
CIS department
University of Pennsylvania

9/25/2010 1

Information Extraction for
Run-time Formal Analysis

Moonjoo Kim
Advisors: Prof. Kannan and Prof. Lee

CIS Department
University of Pennsylvania

CIS department
University of Pennsylvania

9/25/2010 2

Outline
Motivation: Weaknesses of
Formal Methods and Testing

•WHY?
–Motivation

Run-time Formal Analysis
•WHAT?

–Run-time Formal Analysis

The MaC architecture

•HOW?
–High-level: the Monitoring and
Checking (MaC) Architecture

Java-MaC
–Low-level: a MaC Prototype for
Java programs (Java-MaC)

CIS department
University of Pennsylvania

9/25/2010 3

Motivation

• Weaknesses of formal verification and
testing
– formal verification:

• gap between an abstract model and the
implementation

• lack of scalability
– testing:

• lack of complete guarantee

CIS department
University of Pennsylvania

9/25/2010 4

Outline

• WHY?
– Motivation

• WHAT?
–Run-time Formal

Analysis
• HOW?

– High-level: The Monitoring and Checking
(MaC) Architecture

– Low-level: a MaC Prototype for Java
programs

• Summary

Motivation: Weaknesses of
Formal Methods and Testing

Run-time Formal Analysis

The MaC architecture

Java-MaC

CIS department
University of Pennsylvania

9/25/2010 5

Run-time Formal Analysis
• Motivation:

– Run-time correctness is not guaranteed
• The goal of run-time formal analysis

– to give confidence in the run-time compliance
of an execution of a system w.r.t formal
requirements

• The analysis validates properties on the current
execution of application.

• Run-time formal analysis helps user to detect
errors and prevent system crash.

CIS department
University of Pennsylvania

9/25/2010 6

Relation Between Execution and Requirements

Program Requirements

Property safeCrossing
= InCrossing -> GateDown;

Instrumented Pgm Formal Requirement
Specification

train_pos :20.5
crossing_pos:50
gate_angle:15

InCrossing =
train_pos > crossing_pos;

GateDown =
gate_angle == 0;

CIS department
University of Pennsylvania

9/25/2010 7

Program Execution
• A program execution σ is a

sequence of states s0s1…
– A state s consists of

• an environment ρs:V-> R
• a timestamp ts s.t. tsi < tsi+1

• We may abstract out state
information unnecessary to
detect requirements.

property p =

3 < y && y < 11

CIS department
University of Pennsylvania

9/25/2010 8

Outline

• WHY?
– Motivation

• WHAT?
– Run-time Formal Analysis

• HOW?

– High-level:
• the Monitoring and

Checking (MaC)
Architecture

– Low-level: a MaC Prototype for Java
programs

• Summary

Motivation: Weaknesses of
Formal Methods and Testing

Run-time Formal Analysis

The MaC architecture

Java-MaC

CIS department
University of Pennsylvania

9/25/2010 9

Overview of the MaC Architecture

Program

Static Phase

Run-time Phase

Program Filter

Automatic
Instrumentation

Human

Formal Requirement Spec
Low-level

Specification
High-level

Specification

low-level
behavior Event

Recognizer

Automatic
Translation

high-level
behavior Run-time

Checker

Automatic
Translation

Input

Informal
Requirement

Spec

CIS department
University of Pennsylvania

9/25/2010 10

Design of the MaC Languages

• Must be able to reason about both time instants
and information that holds for a duration of time in
a program execution.

• Need temporal operators combining events and
conditions in order to reason about traces.

InCritSecA

reqLockA

Time

reqLockB

acqLockA relLockA

acqLockB relLockB

InCritSecB

CIS department
University of Pennsylvania

9/25/2010 11

Logical Foundation

• conditions interpreted over 3 values
– true, false and undefined.

• pairs a couple of events to define an interval.
• start and end define the events corresponding to

the instant when conditions change their value.

212121 | | |),[|)(defined:: CCCCCEEC c |C ∧∨¬=

CE
EEEECCeE

 when
| | |)(end |)(start | :: 2121 ∧∨=

),[⋅⋅

CIS department
University of Pennsylvania

9/25/2010 12

The MaC Languages
• Meta Event Definition Language(MEDL)

– Describes the safety requirements of the system, in terms of
conditions that must always be true, and alarms (events) that must
never be raised.

– Target program implementation independent.

• Primitive Event Definition Language (PEDL)
– Defines primitive events/conditions in terms of program

entities
• Provides primitives to refer to values of variables and to certain points

in the execution of the program.
– Depends on target program implementation

CIS department
University of Pennsylvania

9/25/2010 13

Meta Event Definition Language (MEDL)
ReqSpec <spec_name>

/* Import section */
import event <e>;
import condition <c>;

/*Auxiliary variable */
var int <aux_v>;

/*Event and condition */
event <e> = ...;
condition <c>= ...;

/*Property and violation */
property <c> = ...;
alarm <e> = ...;

/*Auxiliary variable update*/
<e> -> { <aux_v'> := ... ; }

End

• Expresses requirements using the
events and conditions

• Expresses the subset of safety
languages.

• Describes the safety requirements of
the system
– property safeRRC = IC -> GD;

– alarm violation = start (!safeRRC);

• Auxiliary variables may be used to
store history.

– endIC-> { num_train_pass’ =
num_train_pass + 1; }

CIS department
University of Pennsylvania

9/25/2010 14

Outline

• WHY?
– Motivation

• WHAT?
– Run-time Formal Analysis

• HOW?
– High-level: The Monitoring and Checking

(MaC) Architecture

–Low-level: a MaC
Prototype for Java
programs

• Summary

Motivation: Weaknesses of
Formal Methods and Testing

Run-time Formal Analysis

The MaC architecture

Java-MaC

CIS department
University of Pennsylvania

9/25/2010 15

Java-MaC
• Overview of Java-MaC
• Monitoring Java programs

– Monitoring objects
– PEDL for Java

• Static components
– Instrumentor, PEDL/MEDL compilers

• Run-time components
– Filter, event recognizer, run-time checker

• Overhead reduction
• Case study

CIS department
University of Pennsylvania

9/25/2010 16

The MaC Prototype for Java Programs

CIS department
University of Pennsylvania

9/25/2010 17

Monitoring Objects
• Specifying monitored objects

– There can be several instances (objects) of the same class.
• Monitoring objects

– A monitored object can be updated by several references.
• To test references, we need a globally accessible table

(address table) containing pairs of addresses of monitored
objects and monitored object names
– Assumption: no primary reference to a monitored object is changed

Address Var Name

8200 a.b2

Address Table

at 8200

CIS department
University of Pennsylvania

9/25/2010 18

PEDL for Java
• Provides primitives to refer to

– primitive variables
– beginnings/endings of methods

• Primitive conditions are constructed
from
– boolean-valued expressions over

the monitored variables
• ex> condition IC =

(position == 100);
• Primitive events are constructed from

– update(x)
– startM(f)/endM(f)

• ex>event raiseGate=
startM(Gate.gu());

MonScr <spec_name>
/* Export section */
export event <e>;
export condition <c>;

/* Monitored entities */
monobj <var>;
monmeth <meth>;

/* Event and condition*/
event <e> = ...;
condition <c>= ...;

End

CIS department
University of Pennsylvania

9/25/2010 19

PEDL for Java (cont.)
• Events can have two attributes - time and value
• time(e) gives the time of the last occurrence of event e

– used for expressing temporal properties
• value(e,i) gives the i th value in the tuple of values of e

– value of update(var) : a tuple containing a current value
of var

– value of startM(f) : a tuple containing parameters of the
method f

– value of endM(f) : a tuple containing parameters and a
return value of the method f

CIS department
University of Pennsylvania

9/25/2010 20

Instrumentation
• Java-MaC instruments Java executable code
• Java-MaC instrumentor detects instructions

– variable updates
• putstatic/putfield for field variable updates
• <T>store and iinc for local variable updates

– execution points
• instruction located at the beginning of method

definition
• return of method definition

• At the each detected instruction, Java-MaC instrumentor
inserts a probe

CIS department
University of Pennsylvania

9/25/2010 21

Sample Probe
• Monitoring a field variable Var.val

; >> METHOD 8 <<
.method public run()V

.limit stack 4

.limit locals 2

...
getfield DigitalVar.v I
putfield Var.val I
...

.end Method

; >> METHOD 8 <<
.method public run()V

.limit stack 7

.limit locals 2

...
getfield DigitalVar.v I
getstatic mac.filter.Filter.lock Ljava.lang.Object;
monitorenter
dup2
ldc “val”
invokestatic mac.filter.SendMethods.sendObjMethod(

Ljava/lang/Object;Ijava/lang/String;)V
putfield Var.val I
getstatic mac.filter.Filter.lock Ljava.lang.Object;
monitorexit
...

.end Method

CIS department
University of Pennsylvania

9/25/2010 22

PEDL/MEDL Compilers
• Compiles PEDL/MEDL scripts into pedl.out/medl.out

respectively
• Ex> condition c1 = A.x > 3;

event e1 = start(c1 && A.y < 10);

CIS department
University of Pennsylvania

9/25/2010 23

Filter
• A filter consists of

– a communication channel to the event recognizer
– probes inserted into the target system
– a filter thread which flushes the content of

communication buffers to the event recognizer
• Filter uses global lock for consistent snapshot ordering in

spite of arbitrary preemption

CIS department
University of Pennsylvania

9/25/2010 24

Event Recognizer/Run-time Checker
• Event recognizer

– evaluates pedl.out whenever it receives snapshots
from the filter.

– If an event or a condition changing its value is detected,
the event recognizer sends the event or the condition to
the run-time checker

• Run-time checker
– evaluates medl.out whenever it receives events and

conditions from the event recognizer.
– detects a violation defined as alarm or property and

raises a signal.

CIS department
University of Pennsylvania

9/25/2010 25

Reduce Overheads
• Less snapshot, less overhead
• Not every snapshot affects requirement properties

– Evaluates simple expressions to check whether
current snapshot may affect requirements

•Ex>
condition c1 =

(3 < x && x < 5) || y > 10;
condition c2 = w > z;
property req = c1 -> c2;

CIS department
University of Pennsylvania

9/25/2010 26

Probe Overhead

• Measure overhead over
various frequency of
updating a monitored
integer variable by the
target program

• Value abstraction with
1,50,150,200 simple
expressions to check

150

100

50

1

No Abstract

CIS department
University of Pennsylvania

9/25/2010 27

Overall Overhead
• Evaluating expressions of

4 different lengths (1, 50,
100, 150)

• Value abstraction
significantly reduces the
overhead

• The overhead is mainly
due to the object-oriented
implementation of
pedl.out

150

100

50

1
Value

Abstracts

CIS department
University of Pennsylvania

9/25/2010 28

Case Study: Routing Protocol Validation

• Ad-hoc On Demand Vector
(AODV) routing protocol used
in packet radio networks
consisting of mobile nodes

• Detect violations of properties
such as loop invariant in
AODV routing protocol
implemented using NS2
simulator [Bhargavan,etc]

CIS department
University of Pennsylvania

9/25/2010 29

Case Study: Routing Protocol Validation (cont.)

• NS2 simulator is used instead of target Java
program

• Execution trace containing packets delivered
among nodes is analyzed repeatedly with different
property descriptions without running the
simulation again

CIS department
University of Pennsylvania

9/25/2010 30

Contributions
• Main contribution

– Confirming the idea that run-time formal analysis
can assure a user of the correctness of program
execution in a practical manner through the
implementation of the MaC architecture.

• Technical contributions
– Rigorous analysis
– Flexibility
– Automation
– Easy of use

CIS department
University of Pennsylvania

9/25/2010 31

Future Works
• Loosen the restriction on monitoring objects

– Combined approach of instrumenting classfiles
and modified Java virtual machine

• Apply value abstraction in more general way to
gain the benefit of abstraction broadly

• Real-time extension of Java-MaC
• Application areas

