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ABSTRACT
INFORMATION EXTRACTION FOR
RUN-TIME FORMAL ANALYSIS
Moonjoo Kim
Supervisor: Sampath Kannan and Insup Lee

The rapid increase in the significance of software systems has made software assur-
ance a critical requirement in the information age. Formal verification of system design
and testing system implementation with a variety of inputs have been used for this pur-
pose. However, verifying a design cannot guarantee the correctness of an implementation.
Although testing is performed on an implementation, it does not give formal guarantees
because it is impossible to test exhaustively. We propose a complementary solution to
the weaknesses of formal verification and testing by monitoring execution of a program
and checking its correctness against formally specified properties at run-time. We call
this methodology run-time formal analysis. Run-time formal analysis aims to assure the
correctness of the current execution at run-time. Run-time formal analysis is performed
based on a formal specification of system requirements.

We investigate general issues for run-time formal analysis. We show that the set of
properties that run-time formal analysis can detect is a subset of safety properties. Fur-
thermore, we show that the checking of a property written in an expressive specification
language such as CCS is NP-complete due to nondeterminism. Finally, we discuss the
abstraction of the program execution for reducing the amount of data being monitored
and analyzed.

We have designed a Monitoring and Checking (MaC) architecture for run-time formal
analysis. A salient aspect of the MaC architecture is the use of a formal requirement spec-
ification to check run-time execution of the target program. For specifying formal require-
ments, we have designed the Primitive Event Definition Language (PEDL) and the Meta
Event Definition Language (MEDL). Another important aspect of the MaC architecture
is its flexibility. The architecture clearly separates monitoring implementation-dependent
low-level behavior and checking high-level behavior with regard to formal requirement
specifications. This modularity allows the architecture to be extended for broad target
application areas. In addition, the architecture instruments the target program and ana-
lyzes the execution of the target program automatically based on given formal requirement
specifications. We have implemented a MaC prototype for Java programs called Java-MaC
and showed the effectiveness of the MaC architecture through several case studies.

The main thesis of this dissertation is that run-time formal analysis can assure users
of the correctness of software systems in a practical manner that is flexible, automatic,
and easy to use. This dissertation describes the issues and design solution of the MaC
architecture to support this thesis.
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Chapter 1

Introduction

This dissertation presents a methodology and an architecture for assuring the correct
execution of a program at run-time. We propose a methodology of monitoring the execution
of a program and checking its correctness against formally specified requirements at run-
time, called run-time formal analysis. In this dissertation, we discuss the fundamentals of
the methodology. Then, we describe an architecture for the methodology, called Monitoring
and Checking (MaC) architecture. We show the effectiveness of the MaC architecture by
implementing a MaC prototype for Java programs, called Java-MaC. This chapter describes
the difficulties faced by the software engineering field with regard to reliability and the
motivation for this work. This chapter concludes with contributions of this research to the
field of software engineering in terms of increasing reliability.

1.1 Assurance on the Correctness of Software Systems

When compared to software engineering’s significance and broad application areas, the
field’s ability to provide secure and reliable products seems greatly lacking. This deficiency
has become a great danger in today’s world. Specifically, safety critical software systems
such as airplane controllers or nuclear reactor controllers can devastate human lives and
properties when they fail to behave correctly. We have seen many disasters due to the
incorrect execution of software systems [Lev95], including the tragic accident of the Ariane
5 flight 501 [Ari96]. The report “Information Technology Research: Investing in Our
Future ” from PITAC (President’s Information Technology Advisory Committee) [Pre99]
points out this deficiency of the field clearly.

Priorities for Research

Software - The demand for software has grown far faster than our ability to pro-
duce it. Furthermore, the Nation needs software that is far more usable, reliable,
and powerful than what is being produced today. We have become dangerously
dependent on large software systems whose behavior is not well understood and
which often fail in unpredicted ways ... it has become clear that the processes
of developing, testing, and maintaining software must change. We need scientif-
ically sound approaches to software development that will enable meaningful and



practical testing for consistency of specifications and implementations...!

As the above quotation of the PITAC report mentions, we have a critical need to
be confident of the correct execution of software systems. There has long been active
research in the field of formal verification and testing for this purpose. For the past twenty
years, formal verification has enlarged its domain of application from a humble beginning
with just toy examples. Testing has been a standard practice to ensure the correctness of
software. Formal verification and testing, however, both have limitations.

1.2 Necessity of Run-time Formal Analysis

Formal verification and testing are performed to ensure the correctness of a program before
the program is put into the real environment. They have, however, their own limitations
in terms of effectiveness. The report from PITAC [Pre99] indicates these limitations.

Finding: Technologies to build reliable and secure software are inadequate...
Having meaningful and standardized behavioral specifications would make it feasible
to determine the properties of a software system and enable more thorough and
less costly testing. Unfortunately such specifications are rarely used. Even less
frequently is there a correspondence between a design specification and the software
itself. Often software behavior and flaws are observable only when the program
is run, and even then may be invisible except under certain unusual conditions.
Programs written in such circumstances frustrate attempts to create robust systems
and are inherently fragile ...

Formal verification requires a design specification of software in a formal language.
Design specifications, however, do not exist in most cases and there is a huge gap between
a design specification and the software itself [Kah99]. Furthermore, because of the difficulty
of using formalisms and the limitation on the size of the model, formal verification is still
not a feasible solution in general. Testing has been the usual choice for ensuring the
correctness of software. Testing, however, cannot guarantee the correctness of programs
completely because exhaustive testing is infeasible [Mye76, Mye79]. Therefore, we cannot
rely solely on these two methods for ensuring the correctness of software execution.

We propose a complementary solution to the weaknesses of formal verification and test-
ing by monitoring the execution of a program and checking its correctness against formally
specified requirements at run-time. We call this methodology run-time formal analysis.
Run-time formal analysis convinces users of the run-time compliance of an execution of
a system with its formal requirement. Run-time formal analysis takes a program and a
formal requirement specification for the program as inputs. When a program is running,
the execution of the program is checked against the formal requirement specification at
run-time. The purpose of run-time formal analysis is to cover the area not covered by for-
mal verification and testing. The aim of formal verification and testing is to check whether
a program is correct. In other words, formal verification and testing attempt to ensure
that all possible executions of software yield correct results. Compared to this, run-time

!Quoted from the page 3 of chapter “1. Information Technology: Transforming our Society” of [Pre99]
2Quoted from the page 24 of chapter “3. Technical Research Priorities” of [Pre99]



formal analysis assures users of the current execution of a program. While a program is

running under the supervision of a monitor and a checker, we can provide confidence that

the program has run correctly so far. The MaC architecture has been developed as an

architecture for run-time formal analysis to give assurance to the user on the correctness

of software execution. The MaC architecture especially targets safety critical applications.
People may raise the following four objections about run-time formal analysis.

o Run-time formal analysis is not very useful in a sense that simply detecting an error
does not help; if the system has crashed, just saying, “system crashed” is not helpful.

This is not true because run-time formal analysis helps users to detect and correct
errors. There are cases when users cannot detect errors because of the errors’ subtlety.
For example, the pentium floating point unit bug was so subtle that it was not
discovered for a long time. Such errors may not cause disastrous failure to the
system immediately. Run-time formal analysis can find such subtle errors and help
users to take a recovery action before critical failure happens to the system.

e Run-time formal analysis requires replacement of run-time execution environments
such as VM/OS/HW with ones specialized for extracting information from the exe-
cution of the target program.

This is not necessarily true. Modification of run-time environments depends on the
architecture employed for run-time formal analysis. For example, the MaC architec-
ture does not require any change in run-time execution environments.

o Run-time formal analysis can cause undesirable side effects to a target program; run-
time formal analysis can slow down the target program and aolter the behavior of the
program.

This is a universal problem to all run-time analysis methods unless specialized hard-
ware is utilized. Delay in target program execution due to probes might alternate
behavior of concurrent programs. This is the biggest concern in practice. Careful en-
gineering of an architecture for the analysis may reduce side effects to an acceptable
degree and minimize the possibility of altering the behavior of a target program.

e Run-time formal analysis cannot guarantee the correctness of future execution of a
target program.

Run-time formal analysis is not a panacea for all software reliability problems. We
believe, however, that run-time formal analysis can increase the reliability of the
program execution as a complementary solution to formal verifications and testing.

1.3 Scope of the Dissertation

This dissertation addresses the following three areas of the MaC architecture as depicted
in Figure 1.1.

¢ Formal requirement specification
This dissertation discusses what properties run-time formal analysis can validate.



Formal Requirement Specification

Low-level

High-level

Specification Specification

behavior
Low-level High-level

Target behavior > | behavior

Program Monitor Checker

Information Extraction Monitor/Checker

Figure 1.1: Three areas of the MaC architecture

Furthermore, we define two specification languages - a high-level specification lan-
guage and a low-level specification language - to describe formal requirement specifi-
cations. We specify formal requirement specifications in these two languages based on
instantaneous events and continuous conditions. A formal requirement specification
consists of a high-level specification which has requirement properties and a low-level
specification which contains the definitions of primitive events and conditions used in
the high-level specification in terms of the low-level behavior of the target program.

¢ Monitor and checker
The MaC architecture monitors and checks the execution of the target program
through a low-level behavior monitor and a high-level behavior checker. The monitor
monitors low-level behavior of the instrumented target program such as the updates
of the program variables. The monitor maps this low-level behavior to primitive
events and conditions which constitute the high-level behavior of the target program
according to their definitions in a low-level specification. These primitive events and
conditions are fed into the checker which checks whether the execution violates a
high-level specification.

s Information extraction
The target program is instrumented to extract and report its low-level behavior to
the monitor. A filter denotes the set of probes inserted in the target program through
instrumentation. The filter extracts snapshots of the target program and sends these
snapshots to the monitor. It abstracts out irrelevant snapshots to decrease the volume
of snapshots to be delivered to the monitor. As a consequence, this abstraction
decreases the volume of snapshots to be analyzed by the monitor.

The following issues are not addressed in this dissertation.



e Hardware or Hybrid monitor. This dissertation considers run-time formal analysis
performed by software only but can be extended to use hybrid monitors in the future.

o Parallel/distributed programs. This research applies to multi-threaded programs but
does not handle issues specific to parallel programs, such as process migration and
clock synchronization.

e Hard real-time system. This dissertation does not examine the issue of the timing
perturbation to hard real-time systems.

1.4 Contributions

The main thesis of this dissertation is

Run-time formal analysis can assure users of the correctness of software systems
in a practical manner which is flexible, automatic and easy to use.

The contributions of this research are as follows:

¢ Rigorous analysis

The salient feature of the MaC architecture is the use of a formal requirement spec-
ification to check the execution of the target program at run-time. For specifying
requirements unambiguously, we have defined two specification languages. In addi-
tion, the tools of the MaC architecture follow the formal requirement specifications
without requiring human interaction. This leads to accurate analysis because auto-
matic instrumentation, monitoring, and checking eliminate slippery errors caused by
human intervention in these procedures.

¢ Flexibility

The MaC architecture is a modular architecture. The MaC architecture separates
monitoring program-dependent, low-level behavior from checking high-level behav-
ior in both its specification languages and its run-time analysis components. This
modularity is illustrated clearly in Figure 1.1. First, the architecture provides two
specification languages - a high-level specification language called Meta Event Def-
inition Language (MEDL) and a low-level specification language called Primitive
Event Definition Language (PEDL). This separation enables reuse of the high-level
specification even when the low-level specification is changed due to the change of
the target program. Second, the architecture separates analysis components such as
a filter, a monitor, and a checker. This separation and the well-defined interfaces
(see Appendix A and B) among the components make the MaC architecture an open
architecture which can incorporate third-party tools (for example, see Section 8.3).

¢ Automation
The analysis procedure of the MaC architecture is fully automatic. First, the target
program is instrumented automatically according to a low-level specification. Second,
the architecture monitors and checks the execution of a target program automatically
following formal requirement specifications.



s Ease of use
The MaC architecture is easy to set up.

The MaC architecture does not require a specialized execution environment such as
specialized VM/OS/HW. In addition, the analysis procedure including instrumenta-
tion, monitoring, and checking are performed automatically without requiring human
directions. Furthermore, the executable code of a target program is instrumented in
the MaC architecture. Users do not need complex source code recompilation which
is mandatory if source code is instrumented.

s Generality

Instrumentation, monitoring, and checking by the MaC architecture are application-
independent and comprehensive. In addition, the architecture instruments executable
code, not source code which is available only to the developers. Furthermore, the
openness of the architecture makes the architecture extendible for various application
areas by incorporating different tools from outside. Finally, with the help of overhead
reduction techniques, Java-MaC imposes only modest run-time overhead to the target
program. These features make the MaC architecture apply not only to specific toy
examples, but to broad application areas. This generality has been shown by case
studies on different application areas including network protocol and hybrid system
simulation (see Chapter 8).

1.5 Outline of the Thesis

Chapter 2 describes the analysis methods for the correctness of software. First, we classify
related work according to the representation of target systems: abstract model vs. imple-
mentation. In this chapter, we evaluate related work, which helps the reader to understand
the design rationale of the MaC architecture.

Chapter 3 identifies fundamental issues in run-time formal analysis. Issues in this
chapter are independent of specific target system architecture. These issues include moni-
torable properties, property specification language, and abstraction of the target program
execution.

Chapter 4 gives an overview of the MaC architecture. This chapter includes the struc-
ture of the architecture as well as the language definitions of PEDL and MEDL. This chap-
ter is from [KVBA199, LKK 99, KVBAT98] which are coauthored by H. Ben-Abdallah,
S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan.

Chapter 5 focuses on how to monitor Java programs. This chapter discusses issues
on monitoring objects. It describes a low-level specification language for Java programs,
called PEDL for Java.

Chapter 6 focuses on the Java-MaC prototype which is built on the mechanism de-
scribed in Chapter 5. Details of run-time components of Java-MaC and instrumentation
process are described.

Chapter 7 analyzes the run-time overhead caused by Java-MaC and provides several
overhead reduction techniques.

Chapter 8 demonstrates the effectiveness of Java-MaC by illustrating case studies. The
case studies include an emulator of mobile physical agents, a network protocol, and hybrid



system simulation.
Finally, Chapter 9 gives the summary of what has been achieved in this dissertation
and outlines the work yet to be done as future work.



Chapter 2

Background and Related Work

In this chapter, we review analysis methods for checking the correctness of programs. First,
we classify the analysis methods into two groups: methods targeting a model of a program
(see Section 2.1) and methods targeting an implementation of a program (see Section 2.2).
We will see the strong points and the weak points for each of these two groups of methods
in the following subsections. Section 2.1 describes analysis methods applied to the models
of programs. The purpose of Section 2.1 is to give readers a brief background on analysis
methods for models, which helps one to understand the necessity for analysis methods
on implementation. Section 2.2 describes analysis methods targeting implementations. In
Section 2.2, we describe the goals of these methods and the approaches these methods have
taken.

2.1 Analysis of Model

The program development process begins with the model of a program and desired prop-
erties for the program. Formal methods are mathematical techniques that describe the
models of programs and desired properties. In addition, formal methods can be used to
verify the correctness of a program in terms of given properties. A method is formal if it
has a sound mathematical basis, typically given by a formal specification language.

A strong point of formal methods is that formal methods reveal the ambiguity, incom-
pleteness, and inconsistency in the model of a program. When formal methods are used
in the early program development process, they can reveal design flaws that might other-
wise be discovered only during costly testing and debugging phases. During the past two
decades, tools dedicated to formal methods have been introduced. There have been an in-
creasing number of successful industry case studies using formal methods [CW96, WTKO00].

A weak point of this approach, however, is that the correctness of a model does not
necessarily mean that the implementation is correct. This is because the implementation
has more detail than the model and is susceptible to errors not present in the model. In
addition, there are negative aspects of formal methods including hard to learn/use nota-
tions [Bow95, DS97], high computing power requirements, and primitive tools inadequate
for practical usage [GKND97, DS97].

Two common formal paradigms are theorem proving and model checking.



2.1.1 Theorem Proving

The goal of theorem proving is to prove whether a model satisfies given properties. The
approach of theorem proving is to prove M F p by mathematical deduction where M is a
model of a program given as characteristic statements on the program and p is a property.

A strong point of theorem proving over model checking is that theorem proving provides
better scalability to handle infinite state models by induction. Another strong point is
that theorem proving uses a more expressive language which includes quantifiers, leading
to succinct specification of parameterized systems [Pnu99].

A weak point of theorem proving is that theorem proving is undecidable. Due to
this limitation, completely automated theorem provers are infeasible. Therefore, theo-
rem proving requires user ingenuity and interaction. Another weak point is that theorem
provers suffer from the inability to find counter examples. For a list of theorem provers,
see [FMP95].

2.1.2 Model Checking

The goal of model checking is similar to that of theorem proving - to prove whether a model
satisfies given properties. However, the approach of model checking is different from that of
theorem proving. A model checker provides a design specification language for describing
a model of a system, which is similar to a programming language but simplified. Also, a
model checker provides a property specification language for describing desired properties.
A property specification language may be the same as the design specification language. A
model checker generates and explores all possible/reachable states of the model and checks
whether all the states satisfy the given properties.

A strong point of model checking compared to theorem proving is that describing a
model in a design specification language is more familiar to a programmer than describing
a model as characteristic statements. Another advantage is that model checking provides
automatic verification. In other words, given a model and properties written in formal
specification language(s), the verification process does not require user interaction. Fur-
thermore, model checking can give counter examples which are useful for debugging.

A weak point of model checking is that tractable reachability testing algorithins exist for
only very simple systems [CK96, CGL94, Kur94, AH98]. In many cases, even those simple
systems require large amount of computational resources. (there has been active research
on state reduction techniques [Kur87], such as symbolic model checking [BCD 190, McM93],
binary decision diagram reduction [Bry86], and partial order reduction [Pel94]). To avoid
the state explosion problem [YY91], design specification languages put restrictions on data
types and the expressive power of the languages [ACHH93, AH96, AH98]. Consequently,
approximation of a model is required and modeling becomes difficult [AEK 99, AEK100].
For a list of model checkers, see [FMP95].

2.2 Analysis of Implementation
Methods targeting the implementation of a program check whether executions of the pro-

gram satisfy given properties. These methods are applied in later stages of the program
development process because they require the implementation of the program.



A strong point of these methods is that they can check actual executions of a pro-
gram. Although a model is proven correct, however, it does not necessarily mean that
the implementation is correct; the implementation has more detail than the model and is
susceptible to errors not present in the model. For example, a model may implicitly as-
sume a natural number can be arbitrarily large. However, an implementation may restrict
a natural number to be less than 23? because the implementation chooses to represent a
natural number in 32 bits. Then, overflow error which may happen in the implementation
cannot be detected in the model. Furthermore, there is no guarantee that implementation
is strictly following a model because there can be errors caused by human programmers
who implement the program after understanding the model.

These methods, however, do not provide mathematical guarantees on the correctness
of the target program as the analysis methods targeting the model do. Another negative
when compared to the analysis methods targeting the model of a program is that these
methods are applied in the late stages of program development process, which leads to
costly debugging and re-implementing the program.

These methods support different levels of monitoring according to application pur-
pose. A method can monitor process-level behavior (for example, communication between
processes), statement-level behavior (for example, method invocations or assignments),
or instruction-level behavior (for example, step-by-step instruction trace) [TFC90]. The
finest-level target activity of statement-level monitoring is the execution of a statement
in a source code. That of instruction-level monitoring is the execution of an instruc-
tion. A statement consists of several instructions. For example, a Java statement a.b.x
= 10 consists of the following three Java bytecode instructions getfield A/a;getfield
B/b;putfield I/x 10. In this example, instruction-level monitoring targets single in-
struction such as putfield I/x 10. Compared to instruction-level monitoring, statement-
level monitoring needs to recognize all three consecutive instructions forming the statement.
We classify analysis methods on implementation into the following three groups according
to the level of monitoring.

e process-level monitoring
e statement-level monitoring
e instruction-level monitoring

The level of monitoring affects the amount of overhead and the instrumentation stages in
general. Higher-level monitoring causes less overhead because higher-level behavior gener-
ates less frequent events than lower-level behavior. In addition, location of instrumenta-
tion is decided by the level of monitoring in general. For example, analysis methods for
process-level behavior instrument the communication interface between processes. Analy-
sis methods for instruction-level activity instrument the run-time execution environment
on which each instruction of the target program is executed. We will see the details of
these three levels of monitoring in the following subsections.

2.2.1 Features to be Examined

This section describes features to be examined in the following sections on analysis methods
for implementation.
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o Low-level specification language: a language used to define primitive events used in
a requirements specification in terms of low-level program entities such as variables
and methods.

e High-level specification language: a specification language dedicated to describing
requirement specifications in terms of high-level events.

e Code size increase: the amount the size of the target program increases due to
inserted probes which reports snapshots of the target program to the monitor.

e Querhead to the target system: amount by which the execution speed of the target
program is slowed down due to monitoring activity.

o Modification of execution environment: the necessity of specialized run-time execu-
tion environment such as OS/VM/communication channel.

e Frequency of events: the frequency of events reported to a monitor.

o Complexity of instrumentation: the complexity regarding where to insert what probes
into the target program.

2.2.2 Process-level Monitoring

The goal of this group of methods is to monitor externally observable behavior of processes
such as input/output or communication between processes.

A strong point of these methods is that they decrease the difficulty of instrumenting
target program by instrumenting only an interface of a process which is well defined and
observable outside the process. Another benefit is its low overhead cost. The external
behavior of a process generates less frequent events compared to the internal behavior.
This leads to less overhead in the instrumented target program.

A drawback to these methods is that they check only external behavior of processes.
They cannot check desirable properties concerning internal behavior of a process. For
example, suppose a process has a stack implementing push() and pop(). A non-emptiness
property stating that the number of pop()’s should be less than the number of push()’s
cannot be checked in process-level monitoring. In other words, process-level monitoring
cannot detect a violation in internal behavior which does not effect external behavior or
at least not until the violation corrupts external behavior eventually. Even when an error
in external behavior is detected, the source of the error inside of a process is hard to find.
Some systems performing process-level monitoring are described below.

¢ Model-based testing aims to detect violations by using a formal model of the pro-
gram. Testing oracle takes input/output execution of a program and check whether
the execution is correct with regard to the formal model of the program. The dif-
ference between these works is mainly the formalism they use to describe a model.
Supervisor [SS98] compares the output of a target program and expected output
generated by interpreting the model of the program written in SDL [SDL89]. Dil-
lon [DY94] develops an algorithm to generate a testing oracle from a Graphical
Interval Logic specification [DKM™*94]. [DR96] has a tableau algorithm to generate
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a testing oracle from a temporal logic specification [Pnu77]. Parissis [PO96] presents
a similar tableau algorithmic technique using LUSTRE [HCRP91]. Clarke [CL97]
conducts a case study on automatic testing of Philips Audio Control Protocol using
a specification written in ACSR [BGLG93].

e The goal of MOTEL (MOnitoring and TEsting tooL) [Log00] is to detect violations
of communication behavior between distributed processes. A target program is con-
tinuously monitored and checked against properties written in LTL [MP92]. MOTEL
assumes that a communication medium among processes is a CORBA event chan-
nel. MOTEL modifies CORBA middleware in order to intercept messages among
components.

Strengths of MOTEL include its independence of implementation and scalability.
These properties stem from the fact that MOTEL observes only the interfaces of
objects only, not the details of objects. A weakness is that MOTEL cannot handle
events concerning the internal behavior of objects.

e JEM (Java Event Monitor) [LM99] is an event-mediator type of system like the
CORBA event channel. In other words, JEM provides its own communication chan-
nel similar to the CORBA event channel. JEM receives predefined primitive events
from event suppliers and detects composite events written in a Java Event Speci-
fication Language [LMK98| based on primitive events. A benefit of using its own
event channel rather than a standard event channel is freedom in defining primitive
events. Using its own event channel, however, does not scale well compared to using
a standard event channel such as the CORBA event channel. A large distributed
system may consist of many components from different vendors. Without using a
standard event channel, inter-operation between the components of different vendors
is difficult to achieve.

2.2.3 Statement-level Monitoring

The goal of this group of methods is to monitor internal behavior of processes at a
statement-level. For example, a non-emptiness property that the number of pop()’s should
be less than the number of push()’s in a stack can be monitored at this level of monitoring.

A strong point of these methods is that these methods can check various desirable prop-
erties not limited to properties on external behavior. A weak point of these methods is that
the instrumentation of a target program for monitoring various activities is a complicated
task. Deciding where to insert probes into a program in general is a nontrivial task [Sno88|
because it requires knowledge of program structure. Furthermore, instrumentation may
modify the semantics of the target program if thorough care is not taken. For example,
suppose a return statement is inserted into a method accidently. The statements of the
method after the return would not be executed. This is a serious problem especially for
manual instrumentation. Second, source code is usually only available to the developers of
a program. In many cases, though not all cases, these methods require the source code of
a program in order to recognize and instrument target statements. The MaC architecture
belongs to this category. We will make brief comparison between these works and the MaC
architecture.
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e The goal of ALAMO (A Lightweight Architecture for MOnitoring) [Jef93,
JZTB98, TJ98] is to reduce the difficulties in writing monitoring tools by construct-
ing a platform on which monitor construction is relatively easy. Another goal is
to access and modify target program states including local variables and the se-
quence of instructions of the target program. The configuration language controls
which activities are to be recognized as events. The events are defined by target
language statements. For example, procedure calls, memory references, and assign-
ments statements can be defined as events. The configuration specifies events as pairs
consisting of an event code (type of statement) and an event value which depends on
the corresponding event code. ALAMO instruments the C source code following the
configuration automatically.

The ALAMO monitor runs in the same address space with the target program. When
an event is reported to the monitor, execution control is given to the monitor and
the target program is suspended. During the execution of the monitor, the monitor
can directly access and modify the target program if necessary. This activity is
performed by scanning a run-time image of target program as an array of bytes
because the target program and the monitor exist in the same address space. After
the monitor finishes its execution, the control is given back to the suspended target
program and the monitor is suspended. This execution model prevents the monitor
from reading inconsistent states of the target program. The monitor is written in C
by a user.

A strong point of ALAMO is that its automatic instrumentation of C programs
prevents the slippery errors possible in manual instrumentation. Another strength is
its accessibility and control of all target program states.

The first drawback is the 2-3 orders of magnitude overhead in execution speed it adds.
Accessibility to the entire set of states in the target program causes this high overhead
because the ALAMO monitor and the target program use same address space which
requires memory protection and explicit context switching. The MaC architecture
does not aim to achieve such thorough inspection power. The MaC architecture
monitors events generated from three types of statements: wvariable assignments,
method invocation, and method returns. Thus, the MaC architecture does not cause
such high overhead.

The second weakness is that the ALAMO architecture is platform and target pro-
gramming language specific because it uses its own platform specific program loader
to load a target program and a monitor in the same address space.

The third negative is that the monitor should be written by a user in C; erroneous
implementation of the monitor can cause the crash of both the target program and
the monitor. A monitor and a checker of the MaC architecture are generated auto-
matically from the requirement specifications.

The final weak point is that ALAMO does not monitor handle aliasing because it
monitors only textually recognizable entities. For example, suppose a configuration
specifies the assignment statement of int x in the record r1l to be monitored. Af-
ter r2 = ril;, an assignment r2.x = 1; changes the x. However, ALAMO cannot
recognize that this statement updates the x being monitored. Java-MaC identifies
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an object with its address on the heap memory, not by its syntactic name (see Sec-
tion 5.1).

The Java Run-time Timing constraint Monitor (JRTM) [ML97a, ML97b]
alms to detect violation of timing properties. JRTM uses Real-Time Logic (RTL) [JG90]
as a property specification language. Timing constraints can specify relationship be-
tween ¢th occurrence time of an event el and the j th occurrence time of an event
e2. Given timing constraints, JRTM generates implicit constraints which are logi-
cally implied constraints from the explicit constraints. From these explicit/implicit
constraints, JRT'M generates constraint graphs. JRTM develops efficient algorithins
to catch violations of timing constraints at the earliest possible time based on these
constraint graphs. A Java program is manually instrumented with a probe put in the
place where a primitive event happens. The probe sends the event and the monitor
receives it and checks constraint graphs to detect the violation of constraints.

A strong point of JRTM is its guarantee of timely detection for violations of timing
properties. A weak point is that JRTM does not provide a low-level specification
language. Based on informal definitions of primitive events, the target program is
instrumented manually. Unless instrumentation is performed correctly, the analy-
sis cannot produce the correct result. The MaC architecture provides a low-level
specification language to define primitive events In addition, the MaC architecture
instruments the target program automatically according to the definitions of primi-
tive events.

The Sentry System [CG92, CG95, CGI6] aims at a low-cost, low-precision monitor.
Sentry is a monitor watching over the behavior of a target program continuously. A
target program is instrumented to extract snapshots of variable values into shared
storage between the program and the Sentry. Key features of the Sentry system are

— linear amount of shared storage in the number of monitored program variables
— wait-freedom (the program being monitored never waits for the sentry)

— mutual exclusion (a snapshot being read by the sentry is not overwritten by the
program)

These features are accomplished by using non-blocking buffers between the target
program and Sentry. When the target program writes snapshots into a buffer b1,
Sentry reads from a buffer 62. When b1 becomes full, the target program starts
writing into 62 even when Sentry does not read all the content of 62 yet. Then,
Sentry reads from b1. This alternation of buffers in writing and reading guarantees
consistent snapshot reading. Sentry, however, provides only weak completeness of
violation detection due to non-blocking buffer. In other words, Sentry can miss
violations unless the violations persists in the execution. This is because Sentry loses
snapshots when the writing speed of a program is faster than reading speed of Sentry.

The target C program is annotated by a user to describe assertions over program
variables to be checked at run-time. Then the annotated target program is compiled
by the Sentry compiler to generate an instrumented target program and Sentry code.
The instrumented target program writes its snapshots concerning the assertions into
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a shared memory. The Sentry reads snapshots from the shared memory and evaluates
properties.

A strong point of Sentry is its low-overhead cost with linear amount of shared storage
and wait-freedom. A weak point is its weak completeness. Missing a single violation
may result in losing a chance to prevent system crash.

e The goal of Time Rover [Rov97] is to detect the violations of assertions over target
program variables. Assertions are written in temporal logic at run-time. Time Rover
uses a normal temporal logic and metric temporal logic which extends the temporal
logic by supporting the specification of real-time constraints to temporal operators.
Also, the temporal logic used by Time Rover supports counting operators so that
a user can specify the number of event occurrences in the assertion. A user has to
write and insert assertions into a target source code. Time Rover supports various
languages such as Java, C++, and Verilog.

2.2.4 Instruction-level Monitoring

The first goal of this group of analysis methods is to monitor and check the behavior of the
target program in terms of instruction-level activities. The second goal is to steer the target
program. These methods provide a virtual machine as run-time execution environment to
monitor the execution of the target program instructions one by one.

An advantage of these methods is that they do not require the instrumentation of a
program because a virtual machine can monitor execution of a target program as it is
without instrumentation. This removes the difficulty of instrumenting a target program.
In addition, a code size does not increase due to inserted probes. Furthermore, these
methods can monitor and check the behavior of the target program at a finer-grained level,
compared to the statement-level monitoring methods. Finally, these methods provide the
accessibility and controllability of entire set of target program states.

A weak point is that this fine-grain monitoring capability costs a run-time overhead
magnitude of 2-3 because of the slow interpretation speed of a virtual machine. In addition,
these methods are machine dependent. Furthermore, these methods need a specialized
run-time execution environment rather than the existing environment which is reliable
and familiar to users. This requirement may prohibit these methods from being widely
applied. Finally, reasoning about high-level properties based on instruction-level behavior
is not an easy task.

e Dynascope [S0s92, Sos95b, Sos95a] serves as an instruction-level behavior monitor
such as an array bound checker. Dynascope is similar to the Java architecture [LY99].
As the Java architecture compiles a Java program into bytecode and the Java virtual
machine executes the bytecode, the Dynascope architecture compiles ANSI C pro-
gram into DLX [HP90]-like languages and the Dynascope virtual machine executes
the DLX-like codes. The Dynascope architecture provides

— a virtual machine which executes a DLX-like machine language
— an ANSI C compiler to generate Dynascope machine code

— a library of monitoring and steering routines for Dynascope virtual machine

15



A user writes a monitor in C which communicates with the Dynascope virtual ma-
chine using provided monitoring and steering functions.

A strong point of Dynascope is its hybrid execution model. The parts of the pro-
gram which do not need to be monitored are compiled into host machine code, not
Dynascope code. These codes are executed directly on the host processor. This
alleviates the overhead of interpretation of the target program.

A weak point is that Dynascope does not provide a requirement specification lan-
guage. A monitor should be written manually in C, which may lead to incorrect
analysis results and furthermore crash the target system at run-time. !

e The goal of Dalek [OCH90, OCH91] is to detect composite events from the instruction-
level execution of target program. Dalek is an event-based debugger for C programs,
which is based on gdb. Dalek provides a debugging language to define primitive
events based on instruction-level behavior during the execution of a program. The
debugging language provides assignment statements, if and while statements, lo-
cal/global variables, and functions. This debugging language can describe composite
events based on primitive events. For example, suppose we monitor whether a pro-
gram frees unallocated address or not. A composite event mismatch is raised when
an address value of a primitive event free(address) does not match an address of
any previous primitive event malloc(address).

A strong point of Dalek is its debugger language. This language is useful compared
to that of other conventional debuggers such as gdb. Primitive events and compos-
ite events can be recognized based on the specification of primitive events written
in this debugger language. However, this language is cumbersome to describe com-
plex requirements because the language provides only primitive constructs such as
if/while.

e The Java Platform Debugger Architecture (JPDA) [JVM99] provides a de-
bugging interface so that a programmer can access information available on JVM
and manipulate the execution of the target program. The JVM specification itself
does not contain a specification for the debugging interface. JPDA consists of three
components - Java Virtual Machine Debugger Interface (JVMDI), Java Debug Wire
Protocol (JDWP), and Java Debugging Interface (JDI). JVMDI specifies what should
be provided by the JVM for supporting the debugger. JDWP defines the format of
information and requests to be transfered between the debugging process and the de-
bugger. JDI defines a high-level language interface which tool developers can easily
use to write remote debugger applications. All functionalities in JPDA are accessed
through the Java Native Interface.

A strong point of JPDA is its modular approach to enable separation of a debugging

! One notable thing is that Dynascope had the concept of the platform independent virtual machine and
the hybrid execution model similar to a just-in-time compiler much earlier than SUN’s JVM. Furthermore,
Dynascope has the concept of debugger interface similar to Sun’s Java Virtual Machine Debugger Interface.
However, Dynascope did not provide a well-designed language for the virtual machine. Dynascope also
failed to put emphasis on the platform neutral architecture which might not have been interesting to the
community around early 1990. As a result, Dynascope did not succeed as a tool, but JVM did.
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process and a target program. Thus, JPDA can build debugging architectures flexi-
bly. For example, a debugging interface of different vendor’s VM can be adopted by
changing just portion of a debugger written in JVMDI.

A weakness of JPDA is that it does not provide a monitoring language. JPDA
provides a platform specific API in C. Therefore, to monitor a platform neutral Java
program, a user has to write a platform specific C program, which is neither safe nor
convenient.

2.2.5 Summary

This section summaries the features (defined in Section 2.2.1) of analysis methods on
implementation which we have discussed. Table 2.1 shows the summary. We use N for No
or None, Y for Yes, S for Small, M for Medium, L for Large in the table.

Related Low- | High- | Code | Over- | Modifi- | Freq. | Comp- | Needs Note
work level | level | size | head | cation of lexity | source
spec | spec | incr- of events of code
lang. | lang. | ease env. instr.
Model- N Y S S N Low Low Y Various
based formal
testing req. spec.
MOTEL N Y N S Y Low N N Modified
CORBA
JEM N Y N S Y Low N Y Own comm.
channel
ALAMO Y N L L N Med Auto Y Insp.
power.
JRTM N Y M M N Med High Y Early.
detect. of
violation
Sentry Y Y M S N Med | Auto Y Low overhead
low precision
Time Rover N Y M M N Med High Y Extended
Temp. Logic
MaC Y Y M M N Med Auto N Usability
Dynascope N N N L Y High N N Hybrid
exec.
Dalek Y N N L Y High N N Spec.
lang.
JPDA N N N L Y High N N Modular
design

Table 2.1: Summary of analysis methods on implementation
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The top three rows in the Table 2.1 are the methods of process-level monitoring. The
middle four rows are the methods of statement-level monitoring. The bottom three rows
are the methods of instruction-level monitoring. Table 2.1 shows that the overhead and the
frequency of events depend on the level of monitoring in general; process-level monitorings
have low overhead and less frequent events and instruction-level monitorings have large
overhead and frequent events. Note that the advantage of low overhead in Sentry comes
with the cost of incomplete analysis because the Sentry may miss snapshots of target
program. Also, the high overhead in ALAMO is a tradeoff for the thorough inspecting
power.
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Chapter 3

Fundamentals of Run-time Formal
Analysis

This chapter discusses fundamental issues in run-time formal analysis. The issues in this
chapter are not specific to one run-time formal analysis architecture such as the MaC
architecture, but universal. In this chapter, we will describe what class of properties run-
time formal analysis can check. Then, we will discuss the computational complexity of
property evaluation when a property specifies non-deterministic behavior. Then, we will
discuss the abstraction of the program execution.

3.1 Monitorable Properties

The first issue is discovering what class of properties can be checked by a run-time formal
analysis. We define the term property formally.

Definition 1 (Execution) An execution of a program is an infinite sequence of program
states 0 = s¢s1... where s; € S is a set of program states, sg € Sinir 18 a set of initial states,
and oli..j] is the subsequence of o from a state s; to a state sj. !

Definition 2 (Property) A property is a set of executions. We write o = P to denote
that o is in property P.

The class of properties that a run-time formal analysis can check is the class of safety
properties. Informally speaking, a safety property means that bad things do not happen
during execution of a program. Consider a safety property Psqs. that means some bad
thing = does not happen. If o [£ Pyufe, o includes some bad thing which cannot be
remedied afterward. In other words, there is some prefix of ¢ which includes some bad
thing for which no extension to an infinite sequence will satisfy Pyqf.. Throughout this
chapter, 8 denotes the set of infinite sequences of states.

'The definition of an execution can apply to finite sequences by obtaining an infinite sequence from a
finite one by repeating the final state of the finite sequence. This corresponds to the view that a terminating
execution is the same as non-terminating execution in which after some finite time (once the program has
terminated ) the state remains fixed.
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Definition 3 (Safety Property)? A property P C S¥ is a safety property if for every
o € 8Y, o€ P if and only if Yi3p € §¥(0[0..7]8 € P) where S is the set of program states.

It is clear from Definition 3 that the properties run-time formal analysis can check are
safety properties. A monitor can watch only a finite number of execution steps; a monitor
can only check a property based on a finite number of states.

However, a safety property is not necessarily a monitorable property. The definition of
safety properties makes no computational agssumptions; it is possible to define a property
that is a safety property, but which is unlikely to be monitorable. [Vis00] shows that the
safety closure of the halting problem is a safety property but not a monitorable prop-
erty [Vis00]. This suggests that the class of monitorable properties is a strict subset of a
class of safety properties; they should be such that sequences not in the properties should
be recognizable by a Turing Machine, after examining a finite prefix. Therefore, we can
define a monitorable property as follows. We use pref(o) for o € 5 as the set of all finite
prefixes of o.

Definition 4 (Monitorable Property)® A property P C S is said to be monitorable
if and only if P is a safety property and S* \ pref(P) is recursively enumerable, where
pref(P) = U ppref(o)

Figure 3.1 illustrates the relationship of monitorable properties with other properties.

e N
Properties

Safety
Properties

Liveness
Properties

Monitorable
Properties

- J

Figure 3.1: Monitorable properties and other properties

3.2 Property Specification Language

Monitorable properties need to be described in a property specification language. The char-
acteristics of the property specification language can affect the computational complexity
of evaluating properties. In this subsection, we will discuss the effect of non-determinism
in the property specification language.

Run-time formal analysis can be thought of as a trace validity problem where a trace is
generated from the execution of the program. The trace validity problem is a membership
checking problem to determine whether a given trace is in the set of valid traces. For

%A formal definition of safety property from [ASS85].
3A formal definition of monitorable property is from [Vis00].
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sufficiently expressive requirement specification languages, such as a process algebra, e.g.
CCS [Mil89] or ACSR [BGLGY3], this problem turns out to be NP-complete. We formulate
the trace validity problem using the notation of [Mil89] for the formulation. We will denote
the ith character in a string z by (9. A is an set of names a,b,c,.... Then A is the set
of co-names @,b,¢, ...; A and A are disjoint and are in bijection via (7); we declare @ = a.
L = AU A denotes the set of labels. We also introduce a distinguished silent action 7 & L.
We set Act = LU{7}.

Definition 5 The set of processes is defined by
P := Nil|a.P|P + Q| P||Q| P\L
where L C L and o € Act.

Definition 6 The labeled transition relation = between two processes is defined by the
following rules. In the following rules, a € Act,l € L, and L C L.

Prefiz| ——
[Pref ]a.Pﬁ>P
P& p Q3 Q

[ChOice]P+Q$P’ P10

Pap Q3¢ PLPQLQ
Pl|Q % P'|Q PlQ = P|lQ' PlQ 5 P'||Q
P& P
P\L3 P

[Parallel]

[Restriction] where o ¢ LUL

Definition 7 Given processes P and P', and o € L, we say that P = P if P(5)* 3 (5
)*P', where (53)* is the transitive reflexive closure of .

Definition 8 (Valid Trace) A string s € L*, of length n, is said to be a valid trace of a

)
process P, if there exist processes Py, Py, ..., P, such that P = Fy, and P;_y) S P, for
alie{1,...,n}

Then, the Trace Validity Problem is formally defined as follows:
Input A process P and a string s € L*.
Output Is s a valid trace of P?

Theorem 1 The trace validity problem is NP-complete.

Proof: To prove hardness, we reduce 3SAT to the trace validity problem. We are given
a formula ¢ in conjunctive normal form with variables zi,...,z, and clauses C1,...,Cp,
each with three literals. We construct a process P(y) and a string s(p) such that s(¢p) is
a valid trace of P(yp) iff the formula ¢ is satisfiable.

For each i, define processes, X;, as follows,
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x; ¥ rF+rT
def —

F, = [iF,

T, ¥ &

In our reduction, these processes express a truth value assignment to the variables. If
the X; = F; then it expresses the fact that under this assignment the variable z; gets the
value false, and if X; = T; then it means that the variable z; gets the value true.

In addition to these processes, we define another process, P. The idea is that P will
deadlock, when run concurrently with the processes X;, iff the truth assignment defined
(as above) by the processes X; is not a satisfying truth assignment for the formula (.

In order to define the process P, we assume that C; =[;, V0o Vi3 forie {1,...m}
and j € {1,2,3} in following formulas.

P < Q

h déf a.L171 + a.LLQ + a.L173
Q; def a.LZ'71 + a.LZ'72 + a.Li,3
Lis déf fk-LQ,j if li,j = T
I tk-LQ,j if li,j =T

def
Li; = bQin

L, ¥ 0o

The process P(p) is thus (P|X1|--- | Xn)\{t1, fi,---,tn, fn}- The property this process
has is that, for any i, 7, the transition L;; — L;yj can be taken iff the literal /; ; gets the
truth value true under the truth assignment defined by the processes Xi,...,X,. Hence,
Qi —* Qi1 can take place iff one of the literals in the clause C; gets the truth value true
under the assignment described by Xi,...,X,. Thus it can be seen that abab...ab is a
valid trace of P(y) iff ¢ has a satisfying assignment.

To prove completeness, we prove that Trace Validity Problem belongs to NP. We can
view a process P as a labeled transition graph G p over a set of label £ rooted at the node
np. For a given process P and a string s € L*, we let a path p corresponding to s from
np be the certificate. Checking can be accomplished in polynomial time by traversing Gp

from np following p.
0

The trace validity problem is NP-complete because of the non-determinism of process
algebra; if a validator uses a non-deterministic process algebraic specification, the valida-
tor must keep track of all possible branchings. For example, suppose that we have the
specification of process P as followings.

P =a.a.(b.Nil + ¢.Nil) + a.(d.Nil + e.Nil))
Suppose that we validate a trace a.a.f. Then, we have to compare £ of the trace with

the all possible branches b, ¢, d, and e. In general, the number of possible branches is
exponential in the length of the trace.
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Therefore, we should be careful to define a property specification language so that
trace validation against properties is tractable. The low-level specification languages and
high-level specification language of the MaC architecture do not allow non-deterministic
specification to make the trace validation tractable.

3.3 Abstract View of Program Execution

The behavior of target systems is reported to a monitor through a filter. A filter works as a
sieve to decrease the amount of information to be analyzed by a monitor. A filter removes
information on program activity which does not need to be analyzed concerning given
properties by a monitor. A monitor receives and analyzes information reported by a filter.
If a filter removes too much information, a monitor cannot evaluate properties correctly.
If a filter does not filter enough information, the overhead to report the information to a
monitor and to analyze the information reported to a monitor will be significant.

We view the execution of the target program as a sequence of states. First, we define
a state of a program execution. A state consists of values to variables and a time stamp.

Definition 9 (State) A state s of a program is a pair of an environment ps CV — R
which is a function from a set of variables V to a set of real values R and a time stamp
ts € R such that ts, <1 fori>0.

Si+1

In this modeling of execution, a state in the execution indicates something happens/changes
at the time instant corresponding to the state. For example, suppose p,;, has a variable
x as 1 and ps,,, has the variable  as 2. Then, we know that the event of updating z as
2 occurs at the time instant %5, ,. ps,, however, does not change between time interval
starting from a state s; until the next state s;11. In other words, the information of a
program remains fixed between two states s; and s;11. We will discuss this issue fully in
Section 4.2.1.

To decrease overhead, a filter performs abstraction on the execution of the target
program. We define two abstractions - wvariable abstraction and value abstraction. We
will use S denoting S* U S¥

Variable Abstraction

A program has a set of variables. Only a subset of the variables, however, may be interesting
to the run-time formal analysis. We call this subset of variables monitored variables. Vi, C
V denotes a set of monitored variables. A variable abstraction fy;, abstracts out adjacent
states which have the same restricted environment p|V;, where p|V,,, = {(z, p(z))|z € Vi }
but only different time stamps t.

Definition 10 (Variable Abstraction) A variable abstraction By, with a set of moni-
tored variable Vi, is a function By, : S¥ — S°°. By, is defined recursively as follows.

o' if Ps;|Vin = ps; 1 |Va
8:8; o-’ — IBVm(SZJ) Zf p52| m 8i4+1 m
IBV’ITL( 19441 ) { Si,BVm(Si+IJI) ’Lf psz|Vm #p5i+1|vm

where o' is an infinite sequence of states and i > 0
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A filter performs variable abstraction by reporting the snapshot of the target program
only when an instruction which updates monitored variables is executed.

Variable abstraction should distinguish monitored variables from non-monitored vari-
ables. This distinction can be made either statically or dynamically. Some instructions
contain their target variables in the target program code. Thus, the distinction can be
made statically. Some other instructions specify their target variables as run-time argu-
ments. abstraction. For example, in Java bytecode, iastore has an argument arrayref
and index to decide which element of the array is to be updated. A filter has to test
whether the indez points to the monitored variable or not at run-time.

Value Abstraction

A value abstraction 7ezp,.  abstracts out states which do not affect expy,,, a set of boolean
expressions over the monitored variables V.

Definition 11 (Value Abstraction) A value abstraction Yegp,  with expy,,, a set of
boolean expressions over monitored variables Vi is a function Yegp, S = 8. Yeap,,
is defined recursively as follows.

i ; —
Yeapy, (Sisit10") = Teap (517) ) Z.f ve € capy,. el =lel,.,,,
" Sifyeprm (Si+10 ) Zf Je € exme'l[e]]Psi # |[e]]Ps,-+1
where o' is an infinite sequence of states, [[e]]ps,- for e € expy;, is the result of evaluating
an boolean expression e using an environment p,,, and i > 0.

A filter performs value abstraction by reporting the snapshot of the target program
only when an instruction which affects at least one boolean expression in expy;, is ex-
ecuted. Value abstraction can abstract out more states than variable abstraction (see
Figure 3.2). This is because value abstraction abstracts out adjacent states which have
the same restricted environment p|V;, as variable abstraction does, but also states which
have different p|V;,, but the same evaluation result on every boolean expression [e;], where
e; € exp. Value abstraction, however, requires more computation than variable abstraction
because value abstraction should evaluate each boolean expression in ezpy;,.

Notice that Definition 11 itself does not impose any restriction on the set expy,, except
that boolean expressions in the ezpy;, should be expressions over the monitored variables
Vin.* Thus, value abstraction can be valid with regard to the set of requirement properties
Propreq only if expy,, is related to propreq.

Definition 12 (Valid Value Abstraction) Value abstraction Yegp, is valid with re-
gard to the set of requirement properties propreq if and only if

Vi > 0. (Ve € expvm.[[e]]psj = [[e]]ijJr1 — Vp € pTOpreq-[[P]]psj = |[p]]p5j+1)

4This restriction intends to compare the abstraction power of variable abstraction and that of value
abstraction easily.
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The states which value abstraction abstracts out must not affect the evaluation result of
requirement properties. The states which value abstraction does not abstract out, however,
may or may not affect the evaluation result of requirement properties.

In one extreme end, ezpy;, can be a set of entire requirement properties, i.e., ezpy;, =
Propreq- In this case, the abstract view of the target program execution is equal to the result
of checking the target program execution by the monitor with regard to the requirement
properties. The evaluation computation at the filter is as heavy as that at the monitor,
which may cause greater overall overhead than when no abstraction is applied. In the
other extreme end, expy,, can be an empty set, where the overhead of evaluating boolean
expressions does not exist but the abstraction results in the empty execution. We can
choose modest point between these two extreme ends by setting expy,, heuristically for
decreasing the overall monitoring overheads considering communication overhead between
the filter and the monitor and property evaluation cost at the monitor. Section 7.3.2
discusses one such choice of expy;, in the MaC architecture.

We illustrate these two abstractions in the example of Figure 3.2. In Figure 3.2, a state
consists of two variables z and y, and time stamp ¢. A set of monitored variables V, is
defined as {y}. A set of boolean expressions used by value abstraction expy;, is {y < 5}.

50 50

53

s5
56 56

a) Original b) after Variable Abstraction c) after Value Abstraction
Execution Vm={y} expy,={y < 5}

Figure 3.2: Abstract views on the execution of target program

e Variable abstraction. Variable z is not the monitored variable. Thus, a filter re-
moves sl,s2, and s4 by variable abstraction. Variable abstraction abstracts out s4
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additionally compared to time abstraction.

o Value abstraction. sl,s2,s3,s4, and sb do not affect the evaluation of y < 5. Thus,
a filter eliminate sl to sb. Value abstraction abstracts out s3 and sb additionally
compared to variable abstraction.

As we see in Figure 3.2, value abstraction has stronger abstraction power than variable

abstraction has. Value abstraction, however, requires more computation than variable
abstraction.
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Chapter 4

Overview of the Monitoring and
Checking (MaC) Architecture

This chapter introduces the MaC architecture which we develop as an architecture for
run-time formal analysis. Section 4.1 gives an overview of the MaC architecture. Fig-
ure 4.1 shows that a formal requirement specification consists of a low-level specification
and a high-level specification. Section 4.2 presents the low-level and high-level specification
languages of the MaC architecture.

4.1 The MaC Architecture

The architecture is shown in Figure 4.1. The process consists of two terms: a static phase
and a run-time phase. Once a formal requirement specification is written, the run-time
components of the architecture, which monitor and check the execution of the instrumented
target program, are generated from the specification during the static phase. During the
run-time phase, the architecture monitors and checks the execution of the target program
at run-time.

4.1.1 Static Phase of the MaC architecture

A formal requirement specification is written in two separate parts: a high-level speci-
fication and a low-level specification. A high-level specification consists of requirement
properties. A low-level specification contains the definitions of primitive events and con-
ditions used in the high-level specification in terms of program entities such as program
variables and program methods. We can think that a low-level specification assigns high-
level meanings to the program entities. For example, when we define a primitive event
OpenGate meaning that a controller starts to open a gate as an invocation of a method
Control.open(), we give the meaning of start of opening the gate to Control.open().
We have two languages for describing low-level specificaions and high-level specifications.
Low-level specifications are written in Primitive Event Definition Language (PEDL) (see
Section 4.2.4). High-level specifications are written in Meta Event Definition Language
(MEDL) (see Section 4.2.5). PEDL is dependent on the target programming language,
but MEDL is not.
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Figure 4.1: Overview of the MaC architecture
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Run-time components of the MaC architecture are generated automatically from a
target program and a formal requirement specification (see Figure 4.1). The MaC run-
time components consist of

e an instrumented target program containing a filter
e 3 low-level behavior monitor, called event recognizer

e a high-level behavior checker, called run-time checker

A target program is instrumented according to the low-level specification written in
PEDL. An event recognizer is generated from the same low-level specification. A run-time
checker is generated from a high-level specification written in MEDL.

There are three benefits of separating a low-level specification and a high-level spec-
ification. First, different implementations can be monitored using the same high-level
specification; only the low-level specification should be modified according to the new im-
plementation. Second, this separation provides a clean specification of requirements by
abstracting out the implementation specific details. Third, this separation allows the MaC
architecture to extend to different target program languages. For example, a MaC architec-
ture prototype for Java program may extend to analyze C++ program by changing “PEDL
for Java” to “PEDL for C++” with consideration of C++ specific issues such as pointer
arithmetics. An instrumentor and an event recognizer need to be modified for accepting
specifications written in “PEDL for C++”. MEDL and a run-time checker, however, do
not need to be modified.

4.1.2 Run-time Phase of the MaC architecture

Run-time components of the MaC architecture consist of an instrumented target program
containing a filter, an event recognizer, and a run-time checker. They are separated so
that they can run on separated hosts. During the run-time phase, the instrumented tar-
get program reports a low-level behavior such as the updates of program variables to an
event recognizer through a filter. The event recognizer receives this report of the low-level
behavior and maps this low-level behavior to primitive events and conditions according to
the definitions of the primitive events and conditions in the low-level specification. These
primitive events and conditions constitute a high-level behavior of the target program.
Then, the event recognizer reports this high-level behavior of the target program to a run-
time checker. The run-time checker checks the correctness of the target program execution
based on this high-level behavior.

The separation of the run-time components of the MaC architecture has following
advantages. First, the modularity of the architecture makes the architecture extendable
for various application areas by incorporating different tools from outside. Section 8.3
describes an example of such incorporation - incorporating the NS2 simulator [FV00] in
the MaC architecture for the analysis of a network routing protocol. Second, this separation
can decrease the monitoring and checking overhead to the target program by distributing
the overhead to several hosts/processors. This is because we can locate the event recognizer
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and the run-time checker at different hosts/processors other than the host/processor on
which the target program is running.!
The overview of the run-time components are as follows.

e Filter. The essential functionality of a filter is to keep track of every change to mon-
itored entities and send the snapshots of the target program to the event recognizer
after abstracting out irrelevant snapshots. A filter consists of

— a communication channel through which the snapshots of the target program
are sent from the target program to the event recognizer

— probes inserted into the target program which extracts the snapshots of the
target program

— a filter thread sending the extracted snapshots to an event recognizer.

o Event recognizer. An event recognizer detects event occurrences according to a
PEDL script, which is a low-level specification, from the snapshots received from the
filter. Recognized events and conditions are delivered to the run-time checker. PEDL
has limited expressive power to ensure fast event recognition by the event recognizer.

¢ Run-time checker. A run-time checker checks that the current execution satisfies
requirement properties in a MEDL script, which is a high-level specification, based
on events and conditions received from the event recognizer.

More details on the run-time components are in Section 6.2.

4.2 The MaC Languages

Before presenting the two languages, PEDL and MEDL, we discuss some key issues in the
semantics of these languages. The first issue is how to reason about temporal behavior and
data behavior of the target program execution using these languages. For that purpose, the
languages are designed based on instant events and durational conditions. Section 4.2.1
illustrates the distinction between events and conditions. The second issue is how the
languages may handle the presence of variables that are not defined due to scoping rules.
This issue is discussed in Section 4.2.2. We then formalize our intuitions on events and
condition into a logic in Section 4.2.3. This logic provides the formal foundations for PEDL
(in Section 4.2.4) and MEDL (in Section 4.2.5).

4.2.1 Events and Conditions

The filter reports the snapshot of the target program to the event recognizer whenever an
“interesting” state change occurs in the running system. Based on the reports from the
filter, the event recognizer matches the trace of the current execution against the low-level
specification. In order to do this, we distinguish between two kinds of state information
underlying the notifications.

ncreased communication overhead due to the distribution of the run-time components, however, should
be considered.
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An event occurs instantaneously during the system execution, whereas a condition is
information that holds for a duration of time. Figure 4.2 shows a sequence of snapshots
which are states of the target program execution and event gateOpen and a condition
gatePos == 2. An event gateOpen denoting starting of the method open() occurs at the
instant (a time instant 15) the control invokes the method, while a condition gatePos ==
2 holds as long as the variable gatePos does not change its value from 2, i.e., between a
time instant 20 and 30. Distinction between events and conditions is very important in
terms of what the event recognizer can infer about the execution based on the information
it gets from the filter. For an event, the event recognizer can conclude that the event does
not occur at any moment except when it receives an update from the filter. For example,
the event recognizer can conclude that no event happened betwen time instant 15 and 20
or between a time instant 20 and 30. By contrast to an event, once the event recognizer
receives a message from the filter that variable gatePos has been assigned the value 2, the
event recognizer can conclude that gatePos retains this value until the next update. In
other words, the event recognizer can conclude that gatePos == 2 holds between a time
instant 20 and 30.

invoke gatePos gatePos
Snapshots from filter z 2 o

S Sisl

openGate gtart (gatePos==2) end (gatePos==2)

gatePos ==

Events and conditions I
detected from snapshots time
15 20 30

Figure 4.2: Example of an event and a condition

Since events occur instantaneously, we can assign to each event the time of its oc-
currence. Timestamps of events allow us to reason about timing properties of monitored
systems. A condition, on the other hand, has duration, an interval of time when the condi-
tion is satisfied. There is a close connection between events and conditions: the start and
end of a condition’s interval are events, and the interval between any two events can be
treated as a condition. This relationship is made precise later when we present the logic
in Section 4.2.3.

Notice that MaC reasons about temporal behavior and data behavior of the target
program execution using events and conditions; events are abstract representation of time
and conditions are abstract representation of data.

4.2.2 Presence of Undefined Variables

Reconsider the condition gatePos == 2 that was used previously. When the variable
gatePos has some integer value, it is very clear what this condition means. However,
before the variable gatePos is initialized at the start of the execution, it is not clear
whether this condition should be considered to be true or false. This problem is not just
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confined to the start. During any execution, variables routinely become undefined when
they are out of scope, and if we want to reason about such variables then we need a
consistent way of interpreting logical formulae having undefined variables. The problems
associated with defining the semantics of logics in the presence of partial functions® are
well-understood [Par93]. There have been some approaches to defining logics with partial
functions where the formulae are interpreted over boolean values, i.e., true and false.
However, these approaches do not work when the logic has primitive relations, like “<”
and “>”, which have some “natural” interpretation. Another traditional approach towards
handling undefined expressions, has been to move to a three-valued logic, where the third
value is taken to represent undefined. We choose to take this later approach, and so
interpret the truth of conditions over a three-valued logic.

We now formalize the issues presented above, in a two-sorted logic that defines the
operations on events and conditions. In this logic, we shall interpret conditions over three
values and not over booleans. PEDL and MEDL are subsets of this logic with added means
of definition of primitive events and conditions.

4.2.3 Logic for Events & Conditions

This section describes the syntax and semantics of events and conditions formally.

Syntax

We assume a countable set C = {¢y, ¢2, . ..} of primitive conditions. For example, in PEDL
(Section 4.2.4), these primitive conditions will be boolean expressions built from the values
of the monitored variables. In MEDL (Section 4.2.5), these will be conditions that were
recognized by the event recognizer and sent to the run-time checker or conditions that will
be boolean expressions built from the auxiliary variables defined in the MEDL script. We
also assume a countable set £ = {ej1, eo,...} of primitive events. When an event occurs, it
can have an attribute value and an attribute timestamp. Concrete examples of these two
attributes will be given in Section 5.2.2. The logic has two sorts: conditions and events.
The syntax of conditions (C) and events (E) is in Table 4.1.

(C) == c|defined( (C)) | [(E), (E))
| 1{C) [ (C) && (C) | (C) || {C)
| (C) = (C)
(B) = e start( (C) ) | end( (C))
| (E) && (E) | (E) || (E)
| (E) when (C)

Table 4.1: The syntax of conditions and events

2Variables can be thought of as partial functions over time
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Semantics

The models for this logic are sequences of worlds, similar to those used for linear temporal
logic [MP92]. Each world has a description of the truth values of primitive conditions and
occurrences of primitive events. More formally, a model M is a tuple (S, 7, L¢, Lg), where
S = {so, s1,-...} aset of states, 7 is a mapping from S to the time domain (which could be
integers, rationals, or reals), L¢ is a total function from S x C to {true, false, A}, and Lg
is a partial function from S x £ to the value domain D,. Intuitively, Lo assigns to each
state the truth values of all the primitive conditions; since we interpret conditions over a
3-valued logic, the truth value of primitive conditions can be true, false or A (undefined).
Similarly, in each state s, Lg(s,e) is defined for each event e that occurs at s and gives
the value of the primitive event e. The mapping 7 defines the time at each state, and it
satisfies the requirement that 7(s;) < 7(s;) for all ¢ < j, i.e., the time at a later state is
greater.

[ck primitive] Dh,(ck) = Le(siycr), where 7(s;) <t and for all s; (5 > ) 7(s;) > ¢

. _J true D (c) £ A
[defined] Dy (defined(c)) _{ false otherwise

true  if there exists ty < ¢ such that M, ¢y = e;
[pair] Dt (ler,e2)) = and for all tg < ¢ <t, M,t' [~ ey
false otherwise
true if D4,(c) = false
[negation] Di,(ley=< A if Dhy(c) =A
false if Db (c) =true
true  if D%;(c1) or Db, (c2) is true
[disjunction] DY,(c1|lc2) =< false if Di (c1) = Db;(ca) = false
A otherwise
[conjunction] DY, (c1&&cs) = Di (1(ler]|lez))
[implication] DY,(c1 = c2) = D}, (ler]|e2)

Table 4.2: Denotation for conditions

In order to define what we mean by a condition ¢ being true in model M at time ¢
(M,t |= c), we need to define what we mean by its denotation (D},(c)). This is defined in
Table 4.2. Using this we define the meaning of M,t = ¢, and of an event e occurring in a
model M at time ¢ (M,t |= e). The formal definition is given in Table 4.33.

As stated before, we interpret conditions over three values, true, false, and A (unde-
fined). The denotation of a primitive condition, ¢ at time ¢ is given by ¢’s truth value in
the last state before time t. The predicate defined(c) is true whenever the condition ¢ has
a well-defined value, namely, true or false. The denotation of negation (l¢), disjunction
(c1|e2) and conjunction (c;&&cy) are interpreted classically whenever ¢, ¢; and ¢y take
values true or false; the only non-standard cases are when these take the value A. In these

3Notice, that the definition of D%, refers to the definition of =, and vice versa. However, the definitions
are well-defined.
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MitEec iff Di,(c) =true

M,t |= e, (er primitive) iff there exists state s; such that 7(s;) =t and Lg(s;, eg) is defined.
M, t | start(c) iff 3Js; such that 7(s;) =t and M,7(s;) Ecand M, 7(s;-1) [ c.
i.e., start(c) occurs when condition ¢ changes from false
or undefined to true.
M,t = end(c) iff 3Js; such that 7(s;) =t and M, 7(s;) Ele and M, 7(s;-1) Ele.
i.e., end(c) occurs when condition ¢ changes from true
or undefined to false.

M,t = e1lle2 iff M,tke or M,t|=es.
MtEe && ey iff M,tkEe and M,t [ es.
M,t|=e when ¢ if M,tk=eand M,tEc.

i.e., event e occurs when condition c¢ is true.

Table 4.3: Semantics of conditions and events.

cases, we interpret them as follows. Negation of an undefined condition is A. Conjunction
of an undefined condition with false is false, and with true is A. Disjunction is defined
dually; disjunction of undefined condition and true is true, while disjunction of undefined
condition and false is A. Implication (c; = ¢2) is taken to lei||co.

For primitive events, once again, the truth value is given by the labels on the states.
Conjunction (e;&&e2) and disjunction (e;||ez) defined classically; so e;&&es is present
only when both e; and ey are present, whereas ej||es is present when either e; or ey is
present.

There are some natural events associated with conditions, namely, the instant when
the condition becomes true (start(c)), and the instant when the condition becomes false
(end(c)). Figure 4.2 shows an example of these two events related to the condition
gatePos==2: an event start(gatePos==2) and an event end(gatePos==2). Notice, that
the event corresponding to the instant when the condition becomes A can be described as
end(defined(c)). Also, any pair of events define an interval of time, so forms a condition
[e1,e2) that is true from event e; until event ey. Finally, the event (e when c¢) is present if
e occurs at a time when condition c is true.

Notice that every condition can be identified with the events corresponding to when it
becomes true, when it becomes false and when it becomes A. This is the reason why the
languages in the MaC architecture, are called “event definition languages”.

4.2.4 Primitive Event Definition Language (PEDL)

PEDL is the language for writing the definitions of primitive events and conditions used in
high-level specifications. PEDL is based on the logic for events and conditions described
in Section 4.2.3. Design of PEDL is based on the following two principles. First, we
encapsulate all implementation-specific details of the monitoring process in a PEDL script.
Second, we want the process of event recognition to be as simple as possible. Therefore,
we limit the constructs of PEDL to allow one to reason only about the current state in
the execution trace. The name of the language reflects the fact that the main purpose of
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a PEDL script is to define primitive events of a high-level specification.

PEDL scripts can refer to the objects of the target system. This means that declarations
of monitored entities are by necessity specific to the implementation language of the system.
In the current prototype for Java programs called Java-MaC (see Chapter 6), all updates
of monitored variables and all invocations/returns of monitored methods are monitored.
Details on PEDL for Java are in Section 5.2.

4.2.5 Meta Event Definition Language (MEDL)

The safety requirements are written in MEDL. Like PEDL, MEDL is also based on the
logic for events and conditions, described in Section 4.2.3. Primitive events and conditions
in MEDL scripts are imported from PEDL scripts; hence the language has the adjective
“meta’”.

The overall structure of a MEDL script is given in Figure 4.3. <e> is a name of an
event. <c> is a name of a condition. <aux_v> is an auxiliary variable.

A MEDL script consists of five sections:

e import section declares a list of events and conditions to be imported from an event
recognizer.

o quziliary variable declaration section declares a list of auxiliary variables.

e event and condition definition section defines events and conditions based on the
imported events and conditions and auxiliary variables.

e property and violation definition section defines safety properties and violations.

o guziliary variable update section defines rules how and when the auxiliary variable is
updated

Auxiliary variables. The logic described in Section 4.2.3 has a limited expressive power.
For example, one cannot count the number of occurrences of an event, or talk about the
ith occurrence of an event. For this purpose, MEDL allows the user to define auxil-
iary variables, whose values may then be used to define events and conditions. Updates
of auxiliary variables are triggered by events. For example, OpenGate -> t’ := time
(OpenGate) records the time of occurrence of event OpenGate in the auxiliary variable t.
Expression el -> count el’ := count el + 1 counts occurrences of event el. A special
auxiliary variable currentTime can be used to refer to the current time of the system.
Precisely, it is set to be the last timestamp received from the filter.

Defining events and conditions. The primitive events and conditions in MEDL are
those that are defined in PEDL. Besides these, primitive conditions can also be defined by
boolean expressions using the auxiliary variables. More complex events and conditions are
then built up using the various connectives described in Section 4.2.3. These events and
conditions are then used to define the safety properties and alarms.
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ReqSpec <...> // the title of a MEDL script

/* Import section */
import event <e>; // imported event declarations

import condition <c>; // imported condition declarations

/* Auxiliary variable declaration section */
var int <aux_v>; // auxiliary variable declarations

/* Event and condition definition section */

event <e> = ...; // event definition
condition <c>= ...; // condition definition

/* Property and violation definition section */
property <c> = ...; // safety property definition
alarm <e> = ...; // violation definition

/* Auxiliary variable update section */
<e> -> { <aux_v’> := ... ; } // auxiliary variable updation

End

Figure 4.3: Structure of MEDL
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Safety Properties and Alarms. The correctness of the system is described in terms
of safety properties and alarms. Safety properties are conditions that must always be true
during the execution. Alarms, on the other hand, are events that must never be raised.
Note that all safety properties [MP92] can be described in this way. Also observe that
alarms and safety properties are complementary ways of expressing the same thing. The
reason we have both of them is because some properties are easier to think of in terms of
conditions, while others are easier to think of in terms of alarms.

Section 4.2.6 will give more detail on features of MEDL through a railroad example. A
complete BNF syntax of MEDL is given in Appendix D.

4.2.6 Example

We illustrate the use of PEDL and MEDL using a simple but representative example.
The example is inspired by the railroad crossing problem, which is routinely used as an
illustration of real-time formalisms [HD96]. The system is composed of a gate, trains,
and a controller. The gate opens and closes, taking some time to do it. The trains pass
through the crossing. The controller that is responsible for closing the gate when a train
approaches the crossing and opening it after it passes. The common specification approach
is to assume an upper bound on the time necessary for the gate to open or close. In reality,
however, mechanical malfunctions may result in unexpectedly slow operation of the gate.
A timely detection of such a violation lets the train engineer stop the train before it reaches
the crossing.

The following code shows a fragment of the gate controller implemented as a Java class.
The state of the gate is represented as variable gatePos, which can assume constant values
GATE _UP, GATE DOWN, or IN_TRANSIT. The controller controls the gate by means of methods
open() and close(). For simplicity, we assume that there is only one instance of class
Control in the system.

class Control {

public static final int GATE_UP = 0;
public static final int GATE_DOWN = 1;
public static final int IN_TRANSIT = 2;

int gatePos;
public void open() { ... }
public void close() { ... }

};

In this example, we monitor the controller of the gate. A safety requirement concerning
the gate is that the gate is down within 30 seconds after signal CloseGate is sent, unless
signal OpenGate is sent before the time elapses. Precisely, we check that if there is a signal
CloseGate, not followed by either signal OpenGate or completion of gate closing, is present
in the execution trace, then the time elapsed since that signal is less than 30.

Figure 4.4 shows PEDL script for the railroad crossing. The PEDL script introduces
high-level events OpenGate, CloseGate and Gate Down in lines 3 and 4. These events
and condition are defined from lines 11, 12, and 14 using program variables and program
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01:MonScr RailroadCrossing

02:

03: export event OpenGate, CloseGate;

04: export condition Gate_Down;

05:

06: monmeth void Control.open();

07: monmeth void Control.close();

08: monobj int Control.gatePos;

09: monobj int Control.GATE_DOWN;

10:

11: event OpenGate = startM(Control.open());
12: event CloseGate= startM(Control.close());
13:

14: condition Gate_Down =(Control.gatePos

15: == Control.GATE_DOWN) ;
16:End

Figure 4.4: PEDL script for the gate controller

method in lines 6 to 9. The MEDL script in Figure 4.5 uses the events and conditions
imported from the PEDL script in lines 3 to 4. Lines 9 to 12 specify the safety requirement.
The time of the last occurrence of event CloseGate is recorded by the auxiliary variable
lastClose in lines 14 to 16.
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01:RegSpec SafeCrossing

02:

03: import event OpenGate, CloseGate;
04: import condition Gate_Down;

05:

06: var float lastClose;

07: var float currentTime;

08:

09: property GateClosing =

10: [ CloseGate when !Gate_Down,
11: OpenGate || start(Gate_Down)
12: ) => lastClose+ 30*1000 >currentTime;
13:

14: CloseGate —> {

15: lastClose’ = time(CloseGate);
16: }

17:End

Figure 4.5: MEDL script for the gate controller
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Chapter 5

Monitoring Java Programs

This chapter describes issues on monitoring Java programs. First, we discuss the object-
orientation of the Java programming language in Section 5.1.1. We describe the problems
we confront when we specify and monitor variables in a complex object graph which changes
dynamically. Then, we propose a solution to the problems with restrictions in Section 5.1.2.
Second, we describe “PEDL for Java” in which low-level specifications for Java prograins
are written. We will use uppercase letters from the beginning of the alphabet for indicating
classes and lowercase letters for indicating objects in this chapter.

5.1 Monitoring Objects

5.1.1 Object Orientation in Java

A Java program is an evolving collection of objects. Java handles an object via references
pointing to the object. Many references can point to the same object. An object contains
variables of primitive types such as int and double, and variables of reference type. A
member variable of an object is accessed through a reference pointing to the object.

It is non-trivial to specify and monitor an object in a complex object graph. Suppose
we want to specify and monitor the variable x inside the object pointed by a.b2. The
variable x is pointed by an arrow in Fig 5.1. First, we specify x’s location (parent object)
in the object graph such as a.b2 to distinguish this x from x in another object such as an
object pointed by a.bl. Second, we need to monitor updates of references which possibly
point to the parent object of x. A monitored variable can be updated through several alias
references pointing to the parent object of the variable. Thus, references which possibly
point to the parent object needs to be monitored at run-time to see whether they are
actually pointing to the parent object. We have to test all references of type B such as
a.bl, a.bl.b’, a.b2, and a.b2.b’ whenever these references are updated because the x
can be updated through these references.

These reference tests are problematic. A reference to the parent object may not be
visible to locations where other references of the same type are updated due to Java
scoping rules.! Table 5.1 shows member visibility according to different visibility modifiers
in Java [F1a99].

'In addition, local variables are not visible outside of the method which declares the variables.
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Legend

O Object

O Reference var
o Primitive var
Subgraph
Figure 5.1: An object graph
‘ Accessible to: H public | protected | package | private

Same class yes yes yes yes
Class in same package yes yes yes no
Subclass in different package yes yes no no
Non-subclass, different package yes no no no

Table 5.1: Class member accessibility
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For example, suppose that b2 is declared as private in the class A. Then, we cannot
test whether a.bl is equal to a.b2 outside of the class A. Therefore, we need a globally
accessible table which contains the addresses of objects containing monitored variables. We
call this table address table. We will describe the detail of the address table in Section 5.1.2.

The cost of maintaining the address table, however, can be expensive. Whenever a ref-
erence pointing to the object containing the monitored variable changes, the address table
need to be updated accordingly. One reference change such as a.b2 = a.bl may cause
the substitution of all a.b2’s descendent nodes in the address table. For example, suppose
a.b2.b’ has 10 monitored objects a.b2.b’.c1,..., a.b2.b’.c10 in its subgraph. After
a.b2 = a.bl, all addresses of a.b2.b’.c1,..., a.b2.b’.c10 in the address table should
be replaced by the addresses of a.bl.b’.c1,..., a.bl.b’.cl10

Figure 5.2 illustrates these problems concretely. Suppose that we would like to monitor
al.bl.x and al.b2.x. in A.main().

Ol:class A {

02: B b1, b2;

03: A(int %, int y) { bl = new B(x); b2 = new B(y);}
04: public static void main(String[] args) {
05: A tmp = null;

06: A al = new A(1,1);

07: A a3 = ail;

08: A a2 = new A(2,2);

09:

10: a3.bl.x = 10;

11: updateAsiO(al);

12: tmp = al; // swap al and a2
13: al = a2;

14: a2 = tmp;

15: updateAsi0(a2);

16: }

17: static void updateAs10(A a) {

18: a.bl.x = 10; a.b2.x = 10;

19: }

20:}

21:class B {

22: int x;

23: B(int x) { this.x = x;}

24:}

Figure 5.2: Example showing aliasing and reference changing

On line 6, an object of type A which has two objects of type B containing x as 1 is
created and the local reference variable al points to the object. Two aliases to the object
are created in this program.

e on line 7, the object is pointed by a reference a3.
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e on line 12, the object is pointed by a reference tmp.

These aliases are shown in Figure 5.3.a). On line 10, we have to test whether a reference

ai 3 tmp ail a az

) >
O © OO © © OO e

after line 12 after line 8 after line 14

a) Aliasing b) Reference Changing
Figure 5.3: Aliasing and reference changing

a3.b1l is equal to a al.bl or al.b2. In other words, we have to test whether a3.b1 points
to the same object pointed by al.bl or al.b2. We know that a3.bl is equal to al.bl
because a3 is equal to al in line 10 because line 7 assigns al to a3. Similarly, on line 18, we
have to test whether a formal parameter a of updateAs10() is equal to al or not. If the
parameter a is equal to al, updateAs10() updates the monitored variables. Otherwise,
not.? For example, on line 11, updateAs10() updates the monitored variables because its
actual parameter a is equal to al. On line 15, however, updateAs10() does not update
the monitored variables because its actual parameter a is not equal to a1 but a2.® On line
13, al is assigned with a2. Accordingly, the address table should update its entry for all
subnodes of al such as al.bl and al.b2 with the address of a2.b1 and a2.b2.

The elimination of pointer and strong typing in Java, however, lessen the degree of
aliasing compared to other conventional language such as C/C++. Java does not provide
pointers to variables. Therefore, a direct alias to a variable cannot be made while an
indirect alias to a variable can be still made through a reference to the parent object of the
variable. Arithmetic on references, however, is prohibited. In addition, Java is strongly
typed. Java has orthogonal sets of similar instructions working on different data types such
as istore,lstore,fstore and dstore for int,long,float, and double, respectively. A
reference variable of type T cannot be assigned with a value of numeric type such as
int or a value of different type T unless 7" is a subclass of T. These features narrow
down candidate update instructions to be monitored, which lessens the difficulty caused
by aliasing and reference changing.

The benefit of these features for monitoring can be illustrated by showing the difficulties
of monitoring programs in C which does not have these features. Indirect access to variables
through pointer makes detecting updates of the monitored variables difficult. Suppose an
integer variable x in main() is monitored in Figure 5.4. x can be updated directly by
variable x or indirectly by pointer px. x can be updated, however, through a variable
px2 of type int at line 9 and a variable px3 of type long at line 10, too. In order to

2If we do not have the address table, we cannot perform this test because a1 is not visible on line 18.
3We monitor the variables x of the objects currently pointed by the references a1.b1 and a1.b2 regardless
of the values of al.bl and al,b2.
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01:void main() {

02: int x = 3;

03: int *px = &x;

04: int px2 = px;

05: long px3 = px;

06:

07: X ++; // x =4
08: (*px) ++; // x 5
09: (*(int *)px2)++; // x 6
10: (*(int *)px3)++; // x =17
11:

12: g(px); // x =7
13: *((int *)rand())=-1;// x == 7
14:}

Figure 5.4: Example showing indirect access in C

monitor x, we have to keep watching all variables which can be converted to pointer type.
Furthermore, a pointer to x is passed to another function g(). Although x is a local
variable declared inside function main(), we have to keep track of the execution of another
function g(), too. The worst scenario is demonstrated in line number 13. Depending on
the return value of rand() which ranges over integer, line 13 may update x. As we have
seen, there are numerous locations which possibly update x. Large degree of aliasing results
in high overhead at run-time because we need to frequently test whether an instruction
updates a monitored variable or not. Figure 5.4 clearly shows the difficulty caused by
pointer arithmetic and weak typing. In contrast to C, Java disallows such indirect accesses
to variables, which helps to make monitoring a Java program relatively easier than a C
program.

5.1.2 The Address Table

This section describes a solution of using address table to the problems of aliasing and refer-
ence changing when we monitor objects of a Java program. In Figure 5.5, main(String[])
creates al and a2 which are instances of class A. al and a2 each have bl which is of class
B. Similarly al.bl and a2.bl each have a c1 and a c2 of class C.

We can distinguish al.bl.c1 and al.bl.c2 by comparing its address at run-time.
Since an object is located at an unique address in the heap, comparing the addresses
of these two objects allows us to distinguish one object from another. The address table
contains pairs of name and address of monitored objects. Suppose that we want to monitor
al.bl.cl1 where al.bl.clis located at heap address 8200 as Figure 5.6. The address table
contains pairs of addresses and monitored objects’ names, such as (8200, a1.b1.c1).* At
run-time, we check whether an object of C has address 8200 or not. If the address of the

“In general, an address can match more than one monitored object’s name due to aliasing. We will
assume, however, that an address can match only one monitored object’s name. We will later see that the
validity of this assumption follows from the fact that we do not allow reference assignments.
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O1l:class A{

02: B bi;

03: A(int x) {

04: bl = new B(x);

05: }

06: public static void main(String[] args) {
07: A al = new A(10); // instance of A created at address 8000
08: A a2 = new A(20); // instance of A created at address 9000
09: }

10:}

11:class B{

12: int x;

13: private C ci;

14: private C c2;

15: B(int x) {

16: ¢l = new C(x);

17: ¢2 = new C(x);

18: }

19:}

20:class C {

21: int x;

22: C(int x) { this.x = x;}

23:}

Figure 5.5: Example Java code for monitoring objects

al:8000 a2:9000
e N e N
bl1:8100 bl:9400
N N
cl ® c2: cl ® c2
8200 8300 9700 9900
- -
N . N .

Figure 5.6: Objects created in the program of Figure 5.5
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object is 8200, it is a1.b1.c1 and is reported to an event recognizer.® Otherwise, it is not
reported.

Maintaining the Address Table

The address table should be updated whenever a reference to a monitored object is updated.
One difficulty in maintaining the address table is that object graphs can change arbitrarily.
Figure 5.7 (different representation of Figure 5.6) illustrates how to maintain the address
table when an object graph has changed.

al:8000 a2:9000

Address Table

Variable Name | Addr | Desc Ptrs

al 8000 —
b1:8100 51:9400 -

albl 8100 _—

albl.cl 8200 d

al.bl.c2 8300
c1:8200 ¢2:8300 ¢2:9900

al.bl = a2.bl;

a2:9000

Address Table

al:8000

Variable Name | Addr | Desc Ptrs

al 8000 —
b1:8100 b1:9400 j

al.bl 9400 f—

al.bl.cl 9700 ]

al.bl.c2 9900
c1:8200 ¢2:8300 ¢2:9900

Figure 5.7: Update of address table

Suppose that al.bl.cl and al.bl.c2 are monitored. Also suppose that the address
table contains monitored objects and their ancestors. In addition, each entry in the address
table has pointers to its descendants. We can detect an assignment of a monitored object’s
ancestor such as al.bl = a2.bl by finding the object assignment instruction, such as
astore and testing whether the instruction assigns an ancestor of a monitored object.
Once we detect that an ancestor is assigned, we should update the address table with the
addresses of the newly assigned objects. Figure 5.7 shows changes in the address table
caused by ancestor assignment al.bl = a2.bl. Once we detect al.bl is assigned with a
new value a2.bl, we find the descendants of al.bl such as al.bl.cl and al.bl,c2 by
following the pointers to the descendant. Then updates the addresses of these descendants
in the address table with new addresses which are the addresses of a2.b1.c1and a2.b1.c2.
We, however, may not be able to get these new addresses directly due to the Java scoping

5The reference to a monitored object contains the address of the object.
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rule as we have seen in Section 5.1.1. For example, we cannot get the addresses of a2.b1.c1
and a2.bl.c2 from outside of class B because ¢l and c¢2 are declared as private. There
are two ways to get these new addresses.

1. Traverse an object graph by reflection mechanism. Reflection mechanism allows
dynamic traversal of object graphs ignoring of scoping rules only if it is allowed by
a security manager of the Java program.® If a reflection mechanism is allowed, we
can traverse a2.bl, a2.bl.cl, and a2.bl.c2 and get the addresses for these three
objects.

2. Maintain an ezxtra address table which contains all pairs of addresses and names of
object graphs which are assignable to any ancestor of the monitored object. We call
this table extra because this table does not have addresses of monitored objects but
addresses of un-monitored objects. Whenever the assignment to the un-monitored
objects occurs, this extra address table need to be updated in similar way of updating
the address table to keep the extra address table consistent.

Unfortunately, both methods pose unacceptable performance penalties at run-time.
First, all ancestors of the monitored object must be watched to detect if they are assigned
with other objects. Second, a subgraph can be arbitrarily large; it can be an object graph
of the entire program. The cost of updating the address table is proportional to the size
of newly assigned subgraph. There are additional problems specific to each method. For
dynamic traversal by reflection mechanism, reflection may not be allowed by a Java security
manager. For the approach using an extra address table, the extra address table can take
memory space as large as the original space of the program.

Because of these difficulties in updating the address table, Java-MaC put one assump-
tion into its target program.

The ancestors of the monitored object does not change so that the address table
need not be updated.

This assumption seems very restrictive at the first glance. This assumption is, however,
reasonable one considering the following fact. When we specify a monitored object in a
PEDL script, we describe it with the name of reference such as a.b.c pointing to the
object. If an ancestor of the monitored object changes by an assignment to the ancestor,
the object we intended to monitor is not being monitored anymore. In many cases we
already have this assumption that the object pointed by the reference we specify would
not change with another object. Therefore, we believe that the assumption is natural and
not so prohibitive in most cases.

There are two garbage collection related issues, however, concerning the maintenance
of the address table.

1. An object may be relocated and therefore the address of the object can be changed.

2. Created objects may not be reclaimed because the address table contains a reference
to the object all the time.

6 A reflection mechanism [REF97] is supported in Java 1.1 or later.
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The first issue does not cause a problem. A reference to a monitored object stored in
the address table is automatically updated to a new address by a garbage collector when
the garbage collector relocates the monitored object to the new address. Concerning the
second issue, a reference to a monitored object contained in the address table needs to be
distinguished from normal references used in the target program so that when the object
is not reachable except from a reference inside the address table, the object should be
reclaimed and the address table should remove corresponding entries for the object. Weak
references [REF99] provided by the Java 2 platform satisfies this requirement. A weak
reference is a wrapper class for a normal reference. A weak reference is the same as a
normal reference except that it does not prevent a garbage collector from reclaiming an
object it points to. In addition, a user can implement user’s own notification method
and enroll this method to a weak reference so that the method is invoked when the object
pointed by the weak reference is reclaimed. Using this notification mechanism, Thus, Java-
MaC can know when the monitored object is reclaimed and set values for the object as
undefined.

Creating the Address Table

The assumption that the ancestors of the monitored object does not change implies that an
object graph containing the monitored object should be created in a top-down way.” For
example, suppose a linked list containing three nodes is created at line 13 in a top-down
way in Figure 5.8.

Ol:class Node {

02: int value;

03: Node (int [] values) {

04: if (values.size == 1) next = null;
05: else next = new Node( tail(values))
06: value = head(values);

07: }

08: void insert(Node n) {

09: if(next == null) next = n;

10: else next.insert(n);

11: }

12: public static void main(String[] args) {
13: Node head = Node({1,2,3});

14: head.insert (new Node({4}));

15: }

16:

17:}

Figure 5.8: Linked list containing three nodes

" top-down” means that child objects should be created directly from the constructor of their parent
object.
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Figure 5.9 shows the process of creating the object graph rooted at head at line 13.
An object indicated by a dotted circle means that a constructor for the object is invoked
but not yet finished. An object of solid circle indicates that a constructor for the object
returns, i.e., the object is completely created.

head _-=-=7=~-~ head _--—==--_ head _--—==--_ head _---==--_ head
- N . ~ - ~ - ~
{ value = M { value = 1} { value = 1} { value = 1} @
~ - ~ ; g ~. g ~ . -7

N P

[

Figure 5.9: Top-down creation of an object graph

head, head.next, and head.next.next are created in a top-down fashion. Thus,
Java-MaC can monitor these objects and check whether the linked list is sorted or not by
comparing these three objects. Java-MaC, however, cannot monitor the newly inserted
node in line 14, because it is not created in top-down fashion.

When an object is created in top-down way, we can discover the complete name of
the object by looking at the method call stack containing constructors. Java does not,
however, provide direct access to the call stack. Thus, we create our own constructor stack
per thread by inserting probes before and after each constructor invocation. Figure 5.10
illustrates the process of creating an object graph in top-down way.

Ay " Ay " Ry " s
al g4 al J . al J " al K

c1:8200

Stack

Call

al

a) b) ) d) e N
Figure 5.10: Process of creating object graph

In Figure 5.10 a dotted circle means that an object is not yet completely created.

1. Figure 5.10.a) shows the object graph state of line 7 of Figure 5.5. A constructor of
class A has been invoked, but not yet returned.

2. b) displays the state at the beginning of line 4.
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3. ¢) provides a snapshot at the beginning of line 16.
4. d) provides a snapshot at the end of line 16.

5. e) represents the end state of line 17.
6. f) occurs at the end of line 4.

We use two methods to manipulate constructor stack: pushObjName(String objName)
and popObjName (). pushObjName (String objName) pushes the name of object currently
being created into the stack. popObjName () pops up the name of an object completely cre-
ated from the stack. For example, in Figure 5.5, pushObjName ("al1") should be called just
before line 7, and popObjName () should be called right after line 7. Similarly, pushObjName
("b1") should be called before line 4, and pushObjName () should be called directly after
line 4. When line 16 begins ((c) in Figure 5.10), the call stack contains al.bl.cl. We
know that al.bl.c1 is a monitored object. Thus, we can add a pair of (8200,a1.b1.c1)
to the address table.

5.2 PEDL for Java

PEDL must be closely related to the target programming language, because definitions
of primitive events are based on entities of programming language such as variables and
methods. In this section, we will describe PEDL for Java. We will simply use PEDL
as PEDL for Java in this section. The overall structure of a PEDL script is given in
Figure 5.11. <e> is a name of an event. <c> is a name of a condition. <var> is a variable
in a target Java program. <meth> is a method in a target Java program. A PEDL script
consists of four sections.

e export section declares a list of events and conditions to be exported to a run-
time checker. Notice that not all events/conditions are exported. A user can
define events/conditions which are not exported. A user uses these unexported
events/conditions as subexpressions of exported events/conditions.

e overhead reduction section provides the following four flags to turn on and turn off
to reduce the monitoring overhead:

— timestamp <period in ms>: sending timestamps from a filter to an event rec-
ognizer in every <period_in ms> millisecond so that event recognizer can eval-
uate timing properties

— multithread: executing lock/unlock operations to make an update and a probe
atomic so that race condition in multi-threaded program can be avoided (see
Section 6.2.1)

— deltavalue: sending the value of a monitored variable in compact representa-
tion to decrease the size of a snapshot

— valueabstract: sending a snapshot of the target program only when that snap-
shot affects the evaluation of properties (see Section 7.3.2)
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MonScr <...> // the title of a PEDL script

/* Export section */
export event <e>; // exported event declarations
export condition <c¢>; // exported condition declarations

/* Overhead reduction section */
[timestamp <period_in_mg>;]
[multithread;]

[deltavalue;]

[valueabstract;]

/* Monitored entity declaration section */
monobj <var>; // declaration of monitored variables

monmeth <meth>; // declaration of monitored methods

/* Event and condition definition section */

event <e> = ...; // event definition
condition <c>= ...; // condition definition
End

Figure 5.11: Structure of PEDL

When a flag is present, the corresponding option is enabled. Otherwise, the option is
disabled. The default values for these flags are false. The overhead is reduced either
when timestamp or multithread is set false, or when deltavalue or valueabstract
is set true.

Chapter 7 discusses these options in detail.

e monitored entity declaration section declares what variables and methods in the tar-
get program are monitored. Section 5.2.1 describes the details of these declarations.

e event and condition definition section defines events and conditions based on prim-
itive events and primitive conditions constructed from the declared monitored vari-
ables and methods. Section 5.2.2 describes the details of these definitions.

A complete BNF syntax of PEDL is in Appendix C.
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5.2.1 Declared Monitored Entities
Declared Monitored Variables

Since Java is an object oriented language, PEDL for Java needs to define events and
conditions based on objects such as al.bl.cl where al is a parent object of bl and b1 is
a parent object of c1. A prefix of the monitored object name should be that of root object.
A root object is an object created statically. A root object is either®

s 3 static object.

— For example, A.bl is the root object of A.bl.c1 where A is a class name and
bl is declared as a static object in A.

¢ a local object declared inside of a static method

— For example, A.main(String[]).c1is the root object of A.main(String[]) .cl.

where A is a class name, main(String[]) is declared as a static method in A
and c1 is declared as a local object in main(String[]).

PEDL, however, does not allow objects to be monitored. Rather, PEDL declares
member/local primitive variables of objects to monitor.” The rationale for monitoring
only primitive variables is the following. Suppose we monitor an object including an
object graph rooted at that object. Java-MaC must always watch whether any field of the
object graph is changed. In some case, an object graph can be arbitrarily large even to the
size of the entire object graph of the target program. Also, when Java-MaC detects the
object has changed (i.e., some field of the object graph rooted at object has changed), the
entire object graph should be delivered to the event recognizer. Both of these behaviors
pose an unacceptable performance penalty. Therefore, it is for efficiency that PEDL allows
Java-MaC to monitor only primitive variables.

PEDL can define an event or a condition related to contents of an object represented
by primitive variables. PEDL, however, cannot define events or conditions based on in-
formation specific to Java objects such as types of objects. For example, Java provides
ingtanceof keyword to determine if an object is of a given type. Suppose A a = new
AQ);. Then, a instanceof A is true. PEDL cannot define a condition such as this be-
cause PEDL does not handle an object directly but only primitive variables of the object.

Although PEDL does not handle object specific information, we believe that handling
primitive variables constituting an object is expressive enough to define events and condi-
tions for many purposes considering what really defines an object is its primitive variables.
Henceforth, whenever we say monitoring an object, it means monitoring primitive variables
of the object.

8PEDL provides another way to declare monitored objects. A user can use a class name to indicate all
instances of the class. For example, for the declaration monobj A.bl.cl, A indicates all instances of class 4
if 4.b1 is not a root object, i.e., bl is not a static variable of A. This way of declaration is convenient when
a class creates only one instance or all instances of the class are supposed to be monitored collectively. See
Section 5.1.2.

®A local variable is a variable declared inside of a method body. Primitive types in Java are boolean,
byte, char, short, int, long, float, and double.
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Declared Monitored Methods

The finest level of execution points in Java programs is bytecode instruction. We may
specify an execution point such as Address 24 in Foo.bar() which means that we would
like to detect when the target program executes the bytecode instruction located at the
address 24 of the method Foo.bar (). It is not technically difficult to detect an execution
point specified as the address of bytecode instruction; we can insert a probe at the address
of any bytecode instruction and detect the execution of that instruction. A user may
want to indicate monitored execution points in bytecode addresses because the user can
express any execution points of the target program in this way. The instruction level
execution point, however, is inconvenient to use because it is difficult for a user to know
what addresses to monitor in order to check whether the execution of the target program is
correct. It is difficult for two reasons. First, a user needs to inspect the bytecode, which is
hard to understand because of its low-level, to specify the address to monitor. Second, the
address of an instruction does not have inherent meaning in the program. Given the same
source code, the bytecode generated by a different compiler may have different sequences
of bytecodes.

Therefore, PEDL does not provide a way to specify execution points by directly specify-
ing the addresses of instructions. Rather, PEDL makes a user specify an execution control
instruction whose target address is a monitored execution point. There are three types of
execution control instructions in Java -jump, exception, and method beginning/ending.

e jump
An unconditional jump instruction has a target address in a method as the only
operand. A conditional jump instruction has several target addresses. The instruc-
tion selects the next move depending on its condition value.

e exception
When an exception occurs, an exception handler handles the exception. In other
words, when an exception occurs, the control moves to the beginning of the corre-
sponding exception handler. An exception handler is declared by a range indicated
by a pair of beginning/ending addresses in a method and a type of ezception which
might happen inside the range.

e method beginning/ending
Methods are considered as basic building blocks for a program. Thus, important
execution points are frequently specified using method beginning/ending.

To specify jumps and exceptions to be monitored, a user has to look at the details of the
code inside a method and specify which jumps/exceptions in the method to monitor. This
is a difficult task because a user needs to understand the code inside a method. In contrast,
to specifying a jump or exception, specifying a method beginning/ending to be monitored
is easy because a user does not need to know the code inside method. For this reason and
the popular usage of methods, currently, PEDL supports method invocation/return.

5.2.2 Defining Events and Conditions

Basic building blocks of events and conditions in PEDL script are primitive variables and
methods declared as monitored entities as we have seen in Section 5.2.1.
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Defining conditions. Primitive conditions in PEDL, are constructed from boolean-
valued expressions over the monitored variables. An example of such condition is condition
TooFast = Train.calculatePosition().trainSpeed>100. In addition to these con-
structed boolean expressions, we have the primitive condition InM(f). This condition
is true as long as the execution is currently within method f. Complex conditions are built
from primitive conditions using boolean connectives.

Defining Events. The primitive events in PEDL correspond to updates of monitored
variables and invocations and returns of monitored methods. Each event has an associated
timestamp and may have a tuple of values such as (V1, V5, ..., V).

The event update(x) is triggered when variable z is assigned a value. The value
associated with this event is the new value of x. Events startM(f) (endM(f)) are triggered
when control enters method f (respectively, returns from f). For example, event OpenGate
= startM(Control.open()) defines an event meaning a controller starts opening a gate
in Figure 4.4. The value associated with startM is a tuple containing the values of all
arguments. The value of an event endM is a tuple that has the return value of the method,
along with the values of all formal parameters at the time control returns from the method.

All operations on events defined in the logic can be used to construct more complex
events from these primitive events. In PEDL, we also have two attributes defined for events,
time and value. As mentioned in Section 4.2.3, events have associated with them attribute
values, and the time of their occurrence. These can be accessed using the attributes time
and value.

Time. time(e) gives the time of the last occurrence of event e. time(e) refers to the
time on the clock of the monitored system (which may be different from the clock of the
monitor) when this event occured.

Value. value(e,i) gives the ith value in the tuple of values associated with e, provided
e occurs.'® We define values of primitive events as follows:

e A value of update(var) is a tuple containing the current value of var. For ex-
ample, suppose that int Foo.x is a monitored variable and the target program
assigns 10 to Foo.x. Then an event update (Foo.x) occurs. The value of the event
value (update(Foo.x),0) is 10.

o A value of startM(method) is a tuple containing parameters of the method when the
method starts. For example, suppose that int Foo.sum(int,int) is a monitored
method. When the target program invokes Foo.sum(int,int) with a pair of pa-
rameters 1 and 2, the event startM(Foo.sum(int,int)) occurs. The event has two
values because Foo.sum(int,int) has two parameters.

1
2

— value(startM(Foo.sum{int,int)),0)

— value(startM(Foo.sum{int,int)),1)

10 starts from 0.
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e A value of endM(method) is a tuple containing parameters of the method and a return
value (if any) when the method ends. For example, suppose that int Foo.sum(int,int)
is a monitored method and Foo.sum{(int,int) has been invoked with a pair of pa-
rameters 1 and 2. When Foo.sum(int,int) returns, the event endM(Foo.sum(int,int))
occurs. The event has three values.

— parameters
* value (endM(Foo.sum(int,int)),0) = 1
* value (endM(Foo.sum(int,int)),1) = 2
— return value
* value (endM(Foo.sum(int,int)),2) = 3

We do not define the values of combined events. The only exception is pe when cond
where pe is a primitive event. The value of pe when cond is associated with value (pe)
when cond is true.

PEDL does not allow recursive definitions such as condition ¢ = x > 3 && cinorder
to prevent diverging computation. In addition, PEDL does not provide quantifiers in
defining events and condition. Therefore, a PEDL script is evaluated in linear time to the
size of the specification (details on evaluation of a PEDL script, see Section 6.2.2). Fast
event recognition is key requirement in PEDL. PEDL is designed to be an interface language
to describe a thin interface between low-level implementation and high-level requirement.
Complex specification of requirement properties should be written in MEDL.
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Chapter 6

Java-MaC: a MaC Prototype for
Java

The MaC architecture described in Chapter 4 is a general architecture not limited to any
specific programming language. To demonstrate the effectiveness of the MaC architecture,
however, we implement a MaC prototype for Java programs. This chapter describes a MaC
prototype for Java programs, called Java-MaC. Figure 6.1 shows the overall structure of
Java-MaC. Section 6.1 describes the details in the components of static phase of Java-MaC.
Section 6.2 describes the details in the run-time components of Java-MaC.

target program e -
PEDL specification MEDL specification

(*.class)
PEDL compiler MEDL compiler

information

[ instrumentation
instrumentation.on

Static Phase

Run-time Phase

instrumented
target program
(*.class)

1
compiled MEDL ]

1
compiled PEDL
e (pedl.out) e (medl.out)
; Event Recognizer ; Run-time Checker

(interpreter of pedl.out )) (interpreter of medl.out

Figure 6.1: Overview of Java-MaC

6.1 Components of Static Phase

Java-MaC has three static phase components: a PEDL compiler, a MEDL compiler, and an
instrumentor. A PEDL compiler compiles a PEDL script and generates a file pedl.out,
which contains an abstract syntax tree (AST) of the PEDL script, which is evaluated
by an event recognizer at run-time. At the same time, the PEDL compiler generates
a file instrumentation.out containing instrumentation information which is used by
the instrumentor. Similarly, a MEDL compiler compiles a MEDL script and generates
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medl.out containing an AST which is evaluated by a run-time checker at run-time. A
Java-MaC instrumentor takes Java classfiles (*.class) and instrumentation information
(instrumentation.out) containing a list of monitored variables/methods and monitoring
flags in a PEDL script. Based on these two inputs, a Java-MaC instrumentor inserts a
filter into the target program.

Section 6.1.1 describes the structure of PEDL/MEDL AST and the algorithm of compil-
ing PEDL/MEDL scripts. Section 6.1.2 explains the instrumentation process in high-level.
Section 6.1.3 describes the instrumentation rules in detail.

6.1.1 PEDL/MEDL Compilers

pedl.out consists of three parts: variable/method table, event/condition table, and event/condition
trees.

An entry of the variable/method table consists of variable /method name, variable/method
type, variable/method value, and updated flag which indicates that a variable is updated or
a method is invoked/returned at the time instant represented by a current snapshot. Val-
ues of entries in the variable/method table are initialized as undefined (see Section 4.2.2).
The entry of the event/condition table consists of an event/condition name, an exported
flag which indicates whether this event/condition is declared as exported, and a pointer to
the root of event/condition tree. An event/condition tree contains an expression defining
the corresponding event/condition based on program variables and methods whose values
are in the variable/method table and other events/conditions whose trees are pointed from
the event/condition table. There are four different types of nodes in event/condition trees.

e An event node contains the value of the event, a flag indicating that the event is
present, and a timestamp.

e A condition node contains its old truth value and a current truth value. The old
truth value is necessary for evaluating start and end construct. For example, in
order to evaluate start(A.x == 0), we need to know whether A.x == 0 was false
previously.

e A reference node contains a link to an event/condition in the event/condition table
or a monitored variable/method in the value/method table.

e An expression node represents a constant or an arithmetic operator such as + or -.
An expression node contains a value field.

A root of an event/condition tree has a mark which indicates whether this node is al-
ready evaluated so that an event/condition tree is not evaluated more than once (see the
compilation algorithm in Figure 6.4).

Figure 6.3 shows the PEDL AST of Figure 6.2. There are two entries in the vari-
able/method table - one for A.x and one for A.y. PEDL does not allow recursive expres-
sions as we have stated in Section 5.2.2. Thus, an event/condition expression forms a tree.
nl is the root of a tree indicating the condition expression A.x > 3. Similarly, n5 is the
root of a tree which represents the event expression start(cl && A.y < 10). n3 refers to
the variable A.x in the variable/method table. n8 points to the root to the condition c1
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MonScr test
export event el;
monobj int A.x;
monobj int A.y;

condition c1 = A.x > 3;
event el = start(cl && A.y < 10);
end

Figure 6.2: A simple PEDL script

pedl.out

( Variable/Method Table Event/Condition Trees

var |type |value updated

A.X|int|undeff false
A.y|int |[undefi false

Legends

O Condition Node Event/Condition
Table

Name |Exported |Ptr

5) Event Node

Reference Node cl N

w r el Y
W Expression Node

Figure 6.3: A PEDL AST of Figure 6.2
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(a node nl) which represents the condition c1. The leaves of an event/condition tree are
either reference nodes or expression nodes of constants.

Figure 6.4 describes an algorithm for compiling a PEDL script. A MEDL compiler
compiles MEDL scripts in a similar way.!

Step 1. create the list of exported events/conditions

Step 2. create the variable/method table for monitored variables/methods
and the event/condition table for event/condition definitions

Step 3. make entries for monitored variables/methods to the variable/method

table

Step 4. for each event/condition definition,

4.1 create an event/condition definition node

4.2 if the event/condition table does not have an entry for the
event/condition definition, create an entry for the definition
node

4.3 make a link to the node at the corresponding entry in the
event/condition table and set an exported flag of the entry
if the event/condition is declared as exported.

4.4 create a child node corresponding to the sub-expression

for an operator/connective, generate a corresponding node.
Then, create children nodes for the operands of the operator
by repeating step 4.4.
for a reference to a monitored variable/method, generate a
reference node which has a link to the corresponding entry
in the variable/method table.
for a reference to an event/condition, generate a reference
node. Then
* if the event/condition table does not contain an entry for
the event/condition, create a corresponding entry in the
event/condition table.
* make a link from the node to the corresponding entry in
the event/condition table
for a constant, generate a node containing the constant

Figure 6.4: Algorithm of compiling a PEDL script

6.1.2 Instrumentor

An executable Java program is instrumented by the Java-MaC instrumentor. An exe-
cutable Java program consists of a set of classfiles. One classfile contains the definition
of one class. A Java classfile is loaded into a running Java virtual machine at run-time.
Thus, classfiles are linked dynamically at run-time rather than statically. In order to link
classfiles dynamically, a classfile contains symbolic information such as string constants,

'PEDL/MEDL compilers uses Java Compiler Compiler [Web]
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class names, field names, method names, local variable names?, and other constants that
are referred to within the classfile. This symbolic information in a classfile helps the Java-
MaQC instrumentor to recognize the instructions updating monitored variables and method
invocations in the classfile. For example, suppose we would like to monitor a class variable
x of type int in a class Foo.? putstatic, an instruction updating a class variable, has the
symbolic name and type of the variable and the type of the parent class as operands. We
can find an instruction putstatic Foo/x I (“I” means integer type) which updates the
variable x by inspecting classfiles.

Java-MaC monitors three different entities of a Java program: primitive field vari-
ables, primitive local variables, and method beginnings/endings. Java-MaC instrumentor
detects instructions which update monitored variables or instructions located at the begin-
nings/endings of methods and put probes which report new values of monitored variables
or monitored execution points.

o Primitive field variables
A field variable is either a class variable or a instance variable. A class variable is
updated by putstatic instruction. An instance variable is updated by putfield
instruction. Both instructions have a variable name and a parent class name. Both
instructions take a top stack operand as a new value for the variable. The Java-MaC
instrumentor inserts probes to instructions which update a monitored class variable
by inspecting the instructions and its operands. A probe obtains the new value
for the monitored variable from the operand stack at run-time. putfield takes a
reference to the parent object containing the variable as a stack operand additionally.

e Primitive local variables
Local variables are updated by <T>store, <T>store <n> and iinc where <T> is a
primitive type and <n>€ {0,1,2,3}. These instructions contain an index to a local
variable as an operand. A symbolic name to a local variable is available in a constant
pool of classfile.

e FEzxecution points
There is only one starting point in a method - the beginning of a method definition. A
method, however, can have several ending points where a return instruction exists.
Parameters and return variable are obtained from operands stack.

Once an instruction (call it ¢) is recognized as updating a variable which may be a mon-
itored variable, monitorenter Filter.lock is inserted right before ¢, and monitorexit
Filter.lock is inserted right after ¢ for making update of a variable and the report of that
update an atomic session (see Section 6.2.1). Then, a probe invoking void send0ObjMethod(
Object parentAddress, <T> value, String varName) ( parentAddress is an address
of an object whose member field varName is monitored ) is inserted right before i. An
example of instrumented Java bytecode is in Figure 6.5.

2Local variable names are available in a classfile when source code is compiled with the -g debug flag

3A class variable is a variable statically declared for a class, not for an instance of a class. An instance
variable is a variable declared for an instance of a class.

“We use JTREK [Dig] for modifying bytecode of the target program.
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aload_1
aload_0
getfield CHARON/simulator/classes/DigitalVar/v I
getstatic mac/filter/Filter/lock Ljava/lang/Object
monitorenter
dup?2
ldc "wval"
invokestatic mac/filter/SendMethods/sendObjMethod(
Ljava/lang/0Object;ILjava/lang/String;)V
putfield CHARON/simulator/classes/Var/val I
getstatic mac/filter/Filter/lock Ljava/lang/Object
monitorexit

Figure 6.5: Inserted probe in bytecode (indented lines indicate a probe)

sendObjMethod () checks whether a variable is actually the monitored variable (or be-
ginning/ending of a method) by testing whether parentAddress matches the address of a
monitored object in the address table (see Section 5.1).% If a variable is the monitored vari-
able, sendObjMethod () sends the monitored variable (or beginning/ending of a method)
and new value of the variable to an event recognizer.

6.1.3 Instrumentation Rules

This section describes instrumentation rules for monitored variables in order to illustrate
the instrumentation process clearly. First, we define a classfile mathematically. Then, we
describe instrumentation rules based on the definition of a classfile.

Definition of Classfile. A classfile ¢ is a tuple of a qualified class name Id., a set of
access modifiers P(Acc,), the name of the direct super class (optional) [Id,], the names of
direct super interfaces P(Id,), field declarations F D, constant values CV, method declara-
tions M D, method implementations M I, and constant pool CP. Method implementations
M1 map the signatures of methods Sig to the implementations I'mpl which consists of the
stack limit, the local variable limit, the exception handlers H, and the code array for that
method Code. Code maps a set of addresses PC to a set of instructions Instr. An instruc-
tion may have operands which are indicated by indexes to the constant pool CP of the
class which contains symbolic names of classes, methods, and fields referred in the class or
indexes to local variables. This structure of a classfile is in Table 6.1.

Instrumentation Rules. We define the instrumentation of programs as function —p
from a program and monitored variables to the instrumented program. A program is a
set of clagsfiles, where each classfile contains a set of method implementations. We define

5 A probe checks whether a new value affects requirement properties when a value abstraction is enabled
for reducing monitoring overhead (see Section 7.3.2).
5The definition of classfile is from [Ber97]
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C = Id.xP(Acc) x [Id;] x P(Id;) x FD x CV x MD x MI x CP
MI = Sig— Impl
Impl = N XN x H xCode
H = PCxPC — P(ld;) — PC
Code = PC — Instr
Instr = Opcode x N*
Opcode = {aaload,aastore,aconstnull,...}
Sig = Id,, x Desc*
PC = N7 U{0}(a set of program counters)

Id. = a set of class names
Id,, = a set of method names
Desc = a set of parameter descriptions

Table 6.1: Classfile definition

— p hierarchically. We define the function —p in terms of the classfile instrumentation
—¢ which maps from a classfile and monitored variables to the instrumented classfile.
We define —¢ in terms of the method instrumentation —3; which maps from a method
implementation and monitored variables to an instrumented method implementation which
contains probes for monitored variables. We will use vars C V as a set of monitored
variables declared in a PEDL script where V is a set of program variables.

Definition 13 (Instrumentation of a program : —p) For a program p C C, instru-
mentation of p with a set of monitored variables muvars is defined as a mapping

—p€ P(C) x P(V) = P(C)

such that (p,mvars) —p p' where p’ = {'|3c € p.(¢,mvars) —¢ '} UCriger where Cryger
is a set of Java-MaC filter classfiles.

Definition 14 (Instrumentation of a classfile : —¢) For a classfile ¢ € C, instru-
mentation of ¢ with mvars is defined as a mapping

—ce€CxPV)=C

such that (c,mvars) —¢ ¢ where ¢ = (id., acc, super, inter faces, fd, cv, md, mi) and

c = (id., acc, super,inter faces, fd,cv,md, mi'). mi' is an instrumented method imple-
mentation such that mi' = {(s,impl’) € SigxImpl | A(s,impl) € mi. ((id,, s,impl), mvars) —
(idc, s,impl')}

Instrumentation of a method implementation — s is defined by following three steps.
First, the Java-MaC instrumentor creates a table containing the positions and the sizes
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of probes in the method, which is defined as a mapping —g. Second, the instrumentor
adjusts the target address of jump instructions in the method and an exception table using
the table created by — g, which is defined as a mapping —;. Finally, the instrumentor
inserts probes into a method implementation, which is indicated as a mapping performed
by —7.

Definition 15 (Instrumentation of a method implementation: — ;) For a method
implementation m € M1, instrumentation of m with mvars is defined as a mapping

—“MEMIXP(V)— MI
such that — s is defined as composition of the following three mappings
e probe table creation — g
e jump address adjustment —
e probe insertion —r

In other words def
—M = —7 0 —>jJ0—=§K

The following paragraphs define —7, — 7, and — . We start with clarification of the
notations we will use in the definitions.

Notations

A data type <T>€ {i,1,f,d,a}.

e A set of opcodes for storing local variable L_STR = {<T>store,<T>store_<n>iinc}
where <n> € {0, 1,2, 3}

e A set of opcodes for storing field variable F_STR = {putfield, putstatic}.

e A set of opcodes for jump JM P ={goto, gotow, if<cond>, ifnull, ifnonnull,
if _acmp <cond>, if icmp <cond>, jsr, jsr_w} where<cond>= {eq,ne,1lt,le,gt,ge}.

e For ¢ € Instr, opc; € Opcode indicates operation code of instruction 7, op;; <T"> is
jth operand of ¢ which has a type <T">.

® ¢;1 is a code which starts with instructions ¢ and ends with instruction 3.

We use several shorthand notations.
e sig-m def (id¢, idp,, desc) for the signature of a method.
o hdm % (no,n1,h) for a header of a method where ng is the size of the operand

stack, n; is the number of local variables and A is the exception table.

d . . .
o meth % (sig-m, hd_m) for all method implementation components except code.

® pc; is the location of instruction 7.

63



Creating a table for probes’ positions and sizes: — g

We define a mapping
— k€ Id, x Sig x Impl — Id, x Sig x Impl x (PC — N)

in order to create a set of instrumentation positions and size of the probes. — g is defined
inductively in Table 6.2. Init is a rule for empty code as the base case in induction.
NoChange is a rule for instructions where no probe is inserted. LocalStore, wide and
FieldStore are rules for instructions where probes are inserted. In Table 6.2, s, is the
size of an inserted probe.

Jump address adjustment rules: —;

We define a mapping
— g€ Id, x Sig x Impl x (PC — N) — Id. x Sig x Impl

in order to adjust target addresses of jumping instructions and the exception table. We
use a utility function

getBytes € PC x PC — N.

get Bytes(boundy, bound;) returns a number of bytes newly added by probes inserted
between boundy and bound; based on the table generated by —x. h' is an adjusted
exception table of h, ie, b’ = {(pcy,pcy,e,pcy) | (pco, per,e,pe2) € h. pey = pey +
getBytes(0, pcy). Similarly for pc) and pch}.

— 7 is defined inductively in Table 6.3. Init is a rule for empty code as the base case
in induction. NoChange is the rule for non-jump instructions. JM P is the rule for jump
instructions whose target address should be adjusted.

Instrumentation rules: —;

We define a mapping
— 1€ Id, x Sig x Impl —1 Id, X Sig x Impl

in order to obtain an instrumented method. We will use shorthand notations for probes.

e probeg(< vn >,<T>) def

getstatic mac/filter/Filter/lock Ljava/lang/Object;

monitorenter;

dup2;

1dc <vn>

invokestatic mac/filter/SendMethods/sendObjMethod(
Ljava/lang/Object;<T>Ljava/lang/String;)V

where < vn > is a string representing a monitored variable name and <I"> is a type
of a monitored variable.
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[Init](meth,e) =k (meth, €, D)

opc; € L.STR
ide.idy,.0p;1 <T> € muvars
(meth,c) =g (meth,c,l)

LocalStore
[ ] (meth, c; i) =k (meth, ;4,1 U {(pci, Sprove) })
opc; = wide
opi € {iinc,<T>store}
1de.idy, .0p0 <T> € muars
. (meth,c) =g (meth,c,l)
[wide]

[FieldStore]

[NoChange2]

[NoChange0|

(

(metha G Z) —K (metha G ia Iy {(pcia SpTObe)})

opc; € F_STR
op;1 <T> € mvars
(meth,c) =g (meth,c,l)
(metha G Z) —K (metha G ia lu {(pcia SpTObe)})

opc; ¢ L.STRU {wide}U F_STR
(meth,c) =g (meth,c,l)
(meth,c;i) =k (meth,c;i,l)

opc; € L.STR
1de.idy-0p;1 <T> & mvars
(meth,c) =g (meth,c,l)
(meth,c;i) =k (meth,c;i,l)

[NoChangel]

opc; = wide

opi1 € {<T>store,iinc}
1de.idy,.0p0 <T> & muvars
(meth,c) =g (meth,c,l)

V opi1 € {<T>store,iinc}

(meth, c;i) =k (meth,c;i,l)

opc; € F_STR
opi1 <T> ¢ mvars
(meth,c) =g (meth,c,l)

NoChange3
[NoChanges] (meth, ¢;1) =k (meth, ¢;1,1)

(6.2)

(6.3)

(6.4)

(6.5)

(6.6)

Table 6.2: Rules for — g
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[Init](sig-m,ng,n1, h,€,1) =7 (sig-m,ng,n1, b €) (6.9)

opc; & JMP
o et 39 (1)
opc; € JMP
TMP] (meth,c,l) — 5 (meth,d) (6.11)

(meth, ¢;i,1) = (meth, c';i[op;1 /addr]) where
addr = op;1 + get Bytes(pc;, pc; + opi1)

Table 6.3: Rules for —;

di
® probe, tef

getstatic mac/filter/Filter/lock Ljava/lang/Object;
monitorexit;

—+7 is defined inductively in Table 6.4 describing rules which insert probes and Table 6.5
describing rules which do not insert probes. Init is the rule for empty code as the base case
in induction. Init also increases the size of the stack by three because a parent object ad-
dress, a value of monitored variable, and a variable name are passed to sendObjMethod ().
NoChange is the rule for instructions where no probe is inserted. LocalStore, wide and
FieldStore are the rules for instructions where probes are inserted.

6.1.4 Side Effects of Java-MaC

Java-MaC instrumentor does not change the architecture of the target program. In other
words, Java-MaC instrumentor does not change the interfaces between classes consisting
of variables and methods declarations. We can prove this using the instrumentation rules
—p, =, and — s defined in Section 6.1.3. The main idea of proof is to show that Java-
MaC instrumentor does not modify the contents of classfiles except the instructions of
methods.

We call a class ¢ and another class ¢ equivalent if and only if all the element of ¢ and ¢/
are equal except method implementation mi . Similarly, we call a method implementation
m4 and another method implementation mi’ equivalent if and only if the signature of ms
is equal to the signature of mi’. A class ¢ is a new class to the program = if # does not
have a class equivalent to ¢’. Similarly, a method implementation mi’ is a new method to
7 if 7 does not have a method implementation equivalent to md'.

Theorem 2 Java-MaC instrumentor does not change the architecture of the target pro-
gram by prohibiting the following activities.

Class addition of new classes (except Cpier) to the the target program or removal of any
classfiles from the target program.
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[Init](sig-m,ng,n1, h,€) =1 (sig-m,ng + 3,11, h,€)

opc; € {<T>store}
ide.idy,.0p;1 <T> € muvars
(meth,c) =1 (meth,d)

[Local Store] - ; -
(meth, c;i) —1 (meth,d; probes(op;1,<T>); i; probee)

opc; = wide
opi € {<T>store}
1dc.id, .0p50 <T> € muars

th,c) — th,c
(Wideo] (meth,c) —1 (meth,c')

(meth, c;1) —1 (meth, d; probeg(opie,<T>); 1; probee)

opc; = wide
op;1 = iinc
1dc.id, .0p50 <T> € muars
(meth,c) =1 (meth,c’)

[Widel] - ; -
(meth, c;i) —1 (meth,d; probes(op;e,<T>); 1; probee)
opc; = putfield
op;1 <T> € mvars
(meth,c) =1 (meth,c)

[FieldStore0] - - -
(meth, c;1) —1 (meth, d; probes(opi1,<T>); i; probee)

opc; = putstatic
op;1 <T> € mvars
(meth,c) =1 (meth,c)

[FieldStorel] - ; -
(meth, c;1) —1 (meth, d; probes(opi1,<T>); i; probee)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

Table 6.4: Rules for —; which insert probes
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opc; ¢ LSTRU {wide}U F_ STRUJMP
(meth,c) =1 (meth,c’)

NoChange0
[NoChange0) (meth, ¢; i) =1 (meth, ;)

(6.18)

opc; € L.STR
1de.idy-0p;1 <T> & mvars
(meth,c) =1 (meth,c’)

NoCh 1
[NoChangel] (meth, c; i) =1 (meth, c'; i)

(6.19)

opc; = wide

( opi1 € {<T>store,iinc}

1de iy, .0p0 <T> & muvars
(meth,c) =1 (meth,c’)

(meth,c;1) —1 (meth,c';1)

V opi1 & {<T>store,iinc}

[NoChange2]

(6.20)

opc; € F_STR
opi1 <T> ¢ mvars
(meth,c) =1 (meth,c’)
(meth,c;1) —1 (meth,c';1)

[NoChange3| (6.21)

Table 6.5: Rules for —; which do not insert probes

Field addition/removal of field variables to/from the classfiles

Method addition/removal of method declarations or method implementations to/from the
classfiles

Local addition/removal of local variables to/from the methods of the classfiles

Instr removal of any existing instructions in the methods of the classfiles nor adds instruc-
tions other than ones defined as probes(< vn >, < T >) and probe,.

Proof of [Class]: —p applies —¢ to all the classfiles of the target program 7 and
generates an instrumented target program 7’. Definition 14 shows that —¢ preserves all
elements of a classfile except mi. Thus, for any instrumented classfile ¢’ € 7/, there is an
equivalent classfile ¢ in pi.

Proof of [Field]: Similar to the proof of [Class] because —¢ preserves field declarations

fd.

Proof of [Method]: — ¢ preserves method declaration md. —¢ applies —s to every
method implementation mi. Definition 15 shows that —,s is defined as —j0 —jo — k.
Table 6.2 shows that — i preserves the signature of mé. Similarly, Table 6.3, Table 6.4, and
Table 6.5 show that — ;7 and —; do not change the signature of method implementation .
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Thus, for any instrumented method implementation mi’ in instrumented classfile ¢’ € T,
there is an equivalent method implementation ms: in a classfile c € &

Proof of [Local]: Similar to the proof of [Method] because none of —7,—;, and —x
changes the local variables.

Proof of [Instr]: Similar to the proof of [Method] because none of —7,—;, and —x

removes an instruction nor add instructions other than probes(<vn>,<T>) and probe,.

0

Although the architecture of the target program is preserved as shown in Theorem 2,

there are side effects to the target program by Java-MaC. The following list is possible side
effects caused by Java-MaC.

e Timing of execution. A speed of the target program can be slowed due to probes’
execution. A real-time application may violate temporal requirements because Java-
MaC slows down the application.

¢ Thread scheduling. The execution order among the threads of the target program
may change due to slowed execution speed. This changed execution order may cause
the violation of requirements. It should be noted, however, that altered execution
order does not affect the correctness of a target program when the target program
implements synchronization mechanism correctly.”

s Resource Limitation. The amount of resources that JVM can consume is finite.
Java-MaC consumes resources, effectively reducing the available resource to the tar-
get program. [LY99] specifies the limit on several resources. The resources are:

— Operand stack. Each method specifies the maximum size of the operand
stack. Inserted instructions by the Java-MaC put additional operands onto
operand stack to pass to sendObjMethod(...). Therefore, the size of operand
stack increases, thus reducing the remaining space for the original program (The
operand stack size must be less than 65536 ( = 21°).)

— Method stack. Each thread has one method stack. When a method is invoked,
a new frame for the method is created and loaded on the method stack. Each
probe invokes sendObjMethod (. ..). Therefore, the method stack size increases,
which can reduce the remaining space for the original program. (The Java stack
size must be less than 65536.)

— Constant pool. The Java-MaC inserts instructions referring to methods and
variables of Java-MaC. Therefore, the constant pool additionally must contain
symbolic names of Java-MaC. (The constant pool must be less than 65536.)

— Size of a method and a class file. Java-MaC inserts probes into a method
implementation. Thus, the size of the instrumented method increases. (The
size of method must be less than 65536 instructions. )

"A program has a synchronization error if the program behaves incorrectly when extraneous delays are
introduced in threads [Gai86].
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— Size of heap. The size of the heap increases because of Java-MaC data struc-
tures.

e Target address of a jump instruction and exception handler. A target ad-
dress of a jump instruction should be adjusted if probes are inserted between a jump
instruction and its target address. An exception handler is declared by a range indi-
cated by a pair of beginning/ending locations and a type of exception which might
happen inside the range. A range declaration of an exception handler should be
modified, too.8

6.2 Components of Run-time Phase

6.2.1 Filter

A filter extracts snapshots from the target program and sends these snapshots to the event
recognizer in correct order. A filter consists of following three parts:

e q communication channel
A target program is not originally designed to communicate with an event recognizer.
A communication channel from the target program to the event recognizer is created
by a filter. The type and the destination of communication is decided when the
target program is instrumented.

e probes
Probes are inserted into the all locations of monitored variables updates (or begin-
nings/endings of monitored methods). A probe extracts the new value of a monitored
variable and sends the value (or beginning/ending signals of monitored methods) to
the event recognizer through the communication channel of a filter.

e q filter thread
A filter thread flushes the content of the communication buffer to the event recognizer
through the communication channel.

A filter might report updates of monitored variables of a multi-threaded target program
differently from what really happens in the target program due to preemptions in thread
scheduling. Consider the following example in Figure 6.6. 1dc is a bytecode instruction to
load a constant into an operand stack. putfield z is a bytecode instruction to store a top
operand in the operand stack into a field variable . sendObjMethod () reports monitored
variable updates to an event recognizer. The value sendObjMethod() sends is obtained
from a top operand in the operand stack.

In Figure 6.6, y is updated earlier than x. The update of x, however, is reported earlier
than that of y because a preemption occurs between sendObjMethod () and putfield x.’
There are two conceivable solutions for this problem. The first solution is making an update
instruction and a probe an atomic session using a global lock. This solution guarantees

8 A jump instruction uses a 16 bit offset which can express any address in a method whose size is limited
to less than 65536. Therefore, the increased offset due to probe insertion does not cause problem.

®Even when sendObjMethod() is inserted right after putfield, there still can be incorrect ordering of
reporting snapshots.
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Thread 1 Thread 2

ldc 10
preemption sendObjMethod ("x", 10)
by scheduler I
ldc 20
sendObjMethod("y", 20)
putfield y
preemption ‘l’
by scheduler
putfield x

/

Figure 6.6: Incorrect ordering of reporting snapshots

correct order among snapshots. This solution, however, incurs two overhead costs. The first
overhead is making threads serialized while the threads are updating monitored variables.
The second overhead is an acquiring and releasing the lock at run-time.

The second solution is to use two timestamps, one to assign immediately before an
update of a monitored variable (say x), and the other to assign immediately after the
probe for the variable. If the time interval between these two timestamps of update of
x overlaps with the interval between the timestamps of updating y, the event recognizer
can recognize x may precede y or the other way. We, however, cannot know whether x
precedes y or not in this case.

We choose the atomic session implementation because the atomic session solution guar-
antee the correct ordering of snapshots. A thread ¢ acquires a global lock right before an
update instruction. After finishing the update and report, thread i releases the lock. When
preemption happens before thread i finishes the report, no other thread j can make a re-
port because thread i holds the lock. Thread j has to wait until thread ¢ finishes the report
and release the lock.

We observe that locking is unnecessary when monitored variables are updated by one
thread only. PEDL for Java provides a keyword multithread (see Section 5.2). When this
keyword is used, probes performing lock/unlock are inserted. Otherwise, probes performing
lock/unlock are not inserted. Figure 6.7 shows the structure of a filter.

6.2.2 Event Recognizer

An event recognizer evaluates events and conditions defined in a PEDL AST when it re-
ceives a snapshot from a filter. Figure 6.8 describes an algorithm for evaluating a PEDL
AST. The evaluation process will be illustrated using Figure 6.3 which is an AST of Fig-
ure 6.2. Suppose that an event recognizer has A.x as 2 and A.y as 5. Then, suppose a filter
sends a snapshot of A.x as 5. When the event recognizer receives the snapshot, it first
updates A.x as b in the value/method table. Then the event recognizer cleans up marks
of all roots of event/condition trees. Then, the event recognizer starts evaluating events
and condition expressions in a bottom-up way. The order of evaluating event/condition
trees does not affect the evaluation result. In other words, whether the event recognizer
starts evaluation from nl or nb does not change the result of evaluation. Suppose that
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Instrumented Target Program

Thread1 Thread2 Filter Thread
' N N N

request_lock T[T 7777 l- ___________ _>.®
lde 10 request lock--""""""""71 1=
var name [y

sendOb jMethod ("x", 10) buffer x —
) var value | 20 10
putfield x Send to
release_lock Event Recognizer
ldc 20

sendOb jMethod ("y", 20)~T]
putfield y
release lock

. J\ 4/ J

Figure 6.7: Structure of a filter

nl is evaluated first. First, a mark of nl is set. Then, a truth value field of nl (false)
is copied into its old truth value field and the value of nl changes to true because a new
value of A.x (5) is greater than 3. Although c1 has changed its value, c1 is not exported
because it is not declared as exported. Next, nb is evaluated. When n8 is evaluated, the
event recognizer recognizes that nl has been already evaluated by looking at the mark of
nl. Thus, the event recognizer does not evaluate nl again, but just uses the flag of nl.
Finally, nb is evaluated as present because n9 is true (A.y (5) < 10). el is declared as
exported. Thus, el is exported to a run-time checker.

PEDL expressions are evaluated in linear time to the size of expression. This is for two
reasons. First, PEDL AST contains event/condition definitions as trees, not cyclic graphs.
Remember that PEDL/MEDL do not allow recursive expressions. Second, an event rec-
ognizer traverse the nodes of PEDL AST only once, by using marks of event/condition
definition nodes.

6.2.3 Run-time Checker

A run-time checker evaluates events and conditions defined in an MEDL AST (med1.out)
when it receives an event or a condition from an event recognizer. MEDL AST has similar
structure as PEDL AST. MEDL AST, however, additional structure for auxiliary variables
and auxiliary variable updates, which do not exist in PEDL. [Vis00] has more details for
an evaluation process of a run-time checker. MEDL expressions can be evaluated in linear
time to the size of MEDL script similarly to PEDL expressions are evaluated. If the
evaluation detects a violation defined by alarm or property, the run-time checker raises
a signal.

6.2.4 Connection of the Run-time Components

A connection among the Java-MaC run-time components is established before running a
target application. The communication medium through which connection is established
is important because of the following reasons. First, a communication medium affects
the correctness of checking. Java-MaC assumes that the communication medium guaran-
tees delivery of snapshots in order. If a communication medium does not provide that
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Step 1.
Step 2.
Step 3.
Step 4.

Step 5.

Step 6.

Set the current time with the timestamp of the received snapshot
Update the variable/method table according to the snapshot
Clear all the marks of the roots of event/condition trees
For each event/condition tree
4.1 Set the mark of the root
4.2 Evaluate children nodes
- For an operator/connective node, getting the value of the node
by performing corresponding operation on the values of the
children nodes which are obtained by repeating step 4.2
For example:
* For an <start> event node, set the present flag and set
the timestamp of the node with the current time if a
condition corresponding to the child node has changed to
true. Reset the present flag otherwise.
- For a reference node for a variable/method, getting the value
of the node by obtaining the value of the corresponding entry
in the variable/method table
- For a reference node for an event/condition, getting the
present flag/truth value of the node by obtaining the present
flag/truth value of the root of the corresponding
event/condition tree
* if the root has mark set, getting the flag/value of the root
* if not, repeat step 4.1 and 4.2 for the children of the root
- For a constant node, the value of the node is the constant value
Export events which are declared as exported and whose present flags
are set (such events can be found through the event/condition table)
Export conditions which are declared as exported and whose old
values and new values are different (such conditions can be found
through the event/condition table)

Figure 6.8: Algorithm of evaluating a PEDL AST
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guarantee, the correctness of checking cannot be guaranteed either. In other words, the
order of snapshots affects the evaluation of properties. For example, suppose event e =
update(x) when y == 2. Suppose snapshots are arrived in the following order: y=2, x=1,
and y=1. Then, the event recognizer detects e. The event recognizer, however, does not
detect e if the arrival order of snapshots is y=2, y=1, and x=1. Second, application specific
constraints may be given to the communication medium. For example, if Java-MaC mon-
itors a program handling security information such as credit card of customers, snapshots
of the target system should be delivered to the event recognizer securely.

Another important issue in communication is bujffering. We can send snapshots as soon
as possible without buffering in the communication channel (unbugffered communication).
Or we can store snapshots into a buffer and send the content of the buffer when the buffer
becomes full (buffered communication).

o Unbuffered communication has minimum delay of sending snapshots to the event rec-
ognizer. Unbuffered communication, however, causes high communication overhead
if a read/write operation to the communication channel between a filter and an event
recognizer has high per-read/write overhead.

e Buffered communication has delay of sending snapshots to the event recognizer be-
cause a filter postpones sending snapshots to the event recognizer until the buffer
becomes full. Buffered communication, however, decreases the communication over-
head compared to unbuffered communication if a read/write operation to the com-
munication channel between a filter and an event recognizer has high per-read/write
overhead.

Buffered communication can use blocking buffer which blocks writing snapshots into
the buffer when the buffer is full or non-blocking buffer which allows overwriting to the
buffer even when the buffer is full. Blocking buffer may slow down the target program
by blocking. Non-blocking buffer does not slow down the target program. However,
non-blocking buffer can lose its content by overwriting (see Sentry in Section 2.2.3).

A user can implement his/her own communication channel to satisfy application specific
need and connect the Java-MaC run-time components using this channel. For example, a
user can write a code to make Java-MaC components communicate with each other through
Secure Socket Layer [SSL96]. A filter uses an OutputStream provided by a user to send
snapshots to an event recognizer. Similarly, an event recognizer uses an InputStream and
an QutputStream provided by a user to communicate with a filter and run-time checker.
InputStream and OutputStream are provided to the Java-MaC run-time components by
following Java-MaC APIs.

e Inmac.filter.Filter,

static void hook(java.lang.String targetClass, java.lang.String[] args
java.io.OutputStream os)

This method is used to invoke the instrumented target program and connect the

target program with an event recognizer through OutputStream os provided as a
parameter.
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In mac.eventRecognizer.interpreter.EventRecognizer

EventRecognizer(java.io.InputStream inStream, java.io.OutputStream outStream
ParserErObject pedl_out, PedlInstrObject objMonEntities)

This method creates and executes an event recognizer which communicates with a
filter and a run-time checker through InputStream inStream and QutputStream
outStream provided as parameters.

In mac.runtimeChecker.interpreter.Checker
Checker(java.io.InputStream inStream, ParserChkObject medl_out)

This method creates and executes an run-time checker with InputStream inStream.

Figure 6.9 and Figure 6.10 show an example of connecting a target program and an
event recognizer using SSL channel. Assume that there exists a SSL package containing
SSLOutStream and SSLInputStream. Assume further that a main class of the target pro-
gram is TargetPgm.class and it does not get any argument. Lines 5 to 6 of Figure 6.9
creates an output stream to cis.upenn.edu:8040 secured by SSL. Line 7 invokes the
instrumented target program TargetPgm and connects the target program to an event rec-
ognizer through SSL secured outStream. Line 4 in Figure 6.10 creates a SSL input stream
inStream at port 8040 through which the event recognizer receives snapshots from the

filter.

Line 7 creates a SSL output stream outStream to ee.upenn.edu:8050. pedl.out

are read in lines 10 and 11. Line 13 executes an event recognizer with inStream and
outStream.

01:public class TargetProgramSSL {

02:
03:
04:
05:
06:
07:
08:
09:}

public static void main(String[] args){
// Create SSL connection to the event recognizer
// at cis.upenn.edu:8040
OutputStream outStream =
new SSLOutStream('cis.upenn.edu",8040);
mac.filter.Filter.hook("TargetPgm", new String[] {}, outStream);

Figure 6.9: A target program sending snapshots through SSLOutputStream

The standalone run-time components of Java-MaC can use one of two pre-implemented
communication methods for the convenience of users.

TCP socket communication with a blocking buffer

¢ file communication with a blocking buffer
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01l:public class EventRecognizerSSL{

02: public static void main(String[] args){

03: // Create SSL connections from filter at port 8040

04: InputStream inStream = new SSLInputStream(8040);

05: // Create SSL connection to the run-time checker at

06: // ee.upenn.edu:8050

07: OnputStream outStream = new SSLOutputStream('ee.upenn.edu", 8050);
08:

09: // Read PEDL AST

10: ParserErObject pedl_out =

11: (ParserErObject) (new ObjectInputStream(...));

12:

13: new EventRecognizer(inStream, outStream, pedlQOut).start();
14: }

15:}

Figure 6.10: An event recognizer receiving snapshots through SSLInputStream

TCP socket communication is flexible because it can connect the run-time components
running on separate but network-connected hosts or different processes on same host. It
poses, however, high communication overhead. The run-time components can communi-
cate each other through a FIFO file if the run-time components of Java-MaC run on hosts
which share a file system. Furthermore, a trace containing the execution of the target
program or a trace containing a history of detected events/condition can be stored into
files using this communication method. These trace files can be analyzed later for checking
different requirements without running the system again (see Section 8.3). The command
line usage of the Java-MaC standalone components are described in Appendix E.
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Chapter 7

Overhead Reduction Techniques

Java-MaC runs together with the target program. The overhead caused by Java-MaC
should be modest so that the execution of the target program is not slowed down signifi-
cantly. In this chapter, we analyze the overhead, describe overhead reduction techniques,
and show the experimental results using these techniques. First, we build an overhead
model. Second, we will develop techniques to reduce the overhead based on the model.
Finally, we perform experiments measuring the overhead caused by Java-MaC with and
without these overhead reduction techniques.

7.1 Modeling of the MaC architecture

7.1.1 An Example of Product Distribution/Sales System

We start with an illustration of a real-world distribution/sales system to give intuitive
idea about the performance of Java-Mac. Suppose we receive a request from a baseball
company to distribute their baseballs from their factory to a retail store and sell the balls
at the store. Person A in Figure 7.1 represents the company and produces baseballs. B
puts the baseballs in boxes one by one and load these boxes into a truck C. When C is
filled completely, C delivers the boxes to the retailer D. D checks whether a ball is faulty
or not and sell the ball to customers. We are in charge of the process B, C, and D.

Our goal is to increase the overall speed of the distribution/sales system by improving
processes B, C, and D. The processes B, C, and D form a pipeline. Thus, the slowest one
among B, C, and D congests the whole processes. For example, let us see the following
situation.

e D checks 1 ball per 1 min.
e C’s capacity is 100 boxes. C takes 10 min from B to D.!

e B put 1000 balls into boxes and load these boxes into C per 10 min.

The bottleneck is D now; we cannot sell more than 1 ball per 1 min. If D’s speed is
increased to check 1000 balls per 1 min. Then the bottleneck is C; we cannot sell more

! Assume that C can return to B from D in no time.
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Figure 7.1: Comparison between a distribution/sales system and the MaC architecture

than 10 balls per 1 min (= 100 boxes/10 min). Therefore, we need to improve all processes
B, C, and D so that any of these processes may not be a significant bottleneck. At D, we
can improve the checking procedure so that checking takes less time. At C, we can increase
the velocity of the truck or expand the capacity of the truck. At B, we have several ways
to improve the speed. First, we can make B check whether a ball is faulty or not briefly.
If a ball is proved faulty by this brief checking, B throws it away so that B can load more
sellable balls in C. This also helps D to sell balls faster because D will handle more sellable
balls in the same amount of time due to the elimination of faulty ones by B. The speed of
B itself is decreased by this extra work of checking. This check at B, however, can reduce
the whole processing time, if C or D is a bottleneck. Second, B can use smaller boxes so
that B can load more boxes to C. Third, we can improve the wrapping speed of B. As we
have described, B has more room to improve the performance than C and D. In addition,
the improvement of B can increase the speed of B and C, too. Thus, B should be the first
spot to improve.

There exists an analogy between this distribution/sales system and Java-MaC. A is a
target program. B is a filter. C is a communication channel between the filter and the
event recognizer. D is an event recognizer and a checker. A box is a snapshot and the
size of box is the size of snapshot. Checking of a ball is to check whether properties are
affected by this snapshot. Faulty ball is a snapshot which does not affect the requirement
properties. We will concentrate on techniques applying at the filter because the filter has
significant potentials to improve the whole system as we have seen in the example.

7.1.2 Overhead Model of the MaC architecture

We make an overhead model consisting of a target program and a monitor which consists
of an event recognizer and a run-time checker.? Figure 7.2 shows the model. The following
six parameters constitute overheads in the model.

e p is the overhead of executing a probe inserted into the target program.

2This model does not consider a communication behavior between an event recognizer and a run-time
checker for the sake of simplicity in the analysis.
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Figure 7.2: Model of the overhead to the target system

e send is the overhead of sending the content of the buffer at the filter to the monitor

when the buffer becomes full.

e rec is the overhead of receiving snapshots into the buffer at the monitor.

e ¢ is the overhead of evaluating properties upon arrival of a snapshot by the monitor.

1. Reducing snapshot size s decreases the writing overhead W, the reading overhead R,

w is the overhead of writing a snapshot to the buffer.

r is the time taken for a monitor to read a snapshot from the buffer.

We will use P, W, Send, Rec, R, and E as sums of p, w, send, rec, r, and e, respectively, over
the whole target program execution. We will concentrate our discussion to the overhead
reduction techniques applied to a filter. There are three factors we can control to reduce
the overheads at the filter - a snapshot size s, a frequency of taking snapshots f, and a
buffer size bu f. The effects of these three factors on the overhead parameters are as follows.

and the overheads of sending and receiving operations Send and Rec.

2. Reducing snapshot frequency f decreases

e the overhead of executing probes P and writing snapshots W.

e the amount of snapshots delivered from the target program to the monitor,

which reduces sending overhead Send and receiving overhead Rec.

e the overhead of reading snapshots R and evaluating properties by the monitor

E.
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3. Increasing a buffer size buf decreases the sending overhead Send and overhead Rec
if send/receive operations over the communication channel have high per-operation
overhead.

Simply decreasing s and f may result in incorrect evaluation of properties. In the
extreme case, we do not take any snapshot from the target program which makes f as
0. Obviously, this way of decreasing f is useless because monitoring results in nothing.
Therefore, we have to come up with reduction techniques which decrease s or f while they
conserve the evaluation of properties correctly. Increasing buf, however, does not affect
the correctness of the property evaluations although increased buf delays the delivery
of snapshots which may result in late detection of violations. We will discuss details
for techniques of reducing s and f which conserve the results of property evaluations
correctly. Then, we will describe a result of experiment measuring the overhead using
these techniques.

7.2 Reducing Snapshot Size

A snapshot sent from a filter to an event recognizer consists of an ID of the monitored
variable (1 byte), the value of the variable (from one byte (boolean or byte type) to eight
bytes (Long or double type)), and a timestamp (8 byte long type).

7.2.1 Reducing the Value Field in a Snapshot

We observe that a difference between two consecutive values of a numerical variable is
usually small. Thus, just sending the difference in smaller representation can save the
amount of snapshot taken by the value of a variable. We call this reduced representation
of a value as a delta value and this reduction technique as delta abstraction. The type of a
delta value for 1long is int. The type for int and short is byte. The type for double is
float. To distinguish a delta value from a normal value, negative ID is used. For example,
suppose monobj long A.x hasid 10. A snapshot containing the delta value of this variable
has id -10 and type int.

A probe should test whether the difference can be represented in a delta type. If the
difference is small enough to be represented in a delta type, the probe sends a delta value
with negative ID. Otherwise, a regular value and an ID is exported. This testing may cause
extra overhead at run-time. Section 7.4 shows the experimental results on the overhead
when delta abstraction is performed.3

7.2.2 Reducing Timestamps

If we attach a timestamp (8 byte long type) to every snapshot, the timestamp would
take a large portion (47%* to 80%5) of the total space taken for the snapshot. To reduce
the snapshot size, we can send a timestamp periodically instead of attaching a timestamp

3The worst case is that all snapshots need to be exported after being testing. Experimental results
shows that even in the worst case, however, the overhead is increased less than 1%.

447 = 8/(1+8+8)

580 = 8/(1+1+8)
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to every snapshot. This method can reduce the size of snapshots when events happen
frequently.

The timestamping error caused by periodic timestamps is as follows. Suppose that a
period is p. Let us use time,(e) to indicate a periodic timestamp of an event e and time(e)
to indicate the exact timestamp of e. Suppose e happens between time instant ip and
(i + 1)p where i € N. The minimum timestamping error caused by periodic timestamps
is 0 when e happens exactly at the instant ip. ILe., time(e) — timey(e) = ip —ip = 0. The
maximum error caused by periodic timestamps is p when e happens near to the instant
(¢ + 1)p. Le., time(el) — timey(el) < (i + 1)p —p = p. For measuring time difference
between two events el and e2, there are two cases depending on whether el and e2 are in
the same interval or not as depicted in Figure 7.3.

......... || 'I »  time || | 'l > time

ip (i+1)p ip (i+1)p (i+2)p

a) b)

Figure 7.3: Maximum error caused by periodic timestamp

e In Figure 7.3.a), events el and e2 have the same periodic timestamp ip because these
two events occur in the same interval between ip and (¢ + 1)p. The minimum error
for time difference caused by periodic timestamps is 0 when el and e2 happen at
the same instant. Le., (time(e2) — time(el)) — (timey(e2) — timep(el)) =0—-0=0.
The maximum error for time difference caused by periodic timestamps is p when el
happens at the time instant p and e2 happens near to the time instant (i + 1)p. Le.,
(time(e2) — time(el)) — (timep(e2) — timep(el)) =p — 0 = p.

e In Figure 7.3.b), timep(el) = ip and timey(e2) = (i + 1)p. Thus, timey(e2) —
timep(el) = p. The minimum error for time difference caused by periodic timestamps
is 0 when e2 happens exactly p time unit later that el. Le., (time(e2) — time(el)) —
(timep(e2) — timep(el)) = p —p = 0. The maximum error for time difference caused
by periodic timestamps is p when el happens at the time instant ¢p and e2 happens
near to the time instant (¢ + 2)p. (time(e2) — time(el)) — (timey(€2) — timey(el)) =
2p—p=p.

Therefore, a timestamping error caused by periodic timestamp is less than the period p.

Periodic timestamp contains only an ID (1 byte) indicating it is a timestamp (see
Appendix A). When snapshots are frequently sent, saving due to periodic timestamp
is large. Suppose p is 100 ms and a snapshot is sent every milisecond. With timestamp
attached to every snapshot, each second, timestamp takes 8000 bytes. Periodic timestamps,
however, take only 10 bytes. When snapshots are infrequent, periodic timestamp might
take more space in snapshots. Java-MaC provides timestamping using a separated thread
which sends a timestamp after sleep for p time unit repeatedly.

81



7.3 Reducing the Frequency of Taking Snapshot

We clarify two terms first. To eztract a snapshot means that a probe reads the snapshot
from the execution of the target system. To export a snapshot means that a probe sends
the snapshot it reads to the monitor. A probe extracts a snapshot but does not necessarily
export the snapshot.

7.3.1 Decreasing the Frequency of Snapshot exiraction

We restrict the scope of monitoring using in keyword in the declaration section in a PEDL
script. An observation is that not every update of a variable or every invocation of a
method should be monitored for checking properties. Update and invocation in specific
context may count for checking properties. This context is expressed by <constraint> in
the following extended declaration section in PEDL grammar.

MonScr <...>
/* Monitored entity declaration section */
monobj <type> <var_name> <constraint>;

monmeth <type> <metd_name> <constraint>;

End

where
<constraint> := in <scope> | not in <scope>
<scope> = <pkg> | <pkg>.<class> | <pkg>.<class>.<method>

The <constraint> indicates the scope of the target system to observe. The scope can be
described using package, class, and method of the target program. A probe is inserted into
the part of target system specified by <constraint>. A following bank account example
shows the usage of <constraint>.

class Account {
private double balance;

void deposit(double amount) { balance += amount; }
double withdrawal(double amount) { balance -= amount; }
}

class WireTransfer {

}
class ATM {

e If we want to monitor the amount of money deposited via wire transfer only, we do
not always have to monitor deposit (). We only need to monitor deposit () invoked
inside WireTransfer class. The constraint
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monmeth account.deposit(double) in WireTransfer

will remove the unnecessary monitoring such as monitoring deposit() method in-
voked in ATM.

e Every month, an account statement comes to customers notifying them of the maxi-
mum balance for a month. To monitor that amount, we need to monitor balance only
when updated by the deposit () method, not when updated by the withdrawal().
This specification is written in the constraint

monobj double balance in account.deposit(double)

If a customer withdraws money from ATM often and deposits his payroll once per
month, this constraint reduce the overhead significantly.

Note that <constraint> is a static constraint, not a dynamic constraint which needs
to be evaluated at run-time. This technique of restricting scope to monitor applies when
the target program is instrumented, which does not cause run-time overhead.

7.3.2 Decreasing the Frequency of Snapshot exporiation

An observation is made that not every update of a variable affects properties being checked.
Only an update of a variable which changes at least one condition or an event can affect
the property. Let us see a following simple example.

condition c1 = x <= 10;

property safe = lcl && c2 && ...

Suppose x is used only in c1 and has value 1 initially. Unless x is changed to be greater
than 10, an update of x does not change the value of property safe. Thus, updates of x
do not need to be exported except when x becomes greater than 10. Only the last update
of x in Figure 7.4 should be exported.

time

10 value

Figure 7.4: The last update changes c1

We can reduce the frequency of exporting snapshots by exporting only snapshots which
contain updates of variables affecting properties as we have discussed in Section 3.3. We
call this technique value abstraction. In one extreme end, all requirement properties need
to be evaluated at the target program to see whether an update affects any of these
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properties. In this extreme case, the overhead at the target program does not decrease
because the overhead of evaluating all properties is added to the overhead at the target
program although communication overhead decreases. We need to define a set of boolean
expressions over the set of monitored variable ezpy;, from given a PEDL script satisfying
the following two conditions.

1. if an update of a monitored variable does not change the value of any boolean ex-
pression in ezpy;, , then the update does not change the value of any requirement
property either as defined in Definition 12

2. boolean expressions in ezpy;, are simple enough that evaluation of expy,, requires
only small amount of computation.

We define such set of boolean expressions heuristically as follows.

Definition 16 (Simple Expression) A simple expression sexp, for a monitored variable
x s defined as one of the following two forms of boolean expressions

TCcmpcorcempz

where x is a monitored variable, cmp is one of >,>=,==,<=, <, and ¢ is a constant.

sexp,’s are obtained from the event/condition definitions of a PEDL script. Java-MaC
does not apply value abstraction for a monitored variable z if any of the following two
conditions holds.

e 3 PEDL script has boolean expressions containing a monitored variable z which are
not simple expressions. An update which does not change the value of any sexp,’s
can still change the value of requirement properties in this case.

e a PEDL script has update(x). An update which does not change the value of
any sexp,’s can still change the value of requirement properties by raising an event
update(x).

Otherwise, Java-MaC performs the value abstraction to the variable . The following
example illustrates how simple expressions are obtained from condition definitions.

condition ¢l = (3 < x && x < 10) || y >10 || z > 10;
condition c2 x> 5 && w > 2%z + 3;

From the above definitions, following five simple expressions are obtained.

sexp =3 < x
sexpg1 = 2 < 10
sexpyo =y > 10
sexpyo = 2z > 10
Sexpgy =T > D
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z is contained only in sexpyo, sexpz1, and sexpzo in the PEDL script. Whenever z is
updated, a probe checks whether any of the value of sexp,; has changed. If the value
of any sexp,; is changed, the probe exports the new value of  to the event recognizer.
Otherwise, the probe does not. Situation is similar for y. z and w are, however, different
because z and w are contained in the expression w > 2 % z + 3 which is not a simple
expression. Therefore, all snapshots updating z and w are exported. Figure 7.5 shows
the sample execution of the target program and what snapshots are exported and what
snapshots are not exported in the execution by value abstraction.

time X R -
: S B updates of x which is not exported

/ —» updates of x which is exported

3 5 10 value

Figure 7.5: Example of updating x

The best overhead reduction is achieved when there is only one sexp; for a monitored
variable x and the sexp, does not change at all. Then, a probe does not send a snapshot
at all. In the worst case when sexp,; does not change for all { < n and sexp,, changes
where n is the total number of sezp,, the value abstraction does not reduce the overhead,
but increases the overhead due to the overhead of evaluating sexp,;’s.

7.4 Overhead Measurement

In this section, we measure the overheads incurred to the target program by Java-MaC.
First, we describe the experiment we design to measure the overheads. Second, we measure
the effects of overhead reduction techniques to the overhead incurred by probe, communi-
cation, and event/condition evaluation. Third, we illustrate the overhead incurred to the
Sieve of Eratosthenes by Java-MaC as an example.

7.4.1 Description of Overhead Measurement Experiment

TestMain in Figure 7.6 invokes a nested loop. The outer loop from line 14 to line 17 iterates
maxIter times and has a statement assigning a monitored variable TestMain.t .monitoredX
at line 16. The inner loop at line 15 iterates maxInst times.

The inner loop at line 15 is compiled into the four bytecode instructions in Fig 7.7.
iinc j 1 increases a local variable j by 1. iload j loads the value of j onto the operand
stack. Similar for iload maxInst. if icmplt Label2 compares two top stack operands
and jumps to Label?2 if a top operand is less than the second top operand.
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01:class TestMain {

02: public Test t;

03: TestMain() { t = new Test();}

04: public static void main(String[] args) {

05: int maxIter = Integer.parselnt(args[0]);
06: int maxInst = Integer.parselnt(args[i]);
07: (new TestMain()).t.testing(maxIter,maxInst);
08: }

09:}

10:

11:class Test{

12: int monitoredX;

13: public void testing(int maxIter, int maxInst) {
14: for(int i=0; i < maxIter; i++) {

15: for(int j=0; j < maxInst; j++) {}

16: monitoredX = i;

17: }

18: }

19:}

Figure 7.6: A test program for measuring overhead cost

Label2:
iinc j 1
Label3:
iload j
iload maxInst
if_icmplt Label2

Figure 7.7: 4 bytecode instructions of line 15 of Figure 7.6
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int TestMain.t.monitoredX is the monitored variable. A snapshot is taken at line
16 after the inner loop finishes - that is, after the execution of 4xmaxInst bytecode in-
structions. The total number of snapshots taken in the whole execution is maxIter. By
increasing maxIngt, we can decrease the frequency of taking snapshots.

We performed experiments on the following platforms. TestMain.class runs on a
Linux 2.2 machine ( 2X 550Mhz PIII, 1GB memory). An event recognizer and a run-time
checker run on the same Windows 2000 machine (1.4Ghz Pentium4, 512MB memory). Both
machines are on the same network domain. Messages are delivered using a TCP socket.
The size of a communication buffer used by Java-MaC is 512 bytes. First, we executed
TestMain.class with maxIter as 10% and maxInst as 25 to 2.5 x 10° and measured the
execution time. Figure 7.8 shows the execution time of uninstrumented TestMain.class.
The z axis indicates instMax. The y axis is the execution time in logarithmic scale. The
execution time increases in linear to instMax.

{second)

Execution time

23 230 2300 | 25000 | 250000

|»~~~7§;~~~~Unin3‘trumen{ed 00:006 (00:01.4 |00:09.8 |01:32.3 |15:200
instMax

Figure 7.8: Execution time of TestMain.class

Then, we instrumented TestMain.class according to different probe configurations
and measured the execution time. We repeated the experiment 10 times for a fixed
ingtMax. We measure the monitoring overhead with and without applying overhead re-
duction techniques. We performed experiments with the following three different probe
configurations.

o “NoAbstract” does not use overhead reduction techniques. NoAbstract does not per-
form timestamping nor locking/unlocking. A probe sends a snapshot of TestMain.t.
monitoredX as b bytes (ID takes 1 byte and a value takes 4 bytes) after executing
4 x maxInst bytecode instructions.

e “DeltaAbstract” uses delta abstraction and sends a snapshot of TestMain.t .monitoredX
in two bytes (ID takes 1 byte and a delta value takes 1 byte).

e “ValueAbstract” applies value abstraction. ValueAbstract has only a single sexp
which is TestMain.t.monitoredX < -10. A probe does not send a snapshot except
the first one because a new value of int TestMain.t.monitoredX is always greater
than 0.

87



7.4.2 Overhead of Probe

We measured the execution time of instrumented TestMain.class with the different probe
configurations without writing snapshots into the communication buffer and sending the
content of the buffer. In other words, this experiment measures P only. In addition to
the three probe configurations we described in Section 7.4.1, we used the following probe
configurations.

e “Time” is same as “NoAbstract” except it generates timestamps every 20 ms.®

e “Thread” is same as “NoAbstract” except it additionally performs locking/unlocking
for each probe execution as we described in Section 6.2.1.

e “ValueAbstractn” evaluates n sexp’s where n € {50,100,150,200}. Corresponding
configurations are indicated by “ValueAbstract50”, “ValueAbstract100” “ValueAb-
stract150”, and “ValueAbstract200” respectively.

Figure 7.9.a) shows the overhead ratio of Java-Mac. The top four lines are ValueAb-
stract200, ValueAbstract150, ValueAbstract100, and ValueAbstract50 in order. ValueAb-
stract200 slows down the execution around 28 times when the frequency of taking snapshot
is once per 100 bytecode instructions execution. The configurations which do not evaluate
sexp’s slow down the execution less than 10 times at the frequency of 1/100. The over-
heads of configurations except the configurations evaluating more than 50 sexp become
less than 10% at the frequency of 1/10°. Figure 7.9.b) shows the overhead per a single
snapshot. The top four lines are ValueAbstract200, ValueAbstract150, ValueAbstract100,
and ValueAbstractb0 in order. The time taken to execute a single ValueAbstract200 probe
is around 16 microseconds and the time taken to execute a single ValueAbstract100 probe
is around 10 microseconds. Thus, it takes around 60 nanosecond to evaluate 1 sexp. The
other probes take almost the same overhead of 5 microsecond. The extra overheads caused
by delta abstraction, timestamping, and locking/unlocking are not significant.

This experiment alone does not show the advantages of the delta abstraction and value
abstraction, but shows only the extra overhead of evaluating sexp’s. The advantage, how-
ever, will be shown when the communication and event/condition evaluation overhead are
measured in Section 7.4.3 and Section 7.4.4. In addition, in realistic setting, one monitored
variable has a small number of sexp’s, not hundreds of sexp’s to evaluate. Furthermore,
not all sexp’s need to be evaluated because a probe stops evaluating exps’s whenever it
finds affected exps. Thus, the overhead by value abstraction shown in Figure 7.9 indicates
the overhead of the worst case.

7.4.3 Overhead of Probe and Communication

We measured the execution time of instrumented TestMain.class with the three dif-
ferent probe configurations without condition/event evaluation by using a dummy event
recognizer which just receives snapshots but does not evaluate conditions/events. In other
words, this experiment measures P + W + Send.

8 Java-MaC using the JVM on the target platform does not make accurate periodic timestamp if a period
is smaller than 20 ms.
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Figure 7.9: Overhead of probe. (a) Overhead ratio (b) Overhead per a single snapshot

Figure 7.10.a) shows the overhead ratio. The configuration without overhead reduction
techniques slows down the execution 13 times when the frequency of taking snapshots is
1/100. Delta abstraction, however, slows down the execution 11 times and the value ab-
straction slows down the execution less than 10 times at the frequency of 1/100. Compared
to the overhead of NoAbstract without communication (see Figure 7.9), the overhead of
NoAbstract increases around 30% due to the communication overhead. The overhead of
ValueAbstract almost does not increase from Figure 7.9 because ValueAbstract does not
send snapshots because snapshots do not affect the property TestMain.t.monitoredX <
-10 (TestMain.t.monitoredX is always greater than or equal to 0. See Figure 7.6). Fig-
ure 7.10.b) shows the overhead per a single snapshot. The overhead per a single snapshot
is almost constant over the frequency of taking snapshots. While NoAbstract takes around
7 micro second per a single snapshot, DeltaAbstract takes around 6 micro second and
ValueAbstract takes around 5.2 micro second.

7.4.4 Overhead of Probe, Communication, and Evaluation

We measured the execution time of instrumented TestMain.class with the three different
probe configurations over four different condition expressions of different lengths. The
condition/event evaluation takes time in linear to the length of an expression as we have
seen in Section 5.2.2. We measure the length of an expression as a number of binary
operators in the expression. Figure 7.11 has a condition expression ¢ of length 1 and
Figure 7.12 has a condition expression ¢ of length 50.
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Figure 7.10: Overhead of probe and communication. (a) Overhead ratio (b) Overhead per

a single snapshot

MonScr
export condition c;
monobj int TestMain.t.monitoredX;
condition ¢ = TestMain.t.monitoredX > O;

end
Figure 7.11: A condition expression of length 1
MonScr
export condition c;
monobj int TestMain.t.monitoredX;
condition ¢ =
e
TestMain.t.monitoredX
+1)*1)+1) * 1) +1) *1) +1) *1) +1) *1) // 10
+1)*1)+1) * 1) +1) *1) +1) *1) +1) *1) // 20
+1)*1)+1) *1)+1) #1)+1) *1)+1) *1) // 30
+1)*1)+1) * 1) +1) *1) +1) *1) +1) *1) // 40
+1)* D)) +1)*1)+1) *x1)+1) *1)+1) // 49
> 0; // 50
end

Figure 7.12: A condition expression of length 50
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Figure 7.10.a) shows the overhead ratio over the four different expressions with three
different probe configurations. NoAbstract indicates the overhead of evaluating Figure 7.11
without any reduction techniques. NoAbstract50 indicates the overhead of evaluating Fig-
ure 7.12. NoAbstract100 and NoAbstract150 indicate the overheads of evaluating condi-
tions of length 100 and 150 respectively. Similarly, DeltaAbstractn and ValueAbstractn
indicate the overhead of evaluating a condition expression of length n. The top two lines
indicate NoAbstract150 and DeltaAbstract150. Similarly, the second top two lines indicate
NoAbstract100 and DeltaAbstract100, and the third two lines indicate NoAbstractb0 and
DeltaAbstract50. The top line (bright color) of NoAbstract150 slows down the execution
around 609 times when the frequency of snapshot is 1/100. The second top line (dark color)
of DeltaAbstract150 shows that the overhead slows down the execution around 583 times
at the frequency of 1/100. Delta abstraction does not reduce the overhead significantly,
because delta abstraction does not reduce the condition/event evaluation overhead which
is the bottleneck in this experiment. Value abstraction, however, significantly reduces
the overhead. The bottomline in Figure 7.13.a) indicates the overhead of ValueAbstractn
which slow down the execution 10 times at the frequency of 1/100. The overhead of
ValueAbstractn does not increase as the length of the condition is increased.

This large overhead of evaluation is due to the object-oriented implementation of PEDL
AST tree (pedl.out). The early prototype of Java-MaC aimed to monitor a whole object,
which was discarded later for the reasons explained in Section 5.2.1. Thus, pedl.out can
contain general operators working on objects and objects as operands. For this generality,
primitive values are represented as objects in pedl.out. For example, a wrapper object
Integer(10) is stored for an integer 10 in pedl.out. To make comparison between an
object Integer(10) and int x, we need to go through several complex steps including
identifying the type of the object and unwrapping the object, etc. Re-implementation of
pedl.out removing object-orientedness can decrease the evaluation overhead significantly.

Figure 7.13.b) shows the overhead per a single snapshot.” NoAbstract150 (the top line)
takes around 360 microsecond per a single snapshot at the frequency from 1/100 to 1/10000.
Considering that the evaluation is the bottleneck in this experiment, we can know that it
takes around 360 microsecond for the event recognizer to evaluate a condition expression
of length 150. The time taken to evaluate a condition of length 150 (NoAbstract150) is
367 microsecond (NoAbstract150) and the time taken to evaluate a condition of length
50 (NoAbstractb0) is around 124 microsecond at the frequency 1/100. Thus, it takes
around 2.4 microsecond to evaluate an expression of length 1.8 NoAbstract150 takes 274
microsecond per a single snapshot at the frequency of 10~°. The number 274 microsecond
can be understood as time taken to evaluate a condition of length 150 after evaluating the
condition during the interval between two consecutive snapshot.” NoAbstract150 takes
20.9 microsecond per a single snapshot at the frequency of 107°. The reason the overhead
per a single snapshot becomes so small at the frequency of 1079 is that the period between
two consecutive snapshots at the frequency of 107 is long enough for the event recognizer

"The standard deviation of execution time at the frequency of 107° is greater than the measured overhead
caused by Java-MaC. Thus, the number of overhead per a single snapshot itself is not much meaningful.

8This 2.4 microsecond does not contain the initialization cost for each evaluation.

®Figure 7.8 shows that the interval between two consecutive snapshots at the frequency of 107° is around
92 microsecond because 10° snapshots are taken during 92 second when instMax is 25000. 367 — 92 ~ 274
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to evaluate the condition of length 150 completely.!’ ValueAbstractn (the bottom line)
takes around 5.2 microsecond per a single snapshot over evaluating conditions of various
lengths.
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Figure 7.13: Overhead of evaluating a condition expression of different size (a) Overhead
ratio (b) Overhead per a single snapshot

7.4.5 Example: the Sieve of Eratosthenes

We illustrate the monitoring overhead and effects of overhead reduction techniques using
the Sieve of Eratosthenes program. The Sieve of Eratosthenes generates prime numbers.
The algorithm of the Sieve for generating prime numbers less than or equal to n can be
described as follows.

Make a list of all the integers less than or equal to n (and greater than one).
Strike out the multiples of all primes less than or equal to y/n, then the numbers

"OFigure 7.8 shows that the interval between two consecutive snapshots at the frequency of 107° is 920
microsecond.
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that are left are the primes.!!

Figure 7.14 shows a Java code for the Sieve. An integer being tested is declared as
numTested in line 14. numPrimes declared in line 15 indicates the total number of prime
numbers upto numTested. Main code in execute() from line 22 to line 42 contains a
nested loop. Lines 30 to 41 form an outer loop which increases numTested one by one.
Lines 33 to 35 make an inner loop which divides numTested with prime numbers less than
or equal to vnumTested. Lines 37 to 40 store numTested as a prime number and increase
numPrimes by 1 if there is no prime number which can divide numTested.

We would like to monitor and check whether there exists a prime number between
99990 and 100000. For that purpose, an event foundPrime is defined in lines 5 to 7 of
Figure 7.15 The experiment shows that there exists one prime between 99990 and 100000.

The computational complexity of the Sieve program(Figure 7.14) is O(n+/n) (the outer
loop takes O(n) and the inner loop takes O(y/n)) where n is the maximum number to
check. The bottom line of Figure 7.16.a) shows the execution time of the uninstrumented
Sieve program. Testing integers from 1 to 200000 takes 2.3 seconds. Testing integers from
1 to 800000, however, takes 22.6 seconds. Java-MaC takes around 1.08 x n snapshots
including n numTested’s and 0.08 x n numPrimes’s. '2 The frequency of taking snapshots
decreases as n increases because of O(ny/n) computational complexity of the Sieve pro-
gram, which decreases the overhead ratio by Java-MaC as n increases . Figure 7.16.b)
shows the overhead ratios of NoAbstract, DeltaAbstract, and ValueAbstract. NoAbstract
slows down the Sieve program 3.1 times when n is 200000. The overhead ratio decreases to
1.5 times when n increases to 800000. DeltaAbstract reduces the overhead 19% compared
to the overhead of NoAbstract when n is 200000. ValueAbstract reduces the overhead 73%
compared to the overhead of NoAbstract when n is 200000 by not sending snapshots of
numTested except three snapshots containing 3, 99990, and 100001. All snapshots con-
taining numPrimes are sent because numPrimes is involved in update(). As n increases,
the bottleneck of event evaluation diminishes, which decrease the amount of reduction by
DeltaAbstract and ValueAbstract.

'11f there exists a prime greater than +/n which divides n, there exists a prime less than or equal to /0
which divides n, too.
'2The number of primes less than 800000 is around 64000.
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01:public class SieveMain{

02: Sieve sa;

03: SieveMain() { sa = new Sieve();}

04: public static void main(String[] args) {

05: SieveMain sm = new SieveMain();

06: sm.sa.initialize( Integer.parselnt(args[0]));

07: sm.sa.execute();

08: }

09:}

10:class Sieve {

11: public Sieve sa;

12: public int primes[];

13: public int maxCandidate;

14: public int numTested; // current number being tested
15: public int numPrimes; // number of primes found
16:

17: public void initialize(int i) {

18: maxCandidate = i;

19: primes = new int[maxCandidate];

20: }

21:

22: public void execute() {

23: int k = 0;

24 : int sqrt_i=0;

25: boolean flag = false;

26:

27: primes[0] = 1;

28: primes([1] = 2;

29: numPrimes = 2;

30: for (numTested = 3; numTested <= maxCandidate; numTested++) {
31: k=1;

32: sqrt_i = (int) (Math.sqrt(i));

33: for (flag = true; k < numPrimes && flag; k++)
34: if ( primes[k] <= sqrt_i && numTested % primes[k] == 0)
35: flag = false;

36:

37: if (flag) {

38: numPrimes++;

39: primes[numPrimes - 1] = numTested;

40: }

41: }

42 }

43:}

Figure 7.14: The code of the Sieve of Eratosthenes

94



01:MonScr

02: export event foundPrime;
03: monobj int SieveMain.sa.numTested;
04: monobj int SieveMain.sa.numPrimes;
05: event foundPrime = update(SieveMain.sa.numPrimes) when
(99990 <= SieveMain.sa.numTested

06:
07:
08:end

&% SieveMain.sa.numTested <= 100000);

Figure 7.15: PEDL script for checking the existence of prime between 99990 and 100000
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Chapter 8

Examples

This chapter demonstrates the application of Java-MaC to several examples. First, we will
apply Java-MaC to two small but illustrative examples - a railroad crossing system and
a database client system. Second, we will apply Java-MaC to the emulator of distributed
controller for large numbers of mobile agents such as micro-air vehicles. Third case study
is on the network routing algorithm. This case study shows the flexibility of the MaC
architecture by plugging a NS2 simulator in the MaC architecture. Finally, we monitor and
check the execution of an inverted pendulum simulator written in the Charon specification
language. We measure the overhead caused by Java-MaC to the inverted pendulum.

8.1 Small Examples

8.1.1 A Railroad Crossing

A railroad crossing system has a train, a gate, and a controller. The goal of the system
is operating the crossing gate subject to the safety property. The safety property states
that when a train is in the crossing, the gate must be completely down. This example is
commonly used as a benchmark in formal methods research [HD96]. The railroad system
is illustrated in Figure 8.1.

A PEDL script for the railroad crossing is given in Figure 8.2. The script starts with a
list of exported events startGD and endGD in line 2 and an exported condition declaration
containing a condition IC in line 3. Then, four variables are declared as monitored variables
including RRC.train x, RRC.train length, RRC.cross x, and RRC.cross length from
line 5 to line 8. train_x is the position of the tail of a train. train length is the length of
a train. cross x is the position of the left end of the crossing. In addition, there are two
monitored methods declared in lines 10 and 11: void Gate.gd(int) and int Gate.gu().
A method void Gate.gd(int) is used to lower the gate. int Gate.gu() is the method
for raising the gate. Next, a condition IC, which indicates whether a part of the train is
in the crossing, is defined in lines 13 and 14. IC is true if and only if the head of the train
is after the left end of the crossing and the end of the train should be before the right end
of the crossing. Finally, an event startGD meaning that the gate enters the closed state is
defined as the ending of method Gate.gd(int) in line 16. An event endGD meaning that
the gate starts raising is defined as the starting of the method Gate.gu() in line 17.
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RRC.cross_x RRC.cross_x
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Figure 8.1: A railroad crossing example

A MEDL script for the railroad crossing is given in Figure 8.3. The MEDL script starts
with a list of imported events in line 2 and an imported condition list in line 3. A condition
meaning that the gate is down is defined as an interval between startGD and endGD in line
5. The safety property indicates that when a train is in crossing (IC), the gate must be
down (GD). The safety property is defined in line 7.

8.1.2 A Database Client

A database client queries a database server periodically (choosing it randomly from a list
of servers). The pseudo-code for the client appears in Figure 8.4.
The real-time requirement and fault tolerant requirements are as follows:

e Real-time requirement. The client is periodic; that is, every few (say 1000 ms) seconds
it tries to query a new server.

o Fault tolerant requirement. Old data is used only when either the client fails to
connect to some server after sufficient number (say three) retries or the client fails
to get a response from the server (for the query asked) after trying (say) four times.

A MEDL script describing these requirements is given in Figure 8.5. The requirements
for the client can be defined with a signal for the beginning of the computation (startPgm),
an event for when a fresh period of 1000 ms has started (periodStart), a signal when the
client fails to connect to a server (conFail), a signal when the client resends the query
(queryResend), and an event denoting when the client uses old information (01dDataUsed).
These events are declared as imported events in line 3. Using these events, we can define the
real-time requirement (violatedPeriod) and the fault tolerance requirement (wrongFT).
The real-time requirement is violated whenever the time between successive periodStart
events (stored in an auxiliary variable periodTime) is not between 900 and 1100 ms as
defined in line 12. The fault tolerance requirement is defined in terms of the number of times
the client failed to connect to some server (an auxiliary variable numConFail), the number
of times a query was resent (an auxiliary variable numRetries) in line 13, and o1dDataUsed.
All auxiliary variables are initialized in lines 16 to 19 when startPgm occurs. The auxiliary
variables periodTime is updated with the elapsed time between two consecutive sessions
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01

:MonScr RailRoadCrossing

02: export event startGD, endGD;
03: export condition IC;
04:
05: monobj float RRC.train_x;
06: monobj int RRC.train_length;
07: monobj int RRC.cross_x;
08: monobj int RRC.cross_length;
09:
10: monmeth void Gate.gd(int);
11: monmeth int Gate.gu();
12:
13: condition IC = RRC.train_x + RRC.train_length > RRC.cross_x &&
14: RRC.train_x <= RRC.cross_x + RRC.cross_length;
15:
16: event startGD = endM(Gate.gd(int));
17: event endGD = startM(Gate.gu());
18:End
Figure 8.2: The PEDL script for the railroad crossing system
01:ReqSpec RailRoadCrossing
02: import event startGD, endGD;
03: import condition IC;
04:
05: condition GD = [startGD, endGD);
06:
07: property safeRRC = IC -> GD;
08:End
Figure 8.3: The MEDL script for the railroad crossing system
Client:

loop periodically (every p time units do)
randomly select a URL from a given list
open an HTTP connection to url with a timeout of To
if connection is established then
repeat for R times or until successful
send a CGI query for data
if unsuccessful then use old data
else use the data just received
else use old data
process data
endloop

Figure 8.4: Pseudo code of the database client
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01:ReqSpec StockClient

02: // Imported event declaration from the Stockclient

03: import event startPgm, periodStart, conFail, queryResend, oldDataUsed;
04:

05: // Auxiliary variable declartion

06: var long periodTime;

07: var long lastPeriodStart;

08: var int numRetries;

09: var int numConFail;

10:

11: // Requirement definition

12: alarm violatedPeriod = end((periodTime’ >= 900) && (periodTime’ <= 1100));
13: alarm wrongFT = oldDataUsed when ((numRetries’ < 4) || (numConFail’ < 3));
14:

16: // Auxiliary variable update rules

16: startPgm -> { periodTime’ = 1000;

17: lastPeriodStart’=time(startPgm)-1000;

18: numRetries’ = 0;

19: numConFail’ = 0;}

20: periodStart -> { periodTime’ = time(periodStart) - lastPeriodStart;
21: lastPeriodStart’= time(periodStart);

22: numRetries’ = 0;

23: numConFail’ = 0;}

24: queryResend -> { numRetries’ = numRetries + 1; }

25: conFail -> { numConFail’ = numConFail + 1; }

26:End

Figure 8.5: The MEDL script for the database client

99



in line 20 when periodStart occurs. An auxiliary variable numRetries is increased by
1 in line 24 when queryResend happens. Similarly, an auxiliary variable numConFail is
increased by 1 in line 25 when conFail happens.

A run-time checker receives events startPgm, periodStart, conFail, queryResend,
and oldDataUsed from an event recognizer at run-time. These events are defined in the
PEDL script in Figure 8.6 based on methods and variable defined in Client class. A

01:MonScr StockClient

02: // Exported event declaration

03: export event startPgm, periodStart, conFail, queryResend, oldDataUsed;
04:

05: // Monitored methods declaration

06: monmeth void Client.main(String[]);

07: monmeth void Client.run();

08: monmeth void Client.failConnection(ConnectTry);

09: monmeth Object Client.retryGetData(int);

10: monmeth Object Client.processO0ldData();

11:

12: // Event definition

13: event startPgm = startM(Client.main(String[]));

14: event periodStart = startM(Client.run());

15:

16: event conFail = startM(Client.failConnection(ConnectTry));
17: event queryResend = startM(Client.retryGetData(int));

18: event oldDataUsed = startM(Client.process0ldData());
19:end

Figure 8.6: The PEDL script for the database client

method main(String[]) is invoked when the client program starts. run() is invoked when
a new session begins. failConnection(ConnectTry) is invoked when connection fails to
be established. retryGetData(int) is invoked when the client retries to get response
from the server. process0ldData() is invoked when the old data is used instead of new
data. These methods are declared as monitored methods in lines 6 to 10. startPgm is
defined as starting of main(String[]) in line 13. periodStart is defined as starting of
run() in line 15. conFail, queryResend, and oldDataUsed are defined as startings of
methods failConnection(ConnectTry), retryGetData(int), and process0ldData(),
respectively, in lines 16 to 18.

8.2 Micro Air Vehicles

This example of the utility of the MaC approach is taken from an important domain of
modern warfare. Micro air vehicles (MAV), small unmanned planes that can be dispatched
in large quantities very quickly (e.g., dropped from another aircraft), can be employed to
perform many different tasks [GSSL99]. One such task involves arranging MAVs into a
hexagonal pattern, illustrated in Figure 8.7. Each MAV has to be near a grid of the pattern;
several MAV’s can occupy the same grid point (this is, clearly, a two-dimensional view of a
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three-dimensional situation). Control of individual MAVs from a centralized controller is
not feasible, therefore the MAVs must form the pattern through communications with their
neighbors, using local information only. Gordon and Speers at NRL devised a distributed
algorithm to solve this problem [SG99]. The algorithm is based on the relative positions
of the neighbors of an MAV.

Figure 8.7: The hexagonal pattern of MAVs

The goal of this example is to demonstrate how monitoring and checking can be used to
observe whether the desired pattern is forming as expected. The approach to monitoring
is based on the observation that in the hexagonal pattern, each neighbor of an MAV is
either at a fixed distance that is the parameter of the pattern (adjacent grid point), or very
close to the MAV in question (same grid point). If the pattern is not fully formed, there
are MAVs that have neighbors in other locations, and this can be detected as a violation
of the pattern. Intuitively, we should expect that as the pattern forms, the number of such
violations should go down.

An implementation-independent MEDL script of this property is shown in Figure 8.8.
The primitive event MAValert, supplied by the event recognizer, denotes a misplacement of
some neighbor of an MAV. The auxiliary variable currAlert is used in the checker to count
the number of violations of the pattern in the current interval. When the interval elapses,
the accumulated number is compared with the number of violations in the previous interval
represented by an auxiliary variable prevAlert. If a significant increase in the number of
violations is detected, an alarm NoPattern is sent to the user as a notification of potential
problems with the pattern formation

Line 2 of Figure 8.8 imports events init which indicates the starting of MAV and
MAValert. Line 8 defines an event endPeriod indicating 1000 ms long period ends. The
alarm NoPattern is raised when the number of MAValert in current period is increased
more that 10% from the number of MAValert in the previous period as defined in line 10.
The auxiliary variables periodStart, numMAValert, prevAlert, and currAlert are ini-
tialized in lines 12 to 15 when an event init occurs. The auxiliary variable numMAValert is
increased by 1 in line 17 whenever MAValert happens. Lines 19 to 22 update currAlert and
prevAlert and reset numMAValert as 0 and periodStart as current time when endPeriod
occurs.

This monitoring approach is applied to a distributed emulator of MAV deployment,
implemented in Java. Each MAYV is represented as a separate instance of class MAV, based
on standard Java class Thread. When the thread in an MAV runs, it continuously executes
the positioning algorithm and queries its neighbors for their positions. A local variable
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01:ReqSpec HexPattern

02: import event init, MAValert;

03:

04: var int numMAValert;

05: var float prevAlert, currAlert;

06: var long periodStart;

07:

08: event endPeriod = ((time(MAValert) - periodStart) > 1000);
09:

10: alarm NoPattern = start(currAlert’ > (prevAlert *1.1)) ;
11:

12: init -> { periodStart’ = time(init);

13: numMAValert’ = 0;

14: prevAlert’ = 0;

15: currAlert’ = 0; }

16:

17: MAValert -> { numMAValert’ = numMAValert + 1; }
18:

19: endPeriod -> { periodStart’ = time(endPeriod);
20: prevAlert’ = currAlert;

21: currlAlert’ = numMAValert;

22: numMAValert’ = 0; }

23:End

Figure 8.8: The MEDL script for pattern monitoring
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distance in the run() method of the class is used to hold the distance from the currently
queried neighbor. The PEDL script for this implementation is shown in Figure 8.9. An

01:MonScr MAVpattern

02:

03:export event MAValert, init;

04:

05: monobj int Air.DIST;

06: monmeth void Console.createMAVs(int);

07: monobj double MAV.run().distance

08:

09: event init = startM( Console.createMAVs(int) );

10: event MAValert = start ( MAV.run() .distance > 0.25 * Air.DIST &&
11: MAV.run() .distance < 0.75 * Air.DIST );
12:End

Figure 8.9: The PEDL script for pattern monitoring

event MAVAlert is defined in terms of the value of the variable distance. By declaring the
variable as a monitored variable, the specification instructs the filter to send all updates
of this variable to the event recognizer which, in turn, compares them with the acceptable
range of values as described in the specification. Line 9 defines an event init indicating
the beginning of the MAV emulator. Lines 10 and 11 define an event MAValert as when
the distance between any two MAV’s becomes too close, i.e. less than 75% of the specified
distance Air.DIST.

8.3 Analysis of Network Simulations

Network protocols are often analyzed using simulations. We demonstrate how the MaC
architecture can be applied to such simulations to check propositions expressing safety
properties of network event traces. We uses an extension of NS2 simulator [FV00] by the
CMU Monarch group (http://monarch.cs.cmu.edu) together with components of the
Java-MaC to provide a uniform architecture to analyze network protocols. We call this
tool suite Verisim. Figure 8.10 shows the overview of Verisim architecture.

Properties:
MEDL

Event
Trace2ER — Recognizer — Trace2CHK Metatrace

Scenario: /

OTcl

Instrumented
Protocol: C++

Figure 8.10: The architecture of Verisim

NS2 simulator comes in the place of an instrumented target program. NS2 generates a
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trace to an event recognizer through hand-written filter.! The execution trace generated
by a filter is fed into the event recognizer, which evaluates the events and conditions upon
the arrival of snapshots and generates a trace containing events and conditions. Then,
the run-time checker receives the trace of events and conditions and generates a metatrace
consisting of property violations. Based on the meta, trace file, we modify MEDL properties
to get more bugs detected in a protocol implementation without debugging and running
NS2 simulator all over again. This methodology is effective when debugging and running
simulation cost high.

The effectiveness of applying Java-MaC to the analysis of network protocols is demon-
strated by analyzing simulations of the Ad hoc On-demand Distance Vector (AODV) rout-
ing protocol for packet radio networks [Per97]. Our analysis finds violations of significant
properties such as loop invariant and destination reply. This case study shows flexibility
of Java-MaC in specifying complex network properties and checking the properties. More
details are in [BGK*01, BGK*00]

8.4 Hybrid System in Charon Specification Language

Charon [AGH™00] is a specification language for the hierarchical and modular specification
of interacting hybrid systems developed in Software Design Research Lab in University of
Penngylvania. Charon is used to specify hybrid systems that exhibit continuous behaviors
within modes and discrete jumps between modes. The goals of the Charon specification
language include simulating behaviors of hybrid systems, generating a code from the spec-
ification. Current Charon system generates only a simulator code in Java. Java-MaC can
be applied to monitor a simulator code generated from a specification in Charon.

8.4.1 Background on Charon

A Charon specification defines a hybrid system based on agents, modes, transitions and
variables. An agent can create sub-agents and make communication channels between
other agents. An agent can have modes and variables. A mode defines both algebraic and
differential equations on variables. A mode can have its own variables. A mode can create
submodes. Agents and modes are similar to Java classes. A Transition is defined between
modes. A transition has a name, a starting point, ending points and corresponding guards
and actions. Action assigns a value to a variable. Variables are defined inside of agents
and modes. Real, boolean and integer variables are supported.

Entities of Charon specification are translated into entities of Java systematically.
Therefore, if a user writes down a PEDL for Charon script whose primitives are agents,
modes, variables, and transitions, the PEDL for Charon script can be translated into the
PEDL for Java script. Agent definitions and mode definitions in a Charon specification
are translated into Java classes through the Charon compiler. Variables defined inside of
agents/modes are translated into member fields of classes corresponding the agents/modes.
Agents/modes in Charon can be monitored in similar way to monitor objects in Java. A
transition, however, is not translated into its own class. Each transition is created by
instantiating a class Transition. To monitor transitions, Java-MaC monitors t.name of

INS2 is instrumented manually because Java-MaC is not able to instrument C++ code.
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Simulator.processTransition ( Transition t, int dest), which is the name of a
transition t.

The overall structure of monitoring and checking a simulator code generated from a
Charon specification using the MaC architecture is in Figure 8.11. First, a user writes
down requirement properties in MEDL. Then, the user writes down a PEDL for Charon
script (Charon Layer). Second, a PEDL for Charon script is translated into a PEDL
for Java script (Charon/MaC Interface Layer).? This translation depends on the design
of the Charon compiler. In other words, the way the Charon compiler translates agents,
modes, variables, and transitions into Java entities determines the way a PEDL for Charon
script is translated into a PEDL for Java script. In addition, a Charon specification is
translated into Java program by the Charon compiler. Finally, given Charon program in
Java bytecode and the PEDL for Java script, Java-MaC instruments the Charon program
(Java-MaC Layer). The rest of monitoring and checking process is the same as usual.

Charon Spec MEDL Propetties

Charon compiler
PEDL for Charon

1
. 1
7 design I Charon Layer
1
Charon Compilet

AN By

Java Bytecode PEDL for Java
Automatic
nstrumentation

Instrumented Bytecode |E Event Recognizer > Run-tme Checker

Figure 8.11: Overview of applying Java-MaC for monitoring a Charon simulation

8.4.2 Inverted Pendulum Example

Figure 8.12 illustrates an inverted pendulum (IP). The control objective is to move the
cart from one position to a desired goal position maintaining the pendulum at the upright
position. In this case study, starting position is 0 and goal position is 0.5.

Figure 8.13 shows a diagram of the inverted pendulum system in Charon [FHLS00],
which consists of IPControllers, IPDecisionModule, and IPPhysicalSystem. IPControllers
provides control signals to IPDecisionModule which implements control switching logic
of the Simplex Architecture [SKSC98]. IPControllers has three different controllers:
controllerEC (experimental controller), controllerBC (baseline controller) and controllerSC
(safety controller). Initially, experimental controller whose reliability is not trusted controls

*We have not implemented a translator from a PEDL for Charon script to a PEDL for Java script yet.
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Figure 8.12: The inverted pendulum system

IP = IPControllers Il IPDecisionModule || IPPhysicalSystem

position
angle
cVelocity
aVelocity
L IPControllers | VaBC | \bpacision- g-‘Pl't!ysical-
stem

vagc | Module Y
VaSC ctriCmd

VaBC: control output from baseline controller

VaEC: control output from experimental controller

VaSC: control output from safety controlller

position: position of cart angle: vertical angle

cVelocity: cart velocity aVelocity: angular velocity
ctriCmd: control output of IPController

Figure 8.13: The diagram of the inverted pendulum specification

the cart. If the system enters undesirable state, the safety controller which performs reli-
ably but not optimally takes over the control. Once the system enters the operating region
of the baseline controller, control is given to a baseline controller. IPDecisionModule reads
control signals from IPControllers and generates control command. IPPhysicalSystem
reads that command and updates the system states consisting of position (the cart’s
position), angle (vertical angle of the inverted pendulum of the cart), cVelocity (the
velocity of the cart), aVelocity (the angular velocity of the inverted pendulum).
We monitor following events in IP.

e the cart achieves the control objective: to reach the goal position with upright pen-
dulum.

e control is passed from one controller to another. In other words, transitions between
controllerEC, controllerBC, and controllerSC are monitored.

e the mission fails: pendulum falls down completely

PEDL script for IP are in Figure 8.14. We allow tolerance of 0.01 for position,cVelocity,angle,
and aVelocity. We monitor four variables aVelocity, cVelocity, angle, and position
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declared in lines 9 to 16.> We monitor transitions by monitoring transName which contains
the name of current transition declared in lines 17 and 18. An event finish is defined in
lines 21 to 24 as position reaches 0.5 which is the goal position, cVelocity and aVelocity
becomes 0, and the vertical angle angle becomes 0. An event fallDown is defined in lines
33 to 34 as the vertical angle becomes 90 or -90 degree which indicates the pendulum falls
down completely. Events indicating that control is given from one controller to another
are defined in lines 25 to 30.

MEDL script for IP are in Figure 8.15. Lines 2 to 7 indicate the imported events from
the event recognizer. Alarm fail is defined as when the pendulum falls down in line 9.
Line 11 to 32 display what events are occuring for the convenience of users. For example,
if the run-time checker receives an event finish, the run-time checker shows the following
message to the screen.

HHHRHFRR IR
The cart has reached the goal with rod standing upright!
HHHRHFRR IR

8.4.3 Overhead Measurement

We measured the overhead induced by Java-MaC on IP. IP runs on IBM JVM 1.3.0 with
JIT in Linux 2.2 machine ( 2X 550Mhz PIII 5, 1GB memory). An event recognizer and
a run-time checker run on Sun HotSpot JVM 1.3.1 in the same Windows 2000 machine (
1.4Ghz Pentium4, 512MB memory). Both machines are on same network domain. A filter
has a communication buffer of 512 byte and sends snapshot using TCP socket. Experiments
were performed 10 times for each case.

First, we measured size/execution time of uninstrumented IP. IP has total 131 classfiles,
which takes 1176 kilobytes. At run-time, IP takes 58M bytes memory.*

e elapsed time: 85.2 second (standard deviation 0.9%).
e user time: 84.65 second (standard deviation 4.9%).
e system time: 3.29 second (standard deviation 6.5%).

As we can see, IP is a CPU intensive program.
Second, we measured size/execution time of the instrumented IP. 10 classes are instru-
mented and increased by total 2224 bytes.

e IPSimplexTestSimulation.class: 19811 — 19893 bytes

IPSimplexTestgSim.class(main classfile): 3264 — 3817 bytes

controllers.class: 3542 — 3735 bytes

AnalogVar.class: 2240 — 2456 bytes

e Bool.class: 1008 — 1242 bytes

3PEDL allows a user to use a short alias to the monitored variable/method by using <- keyword.
“Memory usage is obtained using top.
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DiscreteVar.class: 1894 — 2118 bytes

Real.class: 966 — 1178 bytes

Real.class: 849 — 1055 bytes
e RealD.class: 853 — 1059 bytes
e Variable.class: 1374 — 1472 bytes

We performed experiments with and without delta abstraction and value abstraction. As
you may see, overhead reduction techniques do not seem to reduce the overhead substan-
tially. This is because the overhead itself caused by Java-MaC is too small to demonstrate
the benefit of overhead reduction techniques and the standard deviation of measured exe-
cution time masks out the difference.

Without overhead reduction techniques At run-time, IP takes 59M bytes memory,
which is 1 M bytes more than memory used by uninstrumented IP. The total elapsed time
is 85.9 second (standard deviation 0.61%) which is 0.9% slowed down compared to the
original execution. A total number of sendObjMethod() invocation was around 6.8 x 10°.
A total number of snapshots sent from the target program to an event recognizer was
around 6300. A total volume of snapshots was around 62k bytes.

With delta values At run-time, IP takes 59M bytes memory, which is 1 M bytes more
than memory used by uninstrumented IP. The total elapsed time is 85.7 second (standard
deviation 0.8%) which is 0.6% slowed down compared to the original execution.

A total number of sendObjMethod() invocation was around 6.8 x 10°. A total number
of snapshots sent from the target program to an event recognizer was around 6300. A
total amount of snapshot was 40k bytes. As you see, the delta abstraction reduces the
total amount of snapshots by 37 (= (62-40)/62)%.

With value abstraction At run-time, IP takes 59M bytes memory, which is 1 M bytes
more than memory used by uninstrumented IP. The total elapsed time is 86.0 second
(standard deviation 1.26%) which is 0.9% slowed down compared to the original execution.
A total number of sendObjMethod() invocation was around 6.8 x 10°. A total number
of snapshots sent from the target program to an event recognizer was 35. The value
abstraction abstracts out most snapshots. A total amount of snapshot was 364 bytes.
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01:MonScr IP

02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:End

export

event

finish,

ECtoSC,ECtoBC,
BCtoEC,BCtoSC,
SCtoEC,SCtoBC,

fallDown;

// 1. Goal is achieved

// 2. Control is given from EC to other controller
// Control is given from BC to other controller
// Control is given from SC to other controller

// 3. Pendulum falls down

monobj double aVelocity

<- CHARON.simulator.agents.controllers.aVelocity.v;
monobj double cVelocity

<-CHARON.simulator.agents.controllers.cVelocity.v;
double angle
CHARON.simulator.agents.controllers.angle.v;
double position
CHARON.simulator.agents.controllers.position.v;
String transition
<-CHARON.simulator.Simulation.transName;

monobj
<_
monobj
<
monobj

// Tol
event

event
event
event
event
event
event

// Tol

event fallDown

erance :

finish

ECtoSC =
ECtoBC =
BCtoEC =
BCtoSC =
SCtoEC =
SCtoBC =

erance

0.01

start(0.49 < position && position < 0.51 &&
- 0.01 < cVelocity && cVelocity < 0.01 &&
- 0.01 < angle && angle < 0.01 &&
- 0.01 < aVelocity && aVelocity <0.01 );

start(transition =
start(transition =
start(transition =
start(transition =
start(transition =
start(transition =

: 0.01

"ECtoSC");
"ECtoBC") ;
"BCtoEC") ;
"BCtoSC") ;
"SCtoEC") ;
"SCtoBC") ;

= start( (89.99 < angle && angle < 90.01) ||
(- 90.01 < angle &% angle < -89.99));

Figure 8.14: PEDL script for IP
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01:ReqgSpec IP

02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:End

import event

finish, // 1. Goal is achieved

ECtoSC,ECtoBC, // 2. Control is given from EC to other controller
BCtoEC,BCtoSC, // Control is given from BC to other controller
SCtoEC,SCtoBC, // Control is given from SC to other controller
fallDown; // 3. Pendulum falls down

alarm fail = fallDown;

finish -> {
print H#HHEEEEEEHEEAEEEE R
print "The cart have reached the goal with rod standing upright!";
print “#dHEEEEEEEEEE R R )
ECtoSC -> {
print "An expreiment controller is changed into a safe controller!";

print n u;}
ECtoBC -> {
print "An expreiment controller is changed into a basic controller!";
print n u;}
BCtoEC -> {
print"A basic controller is changed into a experimental controller!";
print n u;}
BCtoSC -> {
print "A basic controller is changed into a safe controller!";
print n u;}
SCtoEC -> {
print"A safe controller is changed into an experimental controller!";
print n u;}
SCtoBC -> {
print"A safe controller is changed into a basic controller!";
print n u;}

Figure 8.15: MEDL script for IP

110



Chapter 9

Summary and Future Work

9.1 Summary

We have presented an architecture for run-time formal analysis, called Monitoring and
Checking (MaC) architecture, as a complementary solution to the formal verification and
testing for the assurance of correct target program execution. First, we investigated several
fundamental issues including issues on monitorable properties, the complexity of property
evaluation in the presence of non-determinism, and abstraction of program execution.
Second, we developed the MaC architecture with two specification languages, i.e., Primitive
Event Definition Language (PEDL) and Meta Event Definition Language (MEDL). We
designed the architecture as a modular architecture consisting of several components for
the increased flexibility. Third, we have implemented a MaC prototype for Java programs
called Java-MaC solving the platform specific issues such as monitoring objects. Lastly,
we showed the effectiveness of the MaC architecture through several examples including
the emulator of distributed controller for large numbers of mobile agents, Ad-hoc On
Demand Vector (AODV) routing protocol analysis, and monitoring an inverted pendulum
simulation.

The thesis of this dissertation is that run-time formal analysis can provide confidence in
the correct execution of software systems in a practical manner. The technical contributions
in the dissertation are summarized in the followings.

¢ Rigorous analysis
The MaC architecture uses a formal requirement specification to monitor and check
the execution of the target program. In addition, instrumentation, monitoring, and
checking are performed automatically following the formal requirement specifications
without requiring human interaction, which leads to the accurate analysis.

¢ Flexibility
The MaC architecture separates monitoring program-dependent, low-level behavior
from checking high-level behavior in both its specification languages (PEDL and
MEDL) and its run-time analysis components (a filter, an event recognizer, and a
run-time checker). Furthermore, the interfaces between the components are well-
defined. These features allow users to extend the MaC architecture for their own
purpose by plugging third-party tools in the architecture.
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¢ Automation
The analysis procedure of the MaC architecture is fully automatic. First, the target
program is instrumented automatically according to a low-level specification. Second,
the architecture monitors and checks the execution of a target program automatically
following formal requirement specifications.

s Ease of use
Users do not need to change their execution environment such as VM/OS/HW to use
the MaC architecture. In addition, the analysis procedure including instrumentation,
monitoring, and checking are performed automatically without requiring human di-
rections. Finally, users do not need complex source code recompilation because the
architecture works on the executable code directly.

s Generality
The MaC architecture is application-independent. In addition, the architecture works
on the executable code which has great availability compared to the source code.
Furthermore, the openness of the architecture makes the architecture extendible to
various application areas.

This dissertation discusses the design of the MaC architecture and its implementation
Java-MaC. We have partly shown the effectiveness of run-time formal analysis by presenting
the design and implementation of the MaC architecture with several case studies. We did
not, however, have a chance to prove the practicality of run-time formal analysis. The
main reason for this missing proof of the practicality is that we could not get real-world
safety critical programs written in Java. We expected that Java would become a favorable
programming language in safety critical fields when we started research on run-time formal
analysis. People have been extending Java programming language for such safety real-time
systems. However, currently, Java is still not a programming language of the choice in the
safety critical areas. As the second best way, we have applied Java-MaC to simulators so
that we may show its practicality, at least partially (see Chapter 8). Through several case
studies, we found that the MaC architecture could be useful as an extended/supplementary
testing architecture. We believe that we can provide this missing proof of practicality as
safety critical applications start to be written in Java in near future.

9.2 Future Work

9.2.1 Value Abstraction

The MaC architecture performs value abstraction to reduce overhead. The heuristic for
value abstraction used in Java-MaC is, however, primitive because value abstraction is
applied only to very simple expressions. We will extend the heuristic for broad applicability.

9.2.2 Monitoring Objects

Java-MaC monitors the execution of target program through monitoring objects. Due to
the complexity of dynamic object behavior, however, Java-MaC assumes that an object
is not assigned with another object. We will investigate how to resolve this restriction so
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that a broader range of programs can be monitored. We may modify JVM so that we can
access necessary information to test references from JVM, which eliminate the need of the
address table.

9.2.3 Application Area

There has been an continuous effort to add a real-time features to Java so that safety
critical application can be written in Java. We believe that we can apply Java-MaC to a
safety critical systems written in Java in near future. In addition, Java-MaC has shown
its potential as a flexible software testing tool through several examples including AODV
protocol analysis. We will continue investigating issues for applying Java-MaC as a software
testing tool.
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Appendix A

Interface between Filter and Event
Recognizer

After a connection between a filter and an event recognizer is established, the filter sends
snapshots to the event recognizer. The connection must guarantee delivery of snapshots
in order without losing one. A snapshot consists of an ID field for a monitored variable
(1 byte) and a value field of the monitored variable (variable size). The size of value field
depends on the type of the monitored variable.!. A snapshot reporting a beginning/ending
of a method has a boolean value field: false means beginning of a method and true
means ending of the method.? A snapshot is either a special snapshot which has a reserved
functionality for monitoring or a regular snapshot which contains a value of the monitored
variable.
ID from -9 to 9 are reserved for special snapshots.

e ID 1 is defined for a periodic tick indicating a period amount of time has been elapsed
since last periodic tick 7.2. This snapshot does not have a value field.

e ID 2 is defined for multiple periodic ticks indicating multiple period amount of time
has been elapsed since last periodic tick. This snapshot has 1 byte value field con-
taining how many periods has elapsed.

e The remaining range among -9 to 9 are not defined.

A regular snapshot has an ID starting from 10 to 127. Negative ID in the snapshot
means that the snapshot contains a delta value of a monitored variable of positive ID (see
Section 7.2.1). Therefore, the maximum number of monitored entities is 118. We decided
delta types as the followings.

e the delta type of long: int
e the delta type of int and short : byte

e the delta type of double : float

' A String value is delivered in Java modified UTF format [GJS00]
*Values for a beginning/ending of a method are not yet implemented.
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Figure A.1 shows an example of communication between a filter and an event recognizer.
The first snapshot is a monitored variable A.bl.x whose value is 35. The second one is
A.bl.y whose value is 3.14. The third one is a periodic time stamp. The fourth one is
A .b1l.x represented as a snapshot containing delta value. The delta value of the snapshot
is -1, which means that A.b1.x is 34 (= 35-1).

1 1 1 4 bytes 1 4 bytes 1

e < Event

o o] [ ] | Recognicer

ID | Var Name| Type

10| A.bl.x int

11| A.bl.y |double

Figure A.1: Example of snapshots from a filter to an event recognizer
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Appendix B

Interface between Event
Recognizer and Checker

After a connection between an event recognizer and a checker established, the event recog-
nizer sends messages to the checker. The connection must guarantee delivery of messages
in order without losing one.

Initially, the event recognizer sends an object of InterfaceERChecker containing a
table mapping event IDs to event names and mapping condition IDs to condition names.
MEDL script and PEDL script are compiled separately. A checker cannot recognize what
an ID from the event recognizer means without the table from the event recognizer.

Then, the event recognizer sends events. Also, the event recognizer sends conditions
which change its value among true, false and undefined. Multiple events can happen
at one instance. Similarly multiple conditions can change their values at one instance.
Therefore, the event recognizer sends a group of messages to the checker.

A header of group of message consists of

Timestamp : 8 bytes long

e 3 number of events: 1 byte

e 3 number of conditions becoming true: 1 byte

e 3 number of conditions becoming false: 1 byte

e 3 number of conditions becoming undefined: 1 byte

After the header is sent, events are sent first, then conditions becoming true, conditions
becoming false, conditions becoming undef are sent in order.

e For an event, 1 byte eventID, 1 byte typeEventValue' and a value of the events
which can be various size depending on its type are sent.

e For a condition, 1 byte conditionID is sent

!typeEventValue is defined in mac.types.interfaceFilterER.DataTypes
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eventID and conditionID can be any number between -128 to 127. Therefore, maxi-
mum number of events and conditions defined should be less than or equal to 256

Figure B.1 shows an example of communication between an event recognizer and
a checker. An event recognizer sends a table containing condition/event names and
IDs associated with these names. A condition inCrossing has an ID 0. An event
enteringCrossing has an ID 1. The first packet is a header indicating that one con-
dition becomes true and one event happens at the time instant represented by 72342400.
The second packet indicates that an event enteringCrossing, whose value is int 13,
happens. The third packet indicates inCrossing becomes true.

8 bytes D

Condition/ Event name

inCrossing

Event _<_1>4111111
Recognizer >|I||13| 1] o] of 1] 1 [72392000 | j

enteringCrossing

>| Checker

Figure B.1: Example of messages from an event recognizer to a checker
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Appendix C

PEDL for Java Grammar

addQbj::=
location::=
checkMethodObj: :
contained::=
addExec::=
setRel0p::=
setArithOp::=
addToSymbolTable: :
searchSymbolTable: :=
connectAndSetName: :=
error_skipto::
MonitoringScript::

TimeDeclaration::
ValueAbstraction::=
MultiThreadDeclaration: :=

DeltaValueDeclaration: :=
Declaratiomns::

Definitions::

EventDeclaration: :=
ConditionDeclaration::=

BNF for pedl.jj

NON-TERMINALS

java code

java code

java code

java code

java code

java code

java code

java code

java code

java code

java code

<MONSCR> <IDENTIFIER> Declarations
Definitions <END>

<TIMESTAMP> <INTEGER_LITERAL> (
<IDENTIFIER> )?

<VALUEABSTRACTION>

<MULTITHREAD>

<DELTAVALUE>

( ( ( EventDeclaration |
ConditionDeclaration | TimeDeclaration |
ValueAbstraction | DeltaValueDeclaration |
MultiThreadDeclaration |
MonitoredObjectDeclaration |

MonitoredMethodDeclaration ) ) ( ";" )? )*
( ( ( EventDefinition | ConditionDefinition
) ) ()T )%

<EXPORT> <EVENT> EventNames
<EXPORT> <CONDITION> ConditionNames
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EventNames: :

ConditionNames::
MonitoredObjectDeclaration::

MonitoredMethodDeclaration::

ObjectName: :

MethodNameWOparameters::

MethodName: :

AliasVariableName::
AliasMethodName: :

FormalParameters::=
EventDefinition: :=

EventExpression::

OptionalWhen::

SimpleEventExpression::

EventOp::

ConditionDefinition::

Type::
PrimitiveType::

Name: :
NameList::
Expression::

<IDENTIFIER> ( "," <IDENTIFIER> )+*

<IDENTIFIER> ( "," <IDENTIFIER> )+*
<MONOBJ> Type ( AliasVariableName "<-" )7
ObjectName ( "," ( <IDENTIFIER> "<-" )7

ObjectName )*
<MONMETH> ( Type | <VOID> ) (
AliasMethodName "<-" )? MethodName

( <IDENTIFIER> "." )% <IDENTIFIER> ( "."
<IDENTIFIER> FormalParameters )7 "."
<IDENTIFIER>

( <IDENTIFIER> "." )+ <IDENTIFIER>

MethodNameWOparameters FormalParameters
<IDENTIFIER>

<IDENTIFIER>
n(" ( Type ( "," Type )* )? ")®
<EVENT> <IDENTIFIER> "=" EventExpression

( SimpleEventExpression ( ( EventOp
EventExpression ) )? OptionalWhen )

( <WHEN> ConditionalExpression )x*

( <IDENTIFIER> | "(" EventExpression ")" |
<START> "(" ConditionalExpression ")" |
<END> "(" ConditionalExpression ")" |
<UPDATE> "(" ( ObjectName ")" |
<IDENTIFIER> ")" ) | <STARTM> " ("
MethodNameWOparameters FormalParameters ")"
| <ENDM> "(" MethodNameWQOparameters
FormalParameters ")" | <IOM> "("
MethodNameWOparameters FormalParameters ")"
)

ll&&ll

n I I n

<CONDITION> <IDENTIFIER> "="
ConditionalExpression

( PrimitiveType | Name ) ( "[" "]" )* )
"boolean" )

llcharll )

llbytell )

"short" )

llintll )

lllongll )

"float" )

"double" )

"String" )

<IDENTIFIER> ( "." ( <IDENTIFIER> ) )x*
Name ( "," Name )*

ConditionalExpression

(
(
(
(
(
(
(
(
(
(
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ConditionalExpression: :=
ConditionalOrExpression: :=

ConditionalAndExpression::
InclusiveOrExpression::

ExclusiveOrExpression: :=
AndExpression::

EqualityExpression::

InstanceOfExpression::
RelationalExpression::
ShiftExpression::
AdditiveExpression::
MultiplicativeExpression::

UnaryExpression::

UnaryExpressionNotPlusMinus::

CastLookahead: :

CastExpression::

PrimaryExpression::
PrimaryPrefix::

PrimarySuffix::

ConditionalOrExpression

( ConditionalAndExpression ( "||"
ConditionalAndExpression )* )

( InclusiveOrExpression ( "&&"
InclusiveOrExpression )* )

( ExclusiveOrExpression ( "|"
ExclusiveOrExpression )* )

( AndExpression ( """ AndExpression )* )
( EqualityExpression ( "&"
EqualityExpression )* )

( <INM> "(" MethodNameWQOparameters
FormalParameters ")" )

( <DEFINED> "(" ConditionalExpression ")" )
InstanceQfExpression ( ( ( "==" | "i=" )
InstanceQfExpression ) )*

( RelationalExpression ( "instanceof' Type
)? )

ShiftExpression ( ( ( "<'" | U>" | =" |
">=" ) ShiftExpression ) )*
AdditiveExpression ( ( ( "<<" | ">>" |
">>>" ) AdditiveExpression ) )*
MultiplicativeExpression ( ( ( "+" | "-" )
MultiplicativeExpression ) )*
UnaryExpression ( ( ( "*" | /" | "4" )
UnaryExpression ) )*

( C "+ | "=" ) UnaryExpression )
UnaryExpressionNotPlusMinus

( <TIME> "(" EventExpression ")" )

( <VALUE> "(" EventExpression ","
Expression ")" )

( ¢ v~ | "1" ) UnaryExpression )
CastExpression

PrimaryExpression

"(" PrimitiveType

ll(ll Nalne ll[ll ll]ll

ll(ll Nalne ll)ll ( n~n I ll!ll I ll(ll I
<IDENTIFIER> | Literal )

( "(" Type ")" UnaryExpression | "(" Type
")" UnaryExpressionNotPlusMinus )
PrimaryPrefix ( ( PrimarySuffix ) )x*
Literal

"(" Expression ")"

ObjectName

<IDENTIFIER>

( "[" Expression "I" | "." <IDENTIFIER> |
Arguments )
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<INTEGER_LITERAL> )
<FLOATING_POINT_LITERAL> )
<CHARACTER_LITERAL> )
<STRING_LITERAL> )
lltruell )
"false" )
( llnullll )

Arguments::= "(" ( ArgumentList )? ")"
ArgumentList::= Expression ( "," Expression )*

Literal::=
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Appendix D

MEDL Grammar

BNF for medl.jj
NON-TERMINALS

setRelOp::= java code
setArithOp::= java code
addToSymbolTable: := java code
searchSymbolTable: := java code
addVarToList::= java code
addToVarBackPtrs::= java code
error_skipto::= java code
RequirementScript::= <REQSPEC> <IDENTIFIER> Statements Guards
<END>
Statements::= ( ( Statement ) ( ";" )? )x*
Statement::= EventDeclaration
ConditionDeclaration
ActionDeclaration
AuxilliaryVariableDeclaration
EventDefinition
ConditionDefinition
SafetyPropertyDefinition
AlarmDefinition
EventDeclaration: := <IMPORT> <EVENT> IdentifierList
ConditionDeclaration::= <IMPORT> <CONDITION> IdentifierList
ActionDeclaration: := <IMPORT> <ACTION> IdentifierList

IdentifierList::= <IDENTIFIER> ( "," <IDENTIFIER> )*
AuxilliaryVariableDeclaration::= <AUXVAR> PrimitiveType IdentifierList
EventDefinition::= <EVENT> <IDENTIFIER> "=" EventExpression

ConditionDefinition::= <CONDITION> <IDENTIFIER> "="
ConditionalExpression

SafetyPropertyDefinition: := <PROPERTY> <IDENTIFIER> "="
ConditionalExpression
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AlarmDefinition::= <ALARM> <IDENTIFIER> "=" EventExpression
EventExpression::= ( SimpleEventExpression ( ( EventOp
EventExpression ) )7 OptionalWhen )
OptionalWhen::= ( <WHEN> ConditionalExpression )x*
SimpleEventExpression::= ( <IDENTIFIER> | "(" EventExpression ")"
| <START> "(" ConditionalExpression ")" |
<END> "(" ConditionalExpression ")" )
EventOp::= ( "&&" )

")
Guards::= ( Guard )=*
Guard::= <IDENTIFIER> "->" "{" Updates "1}"
Updates::= Update ( ";" Update )* ";"
Update::= ( ( <PRIMEDID> "=" Expression ) | (

<INVOKE> <IDENTIFIER> ) | ( <PRINT>
Expression ) )

Type::= ( ( PrimitiveType | Name ) ( "[" "]1" )* )
PrimitiveType::= ( "boolean" )
I ( llcharll )
I ( llbytell )
| ( "short" )
I ( llintll )
I ( lllongll )
|  ( "float" )
| ( "double" )
ResultType::= ( "void" )
| ( Type )
Name::= ( <IDENTIFIER> ( "." ( <IDENTIFIER> ) )=*
)
Expression::= ConditionalExpression
ConditionalExpression::= ( ConditionalOrExpression ( "?"
Expression ":" ConditionalExpression )7 )
ConditionalOrExpression::= ( ConditionalAndExpression ( "||"
ConditionalAndExpression )* )
ConditionalAndExpression::= ( InclusiveOrExpression ( "&&"
InclusiveOrExpression )* )
InclusiveOrExpression::= ( ExclusiveOrExpression ( "|"
ExclusiveOrExpression )* )
ExclusiveOrExpression::= ( AndExpression ( """ AndExpression )* )
AndExpression::= ( EqualityExpression ( "&"
EqualityExpression )* )
EqualityExpression::= ( "[" EventExpression "," EventExpression
ll)ll )
| ( <DEFINED> "(" Expression ")" )
| InstanceOfExpression ( ( ( "==" | "i=")
InstanceQfExpression ) )*
InstanceOfExpression::= ( RelationalExpression ( "instanceof"

129



RelationalExpression::
ShiftExpression::
AdditiveExpression::
MultiplicativeExpression::

UnaryExpression::

UnaryExpressionNotPlusMinus::

CastLookahead: :

CastExpression::

PrimaryExpression::
PrimaryPrefix::

PrimedName: :
PrimarySuffix::

Literal::

Arguments::
ArgumentList::

Type )7 )

ShiftExpression ( ( ( "<'" | U>" | =" |
“>=" ) ShiftExpression ) )*
AdditiveExpression ( ( ( "<<'" | ">>" |

">>>" ) AdditiveExpression ) )*
MultiplicativeExpression ( ( ( "+" | "-"
) MultiplicativeExpression ) )*

UnaryExpression ( ( ( "*" | /" | "4" )
UnaryExpression ) )*
( ¢ "+" | "=" ) UnaryExpression )

UnaryExpressionNotPlusMinus

( <TIME> "(" EventExpression ")" )

( <VALUE> "(" EventExpression ","
Expression ")" )

(¢ ¢ | "1 ) UnaryExpression )
CastExpression

PrimaryExpression

"(" PrimitiveType

ll(ll Na.tne ll[ll ll]ll

ll(ll Na.tne ll)ll ( n~n I ll!ll I ll(ll I
<IDENTIFIER> | Literal )

( "(" Type ")" UnaryExpression | "(" Type
")" UnaryExpressionNotPlusMinus )
PrimaryPrefix ( PrimarySuffix )=*
Literal

"(" Expression ")"

ResultType "." "class"

Name

PrimedName

<PRIMEDID>

"[" Expression "]"

"." <IDENTIFIER>

Arguments

( <INTEGER_LITERAL> )

( <FLOATING_POINT_LITERAL> )

( <CHARACTER_LITERAL> )

( <STRING_LITERAL> )
(
(

lltruell )
"false" )
( llnullll )

“(" ( ArgumentList )? ")"
Expression ( "," Expression )*
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Appendix E

MaCSware User Manual

Preface

This document presents the user interface of the monitoring and checking (MaC) toolset.
It describes the process of putting together a monitoring application from a system to be
monitored and a set of scripts that describe what should be monitored and how. The
language of the scripts is beyond the scope of this manual. Consult the MaC language
reference manual for syntax and semantics of the languages used in MaC. The rationale
and the general philosophy for MaC, as well as a description of the components of MaC
architecture can be found in [KKL101, KVBA199, KVBA'98]. The current version of
MaC is targeted towards Java programs.

The manual is organized as follows: Section E.1 gives an overview of MaC architec-
ture. It presents the components of the architecture and the steps necessary to produce a
monitoring application. Then, Section E.3 describes the graphical user interface for MaC
and its use to configure MaC for a sample application. Finally, Section E.4 gives the
command-line interface to all MaC components.

E.1 MaC overview

The structure of the MaC architecture is demonstrated in Figure E.1. The user specifies
the requirements of the system in a formal language. Requirements are expressed in terms
of high-level events and conditions. In addition, a monitoring script relates these events
and conditions with low-level data manipulated by the system at run time. Based on
the monitoring script, the system is automatically instrumented to deliver the monitored
data to the event recognizer. The event recognizer, also generated from the monitoring
script, transforms this low-level data into abstract events and delivers them to the run-
time checker. The run-time checker is generated from the requirements specification. The
run-time checker verifies the sequence of abstract events with respect to the requirements
specification and detects violations of requirements.

The reason for keeping the monitoring script distinct from the requirements speci-
fication is to maintain a clean separation between the system itself, implemented in a
certain way, and high-level system requirements, independent of a concrete implementa-
tion. Implementation-dependent event recognition insulates the requirement checker from
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Figure E.1: MaC architecture
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the low-level details of the system implementation. This separation also allows us to per-
form monitoring of heterogeneous distributed systems. A separate event recognizer may
be supplied for each module in such system. Each event recognizer may process the low-
level data in a way specific to the respective module. For example, an event recognizer
that is associated with a software component will work very differently from the one that
processes traffic on a bus. But all event recognizers deliver high-level events to the checker
in a uniform fashion.

In keeping with this design philosophy, two languages have been designed for use in the
MaC architecture. The Meta-Event Definition Language (MEDL) is used to express re-
quirements. It is based on an extension of a linear-time temporal logic. It allows to express
a large subset of safety properties of systems, including real-time properties. Monitoring
scripts are expressed in the Primitive Event Definition Language (PEDL). PEDL describes
primitive high-level events and conditions in terms of system objects. PEDL, therefore, is
tied to the implementation language of the monitored system in the use of object names
and types. MEDL is independent of the monitored system.

In addition, when steering is used, the user provides a steering script in addition to
the monitoring script. The steering script describes steering actions and conditions for
their invocation using the Steering Action Definition Language (SADL). Steering actions
are invoked in response to requirement violations detected by the checker. The steering
script generates additional instrumentation data for the system and also a special run-time
component called injector that accepts action invocations from the monitor and triggers
their execution within the system.

Thus, in order to set up monitoring of a system, the user has to perform the following
steps:

1. Specify the monitoring script (PEDL) and compile it to generate the event recognizer.

2. Specify the requirements specification (MEDL) and compile it to generate the run-
time checker.

3. Optionally, specify the steering script (SADL) and compile it to generate the injector.
4. Perform instrumentation of the system.

5. Start the runtime checker.

6. Start the event recognizer.

7. Start the system.

Note that the order in which MaC components are started, is important: the checker
should be run before the event recognizer and both of them must be running before the
system is started.

133



E.2 Installation of MaCSware

MaCSware! is written in Java and runs on version 1.1 or later version of java platform.
MaCSware uses JTREK library v1.1 for bytecode modification. Thus, user need to down-
load JTREK v1.12 and bug patch of JTREK v1.1.3. After downloading MaCSware into
<mac dir> and JTREKvL.1 into <jtrek dir>, user need to set CLASSPATH. We assume
that CLASSPATH variable already exists.

e For Unix user using tcsh, add
setenv CLASSPATH $CLASSPATH" :<mac dir>:<jtrek dir>:."
at the last line of <home dir>/.tcshrc. Then source <home dir>/.tcshrc

e For Windows user, open Start button — Setting — Control Panel — System
(— Advanced) — Environment and add

;<mac_dir>;<jtrek. dir>;.
into the value field of the variable CLASSPATH. Or, add
set classpath=Yclasspathl;<mac dir>;<jtrek.dir>;.

at the last line of C:\autoexec.bat. Then restart a computer.

E.3 MaC GUI

The control panel for MaC is provided by the MacGUI application. It visually represents all
MaC components that need to be set up in order to do monitoring, and guides the workflow
by enforcing the dependencies between the components. For example, the checker cannot
be set up before the user enters and compiles the requirements specification to be input to
the checker.

Figure E.2 shows the view of the MaC control panel. It has been intentionally made to
follow the layout of Figure E.1. Each component of the MaC architecture is represented
as a box in the control panel. Components that are ready to be configured are enabled.
When the user selects an enabled component with the mouse, a dialog comes up that
allows the user to configure it. When the configuration of the component is completed,
other components that depend on it become enabled.

There are three script boxes that allow the user to edit the monitoring and steering
scripts and the requirements specification. When the user selects a script box, an editor
window comes up, where the user can enter the script or load it from a file. Alternatively,
a script is specified when the corresponding compiler box is enabled, through a file dialog,.

A dialog associated with the program box allows the user to specify a semicolon-
separated list of class names that need to be instrumented. The instrumentation box

"http://www.cis.upenn.edu/” rtg/mac/macsware.zip

*http://www.digital.com/java/download/jtrek/index.html

3Patch is available at MaCSware distribution (http://www.cis.upenn.edu/” rtg/mac/patch.zip). User
should unzip patch.zip in <jtrek dir>/dec/trek/
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Figure E.2: MaC control panel

is activated after the class list has been given and the monitoring script has been com-
piled. The dialog of the instrumentation box allows the user to specify the media for
communication with the event recognizer and the checker. Although MaC interaction, in
general, can be done either through TCP/IP among different hosts or via FIFOs, the con-
trol panel allows only TCP/IP communication on the same host where the control panel
runs. Therefore, the user has to specify the port address of the event recognizer and, if
steering is used, the port number to listen for steering action invocations is also required.
This data is inserted by the instrumentor into the initialization code of the instrumented
program.

The bottom row of boxes starts the program and the monitoring components. The
dialogs for the event recognizer lets the user specify the port number of the checker and
the port number to receive data from the program. The checker dialog accepts the port
number for messages from the event recognizer and, in the case of steering, the address of
the injector. Be sure that the port number used by the event recognizer and the runtime
checker must not be used by other programs.

Starting the program, the user specifies the class file where the execution starts and
gives the run-time parameters of the program. All monitoring-related information has
already been specified during instrumentation.

Finally, the bottom line contains the quit button and shows the status of MaC activity.
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Starting the control panel. The MaC control panel is a Java application that is started
through class mac.gui .guiLauncher.MacGUI with no parameter.?

E.4 Command-line MaC interface

All MaC components can be started from command line. Command-line interface provides
larger flexibility than the control panel. Below, we give the executable class name of every
component and parameters that the component can accept, as well as the output produced
by each component. All MaC components are Java appplications.

MEDL compiler. The executable class is

mac .runtimeChecker .medlParser.MedlParser
and can take a single argument, the file containing a script to compile. If no argument
is given, the parser reads from standard input. The compiled script is stored in the file
medl.out.

PEDL compiler. The executable class is
mac.eventRecognizer.pedlParser.PedlParser

and can take a single argument, the file containing a script to compile. If no argument

is given, the parser reads from standard input. The compiled script is stored in the file

pedl.out, which is used by the event recognizer. In addition, instrumentation data, used

by the instrumentor, are stored in the file ingtrumentation.out.

SADL compiler. The executable class is
mac.steering.parser.SadlParser

and can take a single argument, the file containing a script to compile. If no argument
is given, the parser reads from standard input. The compiled script is stored in the file
actions.out. In addition, the compiler produces and stores in the current directory a
Java source file named foo_Injector. java, where foo is the name of the steering script.
The file must be compiled into byte code, which will be loaded into the JVM together with
the monitored program.

Instrumentor. The instrumentor application is used when there is no steering involved.?
mac.filter.instrumentor.Instrumentor
and the following arguments are required in the order shown:

e the list of monitored objects, produced by the PEDL parser as instrumentation.out.

e 3 semicolon-separated list of class files to be instrumented. Class files are assumed
to be in the current directory.

“MacGUT requires Swing 1.1

®The instrumentor generates a policy file macpolicy which allows communi-
cation from a target program to the event recognizer. See more detail in
http://java.sun.com/products/jdk/1.3/docs/guide/security/PolicyFiles.html
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e The address of the event recognizer or the name of a file or FIFO where the monitored
data will be output.

If steering is to be used, a different instrumentation tool is used, located in mac.steering.Steex
Steering instrumentor allows to specify its arguments in any order with the following keys:

e -monitor denotes that the following argument is the monitoring instrumentation
data, that is, the list of monitored objects.

e -steer denotes that the following argument is the steering instrumentation data,
steering actions and positioning information.

e -ports denotes that the following two arguments are the address of the event rec-
ognizer and the port number for action invocations, in that order. When steering is
used, the MaC run-time components have to communicate through TCP/IP.

e —classfiles denotes that the following argument is the list of classfiles to be instru-
mented.

Run-time checker. The executable class is
mac.runtimeChecker.interpreter.CheckerMain.

The first argument specifies the input stream for the checker. It is a port number on which
to listen for connection requests from the event recognizer or, if preceded by the -f key,
the file or pipe name from which event recognizer messages are read. The second, optional
argument, denoted by -s key, denotes that steering will be used in this run and specifies
the address of the system to be steered in the form hostname:port. The hostname can be
omitted, in which case the system is assumed to be executed on the same machine as the
checker. The checker then establishes a connection to the injector during start-up. The
last argument is the compiled MEDL script produced by the MEDL compiler.

Event recognizer. The executable class is
mac.eventRecognizer.interpreter.EventRecognizerMain.
The following arguments are required in the order shown:

e the port number for the monitored data sent by the instrumented program, or a file
name preceded by the -f key.

e the address of the checker (hostname may be omitted), or a file name preceded by
the -f key.

e the compiled monitoring script (pedl.out).

e the list of monitored objects (instrumentation.out).

Instrumented program. The program is started in the same way as it would without
monitoring. All data necessary for communication with MaC components have been given
to the program during instrumentation.
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