
석사학위논문

Master’s Thesis

신뢰성이높은안전필수시스템을위한

하이브리드통계적모델체킹방법

Hybrid Statistical Model Checking Technique for

Reliable Safety Critical Systems

김영주 (金映周 Kim, Youngjoo)

전산학과

Department of Computer Science

KAIST

2013

신뢰성이높은안전필수시스템을위한

하이브리드통계적모델체킹방법

Hybrid Statistical Model Checking Technique for

Reliable Safety Critical Systems

Hybrid Statistical Model Checking Technique for
Reliable Safety Critical Systems

Advisor : Professor Kim, Moonzoo

by

Kim, Youngjoo

Department of Computer Science

KAIST

A thesis submitted to the faculty of KAIST in partial fulfillment of

the requirements for the degree of Master of Science in Engineering in the

Department of Computer Science . The study was conducted in accordance

with Code of Research Ethics1.

2012. 12. 17.

Approved by

Professor Kim, Moonzoo

[Advisor]

1Declaration of Ethical Conduct in Research: I, as a graduate student of KAIST, hereby declare that I have

not committed any acts that may damage the credibility of my research. These include, but are not limited to:

falsification, thesis written by someone else, distortion of research findings or plagiarism. I affirm that my thesis

contains honest conclusions based on my own careful research under the guidance of my thesis advisor.

신뢰성이높은안전필수시스템을위한

하이브리드통계적모델체킹방법

김영주

위논문은한국과학기술원석사학위논문으로

학위논문심사위원회에서심사통과하였음.

2012년 12월 17일

심사위원장 김문주 (인)

심사위원 백종문 (인)

심사위원 류석영 (인)

MCS

20113125

김 영 주. Kim, Youngjoo. Hybrid Statistical Model Checking Technique for Reliable

Safety Critical Systems. 신뢰성이 높은 안전필수시스템을 위한 하이브리드 통계적

모델 체킹 방법. Department of Computer Science . 2013. 44p. Advisor Prof. Kim,

Moonzoo. Text in English.

ABSTRACT

Reliability of safety critical systems such as nuclear power plants and automobiles has become a significant

issue to our society. As more computing systems are utilized in these safety critical systems, there are high de-

mands for verification and validation (V&V) techniques to assure the reliability of such complex computing sys-

tems. However, as the complexity of computing systems increases, conventional V&V techniques such as testing

and model checking have limitations, since such systems often control highly complex continuous dynamics. To

improve the reliability of such systems, statistical model checking (SMC) techniques have been proposed. SMC

techniques can check if a target system satisfies given requirements through statistical methods. In this thesis, first,

we have emperically evaluated four state-of-the-art SMC techniques in the automobile domain to see the applica-

bility of SMC for assuring the reliability of safety critical systems and compare pros and cons of the four different

SMC techniques. Second, we propose a new hybrid SMC technique that integrates sequential probability ratio

test (SPRT) technique and Bayesian interval estimation testing (BIET) technique to achieve precise verification

results quickly. In our experiment, the new hybrid SMC was around 4 times faster than BIET. In addition, we

demonstrate the effectiveness and efficiency of this hybrid SMC technique by applying the hybrid SMC technique

to three safety critical systems in the automobile domain. Finally, as a solution for validating software reliability

at an early stage, we propose a methodology utilizing statistical model checking (SMC) techniques. Reliability

validation is performed by comparing the allocated reliability goal with the calculated reliability using the proba-

bilities and the relative weight values for the safety functional requirements. By conducting reliability validation

early, we can prevent the propagation of the reliability allocation errors and design errors into the later phases.

Thereby, we can achieve safer, cheaper, and faster development of safety critical systems.

i

Contents

Abstract . i

Contents . ii

List of Tables . iii

List of Figures . iv

Chapter 1. Introduction 1

Chapter 2. Overview of SMC Techniques 3

2.1 SMC Framework . 3

2.2 Probabilistic Bounded Linear Temporal Logic 4

2.3 Hypothesis Testing . 5

2.3.1 Single Sampling Plan (SSP) . 5

2.3.2 Sequential Probability Ratio Test 6

2.3.3 Bayesian Hypothesis Testing (BHT) 7

2.4 Estimation Testing . 8

2.4.1 Bayesian Interval Estimation Testing 8

Chapter 3. Emperical Evaluation of The SMC Techniques on FFCS 10

3.1 Fault-tolerant Fuel Control System . 10

3.2 Experiment Setup . 10

3.3 Experimental Results . 12

3.3.1 Regarding Effectiveness (Precision of the Verification Results) . . . 13

3.3.2 Regarding Efficiency (Verification Time) 14

Chapter 4. Discussion of The Empirical Evaluation 15

4.1 Practicality of Statistical Model Checking 15

4.2 Necessity of Proper Precision Parameter Values 15

4.3 Comparison of the SMC techniques . 16

ii

Chapter 5. Hybrid SMC Algorithm 18

Chapter 6. Experimental Study of Hybrid SMC Technique 20

6.1 Target Safety Critical Systems . 20

6.1.1 Automatic Transmission Control System 20

6.1.2 Anti-lock Braking System . 21

6.1.3 Fault-tolerant Fuel Control System 23

6.2 Experiment Setup . 23

6.2.1 Environment Setup . 23

6.2.2 Precision Parameter Setup . 23

6.2.3 Experiment Platform . 25

6.3 Results of SPRT and BIET . 25

6.4 Results of the Hybrid SMC Technique . 27

6.4.1 Verification Results . 28

6.4.2 Verification Speeds . 28

Chapter 7. Discussion of Hybrid SMC Technique 30

7.1 Effective and Efficient Hybrid SMC Technique 30

7.2 Independence between Complexity of Target System and SMC Cost 31

7.3 SMC Techniques to Obtain a Certificate of Safety Standards 31

Chapter 8. Validating Software Reliability through Statistical Model Check-

ing 33

8.1 SMC-based Software reliability validation framework 33

Chapter 9. Case Study of SMC-based Software Reliability Validation Frame-

work in Automobile 36

9.1 Target system of case study: fault-tolerant fuel control system 36

9.1.1 Sensor failure detector and estimator 36

9.1.2 Airflow Calculator . 36

9.1.3 Fuel Calculator . 37

– iii –

9.2 SMC-based Software Reliability Validation Framework Experiments on

FFCS . 38

9.2.1 Validation Method of the Software Reliability of FFCS 38

9.2.2 Experiment Setting of SMC . 39

9.2.3 SMC Result . 40

Chapter 10. Conclusion and Future Work 42

References 43

Summary (in Korean) 45

– iv –

List of Tables

3.1 Experiment result of SSP with fault rate (3, 7, 8) and δ = 0.03 12

3.2 Experiment result of SPRT with fault rate (3, 7, 8) and δ = 0.03 12

3.3 Experiment result of BHT with fault rate (3, 7, 8) . 13

3.4 Experiment result of BIET with fault rate (3, 7, 8) . 13

4.1 Comparison of the four statistical model checking techniques . 16

6.1 Size and complexity of the Simulink models of ATCS, ABS, and FFCS in Halstead metrics 22

6.2 Experiment result of SPRT for ATCS with λ = 0.03 and δ = 0.03 for the five trials 24

6.3 Experiment result of BIET for ATCS with λ = 0.03 for the five trials 24

6.4 Experiment result of the hybrid SMC for ATCS with θ = 0.99, δ = 0.03, δ′ = 0.01, c = 0.99 . . . 27

6.5 Experiment result of hybrid SMC for ABS with θ = 0.99, δ = 0.03, δ′ = 0.01, c = 0.99 27

6.6 Experiment result of hybrid SMC for FFCS with θ = 0.99, δ = 0.03, δ′ = 0.01, c = 0.99 27

9.1 The SMC result for validating reliability of SFDE . 40

v

List of Figures

2.1 Framework of SMC techniques . 4

2.2 Function of probability Lp of accepting the hypothesis H : p ≥ θ (left side) and function of

probability Lp of accepting the hypothesis H0 : p ≥ p0 with indifference region (right side). . . . 5

3.1 Block diagram of FFCS . 11

5.1 Hybrid SMC algorithm . 19

6.1 Block diagram of ATCS . 21

6.2 Block diagram of ABS . 22

6.3 Screenshot of the SMC experiment on FFCS . 26

8.1 Software reliability validation framework . 34

9.1 Block diagram of SFDE . 37

9.2 Block diagram of Airflow Calculator . 37

9.3 Block diagram of Fuel Calculator . 38

vi

Chapter 1. Introduction

Various areas of our life utilize computing systems such as smart phones, medical devices, and automobile

controllers. Consequently, the reliability of computing systems becomes a significant issue to our society and

various international standards have been proposed and applied to assure reliability of such systems. For example,

avionics domain has DO-178C [20] as a standard for reliable software, automobile domain has a functional safety

standard ISO 26262 [11], and medical electrical equipment domain has IEC 60601 [9] as a technical standard for

the safety and effectiveness.

However, as computing power increases, the complexity of computing systems also increases rapidly, which

causes many challenges to assure the reliability of computing systems. In particular, the size and complexity

of software in a computing system has increased quickly. Although software reliability has been studied ac-

tively [18], conventional verification and validation (V&V) techniques for software such as testing and model

checking [4] have limitations to assure the reliability of complex safety critical computing systems. One reason

for this difficulty is that such systems often control highly complex continuous dynamics to interact with physical

environments. In addition, since safety critical systems consist of both hardware and software and interact with

a physical environment that often behaves non-deterministically (e.g., condition of road surface for automobiles

or wind speed for airplanes), we should analyze target hardware and software with its environment together as

a stochastic process [22]. However, conventional V&V techniques for software have difficulty analyzing target

systems in such contexts.

To improve the reliability of safety critical systems, statistical model checking (SMC) techniques [28, 26, 27,

7, 30, 5, 12] have been proposed. SMC techniques approximately compute probabilities for a target system to

satisfy given requirements based on randomly sampled execution traces. Thus, SMC techniques can assure the

reliability of a complex target system statistically without analyzing the internal logic of a target system.

However, most literature on the SMC techniques focuses on theoretical aspects of suggested techniques,

not their practical applicability to real-world safety critical systems. In this thesis, first, we have empirically

evaluated the effectiveness (in terms of the precision of the verification result) and efficiency (in terms of the

verification time) of the following four representative state-of-the-art SMC techniques [13]: single sampling plan

(SSP) [26], statistical probability ratio test (SPRT) [28], Bayesian hypothesis testing (BHT) [12], and Bayesian

interval estimation testing (BIET) [30]. We applied these four SMC techniques to a fault-tolerant fuel control

system (FFCS), which is a safety critical system for automobiles. Through the empirical study, we observed that

these SMC techniques have different strong points and weak points which may complement one another.

Second, from the above observation, we developed a new hybrid SMC technique which combines SPRT, the

– 1 –

fastest SMC technique, and BIET, the most precise SMC technique. This hybrid SMC technique achieves precise

verification result fast. Although precise verification result is a top priority for safety critical systems, the time

cost of verification cannot be ignored in practice. Thus, we can improve the reliability of safety critical systems

more practically by applying our new hybrid SMC technique. To demonstrate the effectiveness and efficiency

of this hybrid SMC technique, we have applied this hybrid SMC technique to three safety critical systems in the

automobile domain - an automatic transmission control system (ATCS), an anti-lock braking system (ABS), and a

fault-tolerant fuel control system (FFCS). Through the experiments, we confirmed that our hybrid SMC technique

improves effectiveness and efficiency compared to a single SMC technique.

Finally, we propose an effective methodology to validate the reliability goal of a safety critical system at

the early stage of a lifecycle by utilizing statistical model checking (SMC) techniques as a step to help obtain

safety certification such as IEC 61508 and ISO 26262. SMC observes the execution behaviors and produces the

probability of the system to satisfy given safety functional requirement using statistical methods. Thus, SMC can

be used to validate the software reliabilities of complex safety-critical systems. Furthermore, many safety critical

system domains such as automobile or avionics have adopted model driven development (MDD). Thus, industries

producing safety critical systems can incorporate the proposed reliability validation framework seamlessly and

validate the software reliability of a target system safer, cheaper, and faster.

Chapter 2 overviews related four state-of-the-art SMC techniques. Chapter 3 explains the empirical evalua-

tion of four state-of-the-art SMC techniques on FFCS in automobile domain. Chapter 4 discusses issues from the

empirical study. Chapter 5 describes a new hybrid SMC algorithm. Chapter 6 explains the three target systems:

ATCS, ABS, and FFCS and describes the SMC results by using single SMC techniques and the hybrid technique

on ATCS, ABS, and FFCS. Chapter 7 discusses issues from the empirical study of the hybrid SMC technique.

Chapter 8 proposes the software reliability validation framework using SMC technique. Chapter 9 explains the

case study of the proposed framework on FFCS target system. Chapter 10 concludes this thesis with future work.

– 2 –

Chapter 2. Overview of SMC Techniques

This chapter overviews the general concept of SMC (see Section 2.1), explains a bounded linear temporal

logic (BLTL) and a probabilistic BLTL (PBLTL) which are used in SMC techniques (see Section 2.2), and briefly

describes several state-of-the-art SMC techniques (see Section 2.3-2.4).

2.1 SMC Framework

SMC computes probabilities for a target model to satisfy given requirement properties based on randomly

sampled simulation traces. Figure 2.1 illustrates the overview of SMC. SMC receives a target modelM which is

an executable simulation model and a bounded linear temporal logic (BLTL) formula φ which formally represents

a safety functional requirement of a target system. In addition, SMC receives precision parameters based on which

the accuracy of the calculated probability is decided. SMC consists of three components: simulator, BLTL model

checker, and statistical analyzer. The simulator executesM and generates a sample execution trace σi. The BLTL

model checker determines if σi satisfies φ and passes the result (i.e., success if σi satisfies φ; failure, otherwise) to

the statistical analyzer. The statistical analyzer calculates a probability p thatM satisfies φ by collecting the result

regarding if σi satisfies φ. Statistical analyzer generates σis repeatedly until the number of successful results of

σis over the total number of σis is distributed within given precision boundary. Note that SMC does not analyze

an internal logic of a target system, and thus SMC can validate complex safety critical systems without state

explosion problems.

More specifically, suppose that X1, ..., Xn are Bernoulli random variables (i.e., Xi can be either 0 or 1) of

the model checking result of φ over an execution path σ ofM and p indicates a probability of Xi to become 1

(i.e., P (Xi = 1) = p). Since we do not know p exactly, we should estimate p using random sampling techniques

with user-given precision parameters. We pick a sample path σi from M by executing M and test whether σi

satisfies φ or not. If σi satisfies φ, xi = 1; xi = 0 otherwise. Note that, for estimating p, we should determine a

number of sample paths n to check φ using statistical techniques. We may obtain n statically by using heuristics

or dynamically through iterative sampling.

There are two classes of statistical techniques: hypothesis testing (Section 2.3) and estimation testing (Sec-

tion 2.4).

– 3 –

Figure 2.1: Framework of SMC techniques

2.2 Probabilistic Bounded Linear Temporal Logic

We define a syntax and semantics of bounded linear temporal logic (BLTL) [29] and PBLTL [30]. For a

target modelM, SV is a finite set of real-valued state variables. A Boolean predicate over SV is a constraint of

the form y ∼ v, where y ∈ SV , ∼∈ {≥,≤,=}, and v ∈ R. The syntax of the BLTL logic formula φ is given by

the following grammar:

φ ::= y ∼ v | (φ1 ∨ φ2) | (φ1 ∧ φ2) | ¬φ1 | (φ1Utφ2),

where y ∈ SV , ∼∈ {≥,≤,=}, v ∈ R, and t ∈ R≥0.

For other temporal operators, we can define Ftφ as TrueUtφ and Gtφ as ¬Ft¬φ. We denote a fact that an

execution σ satisfies a property φ as σ |= φ. We use σk to denote a suffix trace of σ starting at step k (σ0 denotes

the original execution σ). We denote the value of a state variable y in σ at step k by V (σ, k, y). We define tk as a

time at step k and t as a time bound. The semantics of BLTL on a trace σk is defined as follows:

• σk |= y ∼ v iff V (σ, k, y) ∼ v

• σk |= φ1 ∨ φ2 iff σk |= φ1 or σk |= φ2

• σk |= φ1 ∧ φ2 iff σk |= φ1 and σk |= φ2

• σk |= ¬φ1 iff σk 2 φ1

• σk |= φ1U
tφ2 iff there exists i ∈ N such that

1.
∑

0≤l<i tk+l ≤ t,

2. σk+i |= φ2, and

3. for each 0 ≤ j < i, σk+j |= φ1

– 4 –

A probabilistic bounded linear temporal logic (PBLTL) formula is a formula of the form P≥θ[φ], where φ is

a BLTL formula and θ ∈ (0, 1) is a probability threshold. We denote that a modelM satisfies PBLTL property

P≥θ[φ] asM |= P≥θ[φ], which means that a probability forM to satisfy φ is greater than or equal to θ (see [30]

for detailed description).

2.3 Hypothesis Testing

For hypothesis testing, we build a hypothesis H : p ≥ θ against an alternative hypothesis K : p < θ where

θ is a threshold over (0,1) and p is a true probability that M satisfies φ. Hypothesis testing checks whether H

is accepted or not based on the randomly sampled paths. In this thesis, we utilize the following three hypothesis

testing techniques - single sampling plan (SSP), sequence probability ratio test (SPRT), and Baysian hypothesis

testing (BHT).

Figure 2.2: Function of probability Lp of accepting the hypothesisH : p ≥ θ (left side) and function of probability
Lp of accepting the hypothesis H0 : p ≥ p0 with indifference region (right side).

2.3.1 Single Sampling Plan (SSP)

SMC techniques cannot compute a true probability p exactly, but can estimate p within given error bounds.

Precision parameters for SSP [26] are error bounds α and β, and a half size of indifference region δ. For testing

a hypothesis H , there are two types of errors such as false negative (also known as a type I error) which rejects a

true hypothesis H and false positive (also known as a type II error) which accepts a false hypothesis H . We can

bound an error probability of a false negative error within α. Similarly, we can bound an error probability of a

false positive error within β. The left side of Figure 2.2 presents the function of probability Lp of accepting the

hypothesisH as a function of pwith the probability of a type I error and type II error as exactly α and β. However,

we want to give similar probability Lp with p = θ to p = θ − ε for arbitrarily small ε > 0 for reality. To solve

– 5 –

this problem, we introduce indifference region (p1, p0) around θ where p0 = θ + δ, p1 = θ − δ, and δ is a half

size of indifference region (see right side function in Figure 2.2). Therefore, instead of testing H against K, we

use the modified hypothesis H0 : p ≥ p0 against the alternative hypothesis H1 : p < p1. If the probability p is in

(p1, p0), then p is sufficiently close to θ so that we do not care which hypothesis is accepted.

For SSP, a user can determine a maximum number of sample paths n and a threshold number of success

sample paths c statically. After determining n and c, SSP executes a target program multiple times. If the number

of success sample paths that satisfy φ are greater than c, then H is accepted; K is accepted otherwise. Then, we

can express the probability that the number of success sample paths among n samples are less than c with the

cumulative distribution function for binomial distribution B(n, p):

F (c;n, p) =

c∑
i=0

(
n

i

)
pi(1− p)n−i.

Therefore, we accept H with 1 − F (c;n, p) using n and c, and accept K with F (c;n, p) using n and c. We

can obtain minimal value for n and c using binary search based algorithm with given p0, p1, α, and β. Note that

SSP is the only SMC technique that computes the number of required sample paths statically among the SMC

techniques utilized in this study.

2.3.2 Sequential Probability Ratio Test

Sequential probability ratio test (SPRT) is a hypothesis testing technique introduced by Younes et al. [28].

SPRT [28, 26, 27, 23] determines a number of required sample paths dynamically at runtime. The main goal of

SPRT is to decide ifM |= P≥θ[φ] with a small number of sample paths. If another sample path is needed, SPRT

generates one more sample path by executing a target system. If the information from generated sample paths is

enough, SPRT stops executing the target program and produces an answer regardingM |= P≥θ[φ]. SPRT uses

precision parameter inputs error bounds α and β, and a half size of indifference region δ. The detailed description

of SPRT is as follows.

Before building a hypothesis for hypothesis testing of SPRT, we introduce the indifference region. Basically,

we build a hypothesis H : p ≥ θ against an alternative hypothesis K : p < θ where θ is a threshold over (0,1) and

p is a true probability thatM satisfies φ. Hypothesis testing checks if H is accepted or not based on the randomly

sampled paths. For testing a hypothesis H , there are two types of errors such as false negative (also known as a

type I error) which rejects a true hypothesis H and false positive (also known as a type II error) which accepts a

false hypothesis H . We can bound an error probability of a false negative error within α. Similarly, we can bound

an error probability of a false positive error within β. We call α and β as error bounds. The left side of Figure 2.2

presents the function of probability Lp of accepting the hypothesis H as a function of p with the probability of

a type I error and type II error as exactly α and β. However, we want to give similar probability Lp of p = θ

– 6 –

and p = θ − ε for arbitrarily small ε > 0 for reality. To solve this problem, we introduce an indifference region

(p1, p0) around θ where p0 = θ+ δ, p1 = θ− δ, and δ is a half size of indifference region (see right side function

in Figure 2.2). Therefore, instead of testing H against K, we use the modified hypothesis

H0 : p ≥ p0

against the alternative hypothesis

H1 : p < p1

If the probability p is in (p1, p0), then p is sufficiently close to θ so that we do not care which hypothesis is

accepted.

Now, we describe the algorithm of SPRT. First, we obtain a sample path σi of a target system by simulating

the target system and model-check if the sample path σi satisfies the given property φ (see Section 2.1). After

generating mth sample paths of the test, we calculate the quantity

p1m
p0m

=

m∏
i=1

Pr[Xi = xi|p = p1]

Pr[Xi = xi|p = p0]
=
pdm1 (1− p1)m−dm

pdm0 (1− p0)m−dm

where dm =
∑m
i=1 xi and xi is ith observation of σi |= φ. pjm is the probability of the sequence x1, ..., xm with

Pr[Xi = 1] = pj for j=0,1. Therefore, the above quantity makes the ratio of two probabilities, the probability

ratio. The hypothesis H0 is accepted if
p1m
p0m

≤ B,

and the hypothesis H1 is accepted if
p1m
p0m

≥ A.

Otherwise, we should generate m + 1th sample path of the test. A and B are selected to bound error probability

α and β, with A > B. In practice, we choose A = 1−β
α and B = β

1−α (detailed description is found in [23, 26]).

Note that SPRT can be imprecise with same indifference region value δ when the threshold θ is close to 1.

The reason for the imprecise result of SPRT is due to the limited size of indifference region. For example, if the

threshold θ is 0.99 and δ ≥ 0.01, then p0 becomes 1, which causes the denominator of the probability ratio p1m
p0m

to be 0 when one false sample path occurs, which can cause imprecise result. Therefore, δ should be very small

when θ is close to 1, which requires large number of samples.

2.3.3 Bayesian Hypothesis Testing (BHT)

BHT [12] dynamically determines the number of sample paths during simulation as same in SPRT. BHT

uses two precision parameter inputs such as threshold T of determining H0 and prior density g for p, the actual

– 7 –

probability of satisfying φ. In Bayes’ theorem, we get prior probability using current information first. After ob-

taining new information, we can obtain posterior probability refining prior probability. BHT uses Bayes’ theorem

to determine the number of sample paths of the test.

Let P (H0) and P (H1) be the strictly positive prior probabilities of accepting H0 and H1 and satisfying

P (H0) + P (H1) = 1. Let d = (x1, ..., xn) be a sequence of n sample paths of the test. Bayes’ theorem states

that the posterior probabilities of accepting H0 and H1 based on observations of d are

P (H0|d) =
P (d|H0)P (H0)

P (d)
P (H1|d) =

P (d|H1)P (H1)

P (d)

for every d with P (d) = P (d|H0)P (H0) + P (d|H1)P (H1) > 0.

BHT operates as follows. After generating mth sample paths of the test, we can calculate the quantity

P (H0|d)
P (H1|d)

=
P (d|H0)

P (d|H1)
· P (H0)

P (H1)

where d = (x1, ..., xm). We call the above quantity as the ratio of the posterior probabilities. Here, we define the

Bayes factor B of d and hypotheses H0 and H1 as follows:

B =
P (d|H0)

P (d|H1)

The Bayes factor B can be interpreted as a measure of the evidence in favor of H0 and also 1
B can be the evidence

in favor of H1. We introduce a Bayes factor threshold T to test H0 against H1 such that T ≥ 1. The hypothesis

H0 is accepted if B > T , and the hypothesis H1 is accepted if B < 1
T . Otherwise, BHT generates m+1th sample

path using simulation 1 (detailed description is found in [12]).

2.4 Estimation Testing

Estimation testing can approximately compute p, the probability that the modelM satisfies the given prop-

erty φ expressed by bounded linear temporal logic (BLTL). With p, we can determine whether the probabilistic

bounded linear temporal logic (PBLTL) is satisfied or not. For that purpose, we use a following statistical estima-

tion testing technique.

2.4.1 Bayesian Interval Estimation Testing

Bayesian interval estimation testing (BIET) is an estimation testing based SMC technique. Estimation testing

can approximately compute p, the probability that the model M satisfies the given property φ expressed by

1T corresponds to the inverse number of error bounds α and β for SSP and SPRT [30].

– 8 –

bounded linear temporal logic (BLTL). With p, we can determine if the probabilistic bounded linear temporal

logic (PBLTL) is satisfied. For that purpose, we use a following statistical estimation testing technique.

BIET [30] dynamically determines the number of sample paths for checking the satisfiability of the model

M with the property φ during simulation as SPRT does. In Bayes’ theorem, we get prior probability using current

information first. After obtaining new information, we can obtain posterior probability refining prior probability.

BIET uses the Bayes’ theorem to determine the number of sample paths of the test.

BIET uses four precision parameter inputs such as a half-size δ′ of an estimation interval which will contain

p with high probability, the coverage goal c of the estimation interval, and the parameters α′, β′ of the Beta prior.

In fact, BIET estimates interval around the probability p instead of estimating p, but we regard the mean of the

estimated interval as p̂, the estimated value of true probability p, i.e., the estimated interval is (p̂ − δ′, p̂ + δ′).

We call the estimated interval as (t0, t1). We have a coverage goal such that the probability that the probability

satisfyingM |= φ is in (t0, t1) should be over the coverage c ∈ (12 , 1). The exact description of the coverage goal

is as follows: ∫ t1

t0

f(u|x1, ..., xn)du = c

where xi is ith observation of σi |= φ for i = 1, ..., n and n is the number of sample paths. We call the coverage

goal as a 100c percent Bayesian interval estimate of p. Since BIET uses the Bayes’ theorem, we need prior

information, i.e., prior density of p to obtain prior probability. For simplicity, we focus on the Beta prior with

parameters α′, β′.

At mth stage of the test, by Beta prior with α′, β′, we can calculate the quantity

p̂ =
x+ α′

m+ α′ + β′

where x =
∑m
i=1 xi is the number of success sample paths during m number of sample paths. Next, using

t0 = p̂− δ′, t1 = p̂+ δ′, we can calculate the quantity

γ =

∫ t1

t0

f(u|x1, ..., xm)du

where γ is the coverage of m number of sample paths for checking M |= φ. If γ ≥ c, then BIET stops the

simulation and outputs t0, t1, and p̂. Otherwise, BIET generates m+ 1th sample path and repeats.

Note that BIET is fast when the estimated probability p̂ is close to 0 or 1 [30], whereas BIET is extremely

slow (i.e., extremely larger number of samples is required) when p̂ is close to 1
2 . With this advantage of BIET,

BIET can easily apply the problem for safety critical system since the probability standard of satisfiability for

safety critical system should be usually close to 1 or 0.

– 9 –

Chapter 3. Emperical Evaluation of The SMC Techniques

on FFCS

In this chapter, we describe FFCS as our target system (Section 3.1) and explain our experiments of applying

the four SMC techniques (i.e., SSP, SPRT, BHT, and BIET) to FFCS with precision parameters as independent

variables and checking whether FFCS satisfies the given requirement property in PBLTL or not (Section 3.2-3.3).

3.1 Fault-tolerant Fuel Control System

Figure 3.1 is an overall diagram of a fault-tolerant fuel control system (FFCS). FFCS [16] controls a fuel

rate to inject fuel based on sensor data for best performance, detects a sensor fault, and shuts down an engine

for safety in the presence of multiple sensor failures. FFCS has the following four sensors: throttle angle sensor,

speed sensor, exhaust gas oxygen (EGO) sensor, and manifold absolute pressure (MAP) sensor. FFCS receives

these four sensor inputs and generates a proper fuel rate and an air-fuel ratio. FFCS consists of the following three

components: a sensor failure detector & estimator (SFDE), an airflow calculator, and a fuel calculator. The SFDE

receives four sensor data as input and generates four sensor data as output and the engine-shut-down command

used only when multiple sensor failures occur. The airflow calculator receives four sensors data from the sensor

failure detector & estimator (SFDE) component and estimates an airflow value with feedback correction value.

The fuel calculator receives the estimated airflow data and the feedback correction data from the airflow calculator

component and calculates the fuel rate which keeps an air-fuel ratio optimal.

A requirement property for FFCS is that the fuel rate does not become zero for one second in 100 seconds

should be greater than equal to probability θ. The property is crucial in a real world, because if the fuel rate is zero

for one second, then the engine stops and can cause a serious accident. This property can be expressed by PBLTL

as follows [30]:

P≥θ[¬(F 100G1(fuelrate = 0))]

3.2 Experiment Setup

We set a stochastic environment for FFCS as follows. The environment of FFCS generates random faults at

the EGO, MAP, and speed sensors as [30] does. The random faults are modeled by three independent Poisson

processes with different arrival rates [24]. We assume one fault event remains for one second. When a fault event

occurs in a sensor, FFCS remains in a failure mode for one second and returns to a normal mode. We utilize the

– 10 –

Figure 3.1: Block diagram of FFCS

following four inter-arrival fault rates (i.e., mean inter-arrival times of sensor fault) to the three sensors: (3,7,8),

(10,8,9), (20,10,20) and (30,30,30).

For the SMC techniques, we use the following precision parameters:

• Hypothesis testing techniques

– SSP:

∗ threshold θ ∈ {0.5, 0.7, 0.9, 0.99}

∗ a half-size of indifference region δ ∈ {0.01, 0.03, 0.05}

∗ error bounds α, β ∈ {0.1, 0.01, 0.001}

– SPRT:

∗ threshold θ ∈ {0.5, 0.7, 0.9, 0.99}

∗ a half-size of indifference region δ ∈ {0.01, 0.03, 0.05}

∗ error bounds α, β ∈ {0.1, 0.01, 0.001}

– BHT:

∗ threshold θ ∈ {0.5, 0.7, 0.9, 0.99}

∗ Bayes factor threshold T ∈ {10, 100, 1000}

∗ prior density g = uniform density over (0,1)

• Estimation testing technique

– BIET:

∗ interval coverage c = {0.9, 0.99, 0.999}

∗ a half-size of estimation interval δ′ = {0.01, 0.03, 0.05}

∗ parameters of Beta prior α′ = β′ = 1 1

1α′ = β′ = 1, since we assume the prior density to be a uniform density over (0, 1).

– 11 –

Table 3.1: Experiment result of SSP with fault rate (3, 7, 8) and δ = 0.03

α, β

threshold θ
0.5 0.7 0.9 0.99

n m acpt time n m acpt time n m acpt time n m acpt time

0.1 455 255.3 1.0 688.3 386 307.0 1.0 821.5 161 141.5 0.0 381.3 57 5.8 0.0 17.1

0.01 1501 857.8 1.0 2308.1 1261 1001.5 1.0 2686.7 531 468.8 0.0 1256.4 113 5.0 0.0 14.8

0.001 2649 1487.8 1.0 4013.2 2226 1764.3 1.0 4760.8 932 806.8 0.0 2172.5 170 6.0 0.0 20.3

Table 3.2: Experiment result of SPRT with fault rate (3, 7, 8) and δ = 0.03

α, β

threshold θ

0.5 0.7 0.9 0.99

n acpt time n acpt time n acpt time n acpt time

0.1 26.6 1.0 17.6 34.0 1.0 22.4 108.4 0.0 71.5 5.6 1.0 3.7

0.01 49.0 1.0 32.3 93.4 1.0 61.6 484.0 0.0 319.4 5.6 1.0 3.7

0.001 72.8 1.0 48.0 127.6 1.0 84.2 786.6 0.0 519.2 11.6 1.0 7.7

We performed each experiment five times to obtain average verification result over [0, 1] regarding whether

the hypothesis H is accepted or not where H: a probability to satisfy φ(= ¬(F 100G1(fuelrate = 0))) is greater

than or equal to θ. In addition, we measured the average verification time for each experiment.

We built a statistical model checker as a Matlab module which runs together with a FFCS model. We use a

Matlab simulator as a simulator component to generate an execution trace σ of a Matlab/Simulink FFCS model.

Then, the BLTL model checker analyzes if σ satisfies the requirement property φ. After the BLTL model checker

evaluates σ, the statistical analyzer calculates a required number of sample traces dynamically based on the pre-

cision parameters and the number of success/fail sample traces generated so far. If a number of the generated

samples reaches the required number, the statistical model checker generates a verification result and terminates

the SMC process. Note that all sub-components of SMC are independent from each other and can be re-used for

other target systems without modification. Thus, it will not be difficult for practitioners to apply SMC techniques

to their safety critical systems. 2

We used Matlab R2010a for the experiments. All experiments were performed on 64 bit Windows 7 Profes-

sional K equipped with a 3 GHz Intel processor and 16 gigabytes of memory.

3.3 Experimental Results

Tables 3.1-3.3 describe the experiment results of applying the hypothesis testing techniques to FFCS with

fault inter-arrival rate (3,7,8) and δ = 0.03. 3 In these three tables,
2We have released the statistical analyzers using SSP, SPRT, BHT, and BIET techniques publicly at http://pswlab.kaist.ac.kr/

tools/SMC/.
3Full experiment data with the other three fault inter-arrival rates and δ ∈ {0.01, 0.05} is available at http://pswlab.kaist.ac.

kr/data/hvc2012-expr-results.zip

– 12 –

http://pswlab.kaist.ac.kr/tools/SMC/.
http://pswlab.kaist.ac.kr/tools/SMC/.
http://pswlab.kaist.ac.kr/data/hvc2012-expr-results.zip
http://pswlab.kaist.ac.kr/data/hvc2012-expr-results.zip

Table 3.3: Experiment result of BHT with fault rate (3, 7, 8)

T

threshold θ

0.5 0.7 0.9 0.99

n acpt time n acpt time n acpt time n acpt time

10 3.6 1.0 2.4 5.0 1.0 3.3 42.2 0.8 27.9 21.0 0.2 13.9

100 7.6 1.0 5.0 26.0 1.0 17.2 3917.2 0.2 2585.4 27.0 0.0 17.8

1000 13.6 1.0 9.0 48.4 1.0 31.9 4013.2 0.2 2648.7 35.2 0.0 23.2

Table 3.4: Experiment result of BIET with fault rate (3, 7, 8)

δ′
interval coverage c

0.9 0.99 0.999

n p̂ time n p̂ time n p̂ time

0.05 104.8 0.8835 69.2 273.0 0.8849 180.2 475.5 0.8830 313.8

0.03 276.6 0.8944 182.6 729.4 0.8889 481.4 1191.5 0.8924 786.4

0.01 2733.8 0.8856 1804.3 6696.5 0.8861 4419.7 10924.2 0.8865 7210.0

• θ is a threshold of the hypothesis H for SSP, SPRT, and BHT

• n is a maximum number of required sample paths and m means an average number of sample paths gener-

ated for SSP. For SPRT and BHT, n is an average number of sample paths generated for SPRT and BHT.

• acpt is an average result over [0, 1] regarding the hypothesis H where 0 is ‘reject’ and 1 is ‘accept’

• time is an average verification time for each experiment in seconds

Table 3.4 describes the experiment result of applying the estimation technique BIET to FFCS with fault inter-

arrival rate (3,7,8), where n is an average number of sample paths, p̂ is an estimated probability to satisfy φ, and

time indicates an average verification time in seconds. Tables 3.1-3.4 show that n (m for SSP) increases as the

precision parameters becomes smaller. For example, for SSP, when α and β decrease from 0.1 to 0.001 with

threshold θ = 0.5, m increases from 255.3 to 1487.8 (Table 3.1). Similar tendencies are observed for SPRT, BHT,

and BIET.

3.3.1 Regarding Effectiveness (Precision of the Verification Results)

All four techniques produce similar results. For hypothesis testing techniques SPRT, SSP, and BHT, the

probability for FFCS with the fault inter-arrival rate of sensors (3,7,8) and δ = 0.03 to satisfy the requirement

property φ is between 0.7 and 0.9. This is because acpts are 1.0 when θ ≤ 0.7 while acpts are close to 0 when

θ ≥ 0.9 in Tables 3.1-3.3.4 Also, note that n of SPRT and BHT increases exponentially as θ increases from 0.5
4The result of SPRT with θ = 0.99 is not reliable, since the precision of SPRT is low when θ is close to 1. Also, note that n becomes very

small (i.e., less than 12) with θ=0.99 in Table 3.2.

– 13 –

to 0.9, and decreases sharply from 0.9 to 0.99. For example, for SPRT with α=β=0.1 (Table 3.2), n becomes

26.6, 34.0, 108.4 and 5.6 as θ becomes 0.5, 0.7, 0.9 and 0.99, respectively. In general, for the hypothesis testing

techniques that generates sample paths dynamically (i.e., SPRT and BHT), if a true probability is close to the

threshold θ, a large number of sample paths is required to determine whether a given hypothesis H is accepted or

not. By the above results, we can conclude that a true probability that FFCS with the fault rate (3,7,8) satisfies the

requirement property is close to 0.9. Furthermore, BIET computes the probability between 0.8830 (with c = 0.999

and δ′ = 0.05) and 0.8944 (with c = 0.9 and δ′ = 0.03) (Table 3.4), which is included in the estimated probability

interval (0.7,0.9) of the hypothesis testing techniques. Therefore, based on the above analysis of the results, we

can conclude that the verification results of the SMC techniques are precise.

3.3.2 Regarding Efficiency (Verification Time)

The time taken for each experiment was moderate. The longest experiment took 7210.0 seconds (i.e., around

2 hours) to generate 10924.2 sample paths on average for BIET with c = 0.999 and δ′ = 0.01 (Table 3.4). Note

that most other experiments took much less time. For example, the longest experiments in SSP, SPRT, and BHT

took 4760.8 (α=β=0.001 and θ=0.7) (Table 3.1), 519.2 (α=β=0.001 and θ=0.9) (Table 3.2), and 2648.7 (T=1000

and θ=0.9) (Table 3.3) seconds, respectively. Therefore, we can conclude that statistical model checking can

assure reliability of a complex target system at modest cost. 5

5SSP takes much more time to generate one sample than the other techniques, since the heuristics of SSP to determine a maximum number
of sample paths is very complex.

– 14 –

Chapter 4. Discussion of The Empirical Evaluation

Through the empirical evaluation of the SMC techniques on FFCS, we found three discussion issues which

are practicality of SMC in industry (Section 4.1), impacts of precision parameter values (Section 4.2), and com-

parison of the four SMC techniques (Section 4.3).

4.1 Practicality of Statistical Model Checking

Through the empirical evaluation of the SMC techniques on FFCS, we believe that statistical model checking

is practically useful for the following reasons:

• SMC can check a probability for a complex hybrid system to satisfy a given requirement property φ. In this

project, we could statistically check the probability for FFCS to satisfy φ, since we just generated random

sample execution paths without analyzing the internal structure of FFCS, which is a great advantage of

SMC.

• SMC allows a user to select proper trade-off between verification precision and time cost by selecting

appropriate precision parameter values (Section 3.3). In some cases, due to limited project time, it may be

more valuable to obtain less precise verification in short time than more precise verification result in much

longer time.

• The SMC techniques can obtain precise verification results in a moderate amount of verification time (i.e.,

less than two hours for the most experiments in Section 3.3). 1

4.2 Necessity of Proper Precision Parameter Values

We found that, for SSP and SPRT to produce precise verification results, δ should be very small when θ is

close to 1. For example, the verification result of SPRT was ‘accept’ for θ = 0.99 with δ=0.03 (see Table 3.2),

which is considered as an incorrect result, since the other SMC techniques conclude that the estimated probability

is between 0.7 and 0.9 (Section 3.3). The reason for these imprecise results of SSP and SPRT is due to the limited

size of indifference region. For example, if the threshold θ is 0.99 and δ ≥ 0.01, then p0 becomes 1, which

causes the denominator of the probability ratio p1m
p0m

to be 0 when one false sample occurs for SPRT, which can

cause imprecise result. For SSP, when n=170 with α = β = 0.001 and δ= 0.03, a number of success samples

1If the required reliability goal is very high (i.e., from 1− 10−4 to 1− 10−5 for SIL 4 level [10]), SMC may take multiple weeks.

– 15 –

Table 4.1: Comparison of the four statistical model checking techniques
Technique Precision Speed # of sample Applicability

decision

Hypothesis
testing

SSP Low when θ is Slow except when Static Low
close to 1 θ is close to 1

SPRT Low when θ is Fast Dynamic Middle
close to 1

BHT Middle Slow when θ is close Dynamic High
to true probability

Estimation BIET High Slow Dynamic High
testing

should be larger than 169 to accept H . In other words, if one sample path violates φ, then the verification finishes

immediately with ‘reject’ result. Therefore, SSP and SPRT should be applied with very small δ when θ is close to

1.

In addition, BHT with threshold θ = 0.9 produced different verification results with different T . With T=10,

the verification result was 0.8 (i.e., almost ‘accept’) on average. However, with T=100 or 1000, the verification

results were 0.2 (i.e., almost ‘reject’) on average. From the results of the other techniques which indicate the true

probability p ∈ (0.7, 0.9) (Section 3.3), we can conclude that the verification result with T=10 was imprecise.

This is because T was not sufficiently small enough to obtain a precise verification result. Therefore, proper

precision parameter values are important to obtain precise verification results.

4.3 Comparison of the SMC techniques

Table 4.1 summarizes characteristics of the four SMC techniques. The precision of SSP and SPRT is lower

than the other techniques when θ is close to 1 because of the size restriction of the indifference region. The

precision of BIET is higher than the other techniques by the law of large numbers [21], because BIET utilizes

more samples than the other techniques. BHT achieves a middle level of precision compared to SSP/SPRT and

BIET. Regarding verification speed, SSP is slow except when θ is close to 1; when θ is close to 1, SSP is fast (but

imprecise) since a number of samples is small. BHT is slow by generating a large number of samples when θ is

close to a true probability. BIET is relatively slow due to a large number of samples utilized. SPRT is relatively

fast, since it does not have weaknesses of the other techniques in terms of the verification speed. By considering

these aspects, the applicability of BHT and BIET is relatively higher than that of SPRT and SSP.

As shown in Table 4.1, there is no single best SMC technique for all aspects. Thus, a combination of

different SMC techniques can achieve precise result faster. For example, many safety critical systems should

satisfy requirement property φ with very high probability for reliable operations (i.e., θ should be larger than

0.9999). We know that SPRT is faster than BIET, but its precision is low when θ is close to 1. In such cases, we

can first apply SPRT to a target system with low θ for fast verification speed. If the verification results for low θ

– 16 –

values (i.e., θ ∈ [0.5, 0.7]) are ‘reject’, then we do not need to verify a target system further. Otherwise, we use

BIET for higher θ (i.e., θ ∈ [0.9, 0.99]), which is more precise but slower than SPRT, since SPRT is imprecise for

θ close to 1. Consequently, this combined method can achieve precise result faster than BIET only.

– 17 –

Chapter 5. Hybrid SMC Algorithm

We develop a hybrid SMC technique to improve efficiency and effectiveness by combining SPRT whose

verification speed is fast (i.e., small number of samples is required) and BIET whose verification precision is high

(i.e., the number of false positive and false negative results is small) [13]. Figure 5.1 describes how the hybrid SMC

technique checks if a target system modelM satisfies a property φ in BLTL for a probability threshold θ 1 with

precision parameters parS for SPRT and parB for BIET. The algorithm first applies SPRT multiple times with

dynamically increasing probability threshold θSPRT until a verification result is ‘reject’ (lines 15–18) or θSPRT

becomes larger than or equal to a threshold thS2B where 0.5 < thS2B ≤ θ (lines 5–20). If θSPRT becomes larger

than or equal to thS2B , the algorithm applies BIET to obtain a precise verification result (lines 21–34).

The detail of the algorithm is as follows. First, the algorithm calls SPRT () mS times (lines 6–10), which

applies SPRT toM with regard to φ and θSPRT with parS (line 8). A result of SPRT () is ‘accept’ (i.e., 1) or

‘reject’ (i.e., 0). After mS trials of SPRT (), the algorithm calculates an average accept decision value acceptavg

over the mS trials (line 11). If acceptavg is less than a user-given accept decision threshold thacpt, the algorithm

decides that the verification result ofM |= P≥θ(φ) is ‘reject’ (line 16) and terminates (line 18). Otherwise (i.e.,

acceptavg ≥ thacpt), the algorithm increases θSPRT from the initial value 0.5 (line 3) to 0.75, 0.875, 0.9375 and

so on (line 14) until θSPRT becomes larger than or equal to thS2B through the while loop in lines 5-20.

If θSPRT becomes larger than or equal to a user-given probability threshold thS2B for applying BIET, the

algorithm calls BIET () for mB times (lines 23–27), which applies BIET toM for φ with precision parameters

parB (line 25). Based on the estimated probability p obtained from BIET (), the algorithm calculates an average

estimated probability pavg over the mB trials (line 28). If pavg is greater than or equal to θ, then the algorithm

decides that the verification result is ‘accept’ (lines 29–30); ‘reject’, otherwise (lines 31–32).

Note that the hybrid SMC algorithm can save a large amount of time cost compared to BIET, if a probability

forM to satisfy φ is far from a given probability threshold θ. For example, if the probability is less than 0.5, the

algorithm terminates after executing SPRT () only once without executing BIET () whose time cost is very high

(see Table 3.4). The algorithm executes BIET () if the probability is close to θ (which is usually close to 1 for

requirement properties of safety critical systems), which is necessary since SPRT becomes imprecise when θ is

close to 1 (Section 2.3.2).

1We assume that θ is close to 1, since we develop a hybrid SMC algorithm for safety critical systems whose reliability criteria are very
high and, thus, requirement properties are given with high threshold values.

– 18 –

Input:
M: a model
φ: BLTL property
θ: probability threshold ofM |= φ
parS : precision parameters of SPRT, parB : precision parameters of BIET
thacpt: accept decision threshold over [0,1]
thS2B : probability threshold to change from SPRT to BIET
mS : a number of trials for SPRT, mB : a number of trials for BIET
Output:
answer: result ofM |= P≥θ(φ)
pavg: average estimated probability ofM |= φ by BIET if BIET is applied; N/A otherwise

1 SMChyb(M, φ, θ, parS , parB , thacpt, thS2B ,mS ,mB){
2 acceptsum = 0; // sum of accept decisions by SPRT
3 θSPRT = 0.5; // initial probability threshold for SPRT
4 // SPRT for fast verification
5 while θSPRT < thS2B do
6 for i = 1→ mS do
7 accept = SPRT (M, φ, θSPRT , parS); // ChecksM |= P≥θSPRT

(φ) using SPRT
8 Add accept to acceptsum;
9 end

10 acceptavg = acceptsum/mS ;
11 if acceptavg ≥ thacpt then
12 θSPRT = θSPRT + (1− θSPRT)/2; // next probability threshold for SPRT
13 else
14 answer = ‘reject′;
15 pavg = N/A;
16 return answer and pavg;
17 end
18 end
19 // BIET for precise verification
20 psum = 0; // sum of estimated probabilities by BIET
21 for i = 1→ mB do
22 p = BIET (M, φ, parB); // ChecksM |= φ using BIET
23 Add p to psum;
24 end
25 pavg = psum/mB ;
26 if pavg ≥ θ then
27 answer = ‘accept′;
28 else
29 answer = ‘reject′;
30 end
31 return answer and pavg;
32 }

Figure 5.1: Hybrid SMC algorithm

– 19 –

Chapter 6. Experimental Study of Hybrid SMC Technique

We have applied SPRT, BIET, and the hybrid SMC technique to ATCS, ABS, and FFCS with precision

parameters as independent variables to check if these target systems satisfy the given requirement properties in

PBLTL. In addition, we have compared the results of the hybrid SMC technique with the results of SPRT and

BIET. We used Simulink/stateflow models of the three systems included in the Matlab R2010a example directory.

6.1 Target Safety Critical Systems

This section presents an overview of the following three safety critical systems in automobile domain:

• Automatic transmission control system (ATCS) [17]

• Anti-lock braking system (ABS) [2]

• Fault-tolerant fuel control system (FFCS) [16]

We selected these systems as target systems to apply SPRT, BIET, and the hybrid statistical model checking (SMC)

technique (Chapter 5) for the following reasons:

• These three automobile systems [16, 2, 17] are safety critical systems whose reliability is very important.

Many researchers are working to address the reliability issues on safety critical systems [3, 18, 25].

• The three automobile systems are complex real-world applications, not a toy example such as ones in prob-

abilistic symbolic model checker (PRISM) [15] benchmarks.

• Simulink/stateflow models of the three automobile systems are publicly available in Matlab R2010a. Thus,

it is convenient to build a prototype tool for the SMC techniques by using a Simulink/stateflow simulator.

6.1.1 Automatic Transmission Control System

An automatic transmission control system (ATCS) changes an engine gear automatically to drive smoothly.

A main task of ATCS is to select a proper engine gear. As described in Figure 6.1, ATCS receives inputs regarding

car speed, throttle, brake pressure (and engine RPM as a feedback) and calculates an engine RPM and a gear state.

ATCS consists of a torque converter and a transmission control unit. The torque converter calculates an impeller

torque value to deliver power to control the engine RPM based on the engine RPM and the gear state (i.e., if the

impeller torque increases/decreases, the engine RPM increases/decreases). With the sensor inputs on car speed,

– 20 –

Figure 6.1: Block diagram of ATCS

throttle, and brake pressure, transmission control unit (TCU) selects a proper gear. Based on throttle and brake

pressure values, TCU calculates a up-threshold and a down-threshold of a car speed. If a current car speed is

greater than the up-threshold or less than the down-threshold, TCU changes the engine gear to keep the engine

RPM in safe range.

The size and complexity of the Simulink/stateflow ATCS model in terms of the Halstead metrics [6] are

described in Table 6.1. We counted each atomic block (i.e., a module of a mathematical function or control logic)

as an operator and each input of an atomic block as an operand of the Simulink/stateflow ATCS model. The

automatically generated C code from the model has 2353 LOC in 71 functions.

A requirement property for ATCS is that the engine RPM is less than 6000 for 30 seconds 1 should be greater

than or equal to probability θ. The property is important in real world, because if the engine RPM is constantly

over 6000, the engine becomes overheated and can be damaged. The property can be expressed in PBLTL as

follows:

P≥θ[G
30(engineRPM < 6000)]

6.1.2 Anti-lock Braking System

An anti-lock braking system (ABS) is a safety system that repeatedly increases and decreases the brake

pressure to allow the wheels of a car to interact with the road surface continuously as directed by a driver while

braking. Thus, ABS can prevent the wheels from locking up and avoid skidding, which can enhance the safety

of driving by improving vehicle control and decreasing stopping distances. As described in Figure 6.2, ABS has

the following three sensors: a car speed sensor, a wheel speed sensor, and a brake pedal sensor. ABS receives

data from these sensors and generates the brake pressure and slip as outputs, where slip indicates how properly a

wheel of a car is controlled. ABS consists of a bang-bang controller and a hydraulic control unit. The bang-bang

1We set the time duration to monitor as 30 seconds, since a default simulation time of the Simulink model of ATCS included in Matlab
R2010a is 30 seconds.

– 21 –

Table 6.1: Size and complexity of the Simulink models of ATCS, ABS, and FFCS in Halstead metrics
Target N1: # of N2:# of n1:# of n2:# of N :program n: program V : program D: program E: program

system operators operands distinct distinct length vocabulary volume difficulty effort

operators operands (= N1 +N2) (=n1 + n2) (N × logn) (=n1/2×N2/n2) (= D × V)

ATCS 31 46 27 39 77 66 465.4 15.9 7410.9

ABS 27 36 19 36 63 55 364.2 9.5 3460.1

FFCS 65 111 35 94 176 129 1234.0 20.7 25500.0

Figure 6.2: Block diagram of ABS

controller receives data from the three input sensors and commands the hydraulic control unit to increase/decrease

the brake pressure. In addition, when the brake pedal is pressed, the bang-bang controller calculates slip as follows:

slip = 1− wheelspeed

carspeed

When the wheel speed is equal to the car speed, slip becomes zero. When the wheel speed is zero (i.e., the wheel

is locked), slip becomes one, which means that the driver loses control of the car. There is an ideal slip value

(which is 0.2) that maximizes the adhesion between the wheel and the road and minimizes the stopping distance

with available friction. The bang-bang controller tries to adjust slip close to the ideal slip value by controlling the

hydraulic control unit.

The size and complexity of the Simulink/stateflow ABS model in terms of the Halstead metrics are described

in Table 6.1. The automatically generated C code from the model has 3443 LOC in 27 functions.

A requirement property for ABS is that for 17 seconds 2, when the brake pedal is pressed and the car speed

is greater than 5 m/s, slip is less than or equal to 0.9, should be larger than or equal to probability θ. The property

is important in real world, because if slip becomes close to 1 when a car is driving, the wheel can be locked and a

driver loses control of the car. The property can be expressed in PBLTL as follows:

P≥θ[G
17((brakepressed ∧ carspeed > 5)→ slip ≤ 0.9)]

2We set the time duration to monitor as 17 seconds, since a default simulation time of the Simulink model of ABS included in Matlab
R2010a is 17 seconds.

– 22 –

6.1.3 Fault-tolerant Fuel Control System

Refer to Section 3.1.

6.2 Experiment Setup

6.2.1 Environment Setup

We used the input value generation modules provided in the Simulink/stateflow models of FFCS, ATCS, and

ABS without modification. In addition, we built the stochastic environments for the three automobile systems as

follows:

• ATCS: we built a stochastic environment to ATCS by modeling a random delay to transfer the engine RPM

value from the engine to the torque converter. 3 This random delay is modeled by exponential distribu-

tion [14]. We selected a ‘passing maneuver’ scenario from the options of the ATCS model, which simulates

a situation that a driver opens the throttle 100% after 15 seconds. We utilize the following four delay rates

(i.e., mean delay times of transmission in seconds) λ ∈ {0.01, 0.02, 0.03, 0.04}.

• ABS: we built a stochastic environment of ABS that generates random delay to the command from the

bang-bang controller to the hydraulic control unit. 4 The random delay of the command is modeled by

exponential distribution [14]. We use a model of ABS representing a single wheel, which can be duplicated

multiple times to create a model for a multi-wheel vehicle. We utilize the following four delay rates (in

seconds) λ ∈ {0.001, 0.003, 0.005, 0.007}.

• FFCS: we built a stochastic environment model for FFCS that generates random faults at the EGO, MAP,

and speed sensors as Zuliani et al. [30] did. The random faults are modeled by three independent Poisson

processes with different arrival rates [24]. We assume one fault event remains for one second. When a fault

event occurs in a sensor, FFCS remains in a failure mode in one second and returns to a normal mode. We

utilize the following four inter-arrival fault rates (i.e., mean inter-arrival times of sensor fault) to the three

sensors: (3,7,8), (10,8,9), (20,10,20) and (30,30,30).

6.2.2 Precision Parameter Setup

We use the following precision parameters for SPRT and BIET:

• SPRT:
3This random delay is a real factor, not an artificial one. ATCS has an electronic circuit to deliver data from one sub-component to

another and the data transfer can be delayed non-deterministically due to non-deterministic scheduling and bus contention among multiple
sub-component.

4This random delay is a real factor for the similar reason of the one in ATCS.

– 23 –

Table 6.2: Experiment result of SPRT for ATCS with λ = 0.03 and δ = 0.03 for the five trials

α, β

threshold θ

0.5 0.7 0.9 0.99

n acpt time n acpt time n acpt time n acpt time

0.1 110 1.0 69.9 215 1.0 143.9 343 0.0 221.8 18 1.0 12.6

0.01 270 1.0 171.0 375 1.0 301.1 410 0.0 347.1 41 1.0 27.1

0.001 395 1.0 249.0 563 1.0 361.1 985 0.0 636.7 45 1.0 30.2

Table 6.3: Experiment result of BIET for ATCS with λ = 0.03 for the five trials

δ′
interval coverage c

0.9 0.99 0.999

n p̂ time n p̂ time n p̂ time

0.05 630 0.8594 416.6 1550 0.8654 1011.9 2665 0.8636 1753.2

0.03 1845 0.8544 1208.6 3340 0.9000 2181.1 6475 0.8805 4356.5

0.01 14150 0.8810 9551.8 36540 0.8740 26281.2 58870 0.8762 42945.1

– a half-size of indifference region δ ∈ {0.01, 0.03, 0.05}

– error bounds α, β ∈ {0.1, 0.01, 0.001}

• BIET 5:

– interval coverage c ∈ {0.9, 0.99, 0.999}

– a half-size of estimation interval δ′ ∈ {0.01, 0.03, 0.05}

– parameters of Beta prior α′ = β′ = 1 (since we assume the prior density to be a uniform density over

(0, 1))

We performed each experiment five times to obtain average verification result over [0, 1] regarding if the

hypothesis H0 is accepted where H0: a probability for M to satisfy φ is greater than or equal to θ + δ. For

the experiments, we used θ ∈ {0.5, 0.7, 0.9, 0.99}. In addition, we measured the total verification time and total

number of samples for each experiment.

For the hybrid SMC technique, we set θ=0.99. This is because the hybrid SMC technique targets safety

critical systems which require high reliability, which can be specified with PBLTL with high θ values. We use the

following precision parameters which are similar to those of the SPRT and BIET experiments:

• precision parameters for SPRT parS : δ ∈ {0.01, 0.03, 0.05}, α, β ∈ {0.1, 0.01, 0.001}.

• precision parameters for BIET parB : c ∈ {0.9, 0.99, 0.999}, δ′ ∈ {0.01, 0.03, 0.05}, α′ = β′ = 1.

5Our parameters are similar to those of Zuliani et al. [30], where they use interval coverage c as 0.99 and 0.999 and half-size of estimation
interval δ as 0.01 and 0.05. To identify tendency of the experimental results more, we used more parameters.

– 24 –

• threshold for accept decision over [0, 1] thacc=0.5

• the probability threshold to apply BIET instead of SPRT thS2B=0.95

• the number of trials for SPRT mS = 5

• the number of trials for BIET mB = 5

6.2.3 Experiment Platform

Figure 6.3 shows the overall snapshot of running FFCS simulation (see the upper window) together with SMC

(see the lower command window). At the upper window of Figure 6.3, the three component blocks correspond to

the components of FFCS in Figure 2.1 (for example, the control logic block corresponds to Sensor failure

detector component). All four sensor inputs are represented by a “sensors” block and the fuel rate output is

represented by the fuel rate block. At In the lower command-line window, the SMC tool displays variable

values related necessary to calculate the probability for FFCS to satisfy φ. Specifically, p is a calculated probability

and n is a the total number of sample simulation traces so far. In addition, x is a number of successful sample

traces so far. For example, the last line of the low window indicates that 1195 sample traces have been generated

until nowto this point and 1120 traces among them satisfy φ. Also the same line indicates that the probability for

FFCS to satisfy φ is calculated as 0.936508 currently (note that the snapshot of Figure 6.3 shows on-going SMC

process, not the final result).

We built a statistical model checker as a Matlab module, which executes the Simulink/stateflow models for

FFCS, ATCS, and ABS and monitors inputs and outputs of the models to check if φ is satisfied on a current

sample path. After each execution of the models, the SMC module calculates a required number of samples

dynamically based on the precision parameters and the number of success/fail samples generated so far. If a

number of the generated samples reaches the required number, the SMC module generates a verification result.

The SMC module for SPRT is around 80 lines long. The SMC module for BIET is around 70 lines long. The

hybrid SMC module is around 200 lines long. We used Matlab R2010a for the experiments. All experiments were

performed on 64 bit Windows 7 Professional equipped with a 3 GHz Intel processor and 16 gigabytes of memory.

6.3 Results of SPRT and BIET

Tables 6.2 and 6.3 describe the experiment results of applying SPRT with δ = 0.03 and BIET to ATCS

respectively when the delay rate λ=0.03. 6 In Tables 6.2 and 6.3, n is a total number of required sample execution

paths for the five trials and time is total verification time taken for the five trials in seconds. acpt in Table 6.2 is

6Full experiment data of applying SPRT and BIET to ATCS, ABS, and FFCS is available at http://pswlab.kaist.ac.kr/data/
issre2012-expr-results.zip

– 25 –

http://pswlab.kaist.ac.kr/data/issre2012-expr-results.zip
http://pswlab.kaist.ac.kr/data/issre2012-expr-results.zip

Figure 6.3: Screenshot of the SMC experiment on FFCS

an average result over [0, 1] regarding the hypothesis H0 where 0 is ‘reject’ and 1 is ‘accept’. p̂ in Table 6.3 is an

estimated probability forM |= φ.

Table 6.2 shows that the probability for ATCS with λ=0.03 and δ = 0.03 to satisfy the requirement property

φ (=G30(engineRPM < 6000)) is between 0.7 and 0.9. This is because acpts are 1.0 when θ ≤ 0.7 while acpts

are 0.0 when θ = 0.9 in Table 6.2 (the verification result of SPRT with a high θ value like 0.99 should not be

trusted due to the characteristics of SPRT [28]).

In addition, we can conclude that the probability is close to 0.9, since n of SPRT increases as θ increases from

0.5 to 0.9 and decreases sharply from 0.9 to 0.99. For example, Table 6.2 shows that n becomes 110, 215, 343,

and 18 as θ becomes 0.5, 0.7, 0.9, and 0.99 with α=β=0.1. This tendency of n indicates that the true probability

for ATCS with λ=0.03 to satisfy φ is close to 0.9, since SPRT requires a large number of sample paths to check a

given hypothesis H0 if a true probability is close to θ [28]. Furthermore, the verification result of BIET coincides

with that of SPRT, since Table 6.3 shows that the estimated probability p̂ is between 0.8544 (with c = 0.9 and

δ′ = 0.03) and 0.9000 (with c = 0.99 and δ′ = 0.03).

For the verification speed, Tables 6.2 and 6.3 show that SPRT is much faster than BIET. For example, the

– 26 –

Table 6.4: Experiment result of the hybrid SMC for ATCS with θ = 0.99, δ = 0.03, δ′ = 0.01, c = 0.99

α, β

delay rate λ from engine to torque convertor

0.01 0.02 0.03 0.04

n p̂ acpt time n p̂ acpt time n p̂ acpt time n p̂ acpt time

0.1 1710 0.9956 1 1256.1 1710 0.9956 1 1173.7 1066 N/A 0 698.9 1334 N/A 0 858.9

0.01 2315 0.9956 1 1740.8 2315 0.9956 1 1642.6 4795 N/A 0 3081.9 2946 N/A 0 1884.6

0.001 2905 0.9956 1 2320.2 2905 0.9956 1 2102.7 7804 N/A 0 6020.4 3833 N/A 0 2952.4

Table 6.5: Experiment result of hybrid SMC for ABS with θ = 0.99, δ = 0.03, δ′ = 0.01, c = 0.99

α, β

delay rate λ from bang-bang controller to hydraulic control unit

0.001 0.003 0.005 0.07

n p̂ acpt time n p̂ acpt time n p̂ acpt time n p̂ acpt time

0.1 1814 0.9953 1 986.5 6511 0.9826 0 2905.9 8247 0.9773 0 3854.4 952 N/A 0 382.4

0.01 2417 0.9953 1 1344.8 8006 0.9806 0 3619.4 9151 0.9770 0 4290.1 2238 N/A 0 890.2

0.001 3179 0.9950 1 1815.3 8541 0.9810 0 3906.1 9326 0.9791 0 4334.0 3684 N/A 0 1465.5

Table 6.6: Experiment result of hybrid SMC for FFCS with θ = 0.99, δ = 0.03, δ′ = 0.01, c = 0.99

α, β

sensor fault rates

(3, 7, 8) (10, 8, 9) (20, 10, 20) (30, 30, 30)

n p̂ acpt time n p̂ acpt time n p̂ acpt time n p̂ acpt time

0.1 1299 N/A 0 3359.6 14442 0.9575 0 36399.3 3180 0.9920 1 7990.0 2121 0.9944 1 5362.0

0.01 5369 N/A 0 13893.4 14130 0.9620 0 35894.1 4651 0.9906 1 11786.0 3747 0.9926 1 9556.4

0.001 7320 N/A 0 19059.9 16010 0.9592 0 41014.6 5809 0.9895 0 14792.1 3512 0.9939 1 9017.2

maximum time spent by SPRT in Table 6.2 is 636.7 seconds with θ = 0.9 and α=β=0.001, which is less than time

costs of BIET in Table 6.3 except when BIET is applied with low precision parameters δ′ = 0.05 and c = 0.9

(416.6 seconds).

Thus, if a given PBLTL formula has a high θ value like 0.99, it is a good idea to apply SPRT first with low

θ values (SPRT result with high θ value should not be trusted) in hope of eliminating the need to apply BIET. For

example, suppose that we should check P≥θ[G30(engineRPM < 6000)] for ATCS with λ=0.03 and θ = 0.99.

With α=β=0.1, SPRT takes 435.6 seconds in total (=69.9+143.9+221.8) to conclude that ATCS does not satisfy

the given PBLTL formula with θ = 0.99 by checking cases with θ as 0.5, 0.7, and 0.9 in order (Table 6.2);

the verification result with θ = 0.9 is ‘reject’, which consequently makes the result with θ = 0.99 as ‘reject’.

However, if we apply BIET, we will obtain the same verification result with higher time cost except a case with

δ′ = 0.05 and c = 0.9 (416.6 seconds (Table 6.3)). The hybrid SMC technique (Figure 5.1) is developed to utilize

this observation for precise and fast verification.

6.4 Results of the Hybrid SMC Technique

Tables 6.4-6.6 present the experiment results of the hybrid SMC technique on ATCS, ABS, and FFCS for

θ = 0.99 with δ = 0.03, δ′ = 0.01, and c = 0.99, respectively. n is a total number of sample paths required

by SPRT and BIET in the hybrid algorithm for each experiment. p̂ is an estimated probability obtained by BIET

– 27 –

for each experiment. If BIET is not applied because SPRT rejects a hypothesis H0 before reaching thS2B , then p̂

is N/A. acpt is a result over [0,1] regarding the hypothesis H0 where 0 is ‘reject’ and 1 is ‘accept’. time is total

verification time taken for each experiment in seconds.

6.4.1 Verification Results

For ATCS, Table 6.4 shows that the corresponding hypothesis H0 with θ = 0.99 is accepted for two de-

lay rates λ ∈ {0.01, 0.02} (i.e., M |= P≥θ[G
30(engineRPM < 6000)] and rejected for delay rates λ ∈

{0.03, 0.04}. For the experiments with λ ∈ {0.03, 0.04}, SPRT rejected H0 and BIET was not applied; thus,

corresponding p̂s are marked as ‘N/A’. This result coincides with the results of SPRT and BIET, since SPRT

concludes that ATCS with λ=0.03 does not satisfy the PBLTL formula with θ = 0.9 (i.e., acpts are all 0.0 in

Table 6.2) and BIET concludes that the probability for ATCS with λ=0.03 to satisfy G30(engineRPM < 6000)

is between 0.8544 and 0.9000 (Section 6.3).

An interpretation of this result is that ATCS may not operate correctly if an engine RPM value is transferred

from the engine to the torque converter with long delay (i.e., delay rate λ in exponential distribution is larger than

or equal to 0.03 seconds), since long delay of the data transfer can prevent ATCS from operating promptly. In

addition, we can obtain a practical implication that, to achieve required high reliability specified by the PBLTL

formula with θ = 0.99, ATCS should use a data-transfer component that transfers data from the engine to the

torque converter with delay rate λ ≤ 0.02 or revise the ATCS design to satisfy the PBLTL formula with θ = 0.99

even with long delay of the data transfer.

Similarly, for ABS, Table 6.5 shows that the corresponding hypothesis H0 with θ = 0.99 is accepted for

delay rate λ=0.001 (i.e.,M |= P≥θ[G
17((brakepressed ∧ carspeed > 5) → slip ≤ 0.9)]), and is rejected for

larger delay rates. For FFCS, Table 6.6 shows that the corresponding hypothesis H0 with θ = 0.99 is accepted for

fault ratios (20,10,20) (except α=β=0.001) and (30,30,30) (i.e.,M |= P≥θ[¬(F 100G1(fuelrate = 0))]), and is

rejected for more frequent fault ratios (3,7,8) and (10,8,9).

6.4.2 Verification Speeds

The hybrid SMC technique shows an order of magnitude faster verification speed compared to BIET for the

experiments where the probability for M |= φ is less than thS2B . 7 For example, for ATCS with λ=0.03, the

hybrid technique spent 698.9 seconds (with α=β=0.1, δ=0.03, δ′ = 0.01, and c=0.99) to 6020.4 seconds (with

α=β=0.001, δ = 0.03, δ′ = 0.01, and c=0.99) (Table 6.4), while BIET spent 26281.2 seconds for the same

precision parameters (i.e., δ′ = 0.01, c = 0.99) (Table 6.3). The hybrid technique is much faster than BIET for

ATCS with λ=0.03, since SPRT of the hybrid technique concludes that ATCS with λ=0.03 does not satisfy the

PBLTL formula with θSPRT = 0.9375. Since θSPRT = 0.9375 < thS2B = 0.95, the hybrid technique does not

7Comparison between the verification speed of the hybrid technique and that of SPRT is not meaningful, since SPRT result is imprecise
for a large θ value like 0.99.

– 28 –

apply BIET and conclude that ATCS with λ = 0.03 does not satisfy the given PBLTL formula with θ = 0.99. As

BIET takes an order of magnitude larger time cost than SPRT (Tables 6.2–6.3), the hybrid technique can reduce a

large amount of time cost by removing the time cost of BIET.

However, for the experiments where the probability for M |= φ is larger than thS2B , the hybrid tech-

nique shows slower verification speed compared to BIET. For example, for ATCS with λ=0.02, the hybrid tech-

nique spent 1173.7 seconds (with α=β=0.1, δ=0.03, δ′=0.01, and c=0.99) to 2102.7 seconds (with α=β=0.001,

δ=0.03, δ′=0.01, and c=0.99) (Table 6.4), while BIET spent 820.1 seconds for the same precision parameters

(i.e., δ′=0.01 and c=0.99) (see http://pswlab.kaist.ac.kr/data/issre2012-expr-results.

zip). This larger time cost of the hybrid technique is due to the additional applications of SPRT for θSPRT ∈

{0.5, 0.75, 0.875, 0.9375}.

For ABS and FFCS, we make similar observations to the experiments for ATCS. For the cases where the

probability forM |= φ is less than thS2B , the hybrid technique is much faster than BIET. For the other cases, the

hybrid technique is slower than BIET.

– 29 –

http://pswlab.kaist.ac.kr/data/issre2012-expr-results.zip
http://pswlab.kaist.ac.kr/data/issre2012-expr-results.zip

Chapter 7. Discussion of Hybrid SMC Technique

Through the case studies of the proposed hybrid SMC technique on ABS, ATCS, and FFCS, we found

three discussion issues such as effectiveness and efficiency of hybrid SMC technique (Section 7.1), independence

between complexity of target system and SMC cost (Section 7.2), and usefulness of SMC techniques to obtain a

safety certificate (Section 7.3).

7.1 Effective and Efficient Hybrid SMC Technique

Through the empirical evaluation of the hybrid statistical model checking technique on ATCS, ABS, and

FFCS, we found that the hybrid technique is faster and more accurate than a single SMC technique (Section 6.4).

This improvement is achieved by utilizing the different advantages of SPRT and BIET selectively, namely fast

verification speed of SPRT and precise verification result of BIET (Section 6.3).

The hybrid SMC technique applies SPRT and BIET selectively, because significance of verification speed

and that of verification precision vary depending on a probability p for M to satisfy a requirement property φ.

Suppose that if p is distant from θ (e.g., |θ − p| ≥ 0.1), precision may not be very important, because small error

(e.g. +0.01 or -0.01) in an estimated probability does not affect an accept/reject decision on H0. In this case, the

hybrid technique applies SPRT for fast verification without much concern for precision. If p is close to θ, however,

precision becomes important, because a small error (e.g. +0.01 or -0.01) may affect an accept/reject decision on

H0 easily. In this case, the hybrid technique applies BIET for precise verification result.

Since we are targeting safety critical systems where PBLTL requirements often have θ values close to 1 (e.g.,

0.99 or 0.999) for high reliability, the hybrid SMC technique can apply SPRT for relatively low θSPRT values first

(e.g., 0.5, 0.75, etc.) in hope to conclude a ‘reject’ decision fast with little concern for precision (a case where

p is distant from θ). If SPRT concludes ‘accept’ decisions for the relatively low θSPRT s (i.e., a case where p is

close to θ), the hybrid SMC algorithm applies BIET for precise verification result. Therefore, the hybrid SMC

technique can produce a final verification result (i.e., accept/reject of H0) fast and precisely.

Although precise verification result is of the highest priority for SMC, we cannot ignore the time cost. Since

the available project time in industry is always limited, the efficiency of verification techniques is of important

concern, too. For example, ISO-26262 [11] requires that the reliability of the safety critical system components

should be higher than 99.999% level. To obtain such high reliability through SMC, the time cost of SMC will be

significantly large (it can take several days to several weeks). Therefore, verification speed is also a critical issue

as well as precision and our hybrid SMC technique can be useful for practical application of SMC techniques to

improve the reliability of safety critical systems.

– 30 –

7.2 Independence between Complexity of Target System and SMC Cost

We found that the complexity of a target system does not affect the cost of the hybrid SMC technique. For

example, although FFCS is more complex than the other systems (e.g., program effort E of FFCS is 25500.0,

while those of ATCS and ABS are 7410.9 and 3460.1 respectively (Table 6.1)), for similar estimated probability p̂

with the same precision parameters, a number of sample execution paths n for FFCS is similar to those for ATCS

and ABS. 1 For the five experiments with α=β=0.1 in Tables 6.4-6.6 whose p̂ > 0.99, the numbers of execution

paths ns for these experiments are similar.

• ATCS with λ=0.01 or 0.02: p̂ = 0.9956 and n = 1710

• ABS with λ=0.001: p̂ = 0.9953 and n = 1814

• FFCS with the sensor fault rates (30,30,30): p̂ = 0.9944 and n = 2121

• FFCS with the sensor fault rates (20,10,20): p̂ = 0.9920 and n = 3180

As shown above, although the complexities of ATCS, ABS, and FFCS are different, the cost of the hybrid

SMC technique for these target systems does not change much for similar p̂ (i.e., 0.9920–0.9956). A slightly

increasing number of n from 1710 to 3180 for decreasing p̂ from 0.9956 to 0.9920 is due to the characteristics

of BIET; BIET requires more sample paths as p̂ decreases from 1 (Section 2.4.1). Therefore, we can expect that

SMC techniques can be applied to large complex safety critical systems to assure their reliability.

7.3 SMC Techniques to Obtain a Certificate of Safety Standards

There are various international standards (e.g., DO-178C [20] for avionics domain, ISO-26262 [11] for au-

tomobile domain, IEC-60601 [9] for medical electrical equipment domain, etc.) to assure reliability of safety

critical systems. Since products with a certificate can have a strong competitive power in market, manufacturers

spend a large amount of man power and project time to acquire a high-level certificate for safety standards. For

example, automobile manufacturers such as BMW and GM start to apply ISO 26262 standard for safety critical

components.

To obtain a high-level certificate, vendors should provide strong cases or ‘proof’ that their products achieve

high reliability. For example, ISO-26262 requires that a vendor of automobile components should apply formal

verification techniques to the components to obtain a certificate of automotive software integrity level (ASIL)

D. However, conventional formal verification techniques such as state model checking and theorem proving are

difficult to apply for the purpose due to the state space explosion problem and lack of field engineers who are

proficient in deductive proof.

1For different target systems, we should use n as a measure of the SMC cost, not time, since time varies depending on the execution time
of a target system.

– 31 –

From our experience of applying various SMC techniques for safety critical systems on automobile domain

such as ATCS, ABS, and FFCS, we expect that the hybrid SMC technique can be applied successfully to obtain a

high-level certificate of ISO 26262. A main reason is that the hybrid SMC technique is reasonably fast and precise

(Section 7.1). For example, it takes less than 12 hours to verify FFCS with most precise parameters with regard

to the PBLTL formula. Since most of the time cost is due to the simulation cost, SMC itself will take much less

time to check other PBLTL formulas if any by utilizing saved sample traces. Second reason is that the cost of the

SMC techniques is independent of the complexity of a target system (Section 7.2), since SMC techniques do not

analyze the complex internal logic of a target system. Finally, SMC techniques are easy to Second reason is the

strong applicability of SMC; SMC requires only executable target system/model.

– 32 –

Chapter 8. Validating Software Reliability through

Statistical Model Checking

During the last couple of decades, the proportion of software in safety critical systems has significantly in-

creased. Thus, to assure the high level safety, it is essential to improve software reliability. Consequently, it has

become very important to implement and acquire highly reliable software and to satisfy the safety requirements

imposed by the functional safety standards such as IEC 61508 and ISO 26262 [8]. Safety Integrity Level (SIL) in

IEC 61508 or Automobile Safety Integrity Level (ASIL) is defined as a measure of the quality or dependability of

a system [10, 11]. Safety integrity level for a target system is determined from the assessment of three important

factors: Improved Reliability, Failure to Safety, and Verification & Validation. Improved Reliability is the proba-

bility of a safety-related system satisfactorily performing the required safety functions under all stated conditions

within a stated period of time. To develop a highly reliable software intensive system, a reliability goal is allocated

for a target system according to a target SIL/ASIC level after hazard analysis and risk assessment. Then, software

reliabilities are allocated to each software component at the early stage of a lifecycle. The allocated reliability of

each component is validated through failure detection during the testing phases (e.g., system testing and accep-

tance testing), since there is no way to know whether the allocated component reliabilities can satisfy the overall

system reliability goal at the earlier phases. This late validation can miss subtle defects due to limited project time

and lead to a high software development cost and delayed project delivery. Recently, several software reliability

prediction models have been introduced to quantitatively manage software reliability at early development phases

(i.e., architecture or design phases) based on the structure and usage profile of the components in a software sys-

tem [18]. However, these approaches have some limitations. First, the software reliability models are unrealistic

due to lack of empirical data, especially in the early development phase [3]. Second, these models assume that

the reliability of each target component is known, which is not true for software components in real-world, unlike

hardware components.

In this chapter, we propose our new SMC-based software reliability validation framework to validate the

reliability of the safety critical system in early development stage (see Section 8.1).

8.1 SMC-based Software reliability validation framework

We propose a new framework to validate the allocated component reliabilities in the early development stage

through a statistical model checking (SMC) technique in the early development stage by extending the software

– 33 –

Figure 8.1: Software reliability validation framework

reliability assessment procedure in IEEE Std. 1633 [1]. Specifically, we extend IEEE Std. 1633 by adding a new

step, “Validate the Reliability Requirement” after the “Allocate the reliability requirement” step in the software

reliability assessment procedure. Since a good reliability validation depends on analyzing a target system as if it

was operated in the real field, an operational profile, which is a quantitative characterization of how the system will

be used, can be used in the framework [19]. Figure 8.1 shows the an overview of our software reliability validation

framework which validates the reliability goal using a SMC technique. The detailed process of the framework is

as follows.

1. Based on the reliability goal of a target system obtained at in the “2.2. Specify the reliability requirement”

step in the software reliability assessment procedure of IEEE Std. 1633, a reliability goal Ri is allocated to

each component Ci at in the “3.3. Allocate the reliability requirement” step.

2. At In the “Validate the Reliability Requirement” step (see the central box in Figure 8.1), SMC generates

random sample execution traces σis repeatedly until σis generated are enough to calculate the probability

that Ci satisfies reqij (i.e., P (reqij)). If not, SMC simulates Ci again to generate more sample traces.

3. After calculating P (reqij)s for all reqijs, the framework validates the allocated reliability goal Ri of Ci by

comparing Ri with calculated reliability R′i obtained based on P (reqij)s and corresponding weight values

for reqij (see the bottom box of “Validate the Reliability Requirement” of Figure 8.1). If R′i satisfies the

– 34 –

assigned reliability goal Ri (i.e., R′i >= Ri), the process of the software reliability validation continues for

the next component Ci+1 with regard to Ri+1. If the calculated reliabilities of all components satisfy the

allocated reliability goals, the framework continues the remaining software reliability assessment procedure

(see the leftward arrow “(1) To continue SW reliability assessment” in Figure 8.1).

4. If R′i does not satisfy the assigned reliability goal Ri, the reliability goals of all components should be

reallocated (see the leftward arrow “(2) To reallocate reliability” in Figure 8.1). If the reallocation keeps

failing, it may indicate that the target component was designed incorrectly. Thus, after several trials of

the reliability reallocation, the component Ci should be redesigned to improve the reliability of the target

component (see the upward arrow “(3) To re-design a target component” in Figure 8.1).

– 35 –

Chapter 9. Case Study of SMC-based Software Reliability

Validation Framework in Automobile

This chapter presents an overview of a fault-tolerant fuel control system (FFCS) in an automobile domain,

which is our main target system to apply the SMC-based software reliability validation framework (see Sec-

tion 9.1). Furthermore, this chapter describes the experiment to apply the SMC-based software reliability valida-

tion framework to FFCS, through which we have demonstrated the advantages of the proposed framework (see

Section 9.2).

9.1 Target system of case study: fault-tolerant fuel control system

In Figure 3.1, we present the overall diagram of a fault-tolerant fuel control system (FFCS) [16], which is a

safety critical component of the engine controller in a consumer vehicle. FFCS controls the fuel rate to inject based

on sensor data for best performance, detects a sensor fault, and shuts down an engine for safety in the presence

of multiple sensor failures. FFCS has the following four sensors: throttle angle sensor, speed sensor, exhaust gas

oxygen (EGO) sensor, and manifold absolute pressure (MAP) sensor. FFCS receives these four sensor input and

generates a proper fuel rate and an air-fuel ratio. FFCS consists of the following three components: Sensor Failure

Detector & Estimator (SFDE), airflow calculator, and fuel calculator (see Section 3.1 for more explanation).

9.1.1 Sensor failure detector and estimator

Figure 9.1 is a block diagram for the SFDE of a FFCS. The SFDE receives four sensor data as input and

generates four sensor data as output and the engine-shut-down command used only when multiple sensor failures

occur. The SFDE consists of a sensor failure detector and a sensor data estimator. The sensor failure detector

receives all four sensor data and decides if each sensor is failed. Sensor failure detector delivers all sensor data,

and, if a sensor fails, notifies the sensor data estimator of the sensor failure. If multiple sensors fail, the sensor

failure detector shuts down the engine since the air-fuel ratio cannot be controlled.

9.1.2 Airflow Calculator

Figure 9.2 is a block diagram of the airflow calculator of FFCS. The airflow calculator receives four sensors

data from the sensor failure detector & estimator (SFDE) component and estimates an airflow value with feedback

correction value. The airflow calculator consists of an airflow estimator and an airflow corrector. The airflow

– 36 –

Figure 9.1: Block diagram of SFDE

Figure 9.2: Block diagram of Airflow Calculator

estimator estimates an airflow value based on throttle sensor, speed sensor, and MAP sensor data. The airflow

corrector calculates a feedback correction value based on EGO sensor, speed sensor, and MAP sensor data to

obtain more accurate fuel rate in the next component, the fuel calculator.

9.1.3 Fuel Calculator

Figure 9.3 is a block diagram of the fuel calculator of FFCS. The fuel calculator receives the estimated airflow

data and the feedback correction data from the airflow calculator component and calculates the fuel rate which

keeps an air-fuel ratio optimal. The fuel calculator consists of a fuel calculator and a compensator. The fuel

calculator calculates a feed-forwarded fuel rate based on the estimated airflow value, which makes the air-fuel

ratio optimal. The compensator calibrates the feed-forwarded fuel rate with the feedback correction value and

generates the fuel rate which is finally supplied to the engine and also the air fuel ratio.

– 37 –

Figure 9.3: Block diagram of Fuel Calculator

9.2 SMC-based Software Reliability Validation Framework Experiments

on FFCS

In this section, the validation method for allocating the reliability goal of FFCS and generating several safety

functional requirements is described in Section 9.2.1, the experimental setting for applying SMC is described in

Section 9.2.2, and the experimental result of SMC for each component of FFCS is described in Section 9.2.3.

9.2.1 Validation Method of the Software Reliability of FFCS

We specify the reliability goal for FFCS as 0.9999 (ASIL D in ISO 26262 [11] requires 1−10−3 to 1−10−9

reliability goal). Since all components of FFCS (i.e., the SFDE, the airflow calculator, and the fuel calculator) are

combined sequentially, the reliability of a target system RT can be calculated by multiplying the reliabilities of

the components of the target R′is as follows, where n is a total number of components in the system:

RT =

n∏
i=1

R′i.

To satisfy the total reliability of FFCS (i.e., 0.9999), we allocated the reliability goals for the components of

FFCS following the advice from a field expert on the automobile engine controller:

• Sensor failure detector & estimator (SFDE): 0.99997

• Airflow calculator: 0.99997

• Fuel calculator: 0.99997

A basic principle to specify safety functional requirements for reliability validation is to describe a require-

ment for each output of a component (for example, we specify four requirements for the SFDE, each of which

corresponds to output values of throttle angle, speed, EGO, and MAP). This is because a main task of a compo-

nent is to compute output values and, thus, the reliability of a component is closely related with the output values.

– 38 –

Through the discussion with the field expert, we identified a total of eight requirements for the SFDE, airflow

calculator, and fuel calculator. For example, the SFDE has the following four safety functional requirements for

the four corresponding outputs:

• reqthrottle: The throttle output should not be out of the throttle opening range from 3% to 90%.

• reqspeed: The engine speed output should not exceed 628 rad/sec (= 6000 rpm).

• reqEGO: During the initial warm-up period, EGO output should not be out of the range [0,1]. After the

warm-up, EGO output should be between 0.03 and 0.97.

• reqMAP : The MAP output should not exceed 1 atmosphere.

We can calculate the reliability of a component R′i by using a weight to each requirement as follows, where

wreqij is a weight value for requirement reqij , and P (reqij) is the probability result for reqij .

R′i =
∑

reqij∈REQ)

(wreqij × P (reqij))

Through the discussion with the field expert, we determined the weight values: wthrottle=0.11, wspeed=0.45,

wEGO=0.09, and wMAP=0.35. This indicates that speed and MAP sensors are more important for the reliability

of the SFDE than throttle and EGO sensors.

9.2.2 Experiment Setting of SMC

We used a Simulink/Stateflow model of a FFCS in the Matlab R2010a. We simulated the FFCS model

using Matlab simulator to generate sample execution traces. To validate if the FFCS model satisfies the reliability

goal (i.e., 0.9999), we applied a Bayesian Interval Estimation Testing (BIET) SMC technique. To obtain precise

probability result (i.e., 1− 10−4 goal), we set the SMC precision parameters δ= 0.00005 and c= 0.9999 for BIET

(see Section 6.2.3 for detailed tool explanation).

We built a stochastic environment model for FFCS that generates random faults at the sensors. We made

a random fault generator module and connected this module to the sensors. The random faults are modeled

by four independent Poisson processes with different arrival rates. Each mean inter-arrival fault rate of each

sensor is given as follows: (throttle, speed, EGO, MAP) = (8, 10, 9, 7). For simplicity, we assume that all the

operations of FFCS have the same occurrence rate. For a larger and complex system, the operational profile must

be considered so that the most frequently used operation will have the most testing. The BLTL model checker

evaluates safety functional requirements (i.e., reqthrottle, reqspeed, reqEGO, and reqMAP) over Matlab/Simulink

simulation traces. The current model checker (implemented as a proof-of-concept prototype in 500 lines of Matlab

script) was implemented in a specific way to evaluate the eight safety functional properties. We plan to implement

– 39 –

Table 9.1: The SMC result for validating reliability of SFDE

Component Requirement Probability No. of samples No. of Verification Calculated

failed samples time (hr) reliability

Sensor
Failure
Detector &
Estimator
(SFDE)

reqthrottle 0.999889 776747 85 318.91

0.999973
reqspeed 0.999989 92098 0 38.35

reqEGO 0.999933 533735 35 222.22

reqMAP 0.999989 92098 0 38.31

Airflow
Calculator

reqFeedbackCorrection 0.999959 293055 11 121.97
0.999950

reqEstimatedAirflow 0.999947 452185 23 193.29

Fuel
Calculator

reqFuelRate 0.999972 177813 4 75.99
0.999954

reqAirFuelRatio 0.999914 638753 54 273.45

a general model checker which can evaluate arbitrary BLTL formulas over Matlab/Simulink simulation traces

and release the model checker publicly. The BIET statistical analyzer was implemented in 50 lines of Matlab

script. The BIET analyzer is independent from the model checker and safety functional requirements (we have

released the BIET analyzer publicly at http://pswlab.kaist.ac.kr/tools/SMC). Note that these two

components of SMC (once we complete the implementation of a general BLTL model checker) can be re-used

for other target systems without modification. Thus, it will not be difficult for practitioners to apply the proposed

software reliability validation framework based on SMC to their safety critical systems. All experiments were

performed on 64 bit Windows 7 Professional equipped with a Intel i5 3.40 GHz and 8 GB of memory. We used

Matlab R2010a for the experiments.

9.2.3 SMC Result

Table 9.1 describes the experiment result of applying SMC to the SFDE. For each safety functional require-

ment, the table describes the probability that the SFDE satisfies the corresponding safety functional requirement,

the number of sample traces generated, the number of failed sample traces, and the verification time in hours.

Finally, based on the probabilities in Table 1, we can calculate the estimated reliability R′i of the SFDE with the

weight values as follows.

R′i = 0.11× 0.999889 + 0.45× 0.999989 + 0.09× 0.999933 + 0.35× 0.999989 6= 0.999973

Since the reliability goal of the SFDE is 0.99997, the calculated reliability of the SFDE by SMC is larger

than the reliability goal and we can conclude that the SFDE satisfies the allocated reliability goal. In each require-

ment’s probability result in SFDE component, the probability results of the requirement reqspeed and require-

ment reqMAP are higher than the reliability goal of this component, (i.e., all 0.999989), but for the requirement

reqthrottle and reqEGO, the probability results are lower than the reliability goal of this component (i.e., 0.999889

for throttle and 0.999933 for EGO). Since the experiments for reqspeed and reqMAP have no failed samples, both

– 40 –

http://pswlab.kaist.ac.kr/tools/SMC

probability results are same.

For reqthrottle and reqEGO, due to the number of failed samples (85 for reqthrottle and 35 for reqEGO),

their probability results are low. In spite of low probability results of reqthrottle and reqEGO, the reliability of

SFDE, component is higher than the reliability goal of this component since the weight values of reqthrottle and

reqEGO are lower than reqspeed and reqMAP . This indicates that speed and MAP sensors have more criticality

than throttle and EGO sensors. In cases of remained components, the calculated reliability result of the airflow

calculator component is 0.999950, and that of the fuel calculator component is 0.999954. The estimated reliabil-

ities of the airflow calculator component and the fuel calculator component are failed to achieve their reliability

goals. For the airflow calculator component, the probability results of all two requirements, reqFeedbackCorrection

and reqEstimatedAirflow are low (i.e., 0.999959 and 0.999947). This result indicates that the reliability goals

of all components should be reallocated or both factors (i.e., feedback correction and estimated airflow) might

have problems in the airflow calculator component. For the fuel calculator component, the probability result of

requirement reqFuelRate is higher than the reliability goal of this component (i.e., 0.999972), but the probability

result of reqAirFuelRatio are much lower than that of this component (i.e., 0.999914). Thus, the reliability goals

of all components should be reallocated or air fuel ratio factor might have defects in the fuel calculator component.

Therefore, the possible choices are that the reliability goals of all components should be reallocated or these two

components should be redesigned to achieve the reliability goal of each component. The prior suggestion by the

proposed framework is reallocating the reliability goals of all components of FFCS.

– 41 –

Chapter 10. Conclusion and Future Work

At the outset of this thesis, we believe that SMC technique can be helpful for achieving safety certificates of

safety critical systems such as ISO-26262 for automobile domain and DO-178B/C for avionics soon.

From the empirical evaluation of four state-of-the-art SMC techniques on FFCS, we have demonstrated

that SMC techniques can assess the reliability of a complex safety critical system such as FFCS. Based on the

statistical techniques, SMC techniques can estimate the reliability of a complex safety critical hybrid system, to

which conventional V&V techniques often fail to apply due to high complexity of a target system. Therefore, we

believe that industries on safety critical system domain can benefit from the SMC techniques much.

We have developed a new hybrid SMC technique which integrates SPRT and BIET. By applying this new

hybrid technique to three safety critical systems in the automobile domain (i.e., ATCS, ABS, and FFCS), we have

demonstrated that the hybrid SMC technique achieves precise verification results fast compared to a single SMC

technique - SPRT or BIET. In our experiment, our hybrid SMC technique was around 4 times faster than BIET.

The SMC technique can be utilized for the early validation of software reliability in modeling phase, which is

a salient contribution for ensuring high reliability of safety critical systems. Until the SMC techniques have been

proposed, it was almost impossible to validate the reliabilities of software components for safety critical systems at

the early stage of the development life cycle, due to complex hybrid characteristics caused by continuous dynamics

to interact with physical environment and discrete computations to handle modal operations.

As many safety critical systems such as automobiles and avionics are developed using a model-driven de-

velopment (MDD) approach, the proposed validation framework can be seamlessly integrated in an existing de-

velopment process of industries. Thus, the proposed methodology based on SMC techniques can be realistically

adopted by industries and can contribute to increasing the reliability of software as well as decreasing the overall

development cost through early detection of design faults or incorrect reliability allocation, etc.

As future work, we will collaborate with Hyundai motor company to apply the hybrid SMC technique to real

control components of automobiles. We believe that the hybrid technique can provide more scientific assurance

about the reliability of components than conventional testing techniques. In addition, we plan to use this hybrid

technique in a process to obtain an ISO-26262 certificate.

– 42 –

References

[1] IEEE Std. 1633. Ieee recommend practice on software reliability. IEEE Computer Society, 2008.

[2] D. Antic, V. Nikolic, and D. Mitic. Sliding mode control of anti-lock braking system: An overview. Auto-

matic Control and Robotics, 9(1):41–58, 2010.

[3] L. Cheung, R. Roshandel, N. Medvidovic, and L. Golubchik. Early prediction of software component relia-

bility. In ICSE, 2008.

[4] E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using satisfiability solving. Formal

Methods System Design (FMSD), 19(1):7–34, 2001.

[5] E.M. Clarke and P. Zuliani. Statistical model checking for cyber-physical systems. In ATVA, 2011.

[6] M.H. Halstead. Elements of Software Science. Elsevier Science Ltd, 1977.

[7] T. Herault, R. Lassaigne, F. Magniette, and S. Peyronnet. Approximate probabilistic model checking. In

VMCAI, 2004.

[8] D.S. Herrmann. Software safety and reliability. IEEE Computer Society, 1999.

[9] International Electrotechnical Commission (IEC). IEC 60601: Medical electrical equipment - part 1: General

requirements for basic safety and essential performance, 2005.

[10] International Electrotechnical Commission (IEC). IEC 61508: Functional safety of electrical/electronic

/programmable electronic (E/E/PE) safety related systems, 2005.

[11] International Organization for Standardization (ISO). ISO 26262: Road vehicles – functional safety, 2011.

http://www.iso.org/iso/catalogue_detail?csnumber=43464.

[12] S.K. Jha, E.M. Clarke, C.J. Langmead, A. Legay, A. Platzer, and P. Zuliani. A bayesian approach to model

checking biological systems. In CMSB, 2009.

[13] Y. Kim, M. Kim, and T. Kim. Statistical model checking for safety critical hybrid systems: An empirical

evaluation. In HVC, 2012.

[14] C.W. Kirhwood. System dynamics methods: A quick introduction. Technical report, 1998. Arizona State

University.

– 43 –

http://www.iso.org/iso/catalogue_detail?csnumber=43464

[15] M. Kwiatkowska, G. Norman, and D. Parker. Prism 4.0: Verification of probabilistic real-time systems. In

CAV, 2011.

[16] J. Lauber, T.M. Guerra, and M. Dambrine. Air-fuel ratio control in a gasoline engine. International Journal

of Systems Science (IJSySc), 42(2):277–286, 2011.

[17] G. Li and J. Hu. Modeling and analysis of shift schedule for automatic transmission vehicle based on fuzzy

neural network. In WCICA, 2010.

[18] M.R. Lyu. Software reliability engineering: A roadmap. In Workshop on the Future of Software Engineering

(FOSE), 2007.

[19] J.D. Musa. Operational profiles in software-reliability engineering. IEEE Software, 10(2):14–32, 2008.

[20] Radio Technical Commission for Aeronautics (RTCA). Do-178c: Software considerations in airborne sys-

tems and equipment certification, 2012.

[21] P.K. Sen and J.M. Singer. Large sample methods in statistics: An Introduction with Applications. New York:

Chapman & Hall, 1993.

[22] X. Teng, H. Pham, and D. R. Jeske. Reliability modeling of hardware and software interactions, and its

applications. IEEE Transactions on Software Engineering (TSE), 55, 2006.

[23] A. Wald. Sequential tests of statistical hypotheses. Annals of Mathematical Statistics, 16(2):117–186, 1945.

[24] S. Yi, J. Heo, Y. Cho, and J. Hong. Adaptive mobile checkpointing facility for wireless sensor networks. In

ICCSA, 2006.

[25] J. Yoo, E. Jee, and S. Cha. Formal modeling and verification of safety-critical software. IEEE Software,

26(3):42–49, 2009.

[26] H.L.S. Younes. Verification and Planning for Stochastic Processes with Asynchronous Events. PhD thesis,

CMU, Jan. 2005.

[27] H.L.S. Younes, M. Kwiatkowska, G. Norman, and D. Parker. Numerical vs. statistical probabilistic model

checking. Software Tools for Technology Transfer (STTT), 8(3):216–228, 2006.

[28] H.L.S. Younes and D.J. Musliner. Probabilistic plan verification through acceptance sampling. In AIPS

Workshop on Planning via Model Checking, 2002.

[29] H.L.S. Younes and R.G. Simmons. Statistical probabilistic model checking with a focus on time-bounded

properties. Journal Information and Computation (JIC), 204(9):1368–1409, 2006.

[30] P. Zuliani, A. Platzer, and E.M. Clarke. Bayesian statistical model checking with application to state-

flow/simulink verification. In HSCC, 2010.

– 44 –

Summary

Hybrid Statistical Model Checking Technique for Reliable
Safety Critical Systems

원자력발전소나자동차와같은안전필수시스템의신뢰성은우리사회에서매우중요한이슈가되

고 있다. 이런 안전필수시스템에 점점 더 많은 컴퓨팅 시스템들이 이용됨에 따라, 이런 복잡한 컴퓨팅

시스템들의신뢰성을보증하는확인및검증기법들의수요가증가하고있다. 그러나컴퓨팅시스템들의

복잡도가증가함에따라,테스팅이나모델체킹등과같은기존의확인및검증기법들은한계를가진다.

왜냐하면이런시스템들은종종매우복잡한연속역학을제어하기때문이다. 이런안전필수시스템들의

신뢰성을높이기위해,통계적모델체킹방법들이제안되었다. 통계적모델체킹기법들은주어진대상

시스템이주어진안전요구사항을만족하는지를통계적기법들로검사한다. 이학위논문에서,우리는크

게세가지의연구를수행하였다. 첫째로,최신의통계적모델체킹기법네가지를자동차안전필수시스

템에적용하는사례연구를통해통계적모델체킹기법의안전필수시스템신뢰성보증에대한실제적적

용가능성을확인하였고네개의다른기법들에대한각각의장단점을비교분석하였다.두번째로,우리는

새로운하이브리드통계적모델체킹기법을제안한다.하이브리드통계적모델체킹기법은첫번째비교

분석연구를통해알게된속도가빠른기법인 sequential probability ratio test (SPRT)기법과정확한기법인

Bayesian interval estimation testing (BIET)기법을통합해정확한검증결과를빠르게얻기위한기법이다.

우리는하이브리드통계적모델체킹기법의효과및효율성을보이기위해우리의기법을세개의자동차

안전필수시스템에적용했다. 실험결과로부터우리는하이브리드통계적모델체킹기법이 BIET기법보

다최대 4배더빠르고, BIET의정확도를유지하며, SPRT보다정확함을확인했다. 마지막으로,소프트웨

어신뢰성을소프트웨어개발프로세스의이른단계에서검증하기위한해결방안으로,통계적모델체킹

기법들을 활용해 검증하는 프레임웍을 제안한다. 그리고 제안한 프레임웍을 자동차 안전필수시스템에

적용하는 사례 연구를 통해 실제 안전성 인증을 획득하는 데에 대한 제안한 프레임웍의 적용가능성을

보였다.

– 45 –

감사의글

이논문을완성하기까지주위의모든분들로부터수많은도움을받았습니다. 우선항상저를걱정하

시고아껴주시는사랑하는부모님께감사드립니다. 매일매일해주신전화는저에게많은힘이되었습니

다. 그리고항상저를굳게믿고따르는사랑하는동생김민지에게도고맙다는말을전하고싶습니다.

두 번째로, 저를 연구실로 받아주시고 많은 가르침을 주신 김문주 교수님께 감사드립니다. 부족한

저를잘이끌어주셔서석사과정 2년동안연구란어떤것인지많이배우게해주셨습니다. 그리고부족한

저를후배로잘이끌어주신김윤호박사과정과홍신박사과정께도감사드립니다. 석사생활에대해많은

조언과가르침을주셨습니다. 또한한때같은연구실생활을했던 Duc Bui Hoang에게도감사드립니다.

저에게친절하게잘대해주었습니다. 그리고우리연구실에서박사후과정을하고있는Matthew Staats에

게감사드립니다. 서로언어교환활동을하며많은얘기를나눌수있어참좋았습니다. 그리고연구실후

배들,안재민,문석현,연광흠석사과정에게도감사드립니다. 앞으로남은연구생활잘버티길바랍니다.

학부연구생으로있는박용배학생에게도감사드립니다. 석사과정가면참잘할것같은꿈나무입니다.

세번째로, 2년여동안함께석사생활을한동기들에게감사드립니다. 우선김지혜,손희석,이명준,

최장호 에게 감사합니다. 석사 생활동안 서로 힘든 일, 슬픈 일, 좋은 일이 있을 때마다 서로 공유하고

함께할수있어좋았습니다. 또한룸메이트고은비에게감사합니다. 항상열린마음으로저를대해주고

힘을주어참고마웠습니다. 그리고여자동기들홍지혜,김보경,김현아에게도감사드립니다. 가끔이지

만 함께 나눈 대화가 많은 힘이 되었습니다. 이민행 오빠에게 감사드립니다. 1년 반동안 많은걸 배우고

느끼게 해주었습니다. 원하는 바 를 꼭 이루었으면 좋겠습니다. 김용기 오빠에게 감사드립니다. 무슨

일이있을때마다하소연을해도항상잘받아주셨던큰오빠셨습니다. 그리고많은남자동기들김상채,

조재상, 이민우, 우상정, 이제희, 한대희, 신민호, 서재백 등 에게도 감사드립니다. 석사기간동안 추억도

많이 쌓고 이것저것 많은 도움을 받았습니다. 11학번 후기 이현지와 정현지에게도 감사드립니다. 가끔

만나 함께 대화를 나눈 것이 많은 힘이 되었습니다. 그외의 나머지 선후배, 동기들에게 감사드립니다.

어딜가든잘할것입니다.

마지막으로, 중학교 친구들, 고등학교 친구들, 엘리트 학원 친구들, 대학교 친구들, 월스트리트 어

학원 언니오빠동생들, 비트컴퓨터 학원 오빠, 인턴 동기들 등등 에게도 감사드립니다. 평소에 바쁘다는

핑계로연락을잘못해도항상이해해주고,힘이되는말을해주어감사합니다. 동측식당아주머니께도

감사드립니다. 항상웃는얼굴로저예뻐해주셔서너무감사했습니다. 이이외에도저와인연을함께한

많은사람들께감사드립니다.

저의이작은결실이그분들께조금이나마보답이되기를바랍니다.

– 46 –

이력서

이 름 : 김영주

생 년 월 일 : 1988년 2월 19일

출 생 지 : 경기도군포시산본동한양아파트 1214-1503

본 적 지 : 경기도군포시산본동한양아파트 1214-1503

주 소 : 대전유성구구성동 373-1한국과학기술원세종관 1213호

E-mail 주 소 : jerry88@cs.kaist.ac.kr

학 력

2003. 3. – 2006. 2. 흥진고등학교

2006. 3. – 2011. 2. 이화여자대학교수학과 부전공: 컴퓨터공학과 (B.S.)

2011. 2. – 2013. 2. 한국과학기술원전산학과 (M.S.)

경 력

2009. 9. – 2010. 3. LG전자인턴

학회활동

1. Youngjoo Kim, Y. Kim, and M. Kim, Case Study on Testing with KLEE Concolic Testing Tool, Korean

Institute of Information Scientists and Engineers, Seoul (Korea), Nov 25-26, 2011. (Best presentation award)

2. Y. Kim, M. Kim, Youngjoo Kim, and Y. Jang, Industrial Application of Concolic Testing Approach: A

Case Study on libexif by Using CREST and KLEE, Intl. Conf. on Software Engineering (ICSE), Software

Engineering in Practice (SEIP) track, Jun 2-9, 2012.

3. Youngjoo Kim, U. Jung, Y. Kim, and M. Kim, Comparison of Search Strategies of KLEE Concolic Testing

Tool, Journal of KIISE: Computing Practices and Letters, Vol 18, Num 4, Apr 2012.

4. Youngjoo Kim and M. Kim, Hybrid Statistical Model Checking Technique for Reliable Safety Critical Sys-

tems, IEEE Intl. Symp. on Software Reliability Engineering (ISSRE), Nov 28-30, 2012.

– 47 –

5. Youngjoo Kim, M. Kim, and T. Kim, Statistical Model Checking for Safety Critical Hybrid Systems: An

Empirical Evaluation, Haifa Verification Conference (HVC), Nov 6-8, 2012.

연구업적

1. Youngjoo Kim, O. Choi, M. Kim, J. Baik, and T. Kim, Validating Software Reliability through Statistical

Model Checking: Safer, Cheaper, and Faster, IEEE Software, 2012. (under review.)

– 48 –

