrast, MUSEUM can overcome this limitation
by achieving the effect of diverse test cases through the diverse mutants with limited test cases. Thus,

MUSEUM can be a promising technique for debugging complex real-world multilingual programs.

8.2 Effectiveness of New Mutation Operators for Localizing Mul-
tilingual Bugs

Table presents the information on the mutation operators that generate mutants on which the
failing test case passes (i.e., partially-fixing mutants). The second row shows the number of tests where

the failing test case on the target program passes on a mutant. The third row represents the number of
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mutation operators that generate a mutant on which the failing test case changes to pass. The fourth
and the fifth rows show the similar information to the second and the third rows but on the mutants
generated by the new mutation operators for multilingual programs (Section [3.3)).

Table [8:1] shows that only the new mutation operators generate partially fixing mutants for Bugs
1 and 4 (i.e., since the numbers in the third row and the fifth row are the same). For Bugl, only the
Pin-Java-Object mutation operator generates a mutant on which the failing test case passes, which
indicates that the target statement of the mutant is closely related to the bug (i.e., memory leak in this
case). Similarly, for Bug4, only Make-global-reference and Make-weak-global-reference generate
the mutants that make the failing test case pass.

The table shows that the new mutation operators are effective to mutate multilingual program
behaviors and discover critical code points related to the JNI constraints. To assess the impact of the
new mutation operators on fault localization, we ran MUSEUM for Bugs 1, 4 and 5 without the new
mutation operators. For Bugs 1 and 4, the suspiciousness ranks of the faulty lines become 1737 for Bugl
(89.6%) and 117 (62.9%) for Bug4. For Bugb, the rank of the faulty line changes from 8 to 9 (the faulty
line no longer has the highest suspiciousness score). This result implies that language-interface specific
mutation operators can effectively supplement the existing mutation operators for finding multilingual
bugs.

For the other four bugs, the existing mutation operators generate more partially fixing mutants
than the new ones. Among the 89 (=75 mutation operators for C + 14 mutation operators for Java)
existing mutation operators, the top-3 operators that generate a large number of partially fixing mutants
are ‘remove a function call’; ‘remove a statement’, and ‘change the return value at a return statement’.
These three mutation operators generate mutants on which 46 failing tests pass out of total 96 failing
tests that pass on mutants (see the second row of the table). We found that these three operators
generate mutants that change function call/return behaviors. We conjecture that mutating function
call/return effectively changes multilingual behaviors of a target program as the interaction between

different languages are made through function calls.
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Chapter 9. Conclusion and Future Work

9.1 Summary

I have presented MUSEUM which localizes bugs in complex real-world multilingual programs in a
language agnostic manner through mutation analyses. The experiments on the six real-world multilingual
programs show that MUSEUM precisely locates the faulty statement for all non-trivial Java/C bugs. In
addition, I have showed that the accuracy of fault localization for multilingual programs can be increased

by adding new mutation operators relevant with FFI constraints.

9.2 Future Work

As future work, I will focus on developing our technique in the direction of improving the effective-

ness, the effeciency, and application to other language combinations (e.g., Python/C)

9.2.1 Improving Effectiveness

Although current MUSEUM localizes JNI bugs precisely in our case studies by employing 15 new
mutation operators for JNI, in order to guarentee the promising results to other JNI bugs, I will add

more mutation operators to cover more features in multilingual programs.

9.2.2 Improving Efficiency

Mutation based fault localization requires a lot of computing power to compile mutants and execute
the mutants on given test suite. To reduce the computational cost, I will apply selective mutation testing,

such as using selective mutation operator, reducing mutation points, and test case selection.

9.2.3 Application to Different Languages

MUSEUM can be applied to multilingual programs written in other language combinations such
as Python-C, PHP-JavaScript, etc. To adapt and apply MUSEUM, a target language should provide a
statement coverage measurement tool and a mutation tool. I believe that one can easily add a support
for a new language in MUSEUM using those tools since required tools are available for the popular
programming languages (e.g., mutations tools such as Nester for C#, Humbug for PHP, MutPy for
Python, Heckle for Ruby, Grunt-mutation-testing for Java Script and coverage tools such as NCover for
C+#, Xdebug for PHP, JSCover for JavaScript, etc.).
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Mutation-based Debugging of Real-world Multilingual Programs
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