
석 사 학 위 논 문
Master’s Thesis

시스템 실행 데이터 기반 함수 수준 회귀 퍼징

System Execution Data-Driven Function-Level Regression

Fuzzing

2025

최 영 석 (崔榮晳 Choi, Youngseok)

한 국 과 학 기 술 원

Korea Advanced Institute of Science and Technology



석 사 학 위 논 문

시스템 실행 데이터 기반 함수 수준 회귀 퍼징

2025

최 영 석

한 국 과 학 기 술 원

전산학부



시스템 실행 데이터 기반 함수 수준 회귀 퍼징

최 영 석

위 논문은 한국과학기술원 석사학위논문으로

학위논문 심사위원회의 심사를 통과하였음

2024년 12월 20일

심사위원장 김 문 주 (인)

심 사 위 원 고 인 영 (인)

심 사 위 원 유 신 (인)



System Execution Data-Driven Function-Level

Regression Fuzzing

Youngseok Choi

Advisor: Moonzoo Kim

A dissertation submitted to the faculty of

Korea Advanced Institute of Science and Technology in

partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

Daejeon, Korea

December 20, 2024

Approved by

Moonzoo Kim

Professor of Computer Science

The study was conducted in accordance with Code of Research Ethics1.

1 Declaration of Ethical Conduct in Research: I, as a graduate student of Korea Advanced Institute of Science and

Technology, hereby declare that I have not committed any act that may damage the credibility of my research. This

includes, but is not limited to, falsification, thesis written by someone else, distortion of research findings, and plagiarism.

I confirm that my thesis contains honest conclusions based on my own careful research under the guidance of my advisor.



MCS 최영석. 시스템 실행 데이터 기반 함수 수준 회귀 퍼징. 전산학부 . 2025

년. 30+iv 쪽. 지도교수: 김문주. (영문 논문)

Youngseok Choi. System Execution Data-Driven Function-Level Regression

Fuzzing. School of Computing . 2025. 30+iv pages. Advisor: Moonzoo

Kim. (Text in English)

초 록

회귀 버그를 찾기 위해 지금까지 프로그램 전체를 테스팅하는 시스템 퍼징을 활용하는 연구가 이루어져 왔

으나, 시스템 퍼징은 탐색 공간이 너무 넓고, 회귀 버그가 발생하는 조건을 만족하는 시스템 입력을 퍼징을

통해 합성하기 어렵다는 한계가 있다. 따라서, 본 연구는 함수 수준 퍼징을 통해 회귀 퍼징을 효율적으로

작은 탐색 공간에서 수행하는 기법을 제안한다. 회귀 테스팅을 함수 수준 퍼징을 할 때, 퍼징 대상 함수를

정하는 문제는 시스템 실행에서 구한 함수 커버리지 기반의 동적 함수 연관도와 정적 호출 거리를 기반으로

결정하고, 회귀 버그에 해당하는 유의미한 크래시를 찾는 문제는 시스템 실행의 함수 입력 데이터로 훈련된

모델을 활용하였다. 실험 결과, 10개의 C 프로그램에 대해 적용하여 실제 오류가 발생한 함수를 특정할 때

acc@10 성능이 최신 기법에 비해 40%p 증가하고, 7개의 프로그램에서 제안한 기법이 보고한 오류 중 상위

20% 안에 대상 회귀 오류가 존재함을 보였다.

핵 심 낱 말 함수 수준 퍼징, 회귀 테스팅, 딥러닝 기반 유효성 추정, 함수 입력, 함수 커버리지

Abstract

Previous studies on detecting regression bugs have primarily utilized system fuzzing, which tests the

entire program. However, system fuzzing has limitations, including an excessively broad search space

and the difficulty of synthesizing system inputs that satisfy the conditions for triggering regression bugs.

To address these challenges, this study proposes a method to perform regression fuzzing more efficiently

within a smaller search space by leveraging function-level fuzzing.

When conducting regression testing with function-level fuzzing, two key problems arise: selecting

the target functions for fuzzing and identifying meaningful crashes related to regression bugs. To solve

the first problem, this study employs dynamic function relevance based on function coverage obtained

from system execution, combined with static call distance metrics. For the second problem, a model

trained on function input data from system execution is used to detect meaningful crashes associated

with regression bugs.

Experimental results show that applying the proposed method to 10 C programs improved the

acc@10 performance by 40 percentage points compared to state-of-the-art methods in identifying func-

tions associated with actual errors. Additionally, in 7 programs, the proposed method successfully

reported regression errors within the top 20% of crashes.

Keywords function-level fuzzing, regression testing, deep-learning based validity estimation, function

input, function coverage
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Chapter 1. Introduction

Modern softwares are composed of large size of code, and there is a need to quickly test if new bugs

appear after code update. Regression testing is a testing technique to prevent bugs in frequently updated

software, usually done by human programmers. There are some works to automate regression testing

with greybox fuzzing, which has become a popular testing technique for its high bug detection ability.

While existing approaches focus on system fuzzing which explores the entire project codebase, I propose

a novel function-level fuzzing apporach for regression testing which tests only the functions that are

affected by the recent patch.

1.1 Greybox Fuzzing

Greybox fuzzing is an automated testing technique which applies genetic algorithm to randomly mutate

the test input of the target software. It uses coverage metric as fitness score, so that test inputs that

cover new branches are favored and gain more probability to be selected as the mutation seed for the

next seed generation. By repeating these selection and mutation steps, fuzzing can generate test cases

that reach high coverage of the target software and detect vulnerabilities. For example, in OSSFuzz

project maintained by Google, greybox fuzzer such as AFL++ and libFuzzer contributed to find 36,000

software bugs over about 1,000 open-source projects [10]. Also, software company Microsoft also tests

their software with greybox fuzzing [1].

Although greybox fuzzing is a highly effective technique, automating certain aspects remains chal-

lenging—particularly the development of the fuzzing harness. A fuzzing harness, also referred to as a

harness, serves as a bridge, translating the random byte sequences generated by the fuzzer into inputs

compatible with the target software. Writing an effective harness necessitates a thorough understanding

of the target software, as the structure and semantics of the required input are intrinsically tied to its

design and behavior.

1.2 Regression Fuzzing

Regression bugs are defects that occur when previously functioning features stop working after certain

changes or updates are made to the software. These bugs are introduced inadvertently during the

modification of existing code, often due to new code changes that interfere with the existing functionality.

Regression testing is a testing tqchnique used to quickly find regression bugs. Regression testing

is usually done manually by humans, but the more frequently code changes, the more labor-intensive

regression testing becomes. Several works [8][49] suggested automated regression testing by using greybox

fuzzing. These works give more fitness score to seeds that explore the code region close to lines that the

latest patch updates [8], or close to frequently and recently changed lines [49]. All existing regression

fuzzing studies correspond to system fuzzing, which tests the entire system execution scenario designed

to test the entire codebase using the existing system harness, but with a different fuzzing algorithm that

prioritizes testing patched lines.
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Figure 1.1: The illustration of finding a bug with system fuzzing and function-level fuzzing

1.3 Function-Level Fuzzing

Function-level fuzzing focuses on testing individual functions or methods in isolation from the rest of the

software, which is motivated from unit testing. It uses function-level harness which prepares the target

function input from raw fuzzing input, and execute the target function. Function-level testing has two

advantages for performing regression testing compared to system fuzzing which tests the entire system.

1. Small search space. While system fuzzing is trying to find a bug in entire codebase, function-level

fuzzing only explores the target function’s execution space. If function-level fuzzing is performed

on buggy function, it can quickly detect the regression bug located in small search space.

2. Simpler bug constraint. Function-level execution always guarantee that the target function is

always executed, while system execution may have several constraints to reach the buggy function.

The constraint including constraint to reach buggy function to find regression bug can be too

complicated to solve by system fuzzing. If function-level fuzzing is performed on buggy function,

the reachability condition of buggy condition is always satisifed, so function-level fuzzing can quickly

find the regression bug by solving less complicated regression bug constraint.

Figure 1.1 illustrates this idea, where outer triangle is the whole search space of entire project codebase,

and grey triangle is search space of each fuzzing approach. Black arrows represent the execution path of

passing test case, and the red arrows represesnt the execution path of failing test case, which is a crash.

From different size of search space (grey triangle), we can see that finding a bug in function-level search

space makes regression bug detection problem much easier compared to system fuzzing. Also, from the

length of the execution path of failing test case (red arrows), we can see that function-level fuzzing

can detect the regression bug without solving too many branch conditions, while detecting the bug with

system fuzzing requires solving many long and complicated conditions. In this way, function-level fuzzing

can find regression bugs faster than existing approaches on system fuzzing.

1.4 Thesis Statment and Contribution

There are two challenges to applying function-level fuzzing on regression testing. First, it is important

to select the proper functions to perform function-level fuzzing. Function-level fuzzing is only effective

when testing the actual buggy function, otherwise it will not detect meaningful regression bugs. Second,

it should find regression bugs from the collected function-level crashes. Function-level fuzzing does not

2



always produce valid test cases because it may prepare invalid contexts as function inputs. To address

these challenges, this paper claims,

Thesis Statement. By utilizing system execution data in function-level regression fuzzing,

it is possible to select patch-related functions for fuzzing and effectively identify regression bug.

System execution data is the data collected during the execution of system test cases, which is function

coverage and function input. Function coverage is the list of functions executed during the entire exe-

cution, similar to the well-known coverage metrics such as line coverage and branch coverage. Function

input is the set of values that used during each function execution. It includes all values such as function

arguments, global variables, and static variables.

Contribution. Based on these two kinds of system execution data, the paper proposes the following

contributions:

• Regression relevance to select patch-related functions to test. This approach introduces

regression relevance metric to find patch-related functions to be tested based on function coverage

and static call graph. Compared to state-of-the-art approach [49], the proposed method improves

acc@10 by 40%p, which is the success rate that could find buggy functions in top-10 ranking.

• Function-level test case validity estimator. It suggests to train a validity estimator model

from the function inputs observed in system executions, and use the model to infer the validity of

given function-level test case. Using this approach, the regression bug can be found by analyzing

only top 20% of function-level crashes having high validity score.

• Function-level input extraction and interpretation. It introduces a method to extract

function-level inputs from program execution, and interpret the extracted inputs in text and graph

to use in various applications. To my knowledge, this is the first work to extract and interpret

large number of function-level inputs to train a deep learning model.

1.5 Structure of this paper

I first explain the function-level regression fuzzing approaches in Section 2. It focuses on solving two

problems, patch-related function selection and identifying regression bug, by using system execution

data. In Section 3, the paper shows the experiment settings and the evaluation results to demonstrate

the effectiveness of the proposed approach. In Section 4, I introduce other related works to show how

this research is related to existing research topics such as regression fuzzing and automated unit testing.

Finally, I conclude my research results and suggest future work in Section 5.

3



Chapter 2. Regression Function-Level Fuzzing

The overall process of the function-level regression fuzzing is shown in Figure 2.1. As a usual regression

testing, the target project codebase and the patch history is given, and the goal is to find a regression

bug. First, it selects patch-related functions to perform function-level fuzzing. Second, for each selected

function, it creates a fuzzing harness, which loads the function input from fuzzing input, and calls the

function. Third, it collects crashes by running function-level fuzzing. Finally, it identifies which crash

corresponds to the regression bug among the collected crashes.

In this paper, system execution data is used to improve 1 patch-related function selection (Section

2.1) and 2 identifying regression bug (Section 2.2). It uses function coverage of each system test case to

select functions that are more likely affected by the recent patch(which is 1 ), and function input data

in each function call of system execution to train function a AI-based input validity estimator model

(which is 2 ).

2.1 Patch-Related Function Selection

To perform function-level fuzzing, we need to select functions that need to be tested based on the code

changes of the recent commit. In other word, the target project codebase and the code changes are

given, and we aim to find the buggy function that the regression bug is located. I will explain why

patch-related function selection is a challenging problem with a motivating example (Section 2.1.1), and

propose an approach using static call distance (Section 2.1.2) and dynamic function relevance (Section

2.1.3), presenting the final ensembled approach called regression relevance at the end (Section 2.1.4).

2.1.1 Motivating Example

Basic approach will be testing the functions that are updated recently and frequently, as AFLChurn [49]

suggested. However, regression bug may appear in the functions that are not updated by recent patches.

Figure 2.2 shows the example of regression bug not located in the changed functions. In main function,

content is parsed into message and type (line 35), and these values are passed to run function (line

36). parse function is the recently updated function, and the patch adds support for message type 2

which was not considered before in parse (line 115 - line 118). However, the run function does not

support for type 2 message, so type 2 message leads to failure by executing the unreachable part written

by programmer (line 83). The regression bug exists because the recent patch raised the inconsistency

between parse and run functions for handling type 2 message. Although parse function is updated by

patch, run function has regression bug in this case.

Therefore, regression errors can occur not only in the modified areas, but also in the regions closely

related to those areas. To measure how the functions are related to the patch, it utilizes the metrics

called static call distance and dynamic function relevance.

2.1.2 Static Call Distance

It can test functions that have a short static call distance to the updated functions. It simply leverages

the idea that the more the function is located near the updated functions, the more the function is likely

4



Figure 2.1: The overall process of system execution data-driven function-level regression fuzzing

Figure 2.2: An example of regression bug which does not located in recently updated function

to be affected by the patch.

Figure 2.3 shows the simple example of static callgraph. Although directed graph is usually used to

draw a call graph, I use undirected graph to consider both call and return execution flows. If F4 is the

function updated by the recent patch, test priority of F1 is higher than F2 because F1 is more close to

the updated function, F4. By calculating the call distance to F4 for all other functions, F4 > F1 = F5 >

F2 = F3 is the test priority of each function.

I define static score which is designed to fall in [0, 1] and to make score proportional to the test

priority.

Definition 1 (static score). For each function F , static score is defined as

StaticScore(F ) =
1

1 + minF ′∈updated CallDistance(F, F ′)
,

where ‘updated’ is the set of functions changed by the recent patch.

2.1.3 Dynamic Function Relevance

Using only static call distance has limitation because it only considers the static information of the

codebase. Therefore, it only provides an approximation of the relationship between functions, and it

5



Figure 2.3: An example of static callgraph

Figure 2.4: An example of function coverage

may not reflect the actual relationship between functions in system executions.

Dynamic function relevance is the metric for how frequently two functions are executed together

in system execution. It was originally proposed to reduce false alarms of unit testing [29, 30]. Among

dozens of function relevance/coupling metrics [15, 34, 14, 20, 21], I use dynamic function relevance metric

for its intuitive characteristics and its low runtime overhead [32].

Definition 2 (function relevance). Function relevance between two functions FA and FB is

FunctionRelevance(FA, FB) = P (FA|FB)× P (FB |FA),

where P (FA|FB) is the probability of executing FA when FB is executed, and P (FB |FA) is the probability

of executing FB when FA is executed.

From the definition, the function relevance is high when two functions are frequently executed

together. Therefore, the function relevance can be used to measure how the given function is affected by

the patched functions.

Although the true conditional probabilities are unknown, we can measure them based on the function

coverage of each system test case.

P (FA|FB) =
# of system test cases which execute FA and FB

# of system test cases which execute FB

P (FB |FA) =
# of system test cases which execute FA and FB

# of system test cases which execute FA

In this way, we can estimate the function relevance based on the function coverage of system test cases.

Definition 3 (dynamic score). Dynamic score for selecting patch-related functions is

DynamicScore(F ) = max
F ′∈updated

FunctionRelevance(F, F ′).

where ‘updated’ is the function updated by the most recent patch. If multiple updated functions exist,

the dynamic score is determinted as the maximum function relevance for each target function F and

updated function pair.

6



Algorithm 1 Regression Relevance of Function

Require: Target function f , Changed functions by patch {gi}ni=1, System test cases T

1: s← ming∈{g1,··· ,gn} CallDistance(f, g)

2: s← 1/(1 + s)

3: d← 0

4: for g ∈ {gi}ni=1 do

5: nfg ← |{t ∈ T : f, g ∈ FunctionCoverage(t)}|
6: nf ← |{t ∈ T : f ∈ FunctionCoverage(t)}|
7: ng ← |{t ∈ T : g ∈ FunctionCoverage(t)}|

8: d← max

(
d,

n2
fg

nfng

)
9: end for

10: r ← (s + d)/2

Ensure: Regression Relevance r

For example, suppose function coverage is given as Figure 2.4, where F1, F2, · · · , F5 are functions

and TC1, TC2, TC3, TC4 are system test cases. To measure the dynamic score of F1, it follows following

steps.

1. P (F1|F4) =
# of system test cases which execute F1 and F4

# of system test cases which execute F4
=
|{TC2, TC3}|
|{TC2, TC3}|

= 100%

2. P (F4|F1) =
# of system test cases which execute F1 and F4

# of system test cases which execute F1
=

|{TC2, TC3}|
|{TC1, TC2, TC3, TC4}|

= 50%

3. DynamicScore(F1) = FunctionRelevance(F1, F4) = P (F1|F4)× P (F4|F1) = 50%

In this way, the dynamic score of each function can be computed.

DynamicScore(F1) = P (F1|F4)× P (F4|F1) =
|{TC2, TC3}|
|{TC2, TC3}|

× |{TC2, TC3}|
|{TC1, TC2, TC3, TC4}|

= 50%

DynamicScore(F2) = P (F2|F4)× P (F4|F2) =
|{}|

|{TC2, TC3}|
× |{}|
|{TC1, TC4}|

= 0%

DynamicScore(F3) = P (F3|F4)× P (F4|F3) =
|{TC2, TC3}|
|{TC2, TC3}|

× |{TC2, TC3}|
|{TC2, TC3, TC4}|

= 67%

DynamicScore(F4) = P (F4|F4)× P (F4|F4) =
|{TC2, TC3}|
|{TC2, TC3}|

× |{TC2, TC3}|
|{TC2, TC3}|

= 100%

DynamicScore(F5) = P (F5|F4)× P (F4|F5) =
|{TC3}|

|{TC2, TC3}|
× |{TC3}|
|{TC3}|

= 50%

Therefore, the test priority of functions is F4 > F3 > F1 = F5 > F2 based on the dynamic function

relevance score.

2.1.4 Regression Relevance

Although dynamic score measures how the given function is affected by the patched functions, it assumes

that the collected system test cases are strong enough to represent all system executions. In other words,

if system test cases only execute very small part of the entire codebase, or the distribution of system

test cases are skewed to specific code regions, the function relevance-based dynamic score would be

inaccurate.

7



Figure 2.5: An example of valid and invalid function inputs

Static call distance also has limitation since it only considers static information. It does not reflect

how functions are related in actual system executions. To overcome these limitations, I use regression

relevance which considers both call distance-based static score and function relevance-based dynamic

score by averaging both scores.

Definition 4 (regression relevance). Regression relevance of function F is

RegressionRelevance(F ) =
StaticScore(F ) + DynamicScore(F )

2

Algorithm 1 formally describes how the regression relevance score is computed when the recent

patch information is given. First, static score s is measured (line 1-2) based on the minimum static call

distance to patched functions. Second, dynamic score d is measured based on the function coverage of

each system test case (line 4-8). Finally, the regression relevance r is the average of the static score s the

the dynamic score d. In this way, it measures the regression relevance score for each function existing

in the project codebase, and we will use top-n functions which have highest regression relevance as the

target functions for function-level fuzzing.

2.2 Identifying Regression Bug

Regression function-level fuzzing performs fuzzing on the patch-related functions. It can collect function-

level crashes, however some of the function-level test cases produced by function-level fuzzing can be

invalid. It is because some functions are designed to assume that the inputs satisfy some constraint,

however the given function-level test case may violate the input constraint. This step filters out invalid

false positive crashes produced by function-level fuzzing, and it helps identify the regression bug more

quickly. I propose a new approach using the function input data observed in system executions to

estimate the validity of a given function-level test case.

In this section, I first explain the motivating example of why function-level test cases can be invalid

(Section 2.2.1), and then I propose data-driven function input validity estimation model (Section 2.2.2

and Section 2.2.3)

2.2.1 Motivating Example

To understand why function-level test case can be invalid, suppose function-level fuzzing is performed

on function parse string(char *str, int len), and collected three crashing test cases with corre-

sponding function inputs as described in Figure 2.5. Among these crashes, only TC3 is valid because

the function parse string in that form usually expects the constraint that length of str is identical

to value int (i.e., length(str) = len). Because some functions are designed with some input con-

8



Figure 2.6: Training and inference of the function input validity esimation model

straint assumptions, some function-level crashes violating the input constraint are not useful to find the

regression bug.

Therefore, function input validity estimation is required to improve function-level fuzzing. The idea

is that the function inputs observed during system execution are always valid. In system execution, the

function calls written by a human programmer are expected to work in the correct way or close to the

correct way, so that the function call inputs are prepared to satisfy the input constraint of the target

function.

For example, one can collect the valid function inputs from system execution, satisfying the input

constraint of parse string, and train a function input validity model that learns the expected input

constraint. As shown in Figure 2.6, the valid function inputs of parse string observed in system

execution satisfy the expected constraint length(str) = len. If we train a model that estimates the

validity of the given function input based on the patterns of the valid function inputs, then the validity

of new function inputs can be measured with this model. Therefore, a deep learning model can measure

the validity of function-level inputs generated by function-level fuzzing.

The function input validity model estimates how the given function input I is a valid input of the

given function F . Therefore, the inputs are function input F and function F , and it returns the estimated

validity score. The problem is how to represent the function input I and function F as a vector, and how

to design the model to estimate the validity score. Specifically, the model should consider the following

characteristics of the function input data.

• Highly structured. Function inputs are usually highly structured, and they can have relations

such as pointer-pointee relation and class object-class field relation. The model should be able to

interpret the structured function input data.

• Value-rich. Function inputs are filled with numeric values such as integers and floats. The model

should be able to interpret the concrete numeric values in the function input data.

To consider these characteristics, I propose two approaches to estimate the validity of function-level

test cases. The first approach interprets the function input as a text (Section 2.2.2), and the second

approach interprets the function input as a graph (Section 2.2.3). I will explain the details of each

approach in the following sections.
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Figure 2.7: The structure of the LLM prompt with function and function input

2.2.2 Function Input Validity Estimation Model: Function Input as a Text

LLMs are powerful for understanding context within sentences and generating coherent text and also

have proven to be effective in various natural language tasks. The transformer architecture of LLMs can

capture the relations between words and phrases in the text, becuae it uses self-attention mechanism

to consider the context of each word in the sentence [45]. Therefore, if we represent the function and

function input data as a text, the LLM can learn the relation between the function and the function

input data.

To use LLM to estimate the validity of function input, we use pre-trained language model Code-

Gen [39] which is trained on a large corpus of code snippets. Since the model does not have the infor-

mation of the function input data, we need to fine-tune the model with the function input data. The

model learns the patterns of the valid function inputs observed in system execution, and it can estimate

the validity of the given function input based on the learned patterns.

At training phase, the model is fine-tuned with the prompt that includes the function and the

function input data. Figure 2.7 shows how the LLM prompt is constructed for training. The prompt

begins with ”Input of” and the function information follows. Then, in next line, the function input data

is written. With this prompt, the LLM learns the patterns of the valid function inputs and how the

function input data is related to the function.

At validity estimation phase, only function is given, and the function input part is not given in

prompt, and it measures the validity based on the generation probability of the function input data. If

the generation probability is high for the given function input, the model estimates the function input

as a valid input of the function.

Function Input Representation

Function input has highly structured and value-rich properties, so it is important to make proper repre-

sentation of the function input as a text. To achieve this, I use only values that the function call accessed

in the system execution. If the execution does not make read or write access to vthe value, the value is

not considered as the function input. It makes the function input data more concise and focused on the

values that are actually used by the function call.

In addition, I use the following rules to convert the function input data into a text.

1. Numeric value: We write the numeric value with its type. If the value is integer type, the type is
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written as i16, i32, or i64 depending on the size of the integer. Similarly, if the value is floating

point type, the type is written as f32 or f64 depending on the size of the floating point number.

For example, the integer value 42 is written as i32 42.

2. Pointer and array. To represent the pointer and array, we write the type of the pointer or array,

the name of the pointer or array, the size of the array, and the inner values of the array. We

consider the pointer as an array with size 1. The name of pointer and array is p0, p1, p2, · · · in the

order of appearance in the function input data, and the inner values are written with their index.

For example, if the 3rd value of the 32-bit array and the 5th value of the 32-bit array are accessed,

and their values are 8 and 0, respectively, it is represented as i32 p0 = [2:8, 4:0].

3. Struct. It enumerates each field and value of the struct. For example, if the struct named foo

contains 32-bit integer 8 and pointer p0 pointing to 8-bit integer, it is represented as foo {0:
i32, 1: i8 *p0}.

In this way, the function input data is converted into a text, and it is used as the input of the LLM.

Function Representation

To represent the function as a text, I use the function signature part only because the function signa-

ture contains the information of the function name, return type, and parameter types. Although the

function body contains the detailed information of the function, I use only function signature because

of the maximum length limitation of the LLM input, and the function signature has rich information to

represent the function.

Validity Score

The model estimates the validity based on the generation probability of the function input if the function

is given. Since the probability vanishes as the length of the input increases, we use normalized generation

probability of the function input as the validity score. Specifically, validity score is

P (w1, w2, · · · , wN |decl)1/N ,

where w1, w2, · · · , wN is the function input data, and decl is the sentence up to the function declaration

in the prompt. It is similar to the perplexity of the language model commonly used in language model

evaluation [25, 13]

2.2.3 Function Input Validity Estimation Model: Function Input as a Graph

The function input data is highly structured and value-rich, so it is important to make proper repre-

sentation of the function input data. To achieve this, I propose a graph-based function input validity

estimation model. The model interprets the function input data as a graph, where each node represents

a value and each edge represents a relation between values. The model embeds the function input data

into a vector by using a graph neural network(GNN), and it estimates the validity of the function input

based on the learned patterns of the valid function inputs. Similar works have shown that GNNs are

effective at learning structured data such as molecular property prediction [42, 46].

The detailed model architecture is described in Figure 2.8. First, function input I and function F

are converted into a embedding vector by treating them as a graph and a text, respectively. To achieve
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Figure 2.8: The architecture of function input validity estimation model, with function input as a graph

this, a graph neural network embeds the function input I, and a pretrained language model embeds the

function F . Second, the final layer aggregates these vectors and returns single real number, which is the

validity score. Since the model needs to learn the relation of two inputs from different domain, it uses

two-tower architecture commonly used for handling dual-domain tasks such as sentence similarities [38]

and recommendation system [48].

In the rest this part, I explain the details of graph-based function input validity estimation model,

including function embedding, function input embedding, and final layer.

Function Input Representation

The function input, which includes all values used by given function calls, is usually highly structured and

value-rich. Values can have relations such as pointer-pointee relation and class object-class field relation

(highly structured), and also be filled with number values such as integers and floating point numbers

(value-rich). Both characteristics affect the validity of the function input, so the validity estimation

model interprets the function input as a graph, which can effectively process both highly structured and

value-rich function input. It encodes the concrete number values into the feature vector of each node,

and the value relations into the edge between nodes

Specifically, each node feature vector has dimension 4, where the first element represents the type of

the value, where 0 is primitive value, 1 is pointer, and 2 is struct. The remaining three elements are used

to express the value itself. If the node represents a numeric value such as integer and float, the second

element contains the exact numeric value, and the remaining elements are zero. If node is a pointer, the

third element contains the size of the array the pointer points to, and other elements are zero. If node

is a struct, the fourth element contains the number of fields in the struct, and other elements are zero.

The edge between nodes is used to express the relation between values. There are two types of

relations, which are pointer-pointee relation and struct-field relation. It connects the nodes that have

relations, and I do not add any edge features to the edge for simplicity. The edges are undirected to

consider information flow in both directions.

The function input data itself is extracted by an LLVM IR pass, which tracks the input values of

each function call in the system execution. It records all the values that are used by the function call,

and the relations between the values. The function input data is then converted into a graph, where

each node represents a value and each edge represents a relation between values. The graph is then fed

into the graph neural network to embed the function input data into a vector.

Figure 2.9 shows how the function input is represented as a graph. In this example, the target
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Figure 2.9: Example graph representation of function input

function get size is called with an argument which represents the head node of a singly linked list

containing three nodes. 41, 42, and 43 are the integer values in these nodes, and the final node is the null

pointer. Function input extraction pass records the values and relations between the values as a graph,

which is illustrated in the middle of the figure. The figure at the bottom shows how the node features are

represented. For example, the head node has two struct fields, so it is represented as a node with feature

vector ⟨2, 0, 0, 2⟩. The yellow node connected to the head node corresponds to the integer value 41, so it

is represented with a node with feature vector ⟨0, 41, 0, 0⟩. The blue node connected to the head node

corresponds to the pointer which points to single linked list node (length 1), so it is represented as the

node with feature vector ⟨1, 0, 1, 0⟩. The rightmost blue node represents null pointer, so it is considered

as a pointer node with length 0, so it has feature vector ⟨1, 0, 0, 0⟩.
Finally, average pooling is used to aggregate the node feature vectors into a single function input

embedding vector. The average pooling is used to make the function input embedding vector invariant

to the number of nodes in the graph, and it is commonly used for graph neural networks to aggregate

the node feature vectors.

Function Representation

To embed function, it uses a pre-trained language model. Now it is natural to treat the programs (or

program objects such as functions) as text written in programming language, as number works show

that code generational language models are effective at tasks that require understanding on programs
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including code completion and summarization [5, 39, 43, 12]. Therefore, we can use a pre-trained language

model to effectively embed a function F into a vector.

We use hidden state of the last token of the function F as the function embedding vector, similar to

[47]. The hidden state of the last token is considered as the feature vector of the entire function, and it is

used as the function embedding vector. To not exceed the maximum token length of the language model,

we only use the declaration part of the function for embedding. The declaration part is the first part of

the function, which includes the function name, return type, and input arguments. The declaration part

is usually short and concise, so it is enough to represent the function’s high-level characteristics.

Also, the pre-trained language model is fixed and not fine-tuned during the training of the function

input validity model. This is because the language model has already been trained with a large codebase

and is expected to have enough knowledge to understand the high-level features of the function.

Validity Score

The final layer of the function input validity model aggregates the function embedding vector and the

function input embedding vector, and returns the validity score. I use simple cosine similarity as the

aggregation function, which is commonly used for dual-domain tasks. More complicated aggregation

function such as multi-layer perceptron or attention mechanism can be used, however I use cosine simi-

larity for simplicity and efficiency.

Therefore, the only trainable parameters are only the weights of the graph neural network, since the

pre-trained language model is fixed and final layer is simple cosine similarity. It can be understood that

the function input validity model trains graph embedding network to learn only function-specific patterns,

and it can be used to estimate the validity of the function-level test cases generated by function-level

fuzzing.

2.3 Summary

In this chapter, I proposed a function-level regression fuzzing approach that selects patch-related func-

tions and identifies regression bugs. For patch-related function selection, I proposed regression relevance

that considers both static call distance and dynamic function relevance. To measure dynamic function

relevance, I use function coverage of system test cases. For regression bug identification, I proposed

a function input validity model that estimates the validity of function-level test cases generated by

function-level fuzzing. It uses valid function input data observed in system execution to train the model

that satisfies the input constraint of the target function. In the next chapter, I will evaluate the pro-

posed approach with real-world regression bugs in open source project, and compare the performance

with existing approaches.
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Chapter 3. Evaluation

My main hypothesis is that utilizing system execution data in function-level regression fuzzing can help

select patch-related functions for fuzzing and effectively identify regression bugs. In this experiment, two

research questions were formulated to evaluate the function-level regression fuzzing technique proposed

in this study:

• RQ1: How does the performance of the regression information-based function selection technique

proposed in this study compare to state-of-the-art methods?

• RQ2: Can the function input validity estimation model effectively reduce false positives in function-

level fuzzing? Specifically, when measuring the validity of function inputs across all function-level

crashes, do the true positive function-level crashes rank higher in validity?

To answer RQ1, I compared the proposed regression relevance metric with AFLChurn [49], a state-of-

the-art regression fuzzing technique. To answer RQ2, I evaluated the function input validity estimation

models by ranking the validity of function-level crashes associated with regression bugs. The following

sections describe the evaluation settings and results for each research question.

3.1 Evaluation Settings

3.1.1 Regression Bug Benchmark

I conducted experiments on regression errors from 10 C programs, registered in OSSFuzz, which were used

in the regression error benchmark BugOSS [27] and the regression fuzzing study AFLChurn [49]. Only C

programs were selected because the fuzzing harness generation engine and function input extraction pass

used in this study only support C programs. Table 3.1 lists the target programs and their corresponding

regression errors. The table includes the project name, OSSFuzz ID, version number, and the size of

the program in lines of code (LoC). The version number indicates the commit hash of the version that

introduced the regression error. In this study, the version of bug-inducing-commit was used as the

regression testing target.

3.1.2 Patch-Related Function Selection

I compared the function selection method proposed in this study with AFLChurn [49], a state-of-the-art

regression fuzzing technique designed to efficiently identify regression bugs. AFLChurn modifies the

fuzzing algorithm to prioritize inputs that execute code regions with a history of frequent and recent

changes, based on patch history data. To be specific, AFLChurn defines the score for each line as
log(churn)

age , where churn is total number of changes, and age is the number of days since the last change.

The score is calculated for each line of code, and I use the maximum score of the lines that the function

contains as the AFLChurn score of the function.

I evaluated the effectiveness of each approach by ranking functions associated with regression errors

within the top 10 positions. The regression relevance metric proposed in this study was used to rank the

functions, and the AFLChurn score was used to rank the functions for AFLChurn. The accuracy of each
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Table 3.1: Target regression bugs

Project OSSFuzz Version Size (LoC) Project OSSFuzz Version Size (LoC)

curl 8000 dd7521 110619 libxml2 17737 1fbcf4 202998

file 30222 6de368 15036 ndpi 49057 2edfae 47302

leptonica 25212 8fc490 185268 picotls 13837 7122ea 18928

libgit2 11382 7fafec 159300 readstat 13262 1de4f3 25612

libhtp 17918 3c6555 14697 yara 38952 5cc28d 44531

Table 3.2: Number of collected passing system test cases

Subject
# of System

Test Cases

Line

Coverage

Branch

Coverage

curl-8000 58004 53.90% 46.97%

file-30222 34677 21.18% 18.91%

leptonica-25212 6641 2.69% 4.62%

libgit2-11382 17064 3.38% 2.67%

libhtp-17918 78338 65.21% 60.06%

libxml2-17737 281767 19.13% 21.36%

ndpi-49057 126552 61.09% 57.62%

picotls-13837 2963 4.52% 2.75%

readstat-13262 11660 49.84% 49.91%

yara-38952 16459 19.28% 15.47%

Average 63412.5 30.02% 28.03%

approach was measured by the number of functions associated with regression errors that were ranked

within the top 10 positions.

3.1.3 System Execution Data

Patch-related function selection requires function coverage to measure the regression relevance, and

function input validity estimator requires function inputs to train the model. This data is collected by

running passing system test cases, which were collected by running AFL++ [22] on the pre-regression

versions of the software for 12 hours per run, repeated five times to resolve the randomness and collect

various function input data. The default setting of OSSFuzz including seed and harness was applied for

this process. Table 3.2 shows the number of system test cases for each past regression bug subject.

Function coverage and function input are collected by LLVM pass fully-automatically. Function

input includes all the values in the memory accessed by the function call including function arguments,

global variables, and static variables. The overhead of the function coverage pass is negligible, but the

function input extraction pass makes program take average 15.8 times longer time compared to the

default system execution.

16



3.1.4 Function-Level Fuzzing

Fuzzing harness for each function were automatically generated using the harness generation feature of

the concolic testing engine, CROWN 2.0 [26]. These harnesses declare the symbolic variables required

for function execution and assign values derived from fuzzing inputs. For functions with pointer-type

inputs, I modify CROWN 2.0 to create drivers capable of identifying various memory-related errors.

During driver compilation, AFL++’s LAF-Intel [2] was employed to facilitate the generation of more

diverse test inputs.

Function-level fuzzing was conducted for the top 10 functions with the highest regression relevance

scores for each project, with each harness running for one hour. All experiments were performed on

machines equipped with an AMD Ryzen 9 5950X CPU and 32GB of memory under identical conditions.

To minimize randomness in experimental results, each experiment was repeated five times, and the

average results were reported as the RQ2 result.

3.1.5 Function Input Validity Estimation Model

Function input validity estimation model uses function input data collected from system executions to

estimate the validity of function-level test cases. The training data consists top-10 functions with the

highest regression relevance scores for each project, and 1,000 function inputs for each function. All

experiments were conducted on a single 24GB NVIDIA GeForce RTX-4090 GPU. The detailed settings

of each model are as follows:

Function Input as a Text

350M parameter version of CodeGen-multi, a large-scale code generation language model [39] was used.

Since CodeGen-multi is trained on diverse programming languages including C/C++, it is suitable to

this task as the target subjects are written in C. To reduce the memory required for training, I use LoRA

and NF4 quantization techniques [23, 16] for fine-tuning the LLM.

Function Input as a Graph

The function input validity estimation model has GNN and LLM to encode function input and function,

respectively. GNN is a trainable network, which uses GCN [31] with 3 layers having 1024 hidden

dimension.

The model uses text feature of function, so pre-trained language model Codegen-350M-multi was

used [39]. I only used function declaration part to not exceed maximum token length limit. The hidden

vector of final token was used as function embedding. In this case, the pre-trained LLM is fixed and the

weights are not updated in the training phase.

The final layer produces the validity score from function input vector and function embedding

vector. Cosine similarity was used as final layer. Therefore, GNN is the only part that trained in the

entire archtiecture. This design makes GNN to focus on learning function input patterns from given raw

function inputs, similar to representation learning.
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Table 3.3: Regression relevance ranking of functions with regression bug

Subject # of functions AFLChurn Proposed

curl-8000 1008 22 2

file-30222 414 1 1

leptonica-25212 2883 213 73

libgit2-11382 3541 4 4

libhtp-17918 428 19 1

libxml2-17737 2793 4 1

ndpi-49057 1375 14 1

picotls-13837 481 57 6

readstat-13262 196 144 65

yara-38952 690 6 1

Average 1380.9 48.4 15.5

3.2 Result

3.2.1 RQ1. Patch-Related Function Selection Performance

The experimental results are summarized in Table 3.3. The proposed method successfully identified

target functions within the top 10 rankings for 8 out of 10 programs, achieving an acc@10 of 80%. In

contrast, the function selection approach of AFLChurn yielded an acc@10 of 40%, demonstrating that the

proposed method improved acc@10 performance by 40 percentage points. This improvement highlights

the contribution of the regression relevance metric, which combines static distance and dynamic function

correlation, in detecting functions associated with regression errors.

AFLChurn, relying solely on change history, exhibits limitations in identifying functions related to

regression errors compared to the proposed method, which analyzes functions associated with modified

regions more comprehensively.

For leptonica-25212, the proposed method’s regression relevance metric was less accurate. In this

case, the system test cases collected from fuzzing does not covered the execution flow that executes

both crash-related functions and changed lines, so dynamic function relevances of crash-related functions

remain zero. This limitation reflects a structural drawback of dynamic relevance metric used in regression

relevance. When system test cases are not powerful enough to see various executions that reaches the

changed lines of code, dynamic relevance has low accuracy to find suspicious functions to test.

Summary RQ1: The proposed appraoch improved the accuracy of patch-related function selection

by 40 percentage points compared to AFLChurn. The regression relevance metric, which combines

static distance and dynamic function correlation, effectively identifies buggy functions associated

with regression errors.
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Table 3.4: Validity rankings of regression function-level crashes evaluated by the validity estimation

models

Two models were evaluated for each project, the LLM based model that uses function input as text

(left), and the GNN based model that uses function input as graph (right).

Subject # of Unique Crashes Rank (Text) Rank (Graph)

curl-8000 44.2 11.8 8.4

file-30222 25.4 20.4 2.2

libgit2-11382 23.8 4.2 6.8

libhtp-17918 102.8 6.8 10.6

libxml2-17737 74.6 24.0 8.0

picotls-13837 76.0 6.6 12.4

yara-38952 57.8 15.4 32.4

Average 59.4 11.3 11.5

3.2.2 RQ2. Validity Estimation Model Performance for Identifying Regres-

sion Bugs

I investigated the extent to which a validity estimation model trained on function inputs extracted from

system-level executions can contribute to distinguishing valid and invalid function-level test cases. In

order to evaluate the validity estimation model, I collected function-level crashes from fuzzing the top-10

functions with the highest regression relevance scores for each project. The function-level crashes are

deduplicated based on crash location, and the ranking of each unique crash is estimated by the ranking

of maximum validity among the crashes that have the corresponding crash location. The true positive

crashes indicating regression bugs were identified by comparing the crash location with the location of

the regression error, and ramining crashes were considered as false positives.

Table 3.4 summarizes the number of crashes collected by fuzzing the top-10 functions with the highest

regression relevance and the validity rankings of true positive crashes which represent the regression bug.

Among the 10 target programs, leptonica-25212 and readstat-13262 were excluded as they failed to

identify functions associated with regression errors within the top 10 functions in patch-related function

selection phase. Additionally, ndpi-49057 was excluded from ranking as fuzzing did not yield any true

positive function-level crashes because of the limitation of harness generation technique.

As a result, over remaining 7 projects, an average of 59.4 function-level crashes were discovered

across the seven programs with regression errors. With the validity estimation model, the average

validity ranking of the true positive crashes was 11.3 for the text-based model and 11.5 for the graph-

based model. For the text-based model, the average validity ranking of the true positive crashes was

11.3, and for the graph-based model, it was 11.5. The results indicate that the validity estimation model

effectively reduces false positives in function-level fuzzing, as the true positive crashes were ranked higher

in validity compared to the false positive crashes. This indicates that analyzing only the top 20% of

function-level crashes with high validity is sufficient to identify function-level test cases that manifest

errors at the same points as system-level regression errors.

The difference between the text-based and graph-based models was not significant. The graph-based

model showed slightly better performance in 4 out of 7 projects, but the text-based model showed better
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performance in 3 out of 7 projects. Also, the average ranking difference between the two models was only

0.2, which is negligible. This result indicates that both models are effective in estimating the validity

of function-level test cases. However, since fine-tuning LLM requires much more time and resources

compared to light-weight GNN, the graph-based model is more efficient in practice.

Summary RQ2: The function input validity estimation model enables the identification of re-

gression bugs by ranking the true positive function-level crashes higher in validity. By analyzing

only the top 20% of function-level crashes with high validity, it is possible to effectively identify

function-level test cases that manifest errors at the same points as system-level regression errors.

3.3 Threats to Validity

A threat to internal validity is possible bugs in function input extraction pass. To control this threat, I

tested our implementation extensively to ensure that the function input extraction pass works correctly.

One threat to external validity is the representativeness of the benchmark. I expect that this threat

is limited because the benchmark used in this study is a subset of the benchmark used in the previous

regression bug study, BugOSS [27] and AFLChurn [49]. I tried to include all the subjects that are used

in the previous studies, but some subjects were excluded because they are written in languages other

than C or the harness generation failed.

Another threat to external validity is the generalizability of the proposed validity estimation model.

The model was trained on a small number of function input data of top-10 functions collected from

system-level executions. The model may not generalize well to new function inputs that are not included

in the training data and overfit to the current subjects. I did not explore the generalizability of the model

because of expensive function input extraction cost, but it is an important future work to investigate the

generalizability of the model.
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Chapter 4. Related Works

Function level regression fuzzing is an approach to use function-level fuzzing to achieve regression testing.

This chapter introduces how function-level fuzzing is related to existing works on regression testing, so

that we can understand the difference and novelty of the proposed approach. Also, this chapter covers

how function-level fuzzing is related to existing works on automated unit-level testing. Finally, this

chapter introduces how the function input validity estimation problem is related to works in neural

network testing.

4.1 Regression Testing

Patch modification have long been known to be a main cause of bugs [3, 49], which sparked many

researches on regression testing. Directed fuzzing [8, 9, 11, 17, 28] guides the system fuzzer to the target

program locations by utilizing control flow distance metric, and regression testing can be achieved by

directed fuzzing on the updated program locations by the recent patch.

Some works suggest to use entire commit history to guide the regression testing, not only the most

recent patch [49, 33]. AFLChurn [49] is an appraoch to use greybox fuzzing on regression testing which

prioritizes the inputs that executes the program locations close to frequently and recently updated lines

in the commit history. SyzRisk [33] is a kernel regression fuzzer that uses system fuzzing to find the

regression bugs in the Linux kernel. It introduces code change patterns that allow for identifying risky

code changes, so that the fuzzer can focus on more important code changes. My approach is limited to

the most recent patch, and it can be extended to use the entire commit history to guide the regression

testing by updating the patch-related function selection strategy.

Also, directed symbolic execution [6, 7, 37, 44, 36, 41] leverages symbolic execution to guide the

search to the target program locations updated by the recent patch. However, directed symbolic execution

is known to be slow and expensive, due to the heavy-weight program analysis and constraint solving.

All these works are based on guiding system executions to reach the target program locations

updated by recent patches, but they are not focusing on the function-level fuzzing. In contrast, this

paper focuses on function-level fuzzing to achieve regression testing, which is more efficient than system

fuzzing in terms of small search space and simpler bug constraint.

4.2 Automated Unit-level Testing

Fuzzing with auto-generated harness can be seen as an extension of automated unit testing because it

tests individual functions with automatically generated inputs. Automated unit test generation [18, 40] is

a technique to generate unit tests automatically, and it is widely used in the software testing community.

EvoSuite [18] is a search-based unit test generation tool that uses genetic algorithms to generate unit

tests for Java programs. Randoop [40] is a random test generation tool that generates unit tests by

executing the target program with random inputs. These tools generate unit tests that cover the target

program as much as possible, but they do not consider the validity of the function inputs.

Greybox fuzzing has been widely studied in the software testing community, and several works tried

to generate harness automatically to test the target program [26, 4, 24, 19, 35]. These works focus
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on library fuzzing or API fuzzing, which is similar to function-level fuzzing introduced in this paper.

FUDGE [4] and FuzzGen [24] synthesize fuzz drivers based on existing library consumer projects to test

the target library, and GraphFuzz [19] is an API fuzzer that generates method sequences for library API

functions and synthesizes harnesses for C/C++ programs with graph-based mutations.

The most related work would be AFGen [35], which introduces whole-function fuzzing to perform

library fuzzing. While AFGen refine the fuzzing harness based on the constraints of the discovered

crashes to reduce the false positive crashes. The commercial concolic testing engine CROWN 2.0 [26]

automatically synthesizes fuzzing harness that assigns values to symbolic variables necessary for the

target function execution from fuzzing inputs, targeting C programs.

All these works do not directly consider the validity of the function inputs, but rather focus on

harness generation that generates valid function calls. The proposed approach is different from these

works in that it focuses on the validity of the function inputs to filter out invalid inputs generated by

the fuzzer. Several works mentioned that they can generate false positive crashes due to invalid API

usage [19, 35], and the proposed function input validity estimation model approach can be used to filter

out such invalid inputs.
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Chapter 5. Conclusion

Regression testing can be done with function-level fuzzing, and patch-related function selection and

identifying regression bugs are challenging problems. This study proposes to use system execution

data, which is function coverage for patch-related function selection, and function input for identifying

regression bugs. In patch-related function selection, the proposed regression relevance score shows higher

acc@10 performance by 40%p compared to the state-of-the-art approach, demonstrating that considering

both static call distance and dynamic function relevance is effective in selecting patch-related functions.

In identifying regression bugs, the result shows that regression bugs can be found by analyzing only the

top 20% of function-level crashes with high validity scores. These results highlight that system execution

data effectively improves function-level regression fuzzing.

Future research will focus on improving function-level fuzzing to generate more diverse and valid

function inputs. The default fuzzing algorithm saves the seed when exploring unseen branches, but it

does not consider the validity of the inputs. If there are two seeds that have different validity but the

same coverage, it may be better to keep the seed that has a higher validity score. Function-level fuzzing

can be improved with a new fuzzing algorithm to find more valid function-level test cases.
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