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초 록

C++는그확장성,유연성및고성능을가진프로그래밍언어로써많은응용프로그램에널리사용되고있다.

하지만, C++는복잡한문법체계를가지고있어,정확한코드를적기위해서는매우어려우며,따라서 C++

프로그램을 자동으로 테스트하여 코드의 질을 높일 수 있는 기술이 필요하다. 하지만 템플릿 인스턴스화,

복잡한 STL 타입 등의 높은 복잡성을 가지는 C++ 코드의 분석이 어려워, 실제 C++ 프로그램을 유닛

테스팅 할 수 있는 도구는 거의 없는 실정이다.

본논문에서는위에서언급된 C++의복잡성을해결하여자동으로 C++프로그램을유닛테스팅할수

있는 도구인 CITRUS를 개발하여 제안한다. CITRUS는 주어진 C++ 프로그램 P를 분석하여, P의 다양한

함수 호출을 포함하는 테스트 드라이버를 자동으로 생성한다. 더 나아가서, 테스트 드라이버를 변이하여 더

다양한 함수 호출 시퀀스를 생성하고, libfuzzer를 이용하여 각 함수 호출의 인수 (argument)를 변이하여

다양한 값으로 함수를 호출 할 수 있도록 한다. CITRUS를 평가하기 위해 실제 C++ 프로그램에 적용한

결과, 95%의 명령문(statement) 커버리지 향상과, 79%의 분기 커버리지 향상을 보였다.

핵 심 낱 말 자동 테스트 생성, C++ 유닛 테스트, 랜덤 함수 호출 시퀀스 생성, 코드 돌연변이, 동적 분석.

Abstract

C++ is popular in many application domains for its extensibility, flexibility, and high performance. At

the same time, however, C++ is infamous for its complex syntax and semantics. Thus, it is challenging

to write correct C++ programs and the need to automatically test C++ programs has been high.

Unfortunately, due to the high complexity of C++ (e.g., template instantiation, complex STL types,

etc.), there are almost no automated unit testing tool publicly available for real-world C++ programs.

I have developed a new automated unit testing tool CITRUS that resolves the aforementioned

complexity of C++ programs. After analyzing the source code of a target C++ program P , CITRUS

automatically generates test driver files for P , each of which consists of various method calls of P . Then,

to improve the test coverage of P , it generates more diverse test drivers by mutating the test driver code.

Also, CITRUS increases the test coverage of P further by applying libfuzzer to alternate P ’s state by

mutating arguments of the methods. I have demonstrated the testing effectiveness and the efficiency of

CITRUS through the experiments on the real-world C++ programs, on which CITRUS achieves up to

95% statement and 79% branch coverage.

Keywords Automated test generation, C++ unit testing, random method sequence generation, code

mutation, dynamic analysis.
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Chapter 1. Introduction

1.1 Background

1.1.1 Research Background

Automated test case generation has become one prominent research topic in the software engineering

field for the past decade [1, 2, 3, 4]. Various techniques have been proposed, ranging from the blackbox

random testing [1, 5], coverage-guided greybox fuzzing [6, 7, 8], dynamic symbolic execution [9, 10], into

the sophisticated AI-driven search-based software testing (SBST) [11, 2], among which each introduces

its own strengths and limitations [12]. The adoption of automated test case generation has been drawing

attention recently as it has been verified to be useful for practical uses, such as uncovering security

vulnerabilities in modern systems [13, 14, 7, 15] and locating program faults in real-world industrial

cases [16]. Moreover, a recent study has shown that automated test case generation produces test cases

with higher test coverage compared to the manually-written test cases [17]. Those success stories of

automated software testing strongly motivates the necessity of automated approaches for testing modern

softwares in the future.

Automated testing has been applied to generate millions of inputs to explore program states in

system-level executions [6, 7, 8, 18]. Unfortunately, system-level testing frequently fails to reach vulner-

able statements located deep within the code due to many reasons, such as the highly-complex input

specification in system-level, and so on. For example, environmental constraints may also hinder the

effectiveness of test case generation in embedded systems [10]. To overcome such problem, some re-

cent works on automated test case generation ultimately focus on generating high-coverage test cases in

unit-level [1, 2, 10, 19]. However, for some highly-complex programming languages such as C++, the

availability of well-performing automated testing tools in unit-level is strictly limited.

This work focuses on automated unit-level test case generation for object-oriented programs written

in C++ programming language. C++ programming language is famous for its extensibility, flexibility,

and high performance. Thus, it is popular in many application domains that requires significant de-

velopment efforts such as database engines, operating systems, web browsers, video games, and so on.

However, due to the notoriously high complexity of the syntax and semantics of C++, it is technically

challenging to develop reliable C++ programs even to the current days. Moreover, although the need

to automatically test C++ programs has been high, there are almost no automated unit testing tool

publicly available for real-world C++ programs due to the high complexity of C++ language features

(e.g., template instantiation, complex STL types, and so on).

1.1.2 Previous Approaches

Currently, there are only very few works on automated unit-level test case generation for C++

programs. Meanwhile, the development of automated testing tools for unit-level testing has been evolving

rapidly for other programming languages, such as Java (e.g., Randoop [1] and EvoSuite [2]) and Python

(e.g., Pynguin [19]). EvoSuite [2], for example, has been well-known to be the current state-of-the-

art tools to generate JUnit tests automatically from an existing Java programs. However, due to the

1



syntactical differences in programming features and language characteristics, these tools can only target

programs written in their specific programming language and are not applicable to target C++ programs.

The system-level approaches, such as coverage-guided fuzzing tools [6, 14, 18] and symbolic exe-

cutions [9, 10], are difficult to be used (but yet still applicable) to test C++ programs in unit-level.

Fuzzing tools generate and mutate input bytes to C++ target programs (without analyzing the lan-

guage complexity of C++ program code). Symbolic execution approaches generate concrete values for

each symbolic variables based on running constraint solvers on the collected symbolic path formulas.

While such system-level approaches are still applicable for unit-level testing, the major disadvantage

of using system-level approaches in unit-level testing is the high cost requirement to provide numerous

stub drivers for each unit (a.k.a. function). Moreover, the limited testing time budget and the large

search space of possible ordering of method calling sequences may also hinder the effectiveness of such

system-level approaches.

To mitigate the high cost of generating stub drivers in unit-level automated testing, more recent

approaches [20, 21, 22, 23] automatically generate the stub drivers at the initial stage of the testing to

act as the entry point for each unit. KLOVER [20] and FSX [21] generate static drivers initially to

declare the symbolic variables to be passed for each function arguments. However, such static drivers

do not incorporate the possibility of varying method call sequence ordering to diversify the produced

object states, which is one of the preeminent features to test in object-oriented programming language.

Meanwhile, FUDGE [22] and FuzzGen [23] synthesize unit-level stub drivers of the target library APIs

by referring to existing code snippets in external library consumer projects. Referring to the existing

code snippets indeed helps FUDGE and FuzzGen to prevent API misuses on stub drivers, but relying

onto the existence of such snippets (e.g., from only a single consumer project) may fail on producing

stub drivers for uncommonly used APIs.

1.2 Thesis Statement and Contributions

1.2.1 Thesis Statement

The thesis statement for this work is written as follows:

An automated testing tool based on method call sequence generation can gener-

ate high-coverage test cases for C++ programs that address the notoriously high

complexity of C++ language features in unit-level testing context.

1.2.2 Proposed Approach

To resolve the aforementioned difficulties of testing C++ programs, I have developed a new auto-

mated unit testing tool CITRUS (C++ unIt Testing for Reliable and Usable Software) (Section 2.6.2

describes how CITRUS handles template instantiation and Section 2.6.3 shows how it manages complex

STL types). CITRUS receives the source code of a target C++ program P and it automatically generates

test driver files for P , each of which consists of various method calls of P . Then, CITRUS generates

more diverse test drivers by mutating the test driver code to increase the test coverage of P . In other

words, CITRUS explores diverse states of P by executing various method sequences of functions in P .

2



In addition, CITRUS improves the test coverage of P further by applying libfuzzer [24] to change P ’s

state by mutating arguments of the methods.

I have demonstrated the testing effectiveness and the efficiency of CITRUS through the experi-

ments on the eight real-world C++ programs (jsonbox, hjson, tinyxml2, jvar, jsoncpp, json-voorhees,

yaml-cpp, and re2) ranging from 1.5 KLoC to 20 KLoC. On these target programs, CITRUS achieved

up to 95% statement (on jsoncpp) and 79% branch (on jsonbox) coverage.

1.2.3 Contributions

The contributions of this work are listed as follows:

1. CITRUS generates test cases on real-world C++ programs in fully-automated manner. Compared

to previous works on unit-testing C++ programs in system-level approaches (e.g., symbolic exe-

cution), CITRUS automatically generates drivers of the target program and does not require any

human tester to interfere during the process.

2. Due to the high complexity of C++ language features, CITRUS is one of the very few tools that

can automatically generate unit-level test cases to work on complex real-world C++ programs. In

the past year, I have worked on CITRUS by putting extensive engineering efforts to accommodate

the rich language features of C++, such as template classes, STL classes, inheritances, implicit

constructors, and so on.

3. I have performed an in-depth evaluation on eight real-world C++ programs to evaluate the testing

effectiveness and efficiency of CITRUS. In my experiment, CITRUS achieved high testing effective-

ness (up to 95.4% for line coverage and 78.9% for branch coverage). Also, by continually fuzzing

using libfuzzer after the method sequence generation stage, CITRUS produced a competitively

good result in significantly less testing time budget (i.e., saving up to 14.6 hours in average).

4. I have reported a concrete case study to demonstrate how CITRUS detects crash bugs on the C++

programs, which remains as a challenging task in automated unit-level testing due to its proneness

of false alarms. The case study is elaborated in Section 3.3.1.

5. CITRUS has been made as an open-source tool to further support the future development of

automated unit-level test case generation for C++ programs. The source code of CITRUS is

publicly available at https://github.com/swtv-kaist/CITRUS.

1.3 Structure of Thesis

The remaining chapters of this thesis are structured as follows: Chapter 2 describes the design of

CITRUS’s overall process on how it generates various test cases. Chapter 3 describes the experiment

setup and evaluation results to demonstrate the testing effectiveness and efficiency of CITRUS. Chapter 4

elaborates some lessons learned from this work and provides several suggestions to improve CITRUS.

Chapter 5 explains some related works to automated test case generation for C++ programs based on

method call sequence generation. Finally, Chapter 6 summarizes the thesis with conclusion and future

works.

3
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Chapter 2. CITRUS: C++ Unit Testing for Reliable and

Usable Software

2.1 Overview

CITRUS adopts random method call sequence generation to generate test suites that extensively

exercise the target program in unit-level testing. A method call sequence that either: (1) contributes to

the test coverage, or (2) induces crash on the target program; will be kept as interesting test cases. Then,

CITRUS generates libfuzzer harness drivers from the non-crashing test cases to continue traversing the

target program. Figure 2.1 illustrates the overview process of CITRUS as described above.

Figure 2.1: Overview of CITRUS’s process

2.2 Motivating Example

This section shows four motivating examples to further elaborate the key challenges in automated

unit-level test case generation tools for C++ programs.

Requires unit-level harness drivers. There has been several program input-based mutation ap-

proaches to test C++ programs in system-level testing, such as coverage-guided fuzzing [6, 18] and

symbolic execution [25]. However, such approaches are difficult to be applied on unit-level testing as

they require manual construction the unit-level harness drivers prior to the test input generation.

Listing 2.1 demonstrates that manual testing requires numerous harness drivers to construct diverse

object states to extensively test Printer::ToJSON method. Some classes may have sufficiently many

fields within their internal representation, such as APIResponse class has 100 unique setter methods as

shown in Listing 2.1. This means, in a pairwise combinatorial testing scenario, the tester must manually

write 4,950 (=100C2) combinations of possible pair of setter calls to apply unit-level testing using the

system-level approaches mentioned above.

4



Listing 2.1: Motivating Example I: Requires unit-level harness drivers

1: class APIResponse {

2: public:

3: void SetField1(int arg) { ... }

4: void SetField2(const char* str , int len) { ... }

5: ... // and another 98 setter functions for each field

6: };

7: class Printer {

8: public: void Print(const APIResponse& response) { ... }

9: };

Listing 2.2: Motivating Example II: Object construction problem (OCP)

1: class Shape {

2: public: virtual void Draw() = 0; // pure virtual function

3: };

4: class Circle : public Shape {

5: public: void Draw() { ... }

6: };

7:

8: enum class ColorType { WHITE , BLACK , YELLOW };

9: class AlphaColor {

10: private: AlphaColor(ColorType ctype , double alpha) { ... }

11: };

12: AlphaColor BaseAlphaColor () { ... }

12: void PrintWithColor(const Shape &shape , const AlphaColor &color);

Object creation problem (OCP). The next challenge after writing harness drivers is the object

creation problem (OCP). The OCP is defined as how do we construct valid method call sequences to

obtain an instance of a particular class. Some classes may have non-trivial ways to construct, such as

implicit constructors and static factory methods (see Section 2.4.1 for details of these two concepts).

Listing 2.2 demonstrates a concrete example of OCP on generating valid sequence of method calls to

test PrintWithColor (L13). The PrintWithColor method takes two const rvalue reference arguments:

Shape and AlphaColor. However, instances construction of Shape and AlphaColor are non-trivial as

described below.

1. First, a direct instantiation of Shape class forms an invalid sequence because Shape is an abstract

base class (notice the Shape::Draw at line 2 is a pure virtual function). To satisfy the Shape

argument requirement, class instances from the Circle class (which is a subtype of Shape) should

be used. Note that the construction of a Circle instance involves an implicit default constructor

(i.e., “Circle()”) deduction, which might be non-trivial for automated tools.

2. Second, a direct invocation to AlphaColor’s constructor also produces uncompilable code (because

AlphaColor’s constructor was marked private). To construct AlphaColor, automated tools must

find another existing API that returns an instance of AlphaColor (e.g., BaseAlphaColor() at L12).

5



Listing 2.3: Motivating Example III: Testing C++ template classes

1: template <typename U, typename V>

2: class Pair {

3: public:

4: Pair(U first , V second);

5: bool Equal(const Pair <U, V> &other);

6: };

Listing 2.4: Motivating Example IV: Integration with STL classes

1: vector <vector <int >> Transpose(const vector <vector <int >> &matrix);

2: void DrawAllShapes(const array <Shape*, 100> &shapes);

Testing C++ template classes. Testing template classes in C++ introduces another difficult chal-

lenge in C++ automated unit-level testing due to several reasons, such as:

1. It is almost impossible to instantiate template classes with all possible types in the target program.

2. Template classes introduce unbounded type variables (e.g., T, U, V) which are hard to determine for

automated tools. In other words, automated tools must be able to cleverly infer the corresponding

concrete types for each unbounded type variables while generating method call sequences.

At Listing 2.3, to invoke Pair::Equal method (L5) on a Pair<double, int> instance, automated tools

must be aware that type variables U and V correspond to the types double and int respectively. Note that

the Equal’s signature only hints an unbounded Pair<U, V> type as argument, and automated tools must

infer the corresponding type bindings correctly. Then, the tools must generate method call sequences

to construct an instance of Pair<double, int> (i.e., using the constructor at line 4) for a successful

Pair::Equal method invocation.

Integration with STL classes. C++ provides Standard Template Library (STL) which is already be-

ing widely-used by most C++ programs. This implies that C++ testing tool must also accommodate each

class provided in the STL used by the target program. For example, as shown in Listing 2.4, automated

tools must be aware of the construction process of a multidimensional vector (i.e., vector<vector<int>>)

to invoke Transpose method at line 1. Similarly, to invoke DrawAllShapes at line 2, automated tools

must be able to construct the fixed-sized STL’s array (i.e., with exactly 100 elements), because passing

an array instance with mismatched size (e.g., array<Shape*, 50>) leads into an invalid call sequence

(i.e., raises compilation error).

In summary, all of those four key challenges happen frequently while testing C++ programs in

unit-level. CITRUS has been implemented carefully by putting heavy engineering efforts to mitigate all

C++ challenges mentioned above. The following subsections will further describe how CITRUS works,

starting by the definition of a CITRUS test case.
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2.3 Test Cases Generated by CITRUS

2.3.1 CITRUS Test Case Definition

A test case generated by CITRUS has the following characteristics. A CITRUS test case tc is defined

as a sequence of method invocation statements and all supporting statements to construct arguments

of the method calls. Each CITRUS test case mostly triggers a particular unique behavior of the target

program, where such interesting behavior can only be triggered by invoking some target methods/func-

tions with some specific arguments.

tc
def
= ⟨s1, s2, ..., sn⟩ (2.1)

For simplicity, a CITRUS test case has a linear execution flow with no branching (i.e., it does not have

any control statement (e.g., if, for, while)). Consequently, each statement si can be either one of the

following:

1. Declaration a primitive type variable with initialization. For example, the statement “int intVar1

= 7;” declares a primitive int-typed variable intVar1 with initial value = 7;

2. Invocation of a method or a constructor. For example, the statement “const ClassA &objA1

= ClassA(intVar1)” invokes a constructor ClassA with argument intVar1 to construct a ClassA-

typed object; similarly the statement “objA1.method1(objB1)” invokes method1 on objA1 with

argument objB1.

Thus, si has the following characteristics:

1. Each statement has a particular type with zero or more type modifiers.

2. Each statement (except a method call whose return type is void) has a variable with a unique

name within a CITRUS test case.

3. Every variable is assigned exactly once (i.e., static single assignment (SSA)).

2.3.2 CITRUS Test Case Example

To clearly illustrate each statement characteristic, the following example demonstrates a CITRUS

test case which executes a target method method1 on an instance of ClassA.

1: int intVar1 = 7;

2: ClassA objA1 = ClassA(intVar1);

3: const ClassB objB1 = ClassB();

4: objA1.method1(objB1);

The invocation of method1 happened at line 4, right after the object construction of objA1 (lines 1–

2) and the argument construction objB1 for method1 (line 3). Each line corresponds to an individual

statement whose characteristic is listed in Table 2.1. Note that the last statement (line 4) has no variable

name due to its return type (i.e., void).
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Table 2.1: Example of CITRUS Test Case and its Statement Characteristics

Line Statement Stmt. Type Type Modifiers Var. Name

1 int intVar1 = 7 Prim. Decl int – intVar1

2 ClassA objA1 = ClassA(intVar1) Invocation ClassA – objA1

3 const ClassB objB1 = ClassB() Invocation ClassB const objB1

4 objA1.method1(objB1) Invocation void – –

2.4 Process of CITRUS

This section elaborates the detailed process of test case generation in CITRUS. As depicted in

Figure 2.1, CITRUS operates in the following three major stages as follows:

1. Creating the program representation of a target program.

2. Executing the method call sequence generation.

3. Post-processing CITRUS test suite.

The following subsections further explains each of the major stages in CITRUS.

2.4.1 Creating Program Representation

As the initial stage, CITRUS collects all necessary information from a target program source files

(i.e., .cpp) through traversing abstract syntax trees (AST) of the target program. Those necessary

information are described as follows:

� Lists of classes, structs, enums, and global functions declared in the target program.

� A list of header files (i.e., .h, .hpp). The collected header file information serves as an important

prerequisite to compile the temporary drivers, libfuzzer harness drivers, and as well as the final

test suite.

Then, CITRUS mines type information from the information obtained at the AST Traversal stage.

CITRUS builds a type system TS for classes, structs, enums, and member/global functions of the target

program. Algorithm 1 describes how CITRUS builds the type system TS. Also, CITRUS constructs an

inheritance tree model (ITM) (L3–L6, L16) to take account all class inheritance relationship for subclass

instantiation during the method sequence generation. More formally, the ITM supports CITRUS to

construct only the relevant type z ∈ {C} ∪ Subclass(C) while resolving for a class C.

Object Creators and Static Factories

CITRUS (RegisterFunc at L10) distinguishes “object creators” from the regular functions (other

method sequence generation techniques [2, 26] apply a similar approach). Any function f that returns

a non-primitive type C where C /∈ ArgTypes(f) is recognized as object creator of class C. Constructors

and static factory methods are two most-common object creators in object-oriented programming. Also,

CITRUS (RegisterClass at L7) registers implicit object creators for applicable classes and structs,

such as implicitly-declared default constructors [27] and struct initialization list [28].
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Algorithm 1: Creating Program Representation

Data: classes, enums, glob fns from AST traversal

Result: Inheritance tree model ITM and initialized type system TS

1 TS← ∅; ITM← ∅;
2 foreach cls in classes do

3 if cls has parent then

4 par ← Parent(cls);

5 ITM← ITM ∪ {cls, par}
6 end

7 TS.RegisterClass(cls);

8 foreach m in Methods(cls) do

9 if m has public access then

10 TS.RegisterFunc(m)

11 end

12 end

13 end

14 foreach e in enums do TS.RegisterEnum(e);

15 foreach fn in glob fns do TS.RegisterFunc(fn);

16 TS.RegisterInheritanceTreeModel(ITM);

17 repeat

18 TS.ExcludeUnsatisfiableFunctions();

19 until All fn in TS have satisfiable arguments;

The following paragraph concretely describes object creators and static factory methods distin-

guished by CITRUS’s RegisterFunc at line 10. Listing 2.5 shows the type declarations of class-type

Point (L1–L7) and a struct-type Line (L9). While most class instances are usually constructed through

their public and explicitly-declared constructor functions, both Point and Line possess more non-ordinary

ways to construct. In Listing 2.5, there are four object creators of class Point, which are: (1) two static

factory methods FromCartesian and FromPolar at line 3–4; (2) an implicit default constructor (although

its declaration was unspecified); and (3) an external function RandomPosition at line 10. Note that

static factory methods are public and static methods that constructs and returns an instance of a

particular class. Also note that although RandomPosition is not a member function of class Point, the

RandomPosition function can still be considered an object creator of Point since it constructs and returns

Point instances. Meanwhile, most struct types have their constructors unspecified, such as Line (L9) in

Listing 2.5. For such struct types, CITRUS can obtain an instance of Line using the C++’s initializer

list constructing expression. For example, the expression “Line{&point1, &point2}” is to construct a

Line using the addresses of point1 and point2 as start and end respectively.

Unsatisfiable Functions

At L17–L19, CITRUS excludes all unsatisfiable functions from the list of functions. In the current

implementation of CITRUS, a function f is defined as an unsatisfiable function if there exists a type

t ∈ ArgTypes(f), where t is unconstructable by CITRUS. Similarly, a member method m owned by class

C is unsatisfiable if CITRUS cannot construct an instance of class C (i.e., because m can only be invoked

9



Algorithm 2: Method Call Sequence Generation

Data: Initialized type system TS and time budget TMAX

Result: Qvalid and Qcrash: queues of valid and crashing test cases, respectively

1 Qvalid ← ∅;Qcrash ← ∅;Cov← ∅;STraces← ∅;
2 Tstart ← Now();

3 while ElapsedTime(Tstart) < TMAX do

4 tc← LoadOrGenerateTestCase(TS, Qvalid);

5 tc← MutateTC(tc);

6 exe, err ← BuildTempExe(tc);

7 if err = ∅ then /* Build successful */

8 retcode ← Execute(exe);

9 if retcode = 0 then /* Exited normally */

10 covtc ← MeasureCoverage(tc);

11 covnew ← covtc − Cov;

12 if covnew ̸= ∅ then
13 Cov← Cov ∪ covtc;
14 Qvalid ← Qvalid ∪ {tc};
15 end

16 else /* Crash detected */

17 outgdb ← ExecuteInGDB(tc);

18 sttrace ← ParseStackTrace(outgdb);

19 if sttrace not in STraces then

20 STraces← STraces ∪ {sttrace};
21 Qcrash ← Qcrash ∪ {tc};
22 end

23 end

24 end

25 end

on an instance of C). Some examples of unconstructable types are as follows:

� Classes with no recognized object creators. For example, a class Y has only one constructor that

takes a function pointers as argument. Class Y is unconstructable because function pointers are

still unsupported by CITRUS.

� STL classes which are yet not handled by CITRUS, such as thread, mutex, and function.

2.4.2 Method Call Sequence Generation

Algorithm 2 describes the method call sequence generation (i.e., randomly generating CITRUS test

cases formed by arbitrary method call sequences) to create various CITRUS test cases. The sequence is

obtained by calling LoadOrGenerateTestCase (L4) followed by MutateTC (L5). If a method call sequence

tc is generated, CITRUS builds tc as an executable file exe (L6) through compilation and linking with

the target program’s object files (.o). If the build was successful, CITRUS processes exe as follows:
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Listing 2.5: Illustration of Object Creators and Static Factories

1: class Point {

2: public:

3: static Point FromCartesian(double x, double y);

4: static Point FromPolar(double r, double th);

5: private:

6: double x, y;

7: };

8: Point RandomPosition ();

9: struct Line { Point *start , *end; };

Algorithm 3: LoadOrGenerateTestCase

Data: Type system TS and queue of valid TCs Qvalid

Result: A candidate test case tc to be executed

1 bgen new ← RandInt(0, 1); /* 50% prob */

2 if Qvalid is empty or bgen new == 0 then

3 funcs← AllFunctions(TS);

4 ftarget ← random function selected from funcs;

5 tc← GenTCForMethod(ftarget);

6 else

7 tc← RoundRobinSelection(Qvalid);

8 end

9 return tc

� If exe’s execution terminates normally, CITRUS will store tc into the valid queue Qvalid in a case

that exe increases coverage (i.e., a new unique program behavior is induced). However, tc will be

discarded if it does not increase the test coverage.

� If exe crashes, CITRUS re-executes exe in the gdb environment to collect the crash information

such as a stack trace. Then, it puts tc into Qcrash if the stack trace has not been generated

previously (i.e., a new crash error occurs).

The process (L3–L25) is continued until the given time budget TMAX is completely consumed.

Algorithm 3 (LoadOrGenerateTestCase) describes how CITRUS reuses test cases from Qvalid during

the random method call sequence generation (i.e., L4 in Algorithm 2). LoadOrGenerateTestCase performs

either one of the following:

� Generating a new sequence from scratch (L3–L5); or

� Reusing the existing tcs from Qvalid in a round robin manner (L7).

The following subsections further elaborate the following core processses of generating test cases:

� How CITRUS generates a test case from scratch (GenTCForMethod at L5 in Algorithm 3).

� How CITRUS generates diverse test cases by mutating a test case (MutateTC at L5 in Algorithm 2).
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Algorithm 4: GenTCForMethod

Data: A target function f

Result: A test case tc that calls f

1 stmts← ⟨⟩; args← ⟨⟩;
2 foreach typearg in ArgTypes(f) do

3 oparg ← ResolveType(typearg, stmts);

4 args← args · ⟨oparg⟩;
5 end

6 if f needs invoking object then

7 clsf ← ClassOwner(f);

8 opinv ← ResolveType(clsf , stmts);

9 scall ← CallWithInvokingObj(f, opinv, args);

10 else

11 scall ← Call(f, args);

12 end

13 stmts← stmts · ⟨scall⟩;
14 return MakeTC(stmts)

Test Case Generation from Scratch

Algorithm 4 (GenTCForMethod) describes the process of test case generation from scratch (L5 in

Algorithm 3). For a randomly selected target function f (L4 in Algorithm 3), CITRUS generates

statements to construct f ’s arguments as described at L1–L5. Note that function ResolveType at L3

takes the desired type typearg as argument, and returns a variable oparg (L3) that is obtained from either

one of the following:

1. A variable name of an existing statement s ∈ stmts where Type(s) = typearg. Note that, to be

able to reuse an existing statement s, the position of s shall precede of the position where oparg

will be used.

2. Construction of another sequence seq′ of method calls (including all supporting statements to

provide primitive arguments) that constructs a new statement s′ (i.e., s′ ∈ seq′) where Type(s′) =

typearg. In this way, oparg will use the variable name that correspond to the statement s′, while

the new sequence seq′ will also be appended to the main sequence stmts.

When the target function f is a non-static member function of a particular class (L6–L9), CITRUS

resolves the target object (denoted by opinv at L8), on which f to be invoked. Finally, CITRUS constructs

a call statement scall (L9 and L11) and appends scall to stmts.

Test Case Mutation

Algorithm 5 (MutateTC) describes how CITRUS mutates a CITRUS test case. CITRUS performs

n-stacked modifications on a given tc (where n ≤MAX) to obtain a new mutated test case tc′. This is

also known as havoc strategy in AFL [6]. To prevent the occurrences of uncompilable test case during

mutation, CITRUS ensures every test case mutations to preserve the type validity in the sequence
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Algorithm 5: MutateTC

Data: A CITRUS test case tc to mutate, MAX: a maximum number of mutations to tc

Result: The mutated test case tc′

1 tc′ ← tc;

2 n← RandInt(0,MAX);

3 for i← 1 to n do

4 switch RandInt(0, 2) do

5 case 0 do

6 tc′ ← Randomly insert a random method call at a random position in tc′

7 case 1 do

8 tc′ ← Randomly mutate a statement in tc′

9 case 2 do

10 tc′ ← Delete unused variables in tc′

11 end

12 end

13 return tc′

generated. More formally, for each original and mutated test case pair (tc, tc′), CITRUS ensure that

both tc and tc′ are syntactically valid for each test case mutating operation.

CITRUS performs three types of test case mutations: insertion, deletion, and modification as de-

scribed at L5–L10. For statement modification, it performs the following six statement mutation opera-

tors as follows (CITRUS uses the same mnemonic names of mutation in Agrawal et al. [29]):

1. CGCR (Constant Replacement using Global Constant),

2. VLSR (Mutate Scalar References using Local Scalar References),

3. VLTR (Mutate Structure References using only Local Structure References),

4. CLSR (Constant for Scalar Replacement using Local Constants),

5. OAAN (Arithmetic Operator Mutation), and

6. OANG (Arithmetic Operator Negation).

2.4.3 Post-processing a CITRUS Test Suite

Finally, CITRUS stores CITRUS test cases in Qvalid (Algorithm 2) in the following two different

formats:

1. libfuzzer-compatible test cases:

CITRUS applies libfuzzer to the CITRUS test cases to increase test coverage further. In contrast

to the method call sequence generation of CITRUS (i.e., diversifying a state of a target program

P through various sequences of the method calls), libfuzzer alters the states of P by randomly

generating various inputs to P .

2. Google Test-compatible test cases:

The Google Test-compatible test cases is provided to integrate the CITRUS test cases with the

existing Google test suite in the target program (if any).
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Additionally, CITRUS outputs the de-duplicated crashing test cases stored in Qcrash. Crashing test

cases generated by CITRUS are annotated with: (1) gdb stack trace output and (2) a comment to point

at the crashing line. By these additional information, CITRUS helps the user to identify the root cause

of the crash (see Section 3.3.1 for Case Study) without re-running the test case.

2.5 Crash De-duplication in CITRUS

Since crash de-duplication task is essential to reduce the effort of the time-consuming manual bug

analysis, CITRUS uses stack hashes to triage crashes [30]. To generate stack hashes, CITRUS extracts a

sequence of source locations (i.e., file names + line numbers) in the function call stack, which are parsed

from the gdb stack trace output. CITRUS uses the source code locations (instead of binary code locations)

because the binary code locations might be inconsistent among different runs due to constantly changing

executable file during method call sequence generation. Note that CITRUS considers only the source

locations in the target project directory to avoid duplicated crashes caused by uncontrolled behaviors of

external library function calls.

2.6 Implementation

I have implemented CITRUS in 8.9 KLoC using modern C++. CITRUS utilizes LLVM’s LibTooling

framework to preprocess and parse C++ source code files. This CITRUS implementation have been

tested working on Ubuntu 16.04 and later LTS versions with LLVM 11.0.1. At the time of writing,

CITRUS supports the C++14 standard and I am working to support the C++17 and C++20 language

features. Note that CITRUS targets programs/libraries that generate object files (.o) and GCOV log

files (.gcno) during the build process. These files are necessary to build executables and measure the

coverage of the target program during the testing process.

To begin testing, CITRUS requires the following items:

1. A C++ source code file ucpp.

2. A compilation database (i.e., compile command.json) emitted by C++ build tools (e.g., CMake,

Bear) while building the target program.

3. A linking configuration to generate an executable file.

The compilation database helps CITRUS extract the compilation flags that were used for prepro-

cessing and compiling ucpp. However, such compilation databases provide no information about the

necessary object files to build an executable file. To mitigate this, the current version of CITRUS re-

quires the user to specify the linking configuration, which covers: (1) the directory where the target

program’s object files (.o) exist, and (2) additional external libraries linking flags (if any, e.g. -lz to use

the zlib library). 1

CITRUS uses LCOV to measure the testing coverage. To support this, CITRUS requires the tar-

get program’s binaries to be instrumented for coverage analysis (i.e., compiled using --coverage flag).

However, due to the C++ exception feature, coverage instrumentation on C++ programs generates too

many (almost) unreachable throw branches (e.g., during C++ object construction) that are (almost)

1A future version of CITRUS will automatically capture the linking configuration by using a wrapper of a linker during

the build process of a target program
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Table 2.2: Type Categories in CITRUS

Type Name Representation Examples

PrimitiveType Primitive types int, void, bool

ClassType C++ records (class/struct) class JsonValue

EnumType enum variants Color::Red

STLType STL classes std::tuple, std::map

TemplateTypenameType Free template type variable T, K, V

TemplateTypeSpcType Specialization of template class std::vector<int>,

Parser<std::string>

Table 2.3: Statement Variants in CITRUS

Statement Name Representation Examples

PrimitiveStmt Simple assignment int int1 = 5;

ArrayInitStmt Array initialization char[2] char2 {’a’,’b’};
CallStmt Function/constructor call ClassA classa3{char2};

int int4 = class3.Invoke(int1);

STLStmt STL object construction std::map<int,int> map5 {{1, 2}};
std::array<int,2> {0, 0};

never executed. To mitigate such issue, CITRUS utilizes a modified version of LCOV [31] to exclude

such virtually unreachable branches.

2.6.1 Types and Statements in CITRUS

CITRUS recognizes six type categories in C++ language as described in Table 2.2. Note that each

type can be combined with (zero or more) type modifiers to be more accurately represent the types

in C++ language. For example, “const int* const” is a PrimitiveType int combined with three

modifiers, which are: const, const-on-pointer, and pointer. Currently, there are seven variants of type

modifiers in CITRUS: const, unsigned, pointer (*), array ([]), const-on-pointer, lvalue reference (&),

and rvalue reference (&&).

CITRUS generates method call sequences composed from four kinds of statements as described in

Table 2.3. Note that each statement in Table 2.3 corresponds to a type and a variable name as discussed

at Section 2.3.

2.6.2 Testing C++ Template Classes/Functions

Testing template classes in C++ is challenging because it is almost impossible to instantiate template

classes with all possible types. In addition, inappropriate type instantiation of template classes may

generate many uncompilable test cases, which hinders the testing effectiveness. Listing 2.6 demonstrates

a simple scenario in which inappropriate type instantiation produces test case that cannot be compiled.

At L12, Outer<char> can be compiled because Inner(char*) is defined. Instantiating Outer<int> at
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Listing 2.6: Challenge in Instantiating Template Classes in C++

1: class Inner {

2: public: Inner(char *a) {}

3: };

4: template <typename T>

5: class Outer {

6: public: Outer(T* t) {

7: const Inner &tmp = Inner(t);

8: }

9: };

10: void Decode(Outer <char > &arg) { ... }

11:

12: Outer <char > ok((char*) nullptr); /* OK */

13: Outer <int > err((int*) nullptr); /* FAIL */

L13, however, causes a compilation error because Inner(int*) is not defined.

To reduce the number of uncompilable test cases generated, CITRUS conservatively binds a free

type variable T to a concrete type according to the existing type bindings in the target program. For

example, CITRUS binds T to char (denoted as {T →| char}) when it generates a method call sequence

for Decode at L10 because the argument requires Outer<char>& type. However, such type hinting may

not always be available, such as when CITRUS targets the constructor of Outer<T> at L6. In this case,

CITRUS randomly selects from either {T →| int} or {T →| double}. All of these type bindings are

stored within a context map W : name → type. In CITRUS, the context map W is implemented as

TemplateTypeContext class, whose declaration can be found at include/type.hpp header file.

2.6.3 Handling C++ STL Classes

C++ supports various useful STL classes and most C++ programs frequently utilize the STL

classes. However, automated unit-level testing on C++ programs that heavily use STL classes has

several technical challenges, such as:

1. Some STL classes have more indirect ways of construction, rather than by simply constructor-calling

convention. For example, unique ptr and tuple should be constructed through make unique and

make tuple API respectively, instead of their constructors.

2. Most STL classes contain many member functions, and including all of such functions in method

sequence generation may not contribute to exploring diverse program states. For example, CITRUS

may generate vector objects (with arbitrary sizes and elements) by using the push back API only.

Thus, generating random sequences of method calls with resize and erase operators on vectors

is ineffective towards exploring new executions (i.e., just enlarging the search space).

CITRUS mitigates such technical challenges by putting additional engineering efforts to handle

the construction of each STL class without performing random sequence generation. When a function f

requires an object of a STL class tSTL as an argument, CITRUS constructs an initialized tSTL-typed object

oSTL by using a single-line STL construction statement. For example, CITRUS uses C++ initializer list

syntax [32] to construct objects of STL containers. This way, CITRUS does not need to generate method

call sequence to construct arbitrary STL objects of the STL classes.
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Currently, CITRUS handles 23 STL classes in the four categories as follows 2:

� Containers (e.g., vector, set, map, forward list).

� Utility (e.g., pair and tuple).

� Strings (e.g., basic string, string, wstring).

� Memory (e.g., unique ptr and shared ptr).

2The complete list of the STL classes that CITRUS supports can be found at include/type.hpp header file.
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Chapter 3. Evaluation

3.1 Experiment Setup

3.1.1 Research Questions

I have developed the following two research questions to evaluate CITRUS:

RQ1: How effective is CITRUS in terms of branch coverage? To what extent does CITRUS

achieve test coverage on the eight target subjects in Table 3.1? To answer RQ1, I allocated 12 hours

to perform method call sequence generation and two minutes libfuzzer fuzzing time for each test case

generated.

RQ2: How effective and efficient is CITRUS compared to the other CITRUS variants? In

which configuration does CITRUS achieve the highest test coverage? To answer RQ2, I introduced four

CITRUS variants by assigning different time budgets for the method call sequence generation stage and

libfuzzer fuzzing stage.

3.1.2 Target Subjects

I applied CITRUS on the eight popular real-world C++ programs in Table 3.1 ranging from 1.5KLoC

(jsonbox) to 20KLoC (re2). I specifically targeted only C++ libraries (not C) to demonstrate that

CITRUS works on the complex C++ language features, such as polymorphism, template classes, STL

types, and so on. Most subjects are parsing libraries because parsing is one important stage on program

execution, and therefore it requires to be extensively tested. Note that since CITRUS requires object

files (.o) and GCOV log files (.gcno) to perform testing, all libraries in Table 3.1 are not header-only

libraries.

Table 3.2 summarizes the statistics of accessible functions in each of the target subjects. Note that

only the number of accessible functions was considered since CITRUS does not directly invoke private

methods. As mentioned in Section 2.4, some unsatisfiable functions were excluded due to unconstructible

argument types (see the 3rd and 4th column). I noticed that there were larger number of unsatisfiable

functions in tinyxml2 and json-voorhees, and I have investigated the reasons of such unsatisfiable

functions in these two subjects:

� For tinyxml2, 158 functions were unsatisfiable because CITRUS failed to recognize the non-static

member functions (that returns a particular class) for constructing one of its argument types 1.

� For json-voorhees, 111 functions were due to argument dependency to one of unhandled STL

classes (e.g., std::type index, std::type info); 83 functions were due to type aliasing [33] within

template classes, which are still unhandled by CITRUS; and 28 functions were due to dependency

with other unsatisfiable functions (which had been excluded).

1CITRUS do not utilize such non-static functions as object creators as they do not always perform object construction.

For instance, it is common to write a setter method that returns this reference for method chaining, such as: “Point

*SetX(int x) { x = x; return this; }” (which performs no object construction although it returns a Point reference).
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Table 3.1: Target Subjects in CITRUS Experiment

Name Size (LoC) Commit Hash URL

jsonbox 1,477 6f86f81 github.com/anhero/JsonBox.git

hjson 2,911 0c40199 github.com/hjson/hjson-cpp.git

tinyxml2 3,606 1dee28e github.com/leethomason/tinyxml2.git

jvar 4,860 e2a6a43 github.com/YasserAsmi/jvar

jsoncpp 5,420 c39fbda github.com/open-source-parsers/jsoncpp.git

json-voorhees 8,614 046083c github.com/tgockel/json-voorhees.git

yaml-cpp 8,800 b591d8a github.com/jbeder/yaml-cpp.git

re2 20,373 bc42365 github.com/google/re2.git

Table 3.2: Accessible Function Statistics in Target Subjects

Subject
#Total Public

Func. (TF)

#Unsatisfiable

Func. (UF)

%UF

(#UF/#TF)

jsonbox 89 16 17.98

hjson 181 12 6.63

tinyxml2 345 166 48.12

jvar 344 28 8.14

jsoncpp 211 11 5.21

json-voorhees 654 233 35.63

yaml-cpp 535 95 17.76

re2 427 63 14.75

� The remaining unsatisfiable functions (8 in tinyxml2 and 11 in json-voorhees) were mostly caused

by unhandled argument types by CITRUS, such as: multi-dimensional pointers, opaque pointers

(void*), and FILE.

3.1.3 CITRUS Variants

To answer RQ2, I used four CITRUS variants to compare. Those four CITRUS variants are as

follows:

� C12+LF2, which generates sequences of method calls for 12 hours and applies libfuzzer for two

minutes for each test case generated. This is the main configuration of CITRUS.

� C6+LF1, which generates sequences of method calls for six hours and applies libfuzzer for one

minute for each test case generated.

� C6+LF3, which generates sequences of method calls for six hours and applies libfuzzer for three

minutes for each test case generated.

� C24, which generates sequences of method calls for 24 hours.
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3.1.4 Environment Setup

I conducted CITRUS experiments in SWTV-Lab’s cluster in which each node is equipped with Intel

Core i5-4670K CPU (3.4 GHz), has 16GB RAM, and running Ubuntu 16.04 64-bit version. To reduce

the random variance caused by the randomized algorithm, I only reported the averaged result of the

experiments collected from ten repeated runs. For statistical measure, I also have reported the standard

deviation of the experiments, and showed that CITRUS produced consistent results (i.e., low variance)

from the 10 repeated runs experiment (see Table 3.5). I used MAX = 20 as the maximum number of

mutation operations.

Most libraries at Table 3.1 consist of multiple source code files, while the current version of CITRUS

can only take one source code file (.cpp) at a time. For such cases, CITRUS can be run on each

individual source code file (and generate test cases for each file). However, running CITRUS this way

requires dedicated time budget for each individual target source code file, which may not be an effective

time-budget allocation since not all source code files shares a similar complexity (e.g., some files may

contain more functions/branches than others). Therefore, to run CITRUS targeting multi-files C++

programs using a single time budget in this experiment, for each subject I used a proxy source code

file named “all.cpp” that inherently imports all header files of the target program. By targeting solely

the all.cpp file, CITRUS targets the whole library in a single run (i.e., without requiring to specify

individual time budget for each .cpp file).

3.1.5 Threats to Validity

The possible threat to external validity is the generality of subject selection. To reduce the external

validity risk, the target subjects selected for CITRUS experiment consist of C++ open-source programs

of varying sizes. The threat to internal validity is bug existence in CITRUS implementation. To reduce

the internal validity risk, I carefully wrote and extensively tested CITRUS implementation. The con-

struct threat to validity is the appropriate implementation in CITRUS’ dependencies (e.g., LLVM/Clang,

LCOV). To reduce the construct validity risk, I implemented CITRUS with sufficiently recent versions

of dependencies.

3.2 Experiment Results

3.2.1 Statistics on CITRUS Test Cases

Table 3.3 shows the statistics of test cases generated by C12+LF2 on the eight target subjects. For

example, for jsonbox, CITRUS (C12+LF2) generated 116.2 test cases each of which is 33.6 lines long on

average over the ten repeated experiment runs (see the second row of the table).

3.2.2 RQ1: How effective is CITRUS (C12+LF2) applied on the target pro-

grams?

The experiment result shows that the test cases generated by CITRUS achieve high statement

coverage and branch coverage. Figure 3.1 shows the statement coverage and the branch coverage obtained

by the test cases generated by CITRUS (C12+LF2) on the eight target subjects. CITRUS achieved roughly

80% or higher statement coverage in 87.5% (=7/8) of all target subjects (i.e., in all target subjects except
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Table 3.3: Statistics of the Test Cases Generated by C12+LF2 on the Target Subjects

Subject
# Test Cases Length of a Test Case (LoC)

avg min max avg stdev min max

jsonbox 116.2 101 125 33.6 21.2 3 132

hjson 237.6 219 254 26.3 15.7 3 118

tinyxml2 136.5 125 145 41.7 25.0 4 156

jvar 209.9 200 219 30.9 20.0 2 137

jsoncpp 283.2 274 291 29.8 19.6 2 133

json-voorhees 240.5 224 263 21.8 14.1 2 116

yaml-cpp 141.1 132 155 25.0 16.1 3 85

re2 303.6 292 322 39.5 27.8 3 174

Table 3.4: Time Cost for CITRUS Variants

Subject
ttotal (h)

C24 C6+LF1 C6+LF3 C12+LF2

jsonbox 24 8.0 12.1 16.2

hjson 24 9.8 17.5 20.5

tinyxml2 24 8.2 12.5 16.8

jvar 24 9.6 16.7 19.3

jsoncpp 24 10.5 19.5 21.7

json-voorhees 24 10.0 18.1 20.8

yaml-cpp 24 8.2 12.7 17.2

re2 24 10.6 19.9 22.7

Average 24 9.4 16.1 19.4

tinyxml2). For jsonbox and jsoncpp subjects, it even achieved >90% statement coverage. For branch

coverage, CITRUS achieved roughly 60% or higher in the majority of the target subjects (=6/8) (i.e., in

all target subjects except tinyxml2 and json-voorhees).

Answer to RQ1: On the eight real-world C++ target programs, CITRUS shows high testing

effectiveness in terms of both statement and branch coverage (i.e., it achieved 50% to 95% statement

coverage and 40% to 79% branch coverage).

3.2.3 RQ2: How effective and efficient is CITRUS compared with other

CITRUS variants?

Table 3.5 shows the coverage achieved by the four CITRUS variants (i.e., C24, C6+LF1, C6+LF3, and

C12+LF2). The highest coverage values achieved are shown in bold font. Note that the running time

of each variant (except C24) may vary depending on how many test cases were constructed during the

method call sequence generation part of CITRUS. The running time of each variant is summarized at
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Figure 3.1: Statement and Branch Coverage Achieved by CITRUS (C12+LF2) on the Target Programs.

Table 3.4.

Table 3.5 shows that, among the four CITRUS variants, C12+LF2 (the main configuration of CITRUS)

achieved the highest statement coverage (80.6%), the highest branch coverage (61.7%), and the highest

function coverage (75.4%) on average over the eight target programs (see the last row of the table). For

example, C12+LF2 achieved the highest statement coverage on the five out of the eight target programs

(i.e., all the target programs except jsonbox, tinyxml2, and jvar) (see the fifth column of the table), the

highest branch coverage on the six out of the eight target program (i.e., all except tinyxml2 and jvar),

and the highest function coverage on the five out of the eight target programs.

Table 3.4 shows the time cost consumed by the four CITRUS variants. All three CITRUS variants

that utilize libfuzzer spent less time than that of C24. In particular, C12+LF2 spent 19%(=(24-19.4)/24)

less time than C24, but achieved 12% higher (=(80.6-72.0)/72.0) statement coverage, 13% higher (=(61.7-

54.6)/54.6) branch coverage, and 5% higher (=(75.4-72.1)/72.1) function coverage on average over all

target programs (see the last row of Table 3.5).

As a result, from Table 3.4 and Table 3.5, I can confirm that the idea of integrating libfuzzer into
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CITRUS is effective and efficient to increase test coverage. This is because since the CITRUS variants

that utilize libfuzzer (i.e., C6+LF1, C6+LF3, and C12+LF2) achieved higher statement and branch coverage

than C24 and the time costs of the CITRUS variants that utilize libfuzzer were lower than that of C24.

Answer to RQ2: In most subjects, CITRUS variant C12+LF2 produced the best result. Also,

applying libfuzzer helps CITRUS improve the coverage score and time cost, compared to the

technique that uses only method call sequence generation (C24 variant).

3.3 Bug Detection Capability & Crash Analysis

Bug detection is the ultimate goal of testing tools. For unit-level test case generation however, bug

detection requires additional oracles to distinguish true positive from the false alarms (e.g., Randoop [1]

uses contract checkers to assert only the allowed program executions). Thus, detecting real C++ bugs

in unit-level has its own challenges, because:

1. The availability of oracles in real-world programs is strictly limited. Such oracles do not exist in

most C++ programs/libraries; meanwhile artificially-creating such oracles require expertise of the

respective target subject.

2. Even the heuristics to approximate the oracles (i.e., disallowed program behavior) is hard to de-

termine for unit-level testing context. For system-level testing, crashes are widely-used heuristic

to uncover new bug; however, most crashes in unit-level testing does not always correspond to a

crash bug. For example, I found a bug report 2 in tinyxml2 with AddressSanitizer’s violation

was considered as a false alarm by the upstream developers.

For these reasons, I demonstrated the bug detection capability of CITRUS in the following subsections.

1. Section 3.3.1 explains how CITRUS is still capable to detect real crash bugs in a target subject

through a crash replication case study. In this section, I applied CITRUS to check whether it could

successfully discover real crash bugs in the past versions of C++ programs.

2. Section 3.3.2 elaborates kind of crashes detected by CITRUS, followed by providing some code

examples of such crashes. Based on these crash types, I pointed out several suggestions to improve

CITRUS on reducing the number of false positive crash reports (see Section 4.2).

3.3.1 Case Study of Crash Detection of Past Bugs

I have conducted a case study to show how CITRUS detects crash bugs in a real-world C++ program.

A bug b is counted as detectable by CITRUS if a proof-of-concept (PoC) of crash from the exact same

root cause b was identified by CITRUS. For this case study, I used the following search criteria to mine

relevant patches from the git commit messages from all eight target libraries:

1. The target crash bug was reported in the git commit message that contains one of the following

keywords: “crash”, “segmentation fault”, “SIG”, and “SEGV”.

2https://github.com/leethomason/tinyxml2/issues/832#issuecomment-693009339
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Table 3.5: Coverage Achieved by CITRUS Variants

Subject
Avg. % Statement Coverage (± stdev.)

C24 C6+LF1 C6+LF3 C12+LF2

jsonbox 93.6 (±0.5) 93.7 (±1.5) 94.2 (±1.2) 93.9 (±1.3)
hjson 70.2 (±0.6) 78.8 (±1.7) 79.7 (±1.3) 80.2 (±1.1)
tinyxml2 59.5 (±1.8) 52.9 (±3.8) 53.2 (±3.8) 56.6 (±3.1)
jvar 84.5 (±3.0) 80.6 (±2.1) 80.8 (±2.1) 81.2 (±2.5)
jsoncpp 60.3 (±1.5) 59.7 (±4.4) 60.1 (±4.5) 95.4 (±0.1)
json-voorhees 69.3 (±1.0) 74.7 (±1.4) 75.6 (±1.5) 76.7 (±1.0)
yaml-cpp 67.2 (±2.5) 78.4 (±1.1) 79.0 (±0.8) 80.6 (±0.8)
re2 71.1 (±1.5) 77.4 (±1.8) 79.1 (±1.4) 80.2 (±1.0)

Average 72.0 74.5 75.2 80.6

Subject
Avg. % Branch Coverage (± stdev.)

C24 C6+LF1 C6+LF3 C12+LF2

jsonbox 75.8 (±1.0) 78.6 (±2.5) 79.1 (±1.9) 78.9 (±2.2)
hjson 57.6 (±0.9) 68.5 (±2.1) 69.8 (±1.8) 70.2 (±1.6)
tinyxml2 49.1 (±2.9) 41.5 (±4.8) 42.1 (±4.6) 45.5 (±4.3)
jvar 69.7 (±4.1) 63.7 (±3.1) 64.0 (±3.2) 64.5 (±3.8)
jsoncpp 45.3 (±1.1) 46.9 (±5.0) 47.2 (±5.0) 60.7 (±0.2)
json-voorhees 41.8 (±1.5) 48.9 (±1.8) 50.3 (±1.7) 48.3 (±1.3)
yaml-cpp 45.9 (±1.9) 60.9 (±1.2) 61.6 (±1.0) 63.0 (±1.0)
re2 51.3 (±1.1) 59.3 (±1.5) 61.2 (±1.2) 62.4 (±0.9)

Average 54.6 58.5 59.4 61.7

Subject
Avg. % Function Coverage (± stdev.)

C24 C6+LF1 C6+LF3 C12+LF2

jsonbox 93.3 (±0.0) 92.6 (±1.5) 92.6 (±1.5) 92.6 (±1.5)
hjson 36.8 (±0.9) 37.5 (±0.4) 37.6 (±0.4) 38.1 (±0.5)
tinyxml2 63.8 (±1.4) 59.0 (±2.1) 59.3 (±2.6) 61.2 (±1.5)
jvar 89.5 (±2.0) 86.9 (±1.9) 86.9 (±1.8) 87.0 (±2.4)
jsoncpp 74.2 (±0.8) 72.7 (±2.5) 72.8 (±2.5) 95.0 (±0.1)
json-voorhees 59.9 (±0.8) 61.3 (±0.9) 61.7 (±0.9) 64.3 (±0.5)
yaml-cpp 77.2 (±2.0) 79.3 (±1.1) 79.5 (±1.1) 80.8 (±0.7)
re2 82.0 (±1.1) 82.4 (±1.8) 83.3 (±1.2) 84.2 (±0.9)

Average 72.1 71.5 71.7 75.4
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Table 3.6: Five Target Crash Bugs for the Crash Detection Study

Subject
Commit

Hash
Patch Date Commit Message Detected

hjson e8f8693 2018-10-07 Fix segfault in deep equal comparison

of empty vectors (#8)

✓

tinyxml2 e8f4a8b 2017-09-15 Fix crash when element is being inserted

“after itself”

✓

jsoncpp f6d785f 2016-09-25 Fix poss SEGV −
jsoncpp f251f15 2017-01-17 Fix crash issue due to NULL value. ✓

yaml-cpp 396a970 2014-03-22 Fix SEGV in ostream wrapper ✓

Figure 3.2: Crash Fix in hjson e8f8693 commit

2. The fixed code is still available in the latest version of a target program (i.e., the patch should not

be removed/modified since the original patch date).

3. The crash bug resides in the target program implementation source code (i.e., the crash fix should
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Figure 3.3: Crash Replication Environment to Detect hjson e8f8693 Bug

be applied to a source file of the target program, not in the existing test suites, fuzzers, and so on).

4. The crash occurs due to internal logic problems, not external environment-related problems (i.e.,

any crash related to OS, external files, or environment variables were excluded).

5. The crash bug can be understood without deep domain expertise. Otherwise, it is unverifiable if a

unit-level crashing execution of a CITRUS test case really conforms to that of the reported crash

bug. 3

Table 3.6 shows the five target crash bugs selected by the above criteria. For each target crash bug, I

manually set up the unit-level crash replication environment (see Figure 3.3 for an example) to check if a

crashing execution of a CITRUS test case really conforms to that of the reported crash bug. Then, I ran

CITRUS three times with 12 hours of method sequence generation per each run. As a result, CITRUS

detected 80% (4/5) of the target crash bugs.

The detail of how CITRUS detects the crash bug in hjson (see the second line in Table 3.6) is

described as follows. The root cause of the fix e8f8693 in hjson is an off-by-one error in deep equal

comparison on empty vectors (or empty maps). As shown in Figure 3.2, prior to e8f8693, deep equal

used do...while to compare the elements, causing the loop body to be still executed on empty vectors

(or maps); the patch avoids the loop body execution for empty vectors (or maps) by changing do {...}
while(c) to while(c) {...}.

To set up the crash environment, I reverted the e8f8693 commit and put check conditions (i.e., itA

!= endA) to reveal off-by-one error, as shown in Figure 3.3. Listing 3.1 shows a crashing CITRUS test case

that detects the crash bug in hjson. At L17, CITRUS points to the crashing line that invoke deep equal.

Since value5 of value5.deep equal(value3) at L18 was an empty map (see L13 and L16 where char2

was an empty string ""), the test case triggered the crashing bug and crashed. Also, CITRUS annotates

the crashing test case with additional gdb backtrace information (L2–L10)

3A crash bug report usually provides a system-level test input to replay the target crash in system-level. To check if a

unit-level test execution matches that of the crashing system-level execution, we must check if the unit-level test execution

satisfies necessary conditions of the target crash, which requires detailed understanding of the crash and the target program.
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Listing 3.1: CITRUS Test Case that Detects The Crash Reported in hjson e8f8693 commit

1: TEST(CITRUS_TestSuite , tc_id_129) {

2: // gdb output: ...

3: // hjson/src/hjson_value.cpp :536:

4: // bool Hjson::Value:: deep_equal(const Hjson::Value &) const:

5: // ...

6: //

7: // Program received signal SIGABRT , Aborted.

8: // #0 __GI_raise (sig=sig@entry =6) at .../ raise.c:50

9: // #1 0x00007ffff7a59859 in __GI_abort () at abort.c:79

10: // ... */

11: Hjson::Value value0 {0.251040};

12: bool bool1 = value0.operator !=(0.666285);

13: char char2 [1] = "";

14: Hjson::Value value3 = Hjson:: Unmarshal(char2);

15: char char4 [5] = "h6yA";

16: Hjson::Value value5 = Hjson:: Unmarshal(char2);

17: /* PROGRAM CRASHED AT THE EXACT LINE BELOW */

18: bool bool6 = value5.deep_equal(value3);

19: Hjson::Value value7 = Hjson:: Unmarshal(nullptr , 50);

20: ... }

For jsoncpp f6d785f, CITRUS failed to discover the crash bug because the bug was located inside

a method with private modifier and a CITRUS test case does not directly invoke private methods.

3.3.2 Analysis of Crashes

The following section describes how I analyzed crashing test cases on all eight subjects.

Analysis Procedure

Table 3.7 shows the statistics of crashing test cases found in all 10 repeated runs of CITRUS

experiment. The second column of Table 3.7 represents the sum count of all crashing test cases from 10

runs during method sequence generation. Note that CITRUS performs automated crash de-duplication

on each crashing test case it encounter within single run, as described in Section 2.5. In total, CITRUS

detected total of 7,439 crashing test cases in the experiment.

To obtain the number of unique crashes de-deduplicated across the 10 runs experiments, I performed

another stack trace-based de-duplication process from all crashing test cases CITRUS discovered on each

respective subject. This meta-deduplication task is viable without re-executing the crashing test cases

because CITRUS provides the gdb output as supplementary information in the finalized test suite, as

depicted in Listing 3.1. The final column represents the number of de-duplicated crashing test cases

obtained by performing meta-deduplication across the 10 runs experiment. In total, I found 1,103 unique

crashes across all eight subjects I used in the CITRUS experiment.

For each unique crash, I manually analyzed the possible correspondence of each crash to some “bug”
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Table 3.7: Statistics of Crashing Test Cases

Subject Total Crash (10 Runs) De-duplicated Crash

yaml-cpp 75 9

hjson 123 20

jsonbox 167 29

json-voorhees 370 54

jsoncpp 864 124

jvar 1,996 220

tinyxml2 2,004 292

re2 1,840 355

Total 7,439 1,103

in the respective target program. Each unique crash report is later classified into one of the following

cases:

1. False positive crash if the crash does not correspond to any bug in the target program. The

false positive crashes are mostly happened due to the semantically-invalid sequence generated by

CITRUS.

2. Candidate crash bug if the crash has a chance to be induced by a faulty implementation in target

program source code. These crashes will be reported to the upstream developers to verify the root

cause of the crash.

By manually analyzing the 1,103 unique crashes produced by CITRUS, I found almost the entire

crashes were false positive crashes. Four crashes were categorized as candidate crash bugs (and reported),

of which only one crash was successfully approved by the upstream developer. Those four cases were:

1. At yaml-cpp, method DecodeBase64 performed incorrect type casting while iterating over the string

argument. The DecodeBase64 induced a segmentation fault when invoked on a string with negative

values 4. This is the only one crash that has been successfully approved by the upstream developer.

2. At jsoncpp, infinite recursion of dupPayload calls occurs on copying a Json::Value with a cyclic

reference (e.g., appending a Json::Value reference to itself using the append(Json::Value&& value)

API 5). However, the upstream developers argued that: (1) preventing such cases require a cycle

detection mechanism that would be computationally expensive if implemented in the library layer;

and (2) the cyclic reference shall be prevented by the clients in their application layer. Thus, the

upstream developers decided to take no action on this particular case.

3. At re2, CITRUS found that mutiple calls to Regexp::Decref function would induce a program

crash 6. This is later clarified by the upstream developer that the Regexp::Decref API performs

decrement on the Regexp object’s reference counting, and immediately followed by destroying the

Regexp object when the reference counter reaches zero. Performing multiple calls to Regexp::Decref

triggers undefined behavior as it performs invalid address dereference starting from the second

4https://github.com/jbeder/yaml-cpp/pull/1051
5https://github.com/open-source-parsers/jsoncpp/pull/1342
6https://github.com/google/re2/issues/341
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call (i.e., this candidate crash was not a real bug as the undefined behavior was expected from

dereferencing an invalid pointer).

4. At jvar, CITRUS discovered that crash could occur on dereferencing an uninitialized V POINTER-

typed jvar::Variant instance 7. The V POINTER-typed jvar::Variant can be constructed using

Variant(Type) constructor, but can be initialized only through the internalSetPtr call (i.e., un-

intended crashes could occur if the client dereferences the V POINTER-typed jvar::Variant without

initializing the pointer value unintentionally). Thus, for this case I suggest API changes to prevent

the construction of such uninitialized type to avoid the unintended crash.

The next subsection describes each of the false positive categories in more detail.

Categories of False Positive Crashes

Figure 3.4 shows the distribution each false positive category occurrences across all subjects, while

Table 3.8 lists the types of false positives found in CITRUS experiment. ∼77% (=(486+363)/1103) of

false positive crashes were caused by dereferencing invalid addresses (INVA) and NULL values (NDRF).

Some remaining false positive categories (such as DIV0, ICAS, STVR, and ARRI) happened in less

than 50 occurrences in the experiment, which are less frequent compared to INVA (486 occurrences) and

NDRF (363 occurrences). Based on this data, we could conclude that eliminating false positive crashes

from both the INVA and NDRF categories is highly advantageous to reduce the required manual efforts

while investigating crashing test cases.

Figure 3.5 describes the category distribution of false positive crashes per subject. Figure 3.5a

shows the count of each false positive category appearing in each subject, while Figure 3.5b shows the

proportion of every false positive category in each respective subject. From these two sub-figures, we can

observe that false positive occurrences have no insightful trend (i.e., arbitrary) in each subject (which

implies that each subject possesses its own characteristics). For example, > 90% false positive crashes in

hjson came from DIV0 category, which almost did not occur anywhere in other subjects. The INVA and

NDRF, which are two most frequent categories in the experiment, interestingly did not occur in jsonbox

subject. Meanwhile, ∼ 80% crashes in the jsonbox subject were induced by incorrect type casting in

template specialization-typed variable (ICAS).

In the following paragraphs, I will elaborate each category of false positive crashes (also provided

with a concrete example) I found from analyzing total 1,103 de-duplicated crashes in the CITRUS

experiment.

Invalid address dereference (INVA). The INVA category happens when the method call sequence

generated by CITRUS produced an invalid pointer (i.e., address) which is later dereferenced during the

test case execution. The INVA category can always happen during method sequence generation because

determining the validity of pointers in C/C++ still remains as an undecidable problem.

The INVA category was considered a false positive because invalid addresses were produced by

incorrect implementation of the test case (produced by CITRUS) in most cases. This implies that such

crashes did not correlate with any fault in the target program implementation, but was induced by

the faulty call sequences generated by CITRUS itself. Two examples of INVA crashes in the CITRUS

experiment are as follows:

7https://github.com/YasserAsmi/jvar/issues/34
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Table 3.8: Seven False Positive Categories in CITRUS Experiment

No Description Mnemonic

1 Invalid address dereference INVA

2 NULL pointer dereference NDRF

3 Method assertion (precondition) failure MASS

4 Invalid array index / size ARRI

5 Passing address of stack variable to method that takes ownership STVR

6 Invalid type casting on template specialization types ICAS

7 Division by zero DIV0

Figure 3.4: Distribution of False Positives in CITRUS Experiment

1. At re2 (Listing 3.2), method Prog::inst returns an address of inst (a vector-typed field in

Prog) incremented with parameter id (B1). When CITRUS invokes inst using negative values as

argument (A2), inst returns an invalid unknown address to be stored at inst13. Storing invalid

addresses did not halt the program execution; but however, the test case crashed at line A5 as it

attempted to invoke empty method on the address pointed by inst13 (which pointed to an invalid

address).

2. Iterator class pattern, which is mostly used to iterate over elements in a data structure without

concerning its underlying implementation, can also trigger the INVA false positive category. At

jsoncpp (Listing 3.3), the iterator variable valueconstiterator1 (A2) pointed to an unknown

address because it was a copy of valueiterator0, which was created through the default constructor

API (A1) without specifying any collection it should point to (i.e., valueiterator0 was pointing to
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(a)

(b)

Figure 3.5: Category Distribution of False Positives per Subject

an unknown address). When CITRUS invoked memberName on valueconstiterator1 at line A5, the

program received a segmentation fault crash because the valueconstiterator1’s current pointer

(i.e., still pointing at an unknown address) was dereferenced (see “(*current )” at line B2).

NULL pointer dereference (NDRF). The NDRF category occurs when the method call sequence

generated by CITRUS performs address dereferencing on NULL pointers. There can be many ways the

NDRF category happens in the method sequence generation by CITRUS. Some examples of frequently-

occurring NDRF cases in the experiment were:
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A1: re2::Prog prog12 {};

A2: re2::Prog::Inst* inst13 = prog12.inst (-48);

A3: ...

A4: /* PROGRAM CRASHED AT THE EXACT LINE BELOW */

A5: re2:: EmptyOp emptyop70 = inst13 ->empty();

B1: Inst *inst(int id) { return &inst_[id]; }

Listing 3.2: Example of invalid address dereference (INVA) in re2

A1: Json:: ValueIterator valueiterator0 {};

A2: Json:: ValueConstIterator valueconstiterator1{valueiterator0 };

A3: ...

A4: /* PROGRAM CRASHED AT THE EXACT LINE BELOW */

A5: const char* char22 = valueconstiterator1.memberName ();

B1: char const* ValueIteratorBase :: memberName () const {

B2: const char* cname = (* current_).first.data();

B3: return cname ? cname : "";

B4: }

Listing 3.3: Example of invalid use of iterator classes (INVA) in jsoncpp

1. CITRUS directly passed NULL argument on functions that were intolerant towards NULL values;

2. CITRUS performed dereference on pointers sourced from a return value of some functions that

could return NULL values; and

3. CITRUS indirectly passed a structured variables (e.g., class instances) whose fields were not fully

initialized (i.e., some fields were still NULL), and such uninitialized fields’ value got dereferenced.

Similar to INVA category, the NDRF category was considered false positive because CITRUS failed

to recognize the runtime value of pointers during generation. Crashes caused by dereferencing NULL

values are indeed trivial and can not be argued to be a real bug. Listing 3.4 illustrates a crash example

caused by the passing NULL to intolerant functions in hjson, as described below.

1. (Listing 3.4b) The function Unmarshal takes two arguments: (1) a const char*-typed pointer

“data” at B2; and (2) “dataSize” that represents the array length of data at B3.

2. (Listing 3.4a) At A3, CITRUS passed nullptr as data argument to invoke Unmarshal.

3. (Listing 3.4b) At B6–B12, Unmarshal constructs a Parser object by passing both data and dataSize

(B7–B8) as its constructor argument.

4. (Listing 3.4b) At B16, Unmarshall calls resetAt, which perform a chaining call to next (both

definitions are shown in C1–C13).

5. (Listing 3.4c) The test case crashed because the expression “p->data[p->indexNext++]” at C9 led

into iterating over a nullptr value (i.e., p->data).
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A1: struct Hjson:: DecoderOptions decoderoptions2{false , true , false};

A2: /* PROGRAM CRASHED AT THE EXACT LINE BELOW */

A3: Hjson::Value value3 = Hjson:: Unmarshal(nullptr , 218, decoderoptions2);

B1: Value Unmarshal(

B2: const char *data ,

B3: size_t dataSize ,

B4: const DecoderOptions& options

B5: ) {

B6: Parser parser = {

B7: (const unsigned char*) data ,

B8: dataSize ,

B9: 0,

B10: ' ',

B11: options

B12: };

B13: if (parser.opt.whitespaceAsCmts) {

B14: parser.opt.comments = true;

B15: }

B16: _resetAt (& parser);

B17: return _rootValue (& parser);

B18: }

C1: static void _resetAt(Parser *p) {

C2: p->indexNext = 0;

C3: _next(p);

C4: }

C5:

C6: static bool _next(Parser *p) {

C7: // get the next character.

C8: if (p->indexNext < p->dataSize) {

C9: p->ch = p->data[p->indexNext ++];

C10: return true;

C11: }

C12: ...

C13: }

Listing 3.4: Example of nullptr dereference (NDRF) in hjson

Method assertion (precondition) failure (MASS). The MASS category was found mostly in

crashes induced by assertion failure. In most programming languages, developers could write “asser-

tions” on methods to eagerly fail (i.e., crash) the method execution when some preconditions and/or

expectations were unsatisfied.

Crashes from the MASS category are generally false positives in the unit-level testing. This is

because the responsibility of valid test cases construction (i.e., sequences with no violation of any

method precondition) should be owned by the testers. Listing 3.5 describes a false positive crash en-

countered in yaml-cpp. For this case, method OnMapEnd contains an assertion at B8 to check if top

element of m stateStack must be equal to State::WaitingForKey. To satisfy the condition, CITRUS

must call OnMapStart (B1–B4) because it is the only way to push State::WaitingForKey element to

m stateStack (B3). However, the call sequences shown in line A1–A19 crashed because the precondition

of OnMapEnd was not satisfied (i.e., assertion failed). Note that a similar precondition checking happened

on OnSequenceEnd method calls (A11–A13); however, the execution did not crash at those lines because

the precondition checks were satisfied (i.e., three OnSequenceStart calls at A3–A5 were placed before the

three OnSequenceEnd calls at A11–A13).

Invalid array index / size (ARRI). The ARRI category relates to crashes by accessing array

elements with invalid indexing (e.g., index > the actual array size, or negative index). Also, a crash was

considered ARRI when CITRUS unintentionally provided a an incorrect array size that was larger than

its actual array size.

The ARRI category was considered false positive because crashes from accessing out-of-bound in-
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A1: YAML:: Emitter emitter24 {};

A2: YAML:: EmitFromEvents emitfromevents25{emitter24 };

A3: emitfromevents25.OnSequenceStart(mark21 , basicstring22 , 124, value23);

A4: emitfromevents25.OnSequenceStart(mark21 , basicstring22 , 124, value23);

A5: emitfromevents25.OnSequenceStart(mark21 , basicstring22 , 124, value23);

A6: double double29 = 0.546024;

A7: YAML:: ostream_wrapper ostreamwrapper30 {};

A8: ostreamwrapper30.set_comment ();

A9: YAML::Node node32 = YAML::convert <int >:: encode(double29);

A10: YAML::Node node33 = YAML::Clone(node32);

A11: emitfromevents25.OnSequenceEnd ();

A12: emitfromevents25.OnSequenceEnd ();

A13: emitfromevents25.OnSequenceEnd ();

A14: YAML::as_if <double , double > asif37{node33 };

A15: bool bool38 = iteratorvalue9.IsSequence ();

A16: bool bool39 = iteratorvalue9.IsSequence ();

A17: bool bool40 = iteratorvalue9.remove <double >(0.412408);

A18: /* PROGRAM CRASHED AT THE EXACT LINE BELOW */

A19: emitfromevents25.OnMapEnd ();

B1: void EmitFromEvents :: OnMapStart (...) {

B2: ...

B3: m_stateStack.push(State:: WaitingForKey);

B4: }

B5:

B6: void EmitFromEvents :: OnMapEnd () {

B7: m_emitter << EndMap;

B8: assert(m_stateStack.top() == State:: WaitingForKey);

B9: m_stateStack.pop();

B10: }

Listing 3.5: Example of method assertion failure (MASS) in yaml-cpp

dexes are trivial to be claimed as a real crash bug. Listing 3.6 shows an example where CITRUS failed

to provide the proper array size in yaml-cpp subject. At line A2, CITRUS passed an incorrect array

size to the constructor of YAML::Binary. Then, at line A4, CITRUS performed a self -equality checking

on binary4 by invoking operator== using (also) binary4 as argument. Since the provided array size at

binary4’s construction exceeded the actual size (i.e., 10), the test case crashed within the for loop at

line B7–B10.

Passing address of stack variable to method that takes ownership (STVR). The STVR

category happens when CITRUS passed an address of stack variable to a function/method that takes

ownership of the pointer-typed argument. On such case, a double free crash would occur because multiple

free operations (on the stack variable) happened after these two following events: (1) the end of the

main stack lifetime ; and (2) the end of the function/method (that took the pointer ownership) lifetime.

Similar to the MASS category, the STVR category was considered false positive because writing

valid test case sequences (i.e., including passing the correct stack/heap variable references) should be
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A1: unsigned char char3 [10] = "l1yMG3cAf";

A2: YAML:: Binary binary4{char3 , 18446744073709551614};

A3: /* PROGRAM CRASHED AT THE EXACT LINE BELOW */

A4: bool bool5 = binary4.operator ==( binary4);

B1: bool operator ==( const Binary &rhs) const {

B2: const std:: size_t s = size();

B3: if (s != rhs.size())

B4: return false;

B5: const unsigned char *d1 = data();

B6: const unsigned char *d2 = rhs.data();

B7: for (std:: size_t i = 0; i < s; i++) {

B8: if (*d1++ != *d2++)

B9: return false;

B10: }

B11: return true;

B12: }

Listing 3.6: Example of invalid array size (ARRI) in yaml-cpp

A1: re2:: Prefilter ::Op op0 = re2:: Prefilter ::Op::AND;

A2: re2:: Prefilter prefilter1{op0};

A3: std::vector <re2:: Prefilter*> vector2 {&prefilter1 , &prefilter1 };

A4: prefilter1.set_subs (& vector2);

A5: prefilter1.set_subs (& vector2);

B1: // Set the children vector. Prefilter takes ownership of subs and

B2: // subs_ will be deleted when Prefilter is deleted.

B3: void set_subs(std::vector <Prefilter *>* subs) { subs_ = subs; }

B4:

B5: // Destroys a Prefilter.

B6: Prefilter ::˜ Prefilter () {

B7: if (subs_) {

B8: for (size_t i = 0; i < subs_ ->size(); i++)

B9: delete (*subs_)[i];

B10: delete subs_;

B11: subs_ = NULL;

B12: }

B13: }

Listing 3.7: Example of passing address of stack variable (STVR) in re2

accommodated by the testers. Listing 3.7 illustrates an example of STVR at re2 in more detail. In

this case, the re2 developers mentioned (in the comment section, see B1–B2) that Prefilter::set subs

takes over the ownership of the subs argument, and frees the Prefilter’s subs field during destruction

of Prefilter (see B6–B13). However, CITRUS passed an address of a stack variable vector2 (A4–A5)

to prefilter1, resulting a double free crash to occur at the end of the test case execution.
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1: char char2 [3] = "Lg";

2: jsonv:: path_element pathelement3{char2};

3: std::vector <jsonv:: path_element > vector4{pathelement3 };

4: jsonv::path path5{vector4 };

5: jsonv:: formats_builder formatsbuilder7 {};

6: /* PROGRAM CRASHED AT THE EXACT LINE BELOW */

7: jsonv:: formats_builder formatsbuilder8 =

8: formatsbuilder7.check_references(

9: (std::vector <jsonv::formats >&) vector4 , ...);

Listing 3.8: Example of incorrect type casting (ICAS) in jsonbox

A1: Hjson::Value value2 {35};

A2: ...

A3: Hjson::Value value7 = value2.operator %=( value2);

A4: /* PROGRAM CRASHED AT THE EXACT LINE BELOW */

A5: Hjson::Value value8 = value2.operator %=( value2);

B1: Value& Value:: operator %=( const Value& b) {

B2: if (prv ->type != b.prv ->type || prv ->type != Type::Int64) {

B3: throw type_mismatch(

B4: "The values must be of the Int64 type for this operation.");

B5: }

B6: prv ->i %= b.prv ->i;

B7: return *this;

B8: }

Listing 3.9: Example of division-by-zero (DIV0) in hjson

Invalid type casting on template specialization types (ICAS). The ICAS category occurs when

CITRUS generates an invalid method call sequence that incorrectly passed an incorrect-typed variable

(i.e., different type) to the required argument’s type. The ICAS category in CITRUS occurred due to

CITRUS’s internal bug, where CITRUS had failed to recognize the correct type bindings of some template

specialization-typed variables. Fortunately, such ICAS cases had only ∼2% (=27/1,103) occurrences, and

were mostly on jsonbox only (see Figure 3.4).

In the experiment, ICAS category was considered false positive because crashes caused by performing

type casting to a different type (than the original) did not correspond to any implementation bug in

the target program. Listing 3.8 shows an example of invalid type casting happened in jsonbox. At

L7–L9, CITRUS passed vector4 (which is a vector of jsonv::path element, see L3) as the argument

of check references (which requires a vector of jsonv::formats). The test case crashed because the

execution failed to interpret the address of vector4 as a vector of jsonv::formats.

Division by zero (DIV0). The DIV0 category relates to performing an arithmetic division with a zero

denominator. In C/C++, performing zero divisions trivially raises the SIGFPE arithmetic exception

signal.

The DIV0 category was considered to be false positive because there is no actionable to mitigate
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crashes caused by division-by-zero operations (e.g., throwing another exception would also trigger another

crash if the exception was unhandled by the caller function). Listing 3.9 describes a crashing test case

example athjson where division-by-zero occurred. At A3, the test case assigned the prv->i value of

value2 (which was initially 35 at A1) to be 0 (see line B6). Then, the execution crashed at line A5 due

to division by zero (i.e., CITRUS had invoked operator%= on value2, which was already 0).
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Chapter 4. Discussion

In this section, I will elaborate several interesting lessons learned based on this work. I will point

out several suggestions on CITRUS for future improvements, that might also work as well in automated

unit-level testing tools for other programming languages.

4.1 Lessons Learned

4.1.1 Complexities in C++ Unit-level Testing

Automated generation of unit-level test cases in C++ programs possesses some unique complexities

that do not happen in other object-oriented programming language, such as Java. There are three notable

major differences of testing in C++ from Java programs, which result in an increase in complexity for

CITRUS (targets C++) apart from other automated testing tools for Java.

Linking configuration requirement

The current version of CITRUS must prompt the user to manually specify an additional linking

configuration (i.e., consisting the object files (.o) location and the linking flags to use) for building

the intermediate executable files during method sequence generation stage. Such linking configuration

are mostly not necessary for tools targeting Java programs (e.g., EvoSuite [2]) because the executable

files can be built on the same classpath where the target program’s classes exist. Compared to testing

Java programs, testing C++ programs is more complex because linking configuration is required to

generate unit-level test cases. Providing an appropriate linking configuration is essential to obtain the

best result (i.e., high coverage test cases) from the test case generation. Otherwise, inappropriate settings

would significantly drop CITRUS’s testing effectiveness (as CITRUS shall waste too many attempts on

uncompilable codes).

Complexity in testing C++ template classes

While working on CITRUS, I also found that testing C++ template classes might be more difficult

than Java’s generic classes (although both concepts share major similarities in overall). Template classes

in C++ are instantiated on-demand during compilation, which means that the template classes are only

compiled when a certain code (e.g., CITRUS’s intermediate driver) requires some specialization of the

template class. This implies that the GCOV-instrumented object files (.o) in the target project directory

do not record the coverage of the template class definition if the template class was not used anywhere

in the target program. On the other hand, Java Generics are implemented by applying type erasure [34]

during bytecode compilation, causing the class instances to still exist (and certainly measurable for

coverage) without any type specialization event. Testing template classes in C++ programs is more

complex than Java Generics because currently there is still no good solution to test such unused template

classes in the program and CITRUS can only obtain new coverage information from the GCOV log files

(.gcno) in the target project directory.
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Unsafe memory model and C legacy codes

Since C++ was built on top C programming language, the pitfalls of C memory models are inherited

to programs which were built using C++. Some “memory unsafe” codes from the legacy C programming

language still exist even in modern C++ programs, including methods that implicitly takes ownership,

’\0’-terminated C-string assumption, pointer aliasing and object lifetime issues, and so on. To im-

prove CITRUS effectiveness, it is inevitable that CITRUS must also accommodate to such legacy codes

(although CITRUS targets modern C++ programs). On the other hand, more recent programming

languages (e.g., Rust) offer language safety to prevent such memory corruption bugs.

4.1.2 Analyzing Crashing Test Cases

Analyzing crashing test cases is indeed crucial to uncover new bugs from the testing experiment. In

this subsection, I will elaborate some interesting observations while conducting the analysis of crashing

test cases in CITRUS experiment.

Stack hashing might be ineffective to de-duplicate unit-level crashes

In the conducted CITRUS experiment, CITRUS produced 1,103 de-duplicated crash reports (com-

bined from 10 runs) in total, all of which must be manually analyzed to uncover new bugs. This is still

large number of reports to be analyzed manually, especially with the high false positive rate in auto-

mated unit-level testing context. Moreover, the automatic crash de-duplication through stack hashing

still counted many similar crashes into separate crash reports due to different initial stack traces (e.g.,

the following call stacks are counted as different crashes by the current CITRUS crash de-duplication

scheme: “A() → X() → Y ()” and “B() → X() → Y ()”). Another better crash de-duplication scheme

would be helpful to reduce the manual efforts from analyzing the large number of reported crashing test

cases.

Correspondence of crashes to real bugs in unit-level testing context

Compared to system-level testing where crashes triggered by system-level inputs are frequently

corresponding to real bugs, crashes in unit-level testing does not always relate to (nor imply the existence)

some bugs in the target program. Although I have put extensive effort to analyze and find interesting

candidate crash bugs from the large number of crashing test cases, the majority of unit-level crashes were

false positive crashes (as described in Section 3.3.2) when such reports were brought to the upstream

developers. For example, the crash caused by multiple calls to Decref in re2 was indeed trivial due to

the semantically-invalid call sequence. Even there could be some interesting cases where seemingly-valid

crashing call sequences were actually “out-of-scoped” to be handled by the library API -level; instead,

such crash prevention must be controlled by the developers in the application-level (e.g., the infinite

recursion issue of cyclic reference in jsoncpp). These examples suggest that the crashing heuristic itself

is insufficient to easily discover new bug in automated unit-level testing.

4.2 Suggestions

There are several suggestions to improve CITRUS in the future, as listed in the following items.
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Function selection heuristics

Currently, CITRUS performs method call sequence generation to produce interesting test cases

through purely random selection of functions from the entire target program. However, this might

not be a cost-effective approach to neither maximize the test case coverage nor the bug detection

capability. This is because some functions are mostly differ in term of complexities; and thus, they

require more testing time to be allocated. A suggestion to improve the future version of CITRUS

would be to prioritize functions based on combination of some selective criteria, such as: (1) functions

with high complexity (e.g., cyclomatic, branches); (2) averaged time cost for function invocation; (3)

number of invocation attempts; (4) functions with recent updates; (5) success-to-failure ratio; and so

on. Additionally, CITRUS can also select function that explicitly mutates object states to boost the

exploration of producing diverse object states, rather than relying on random function selection scheme

to generate interesting object construction sequence.

Parameterized test case generation

In RQ2, CITRUS variants that utilize libfuzzer (i.e., C6+LF1, C6+LF3, and C12+LF2) achieved compet-

itively higher test coverage even in significantly less time budget (i.e., up to 14.6 hours less) compared to

the CITRUS’s C24 variant. This comparative result indicates that CITRUS suffered performance bottle-

neck during method sequence generation through a series of repetitive compilation and linking operations

to build the intermediate executable files. Even worse, such series of operations would waste most of

the time budget when CITRUS produces too many “built-failure” executable files (e.g., due to incorrect

linking configuration). Such heavy overheads did not occur during the libfuzzer stage after the method

sequence generation because it only requires one time building process to build the fuzzing executables.

This allow the libfuzzer stage to utilize more time budget to explore more diverse program states and

discover new branches.

Based on this observation, a suggestion to improve CITRUS can be made by introducing parame-

terized test case generation. Compared to the current structure of CITRUS test case, a parameterized

test case takes an additional input file as the input argument of the method calls. The input file will

also be mutated in the process to reduce the number of redundant compilation and linking operations

during the method sequence generation. This way, CITRUS can effectively allocate more time budget

to improve its coverage achievement.

Reducing false positive rate

There can be several ways to reduce the number of false positive crashes reported by CITRUS,

according to the false positive crash types elaborated in Section 3.3.2. Several suggestions to improve

CITRUS towards limiting false positive rate are listed as follows:

1. To reduce false positives from the division-by-zero (DIV0) category, CITRUS can utilize static

analysis to distinguish functions that performs arithmetic division and modulo operations. Then,

CITRUS should utilize such information to prevent any zero value to be passed as a method

argument.

2. Similarly, false positives from the NULL pointer dereference (NDRF) category can be prevented by

distinguishing functions that were intolerant towards NULL pointers. For example, a function f(x)

that performs strlen on x argument should not receive NULL pointer as x argument. Using such
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information, method call sequence generation while resolving arguments for functions with pointer-

type can be controlled, which is only passing NULL values to functions that explicitly handles NULL

values (e.g., those with an explicit NULL-checking branch).

3. False positives from invalid array indexes and sizes (ARRI) category frequently happened in meth-

ods whose signature contains both of the following types: (1) a pointer type and (2) an “unsigned”

integral type (e.g., size t). For such functions, CITRUS can use smaller set of integer values to

prevent crashes triggered by out-of-bound array index accesses. Also, CITRUS must also consider

to put a ’\0’-value right at the end of every char*-typed pointer/array to prevent false crashes

caused by C-string function calls (e.g., strlen) that assumes every char*-typed array are always

’\0’-terminated.

4. To reduce the false positive crashes by object ownership issues (e.g., STVR), CITRUS should

perform data analysis on every function with pointer-typed arguments, which implicitly takes the

object ownership during invocation (e.g., a function g(x) that frees the object referenced by x at

the end of g call takes the ownership of x). For such functions, CITRUS should pass heap object

references (i.e., constructed using the “new” keyword) instead of passing the addresses of stack

variables (i.e., using address-of (&) operator).

Based on the large number of false positive crash reports, another false positive reduction improvement on

CITRUS can also be made by applying a better crash de-duplication scheme. The current stack hashing

approach still produces large number of redundant crash reports due to the inflexibility of utilizing

complete traces of the function call stack. Limiting the stack hashing to consider only several top-levels

of call stack (instead of full stack traces) would group similar crashes into better groupings; and hence

it reduces the efforts to analyze CITRUS crashing test cases. Alternatively, CITRUS can apply crash

clustering [35] approach for better crash de-duplication than stack hashing.

Test case minimization to improve usability

Currently, CITRUS only focuses to generate random method call sequences (with arbitrary length)

to maximize the testing coverage in the target program. However, the length of test case frequently

matter towards the test case usability because smaller test cases offer better understandability and less

running time. An improvement could be made to CITRUS in this context by performing test case

minimization during method sequence generation in order to produce more compact test cases.
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Chapter 5. Related Works

This section will elaborate several previous works that are highly-related to CITRUS consisting of

the following items:

1. recent approaches on automated unit-level test case generation for C/C++ programs; and

2. previous works that are related to method call sequence generation for testing object-oriented

programs.

5.1 C/C++ Unit-level Testing Tools

Automated unit test case generation for C/C++ is well-known to be a challenging task due to

highly-expressive language features. For example, C memory model allows pointer aliasing [36], which is

remain to be prominent research topic [37, 38] (until now) as there is no good solution to overcome such

problem. Moreover, C++ introduces object-oriented features to the language that remarkably increase

the complexity of automated testing tools, such as inheritance relationship, object polymorphism, tem-

plate classes, STL classes, and so on. These are some main reasons that motivates the limited availability

of automated testing tools to target C++ programs at present time.

Apart from the highly-expressive language features, automated unit test case generation for C++

programs is also challenging for its large search space. To achieve a high coverage in a target program,

testing tools must be able to: (1) generate diverse test harnesses (a.k.a., drivers) to represent realistic

contexts to test each unit function in the target program; and (2) generate the suitable inputs to in-

crease the test coverage. Most state-of-the-art techniques, such as symbolic executions (e.g., CUTE [39],

KLEE [25], DeepState [40]) and coverage-guided fuzzing (e.g., AFL++ [18], libfuzzer [24]) require

manual efforts by the human testers on providing the unit-level test harnesses before starting the input

generation. Such manual interventions are indeed costly and ineffective [41] for achieving high test cover-

age 1. Meanwhile, in contrast to C++ unit testing frameworks (e.g., Google Test [42], CppUnit [43]) that

do not automatically generate test cases (i.e., purposefully only for running unit test cases), CITRUS

generates C++ unit tests automatically which can be later incorporated to be run on these C++ testing

frameworks.

The later approaches on automated unit testing started to incorporate the harness generation pro-

cess inside the testing process. KLOVER [20] automatically generates static drivers which is later

incorporated with its own C++ symbolic execution engines to generate inputs. Before performing input

generation using their symbolic execution engine, KLOVER generates symbolic test drivers for declaring

a set of symbolic variables that will be used to invoke the target function. FSX [21] introduces incremen-

tal driver refinement and relevant input analysis to improve the effectiveness of static drivers in symbolic

executions. However, utilization of such static drivers may have limitation in triggering some particular

behaviors caused by the different ordering of method calls. Moreover, the source code implementation

of KLOVER and FSX are also unavailable for the public to test on their C++ programs. Compared to

1Performing experiment to achieve an apple-to-apple comparison between CITRUS and an existing tool (such as Deep-

State and AFL) was difficult because most existing tools do not automatically generate test drivers (i.e., only mutates the

input bytes), while CITRUS generates the test drivers end-to-end.
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KLOVER and FSX, CITRUS generates test cases through the random method call sequence generation

to execute diverse program behaviors. The randomness in the method call sequence generation helps

CITRUS to diversify the object states produced from arbitrary sequence of method invocations, which

is a clear CITRUS’ advantage over the static drivers.

Moving forward from the static drivers in symbolic executions, we dive into more recent techniques

that focuses on synthesizing fuzz drivers to achieve high test effectiveness in fuzzing. For example,

FUDGE [22] and FuzzGen [23] synthesize fuzz drivers by scanning existing external library consumer

to collect candidate entry functions of a library-under-test (i.e., both FUDGE and FuzzGen target for

particular library testing purpose). FUDGE [22] collects the candidate entry functions by scanning for all

places where the target library API were used in the specified external project. Then, FUDGE synthesizes

an individual fuzz driver (for each API use location) by referring to the call sequences (called snippet)

that were found in the external project. Similar to FUDGE, FuzzGen [23] synthesizes fuzz drivers

by leveraging an Abstract API Dependence Graph (AADG) of existing external projects to construct

valid API call sequences of library API invocation. Contrary to FUDGE where the code snippet were

originally sliced from the consumer code, FuzzGen extracts the possible API sequences from the AADG

to construct independently from the snippet. This way, fuzz drivers created by FuzzGen eliminates all

irrelevant consumer codes, except only the target library API calls alongside with their minimum data

dependency to construct all the required API arguments. Both FUDGE and FuzzGen rely heavily on the

external project, based on which the fuzz drivers are synthesized from. This could be disadvantageous

due to some reasons, such as:

1. When some of the library APIs were not utilized anywhere in the external project. On such case,

FUDGE and FuzzGen will fail to produce fuzz drivers on those unused APIs.

2. Fuzz drivers sourced from code snippets in external projects may not thoroughly explore diverse

object states caused by the huge combinations of arbitrary method call sequences (i.e., due to the

large search space of possible call sequences that may not exist in the external project).

On the other hand, CITRUS works in a more flexible way as it independently performs random method

call sequence generation, and does not require any external project to generate test cases. Also, CIT-

RUS constructs arbitrary sequences by recognizing and combining multiple object creator call statements

to construct objects, which is another major difference of CITRUS from those two aforementioned ap-

proaches.

The most recent work of fuzz driver synthesis is IntelliGen [41] in 2021. IntelliGen does not rely

on external library consumer, but synthesizes fuzz drivers for library APIs by prioritizing functions

with the most potential vulnerable statements (e.g., pointer dereferencing). In other words, IntelliGen

prioritizes such vulnerable functions to maximize the bug detection capability in the target library.

However, I could not check if IntelliGen supports C++ language features since their implementation is

not publicly available. Meanwhile, CITRUS was developed specifically to target complex C++ programs,

and CITRUS is made to be publicly available.

5.2 Method Call Sequence Generation

Method call sequence-based test case generation has been widely applied to various programming

languages other than C++, such as Java [1, 2] and Python [19]. In Java unit-level testing case, EvoSuite

[2] is the current state-of-the-art tool based on search-based software testing (SBST). The core process
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of EvoSuite is based on random method call sequence generation of object-constructing statements to

construct test cases (similar to CITRUS). From these constructed individual test cases, EvoSuite then

composes high-quality test suite (in term of coverage achievement and test case simplicity) through

genetic evolutionary algorithm to maximize the coverage goals (e.g., line, branch, weak mutation) while

still minimizing the test suite size. EvoSuite performs test suite minimization in both test suite-level (i.e.,

eliminating redundant test cases) and test case-level (i.e., eliminating redundant statements); both with

the same ultimate goal which is to improve the test suite readability and reduce the risk of generating

flaky tests [44]. To reach the current state of maturity level, EvoSuite has gone through many engineering

efforts to improve its effectiveness and efficiency on testing modern Java programs, such as functional

mocking [45], integration with virtual file system (VFS) [46], dynamic symbolic execution [47], multiple

seeding strategies [48], and many more. Also, there has been several works [49, 50, 51, 52] on evolutionary

search algorithms to improve the utilization of EvoSuite’s search time budget more effectively.

Randoop [1] is another unit-level test generation tool targeting Java programs based on random

testing. Randoop performs random method call sequence generation while utilizing contract checkers

(i.e., methods to assert the invariant of a class) to find any violations within the code executions.

Through these assertions, Randoop distinguishes a contract-violating sequences from the non-violating

test cases. Then, for each non-violating test case, Randoop utilizes feedback from filters to store only

the sequence that produces an interesting object state (i.e., has not been encountered previously). This

is done to increase the diversity of object states by limiting Randoop to test on call sequences that

produces the redundantly-created objects with same values. Compared to CITRUS (which is also a tool

based on random method call sequence generation), there are two major differences between Randoop

and CITRUS as follows:

1. To predict an unexpected behavior of the target program, Randoop relies on contract checking

methods to discover contract-violating sequences; while CITRUS utilizes crashes in the program

execution. Note that the availability of such contract checking assertions (required by Randoop)

is almost none in most real-world C++ programs, which makes it inapplicable for fully-automated

testing in CITRUS case.

2. To guide the method call sequence generation process, Randoop stores call sequences that produces

a previously-unseen object state (i.e., checked through Java’s object checking equality); while

CITRUS uses test coverage as its guidance (i.e., only test cases that increase the coverage will be

kept). Note that the object checking equality functions in C++ programs are less common than

in Java, which makes it less applicable in C++ testing context.

Meanwhile, Garg et al. [53] has ported an implementation of Randoop’s directed random testing to

target C++ programming language. In their work, Garg et al. proposed a hybrid approach of combining

Randoop’s directed random testing with concolic execution to overcome coverage plateaus while testing

C++ programs. Unfortunately, the implementation of their tool is not publicly available at present time.

Bach et al. [26] performed an empirical study to systematically construct valid object-constructing

call statements in the context of object creation problem (OCP) while writing unit tests for C++

programs. To confirm the relevance of OCP, first they conducted a qualitative study on 143 developers

to characterize their preferences while selecting an appropriate object creation code sequence for unit

testing, particularly when there were multiple object creators for a particular class. From this study,

they found that most developers tend to select the most non-sophisticated constructors (i.e., with the

minimum dependencies) while constructing object creation code sequences for unit testing. As to produce
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the smallest valid method call sequences, Bach et al. also proposed an algorithm (for constructing

a particular class type) by traversing the shortest path on a call-dependency graph traversal. The

evaluation showed that their approach was capable to construct at least a valid argument-constructing

call sequences to invoke at least 94% functions on seven large C++ projects. While such approach

sounds robust to construct at least a valid object-constructing call sequence for most classes, their work

contains no discussion on how such method call sequences should be utilized to increase the diversity of

object states for unit-level testing. The diversity of generated object states is essential because invoking

functions using homogeneous objects could not enhance the testing effectiveness in automated test case

generation context. Meanwhile, CITRUS constructs its object-constructing call sequences by utilizing

object creator functions, which is similar to the approach mentioned above. However, compared to the

approach, CITRUS is also interested in constructing diverse object states by performing random method

call sequences generation and test case mutations.
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Chapter 6. Concluding Remark

6.1 Conclusion

This paper presents CITRUS, which is a new automated C++ unit-level testing tool to generate

random method call sequences to produce test suites achieving high test coverage. CITRUS is currently

one of the very few available tools that automatically generate unit tests for C++ programs without

human intervention. To test the highly-complex real-world C++ programs, CITRUS handles challenging

technical issues of C++ language features, such as template instantiation, complex STL classes, and so

on. To intensify the unique program behaviors discovered during the method call sequence generation,

CITRUS applies libfuzzer fuzzing on discovered test cases to continue traversing smaller branches and

improve the test coverage in significantly less testing time budget.

On eight real-world C++ target programs, I have demonstrated that CITRUS achieved high state-

ment coverage (up to 95%) and high branch coverage (up to 79%) in the conducted experiment. I also

have demonstrated that by applying libfuzzer fuzzing after the method sequence generation, CITRUS

produced as competitively high testing capability with smaller time budget (saving up to 14.6 hours in

average). Additionally, I have reported seven types of false positive crash alarm that frequently happen

in C++ unit-level testing (with provided examples). To demonstrate CITRUS’s bug detection capabil-

ity, I have conducted a case study where CITRUS had successfully detected real crash bugs in the past

versions of C++ programs.

For the continuous support on future researches of C++ unit-level automated testing tools, CITRUS

is made available to public at

https://github.com/swtv-kaist/CITRUS

6.2 Future Works

As for future works, I plan to enhance the current CITRUS implementation by adding additional

supports towards more complex C++ features, such as STL classes from the more recent C++ language

features, function pointers, STL’s threads and synchronization locks, and so on. Furthermore, in order to

improve the testing effectiveness and efficiency of CITRUS, I plan to introduce a new function selection

heuristic for CITRUS to prioritize complex functions that require more attention (i.e., to be extensively

tested) than the simple functions, such as getter and setter methods. Also, I plan to apply parameterized

test case generation during method sequence generation stage to save the testing time budget from

redundant compilation and linking operations. Based on the false positive crash types I found in this

work, I will also try to limit the number of false positive alarms produced by CITRUS through a more

effective crash de-duplication scheme and with a more careful false positive filtering. Finally, I will study

a method to identify/generate test oracles in C++ tests since test oracle problem is also an important

problem for automated unit-level testing.
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