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ABSTRACT

Reliability of safety critical systems such as nuclear power plants and automobiles has become a significant
issue to our society. As more computing systems are utilized in these safety critical systems, there are high de-
mands for verification and validation (V&V) techniques to assure the reliability of such complex computing sys-
tems. However, as the complexity of computing systems increases, conventional V&V techniques such as testing
and model checking have limitations, since such systems often control highly complex continuous dynamics. To
improve the reliability of such systems, statistical model checking (SMC) techniques have been proposed. SMC
techniques can check if a target system satisfies given requirements through statistical methods. In this thesis, first,
we have emperically evaluated four state-of-the-art SMC techniques in the automobile domain to see the applica-
bility of SMC for assuring the reliability of safety critical systems and compare pros and cons of the four different
SMC techniques. Second, we propose a new hybrid SMC technique that integrates sequential probability ratio
test (SPRT) technique and Bayesian interval estimation testing (BIET) technique to achieve precise verification
results quickly. In our experiment, the new hybrid SMC was around 4 times faster than BIET. In addition, we
demonstrate the effectiveness and efficiency of this hybrid SMC technique by applying the hybrid SMC technique
to three safety critical systems in the automobile domain. Finally, as a solution for validating software reliability
at an early stage, we propose a methodology utilizing statistical model checking (SMC) techniques. Reliability
validation is performed by comparing the allocated reliability goal with the calculated reliability using the proba-
bilities and the relative weight values for the safety functional requirements. By conducting reliability validation
early, we can prevent the propagation of the reliability allocation errors and design errors into the later phases.

Thereby, we can achieve safer, cheaper, and faster development of safety critical systems.
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Chapter 1. Introduction

Various areas of our life utilize computing systems such as smart phones, medical devices, and automobile
controllers. Consequently, the reliability of computing systems becomes a significant issue to our society and
various international standards have been proposed and applied to assure reliability of such systems. For example,
avionics domain has DO-178C [20] as a standard for reliable software, automobile domain has a functional safety
standard ISO 26262 [11], and medical electrical equipment domain has IEC 60601 [9] as a technical standard for
the safety and effectiveness.

However, as computing power increases, the complexity of computing systems also increases rapidly, which
causes many challenges to assure the reliability of computing systems. In particular, the size and complexity
of software in a computing system has increased quickly. Although software reliability has been studied ac-
tively [18], conventional verification and validation (V&V) techniques for software such as testing and model
checking [4] have limitations to assure the reliability of complex safety critical computing systems. One reason
for this difficulty is that such systems often control highly complex continuous dynamics to interact with physical
environments. In addition, since safety critical systems consist of both hardware and software and interact with
a physical environment that often behaves non-deterministically (e.g., condition of road surface for automobiles
or wind speed for airplanes), we should analyze target hardware and software with its environment together as
a stochastic process [22]. However, conventional V&V techniques for software have difficulty analyzing target
systems in such contexts.

To improve the reliability of safety critical systems, statistical model checking (SMC) techniques [28, 126} 27,
7, 130% 15 [12] have been proposed. SMC techniques approximately compute probabilities for a target system to
satisfy given requirements based on randomly sampled execution traces. Thus, SMC techniques can assure the
reliability of a complex target system statistically without analyzing the internal logic of a target system.

However, most literature on the SMC techniques focuses on theoretical aspects of suggested techniques,
not their practical applicability to real-world safety critical systems. In this thesis, first, we have empirically
evaluated the effectiveness (in terms of the precision of the verification result) and efficiency (in terms of the
verification time) of the following four representative state-of-the-art SMC techniques [13]]: single sampling plan
(SSP) [26)], statistical probability ratio test (SPRT) [28], Bayesian hypothesis testing (BHT) [12)], and Bayesian
interval estimation testing (BIET) [30]. We applied these four SMC techniques to a fault-tolerant fuel control
system (FFCS), which is a safety critical system for automobiles. Through the empirical study, we observed that
these SMC techniques have different strong points and weak points which may complement one another.

Second, from the above observation, we developed a new hybrid SMC technique which combines SPRT, the



fastest SMC technique, and BIET, the most precise SMC technique. This hybrid SMC technique achieves precise
verification result fast. Although precise verification result is a top priority for safety critical systems, the time
cost of verification cannot be ignored in practice. Thus, we can improve the reliability of safety critical systems
more practically by applying our new hybrid SMC technique. To demonstrate the effectiveness and efficiency
of this hybrid SMC technique, we have applied this hybrid SMC technique to three safety critical systems in the
automobile domain - an automatic transmission control system (ATCS), an anti-lock braking system (ABS), and a
fault-tolerant fuel control system (FFCS). Through the experiments, we confirmed that our hybrid SMC technique
improves effectiveness and efficiency compared to a single SMC technique.

Finally, we propose an effective methodology to validate the reliability goal of a safety critical system at
the early stage of a lifecycle by utilizing statistical model checking (SMC) techniques as a step to help obtain
safety certification such as IEC 61508 and ISO 26262. SMC observes the execution behaviors and produces the
probability of the system to satisfy given safety functional requirement using statistical methods. Thus, SMC can
be used to validate the software reliabilities of complex safety-critical systems. Furthermore, many safety critical
system domains such as automobile or avionics have adopted model driven development (MDD). Thus, industries
producing safety critical systems can incorporate the proposed reliability validation framework seamlessly and
validate the software reliability of a target system safer, cheaper, and faster.

Chapter 2] overviews related four state-of-the-art SMC techniques. Chapter 3] explains the empirical evalua-
tion of four state-of-the-art SMC techniques on FFCS in automobile domain. Chapter [d]discusses issues from the
empirical study. Chapter [5] describes a new hybrid SMC algorithm. Chapter [6] explains the three target systems:
ATCS, ABS, and FFCS and describes the SMC results by using single SMC techniques and the hybrid technique
on ATCS, ABS, and FFCS. Chapter [/] discusses issues from the empirical study of the hybrid SMC technique.
Chapter [§] proposes the software reliability validation framework using SMC technique. Chapter [9] explains the

case study of the proposed framework on FFCS target system. Chapter [I0|concludes this thesis with future work.



Chapter 2. Overview of SMC Techniques

This chapter overviews the general concept of SMC (see Section [2.1)), explains a bounded linear temporal
logic (BLTL) and a probabilistic BLTL (PBLTL) which are used in SMC techniques (see Section[2.2)), and briefly

describes several state-of-the-art SMC techniques (see Section [2.3}2.4).

2.1 SMC Framework

SMC computes probabilities for a target model to satisfy given requirement properties based on randomly
sampled simulation traces. Figure 2.T]illustrates the overview of SMC. SMC receives a target model M which is
an executable simulation model and a bounded linear temporal logic (BLTL) formula ¢ which formally represents
a safety functional requirement of a target system. In addition, SMC receives precision parameters based on which
the accuracy of the calculated probability is decided. SMC consists of three components: simulator, BLTL model
checker, and statistical analyzer. The simulator executes M and generates a sample execution trace ;. The BLTL
model checker determines if o; satisfies ¢ and passes the result (i.e., success if o; satisfies ¢; failure, otherwise) to
the statistical analyzer. The statistical analyzer calculates a probability p that M satisfies ¢ by collecting the result
regarding if o; satisfies ¢. Statistical analyzer generates o;s repeatedly until the number of successful results of
o;s over the total number of o;s is distributed within given precision boundary. Note that SMC does not analyze
an internal logic of a target system, and thus SMC can validate complex safety critical systems without state
explosion problems.

More specifically, suppose that X1, ..., X,, are Bernoulli random variables (i.e., X; can be either O or 1) of
the model checking result of ¢ over an execution path o of M and p indicates a probability of X; to become 1
(i.e., P(X; = 1) = p). Since we do not know p exactly, we should estimate p using random sampling techniques
with user-given precision parameters. We pick a sample path o; from M by executing M and test whether o;
satisfies ¢ or not. If o; satisfies ¢, x; = 1; x; = 0 otherwise. Note that, for estimating p, we should determine a
number of sample paths n to check ¢ using statistical techniques. We may obtain n statically by using heuristics
or dynamically through iterative sampling.

There are two classes of statistical techniques: hypothesis testing (Section[2.3) and estimation testing (Sec-

tion [2.4)).
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Figure 2.1: Framework of SMC techniques

2.2 Probabilistic Bounded Linear Temporal Logic

We define a syntax and semantics of bounded linear temporal logic (BLTL) [29] and PBLTL [30]. For a
target model M, SV is a finite set of real-valued state variables. A Boolean predicate over SV is a constraint of

the form y ~ v, where y € SV, ~€ {>,<,=}, and v € R. The syntax of the BLTL logic formula ¢ is given by

the following grammar:

¢u=y~v|(P1V )| (¢1Ad2)| —d1| (1 U ¢2),

where y € SV, ~e {>,<,=},v € R,and t € R>o.
For other temporal operators, we can define F?¢ as True U'¢ and G'¢ as =F?—¢. We denote a fact that an
execution o satisfies a property ¢ as o = ¢. We use ¢ to denote a suffix trace of ¢ starting at step k (¢ denotes

the original execution o). We denote the value of a state variable y in o at step k by V (o, k, y). We define ¢, as a

time at step &k and ¢ as a time bound. The semantics of BLTL on a trace o is defined as follows:

o of Ey~wiff V(o,k,y) ~v

o 0F =1V o iff oF |= ¢y or 0¥ = ¢

L] a'k ':qf)l/\(,bg iffO'k ':¢1 andak ':¢2

o oF =g iff oF ¥ ¢y

o oF = ¢, Ut ¢, iff there exists i € N such that

L Y ocici thrt <1,

2. okt = ¢, and

3. foreach 0 < j < 4,07 |= ¢,




A probabilistic bounded linear temporal logic (PBLTL) formula is a formula of the form P>¢[¢], where ¢ is
a BLTL formula and 6 € (0,1) is a probability threshold. We denote that a model M satisfies PBLTL property
P>g[¢] as M |= P>g[¢], which means that a probability for M to satisfy ¢ is greater than or equal to 6 (see [30]

for detailed description).

2.3 Hypothesis Testing

For hypothesis testing, we build a hypothesis H : p > 6 against an alternative hypothesis K : p < 6 where
6 is a threshold over (0,1) and p is a true probability that M satisfies ¢. Hypothesis testing checks whether H
is accepted or not based on the randomly sampled paths. In this thesis, we utilize the following three hypothesis

testing techniques - single sampling plan (SSP), sequence probability ratio test (SPRT), and Baysian hypothesis

Probability of accepting

testing (BHT).
Ly Ly,
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N
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s False S B negatives
w 1 © w
© negatives S5 © -
= False -~ False _
% positives 2% positives N Indlffe_rence
A B % region
o = o
[}
g e\ &r
I » 0 ;
1 0 PG Do 1
True probability of ¢ holding True probability of ¢ holding

Figure 2.2: Function of probability L,, of accepting the hypothesis H : p > ¢ (left side) and function of probability
L, of accepting the hypothesis Hy : p > pg with indifference region (right side).

2.3.1 Single Sampling Plan (SSP)

SMC techniques cannot compute a true probability p exactly, but can estimate p within given error bounds.
Precision parameters for SSP [26] are error bounds « and 3, and a half size of indifference region §. For testing
a hypothesis H, there are two types of errors such as false negative (also known as a type I error) which rejects a
true hypothesis H and false positive (also known as a type II error) which accepts a false hypothesis H. We can
bound an error probability of a false negative error within «. Similarly, we can bound an error probability of a
false positive error within 5. The left side of Figure presents the function of probability L, of accepting the
hypothesis H as a function of p with the probability of a type I error and type II error as exactly « and 3. However,

we want to give similar probability L, with p = 0 to p = § — ¢ for arbitrarily small ¢ > 0 for reality. To solve



this problem, we introduce indifference region (p1,po) around 6 where py = 6 + 0, p1 = 6 — §, and § is a half
size of indifference region (see right side function in Figure [2.2)). Therefore, instead of testing H against K, we
use the modified hypothesis Hy : p > pg against the alternative hypothesis H; : p < p;. If the probability p is in
(p1, po), then p is sufficiently close to 8 so that we do not care which hypothesis is accepted.

For SSP, a user can determine a maximum number of sample paths n and a threshold number of success
sample paths c statically. After determining n and ¢, SSP executes a target program multiple times. If the number
of success sample paths that satisfy ¢ are greater than c, then H is accepted; K is accepted otherwise. Then, we
can express the probability that the number of success sample paths among n samples are less than ¢ with the

cumulative distribution function for binomial distribution B(n, p):

F(e;n,p) = Z <T;>pi(1 —p) .

=0

Therefore, we accept H with 1 — F(¢;n, p) using n and ¢, and accept K with F(c;n, p) using n and c¢. We
can obtain minimal value for n and c using binary search based algorithm with given pg, p1, «, and 5. Note that
SSP is the only SMC technique that computes the number of required sample paths statically among the SMC

techniques utilized in this study.

2.3.2 Sequential Probability Ratio Test

Sequential probability ratio test (SPRT) is a hypothesis testing technique introduced by Younes et al. [28]].
SPRT [28} 126, 27, 23] determines a number of required sample paths dynamically at runtime. The main goal of
SPRT is to decide if M = Psg[¢] with a small number of sample paths. If another sample path is needed, SPRT
generates one more sample path by executing a target system. If the information from generated sample paths is
enough, SPRT stops executing the target program and produces an answer regarding M = Psg[¢]. SPRT uses
precision parameter inputs error bounds « and 3, and a half size of indifference region §. The detailed description
of SPRT is as follows.

Before building a hypothesis for hypothesis testing of SPRT, we introduce the indifference region. Basically,
we build a hypothesis H : p > 6 against an alternative hypothesis K : p < 6 where 0 is a threshold over (0,1) and
p is a true probability that M satisfies ¢. Hypothesis testing checks if H is accepted or not based on the randomly
sampled paths. For testing a hypothesis H, there are two types of errors such as false negative (also known as a
type I error) which rejects a true hypothesis H and false positive (also known as a type II error) which accepts a
false hypothesis H. We can bound an error probability of a false negative error within . Similarly, we can bound
an error probability of a false positive error within 8. We call a and 3 as error bounds. The left side of Figure
presents the function of probability L,, of accepting the hypothesis H as a function of p with the probability of

a type I error and type II error as exactly « and 3. However, we want to give similar probability L, of p = 0



and p = 0 — e for arbitrarily small e > 0 for reality. To solve this problem, we introduce an indifference region
(p1, po) around 6 where py = 6 + 0, py = 0 — 0, and 4 is a half size of indifference region (see right side function

in Figure[2.2). Therefore, instead of testing H against K, we use the modified hypothesis

Hy:p>po

against the alternative hypothesis

Hy:p<pm

If the probability p is in (p1,po), then p is sufficiently close to 6 so that we do not care which hypothesis is
accepted.

Now, we describe the algorithm of SPRT. First, we obtain a sample path o; of a target system by simulating
the target system and model-check if the sample path o; satisfies the given property ¢ (see Section 2.1)). After

generating mth sample paths of the test, we calculate the quantity

Pim _ py PriXi=ailp=pi] _ pim(1—p)"

Pom - PriXi = zilp = pol ©pdm (1 — po)m—dm
where d,, = 27;1 x; and x; is ith observation of o; |= @. pj, is the probability of the sequence 1, ..., z,, with
Pr[X,; = 1] = p, for j=0,1. Therefore, the above quantity makes the ratio of two probabilities, the probability

ratio. The hypothesis Hy is accepted if
Pim
Pom

and the hypothesis H is accepted if

Pim Z A
Pom

Otherwise, we should generate m + 1th sample path of the test. A and B are selected to bound error probability
« and 3, with A > B. In practice, we choose A = % and B = %(detailed description is found in [23}26]).
Note that SPRT can be imprecise with same indifference region value 4 when the threshold 6 is close to 1.

The reason for the imprecise result of SPRT is due to the limited size of indifference region. For example, if the

threshold 6 is 0.99 and § > 0.01, then py becomes 1, which causes the denominator of the probability ratio g ;’”
to be 0 when one false sample path occurs, which can cause imprecise result. Therefore, § should be very small

when 6 is close to 1, which requires large number of samples.

2.3.3 Bayesian Hypothesis Testing (BHT)

BHT [12] dynamically determines the number of sample paths during simulation as same in SPRT. BHT

uses two precision parameter inputs such as threshold 7" of determining Hy and prior density g for p, the actual



probability of satisfying ¢. In Bayes’ theorem, we get prior probability using current information first. After ob-
taining new information, we can obtain posterior probability refining prior probability. BHT uses Bayes’ theorem
to determine the number of sample paths of the test.

Let P(Hy) and P(H;) be the strictly positive prior probabilities of accepting Hy and H; and satisfying
P(Hp) + P(H,) = 1. Letd = (x1, ..., x,) be a sequence of n sample paths of the test. Bayes’ theorem states
that the posterior probabilities of accepting Hy and H; based on observations of d are

P(d|Ho)P(Hy)
P(d)

P(d|H:)P(H:)

P(Hy|d) =
for every d with P(d) = P(d|Hy)P(Hy) + P(d|H,)P(H;) > 0.
BHT operates as follows. After generating mth sample paths of the test, we can calculate the quantity

P(Hold) — P(d|Ho) P(Ho)

P(H\|d) ~ P(d|Hy) P(H)

where d = (1, ..., z,,). We call the above quantity as the ratio of the posterior probabilities. Here, we define the

Bayes factor B of d and hypotheses Hy and H; as follows:

_ P(d|Hy)
B= )

The Bayes factor BB can be interpreted as a measure of the evidence in favor of Hy and also % can be the evidence
in favor of H;. We introduce a Bayes factor threshold 7' to test Hy against H; such that 7" > 1. The hypothesis
Hy is accepted if B > T, and the hypothesis H; is accepted if B < % Otherwise, BHT generates m + 1th sample

path using simulation (detailed description is found in [12]).

2.4 Estimation Testing

Estimation testing can approximately compute p, the probability that the model M satisfies the given prop-
erty ¢ expressed by bounded linear temporal logic (BLTL). With p, we can determine whether the probabilistic
bounded linear temporal logic (PBLTL) is satisfied or not. For that purpose, we use a following statistical estima-

tion testing technique.

2.4.1 Bayesian Interval Estimation Testing

Bayesian interval estimation testing (BIET) is an estimation testing based SMC technique. Estimation testing

can approximately compute p, the probability that the model M satisfies the given property ¢ expressed by

Ir corresponds to the inverse number of error bounds « and 3 for SSP and SPRT [30].



bounded linear temporal logic (BLTL). With p, we can determine if the probabilistic bounded linear temporal
logic (PBLTL) is satisfied. For that purpose, we use a following statistical estimation testing technique.

BIET [30] dynamically determines the number of sample paths for checking the satisfiability of the model
M with the property ¢ during simulation as SPRT does. In Bayes’ theorem, we get prior probability using current
information first. After obtaining new information, we can obtain posterior probability refining prior probability.
BIET uses the Bayes’ theorem to determine the number of sample paths of the test.

BIET uses four precision parameter inputs such as a half-size ¢’ of an estimation interval which will contain
p with high probability, the coverage goal ¢ of the estimation interval, and the parameters ', 3 of the Beta prior.
In fact, BIET estimates interval around the probability p instead of estimating p, but we regard the mean of the
estimated interval as p, the estimated value of frue probability p, i.e., the estimated interval is (p — &', p + ¢').
We call the estimated interval as (¢o,¢1). We have a coverage goal such that the probability that the probability
satisfying M = ¢ is in (to, t1) should be over the coverage ¢ € (%, 1). The exact description of the coverage goal

is as follows:

ty
/ flulzy, .., zn)du =c
to

where x; is ith observation of o; = ¢ for i = 1,...,n and n is the number of sample paths. We call the coverage
goal as a 100c percent Bayesian interval estimate of p. Since BIET uses the Bayes’ theorem, we need prior
information, i.e., prior density of p to obtain prior probability. For simplicity, we focus on the Beta prior with
parameters o, 3.

At mth stage of the test, by Beta prior with o, 5’, we can calculate the quantity

T +a

Py o+ p

where z = Y. z; is the number of success sample paths during m number of sample paths. Next, using
to =p —0',t; = p+ J’, we can calculate the quantity

t1

Y= f(u‘xlvaxm)du
to

where v is the coverage of m number of sample paths for checking M = ¢. If v > ¢, then BIET stops the
simulation and outputs tg, 1, and p. Otherwise, BIET generates m + 1th sample path and repeats.

Note that BIET is fast when the estimated probability p is close to 0 or 1 [30], whereas BIET is extremely
slow (i.e., extremely larger number of samples is required) when p is close to % With this advantage of BIET,
BIET can easily apply the problem for safety critical system since the probability standard of satisfiability for

safety critical system should be usually close to 1 or 0.



Chapter 3. Emperical Evaluation of The SMC Techniques

on FFCS

In this chapter, we describe FFCS as our target system (Section [3.1)) and explain our experiments of applying
the four SMC techniques (i.e., SSP, SPRT, BHT, and BIET) to FFCS with precision parameters as independent

variables and checking whether FFCS satisfies the given requirement property in PBLTL or not (Section [3.2}{3.3).

3.1 Fault-tolerant Fuel Control System

Figure [3.1] is an overall diagram of a fault-tolerant fuel control system (FFCS). FFCS [16] controls a fuel
rate to inject fuel based on sensor data for best performance, detects a sensor fault, and shuts down an engine
for safety in the presence of multiple sensor failures. FFCS has the following four sensors: throttle angle sensor,
speed sensor, exhaust gas oxygen (EGO) sensor, and manifold absolute pressure (MAP) sensor. FFCS receives
these four sensor inputs and generates a proper fuel rate and an air-fuel ratio. FFCS consists of the following three
components: a sensor failure detector & estimator (SFDE), an airflow calculator, and a fuel calculator. The SFDE
receives four sensor data as input and generates four sensor data as output and the engine-shut-down command
used only when multiple sensor failures occur. The airflow calculator receives four sensors data from the sensor
failure detector & estimator (SFDE) component and estimates an airflow value with feedback correction value.
The fuel calculator receives the estimated airflow data and the feedback correction data from the airflow calculator
component and calculates the fuel rate which keeps an air-fuel ratio optimal.

A requirement property for FFCS is that the fuel rate does not become zero for one second in 100 seconds
should be greater than equal to probability 6. The property is crucial in a real world, because if the fuel rate is zero
for one second, then the engine stops and can cause a serious accident. This property can be expressed by PBLTL
as follows [30]:

Psy[~(F*G*(fuelrate = 0))]

3.2 [Experiment Setup

We set a stochastic environment for FFCS as follows. The environment of FFCS generates random faults at
the EGO, MAP, and speed sensors as [30] does. The random faults are modeled by three independent Poisson
processes with different arrival rates [24]]. We assume one fault event remains for one second. When a fault event

occurs in a sensor, FFCS remains in a failure mode for one second and returns to a normal mode. We utilize the
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Figure 3.1: Block diagram of FFCS

following four inter-arrival fault rates (i.e., mean inter-arrival times of sensor fault) to the three sensors: (3,7,8),
(10,8,9), (20,10,20) and (30,30,30).

For the SMC techniques, we use the following precision parameters:
e Hypothesis testing techniques

— SSP:

* threshold 6 € {0.5,0.7,0.9,0.99}
* a half-size of indifference region ¢ € {0.01,0.03,0.05}

* error bounds «, 8 € {0.1,0.01,0.001}
- SPRT:
 threshold 6 € {0.5,0.7,0.9,0.99}
* a half-size of indifference region ¢ € {0.01,0.03,0.05}
* error bounds «, 8 € {0.1,0.01,0.001}
— BHT:
 threshold 6 € {0.5,0.7,0.9,0.99}
* Bayes factor threshold 7" € {10, 100, 1000}

* prior density g = uniform density over (0,1)
e Estimation testing technique

- BIET:

* interval coverage ¢ = {0.9,0.99,0.999}
* a half-size of estimation interval 8’ = {0.01,0.03,0.05}

% parameters of Beta prior o/ = ' = 1]

la/ = B’ = 1, since we assume the prior density to be a uniform density over (0, 1).
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Table 3.1: Experiment result of SSP with fault rate (3, 7,8) and 6 = 0.03

threshold 6
o, B 0.5 0.7 0.9 0.99
n m [ acpt [ time n [ m [ acpt [ time n [ m [ acpt [ time n [ m [ acpt [ time
0.1 455 255.3 1.0 688.3 386 307.0 1.0 821.5 161 141.5 0.0 381.3 57 | 5.8 0.0 17.1
0.01 1501 857.8 1.0 | 2308.1 1261 1001.5 1.0 | 2686.7 531 | 468.8 0.0 | 1256.4 113 | 5.0 0.0 14.8
0.001 2649 | 1487.8 1.0 | 4013.2 2226 | 1764.3 1.0 | 4760.8 932 | 806.8 0.0 | 21725 170 | 6.0 0.0 20.3

Table 3.2: Experiment result of SPRT with fault rate (3, 7,8) and 6 = 0.03

threshold 6
a, B 0.5 0.7 0.9 0.99
n ‘ acpt ‘ time n ‘ acpt ‘ time n ‘ acpt ‘ time n ‘ acpt ‘ time
0.1 26.6 1.0 | 17.6 34.0 1.0 | 224 | 1084 | 0.0 | 71.5 5.6 1.0 3.7

0.01 49.0 1.0 | 323 93.4 1.0 | 61.6 || 484.0 | 0.0 | 3194 5.6 1.0 3.7
0.001 72.8 1.0 | 48.0 || 127.6 1.0 | 84.2 || 786.6 0.0 | 519.2 || 11.6 1.0 7.7

We performed each experiment five times to obtain average verification result over [0, 1] regarding whether
the hypothesis H is accepted or not where H: a probability to satisfy ¢(= —(F1°G( fuelrate = 0))) is greater
than or equal to 6. In addition, we measured the average verification time for each experiment.

We built a statistical model checker as a Matlab module which runs together with a FFCS model. We use a
Matlab simulator as a simulator component to generate an execution trace ¢ of a Matlab/Simulink FFCS model.
Then, the BLTL model checker analyzes if o satisfies the requirement property ¢. After the BLTL model checker
evaluates o, the statistical analyzer calculates a required number of sample traces dynamically based on the pre-
cision parameters and the number of success/fail sample traces generated so far. If a number of the generated
samples reaches the required number, the statistical model checker generates a verification result and terminates
the SMC process. Note that all sub-components of SMC are independent from each other and can be re-used for
other target systems without modification. Thus, it will not be difficult for practitioners to apply SMC techniques
to their safety critical systems.E]

We used Matlab R2010a for the experiments. All experiments were performed on 64 bit Windows 7 Profes-

sional K equipped with a 3 GHz Intel processor and 16 gigabytes of memory.

3.3 Experimental Results

Tables describe the experiment results of applying the hypothesis testing techniques to FFCS with

fault inter-arrival rate (3,7,8) and 6 = 0.03. E] In these three tables,

2We have released the statistical analyzers using SSP, SPRT, BHT, and BIET techniques publicly at http: //pswlab.kaist.ac.kr/
tools/SMC/.

SFull experiment data with the other three fault inter-arrival rates and § € {0.01,0.05} is available at http://pswlab.kaist.ac.
kr/data/hvc2012-expr—-results.zip
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Table 3.3: Experiment result of BHT with fault rate (3,7, 8)
threshold 6
T 0.5 0.7 0.9 0.99
n ‘ acpt ‘ time n ‘ acpt ‘ time n ‘ acpt ‘ time n ‘ acpt ‘ time
10 3.6 1.0 24 5.0 1.0 3.3 4221 08 279 | 21.0 | 0.2 13.9
100 7.6 1.0 5.0 || 26.0 1.0 | 17.2 || 3917.2 | 0.2 | 2585.4 || 27.0 | 0.0 | 17.8
1000 || 13.6 1.0 9.0 || 484 | 1.0 | 31.9 || 4013.2 | 0.2 | 2648.7 || 35.2 | 0.0 | 23.2

Table 3.4: Experiment result of BIET with fault rate (3,7, 8)

interval coverage c

o' 0.9 0.99 0.999
n ‘ p ‘ time n ‘ P ‘ time n ‘ P ‘ time
0.05 104.8 | 0.8835 69.2 273.0 | 0.8849 | 180.2 475.5 | 0.8830 | 313.8
0.03 276.6 | 0.8944 | 182.6 729.4 | 0.8889 | 481.4 1191.5 | 0.8924 | 786.4
0.01 2733.8 | 0.8856 | 1804.3 || 6696.5 | 0.8861 | 4419.7 || 10924.2 | 0.8865 | 7210.0

e { is a threshold of the hypothesis H for SSP, SPRT, and BHT

e 1 is a maximum number of required sample paths and m means an average number of sample paths gener-

ated for SSP. For SPRT and BHT, n is an average number of sample paths generated for SPRT and BHT.

acpt is an average result over [0, 1] regarding the hypothesis H where 0 is ‘reject’ and 1 is ‘accept’

time is an average verification time for each experiment in seconds

Table[3.4]describes the experiment result of applying the estimation technique BIET to FFCS with fault inter-
arrival rate (3,7,8), where n is an average number of sample paths, p is an estimated probability to satisfy ¢, and
time indicates an average verification time in seconds. Tables [3.1}{3.4] show that n (m for SSP) increases as the
precision parameters becomes smaller. For example, for SSP, when « and 8 decrease from 0.1 to 0.001 with
threshold 6 = 0.5, m increases from 255.3 to 1487.8 (Table[3.1). Similar tendencies are observed for SPRT, BHT,

and BIET.

3.3.1 Regarding Effectiveness (Precision of the Verification Results)

All four techniques produce similar results. For hypothesis testing techniques SPRT, SSP, and BHT, the
probability for FFCS with the fault inter-arrival rate of sensors (3,7,8) and 6 = 0.03 to satisfy the requirement
property ¢ is between 0.7 and 0.9. This is because acpts are 1.0 when 8 < 0.7 while acpts are close to 0 when

6 > 0.9 in Tables Also, note that n of SPRT and BHT increases exponentially as 6 increases from 0.5

4The result of SPRT with 8 = 0.99 is not reliable, since the precision of SPRT is low when 6 is close to 1. Also, note that n becomes very
small (i.e., less than 12) with §=0.99 in Table
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to 0.9, and decreases sharply from 0.9 to 0.99. For example, for SPRT with a=£=0.1 (Table , n becomes
26.6, 34.0, 108.4 and 5.6 as # becomes 0.5, 0.7, 0.9 and 0.99, respectively. In general, for the hypothesis testing
techniques that generates sample paths dynamically (i.e., SPRT and BHT), if a true probability is close to the
threshold 6, a large number of sample paths is required to determine whether a given hypothesis H is accepted or
not. By the above results, we can conclude that a true probability that FFCS with the fault rate (3,7,8) satisfies the
requirement property is close to 0.9. Furthermore, BIET computes the probability between 0.8830 (with ¢ = 0.999
and ¢’ = 0.05) and 0.8944 (with ¢ = 0.9 and ¢’ = 0.03) (Table , which is included in the estimated probability
interval (0.7,0.9) of the hypothesis testing techniques. Therefore, based on the above analysis of the results, we

can conclude that the verification results of the SMC techniques are precise.

3.3.2 Regarding Efficiency (Verification Time)

The time taken for each experiment was moderate. The longest experiment took 7210.0 seconds (i.e., around
2 hours) to generate 10924.2 sample paths on average for BIET with ¢ = 0.999 and ¢’ = 0.01 (Table . Note
that most other experiments took much less time. For example, the longest experiments in SSP, SPRT, and BHT
took 4760.8 (a=£=0.001 and 6=0.7) (Table[3.1), 519.2 (a=£=0.001 and 6=0.9) (Table[3.2), and 2648.7 (I'=1000
and 6=0.9) (Table [3.3) seconds, respectively. Therefore, we can conclude that statistical model checking can

assure reliability of a complex target system at modest cost.E]

5SSP takes much more time to generate one sample than the other techniques, since the heuristics of SSP to determine a maximum number
of sample paths is very complex.
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Chapter 4. Discussion of The Empirical Evaluation

Through the empirical evaluation of the SMC techniques on FFCS, we found three discussion issues which
are practicality of SMC in industry (Section [d.I)), impacts of precision parameter values (Section[4.2)), and com-

parison of the four SMC techniques (Section[4.3)).

4.1 Practicality of Statistical Model Checking

Through the empirical evaluation of the SMC techniques on FFCS, we believe that statistical model checking

is practically useful for the following reasons:

e SMC can check a probability for a complex hybrid system to satisfy a given requirement property ¢. In this
project, we could statistically check the probability for FFCS to satisfy ¢, since we just generated random
sample execution paths without analyzing the internal structure of FFCS, which is a great advantage of

SMC.

e SMC allows a user to select proper trade-off between verification precision and time cost by selecting
appropriate precision parameter values (Section [3.3). In some cases, due to limited project time, it may be
more valuable to obtain less precise verification in short time than more precise verification result in much

longer time.

e The SMC techniques can obtain precise verification results in a moderate amount of verification time (i.e.,

less than two hours for the most experiments in Section 3.3) E]

4.2 Necessity of Proper Precision Parameter Values

We found that, for SSP and SPRT to produce precise verification results,  should be very small when 6 is
close to 1. For example, the verification result of SPRT was ‘accept’ for § = 0.99 with §=0.03 (see Table [3.2),
which is considered as an incorrect result, since the other SMC techniques conclude that the estimated probability
is between 0.7 and 0.9 (Section[3.3). The reason for these imprecise results of SSP and SPRT is due to the limited
size of indifference region. For example, if the threshold 6 is 0.99 and § > 0.01, then pg becomes 1, which
causes the denominator of the probability ratio % to be 0 when one false sample occurs for SPRT, which can

cause imprecise result. For SSP, when n=170 with « = § = 0.001 and é= 0.03, a number of success samples

UIf the required reliability goal is very high (i.e., from 1 — 1074 to 1 — 1075 for SIL 4 level [10]), SMC may take multiple weeks.
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Table 4.1: Comparison of the four statistical model checking techniques

Technique Precision Speed # of sample || Applicability
decision
. SSP Low when 6 is Slow except when Static Low

Hypothesis .
festing close to 1 . 0 is close to 1 . .

SPRT Low when 6 is Fast Dynamic Middle

close to 1
BHT Middle Slow when 6 is close | Dynamic High
to true probability
Estimation BIET High Slow Dynamic High
testing

should be larger than 169 to accept H. In other words, if one sample path violates ¢, then the verification finishes
immediately with ‘reject’ result. Therefore, SSP and SPRT should be applied with very small § when 6 is close to
1.

In addition, BHT with threshold § = 0.9 produced different verification results with different 7". With T'=10,
the verification result was 0.8 (i.e., almost ‘accept’) on average. However, with T=100 or 1000, the verification
results were 0.2 (i.e., almost ‘reject’) on average. From the results of the other techniques which indicate the true
probability p € (0.7,0.9) (Section , we can conclude that the verification result with 7=10 was imprecise.
This is because 1" was not sufficiently small enough to obtain a precise verification result. Therefore, proper

precision parameter values are important to obtain precise verification results.

4.3 Comparison of the SMC techniques

Table [4.1] summarizes characteristics of the four SMC techniques. The precision of SSP and SPRT is lower
than the other techniques when 6 is close to 1 because of the size restriction of the indifference region. The
precision of BIET is higher than the other techniques by the law of large numbers [21], because BIET utilizes
more samples than the other techniques. BHT achieves a middle level of precision compared to SSP/SPRT and
BIET. Regarding verification speed, SSP is slow except when 6 is close to 1; when 6 is close to 1, SSP is fast (but
imprecise) since a number of samples is small. BHT is slow by generating a large number of samples when 6 is
close to a true probability. BIET is relatively slow due to a large number of samples utilized. SPRT is relatively
fast, since it does not have weaknesses of the other techniques in terms of the verification speed. By considering
these aspects, the applicability of BHT and BIET is relatively higher than that of SPRT and SSP.

As shown in Table {i.1] there is no single best SMC technique for all aspects. Thus, a combination of
different SMC techniques can achieve precise result faster. For example, many safety critical systems should
satisfy requirement property ¢ with very high probability for reliable operations (i.e., # should be larger than
0.9999). We know that SPRT is faster than BIET, but its precision is low when 6 is close to 1. In such cases, we

can first apply SPRT to a target system with low 6 for fast verification speed. If the verification results for low 6
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values (i.e., § € [0.5,0.7]) are ‘reject’, then we do not need to verify a target system further. Otherwise, we use
BIET for higher 6 (i.e., 6 € [0.9,0.99]), which is more precise but slower than SPRT, since SPRT is imprecise for

0 close to 1. Consequently, this combined method can achieve precise result faster than BIET only.
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Chapter 5. Hybrid SMC Algorithm

We develop a hybrid SMC technique to improve efficiency and effectiveness by combining SPRT whose
verification speed is fast (i.e., small number of samples is required) and BIET whose verification precision is high
(i.e., the number of false positive and false negative results is small) [13]]. Figure[5.T|describes how the hybrid SMC
technique checks if a target system model M satisfies a property ¢ in BLTL for a probability threshold 6| with
precision parameters pargs for SPRT and parp for BIET. The algorithm first applies SPRT multiple times with
dynamically increasing probability threshold 6gpr7 until a verification result is ‘reject’ (lines 15-18) or Ospprr
becomes larger than or equal to a threshold thgop where 0.5 < thgop < 6 (lines 5-20). If g prr becomes larger
than or equal to thsap, the algorithm applies BIET to obtain a precise verification result (lines 21-34).

The detail of the algorithm is as follows. First, the algorithm calls SPRT() mg times (lines 6-10), which
applies SPRT to M with regard to ¢ and 0spgrr with parg (line 8). A result of SPRT() is ‘accept’ (i.e., 1) or
‘reject’ (i.e., 0). After mg trials of SPRT(), the algorithm calculates an average accept decision value accept g
over the mg trials (line 11). If accept .4 is less than a user-given accept decision threshold thcp:, the algorithm
decides that the verification result of M = Psg(¢) is ‘reject’ (line 16) and terminates (line 18). Otherwise (i.e.,
acceptaypg > thacpt), the algorithm increases 6sp gy from the initial value 0.5 (line 3) to 0.75, 0.875, 0.9375 and
so on (line 14) until 85 p 7T becomes larger than or equal to thgop through the while loop in lines 5-20.

If 85 prr becomes larger than or equal to a user-given probability threshold thgop for applying BIET, the
algorithm calls BIET() for mp times (lines 23-27), which applies BIET to M for ¢ with precision parameters
parp (line 25). Based on the estimated probability p obtained from BIET(), the algorithm calculates an average
estimated probability p,.g over the mp trials (line 28). If p,.4 is greater than or equal to ¢, then the algorithm
decides that the verification result is ‘accept’ (lines 29-30); ‘reject’, otherwise (lines 31-32).

Note that the hybrid SMC algorithm can save a large amount of time cost compared to BIET, if a probability
for M to satisfy ¢ is far from a given probability threshold §. For example, if the probability is less than 0.5, the
algorithm terminates after executing S PRT () only once without executing BI ET'() whose time cost is very high
(see Table . The algorithm executes BIET() if the probability is close to 6 (which is usually close to 1 for
requirement properties of safety critical systems), which is necessary since SPRT becomes imprecise when 6 is

close to 1 (Section 2.3.2).

'We assume that 6 is close to 1, since we develop a hybrid SMC algorithm for safety critical systems whose reliability criteria are very
high and, thus, requirement properties are given with high threshold values.
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Input:

M: a model

¢: BLTL property

6: probability threshold of M = ¢

parg: precision parameters of SPRT, parp: precision parameters of BIET
thaept: accept decision threshold over [0,1]

thgop: probability threshold to change from SPRT to BIET

myg: a number of trials for SPRT, m g: a number of trials for BIET
Output:

answer: result of M = P>g(¢)

Pavg: average estimated probability of M |= ¢ by BIET if BIET is applied; N/A otherwise

SMOhyb(Ma (ybv 07 pars, parpg, thacpt» thSQBa ms, mB){
acceptsym = 0; // sum of accept decisions by SPRT
Osprr = 0.5; // initial probability threshold for SPRT
// SPRT for fast verification
while Osprr < thgop do
fori =1— mgdo
accept = SPRT (M, ¢,0sprr, pars); /l Checks M = P>g.pp.r (¢) using SPRT
Add accept to accept sym;
end
acceptang = acCCePtsym /Ms;
if acceptopg > thacpt then
| Osprr = Osprr + (1 — Osprr)/2; // next probability threshold for SPRT
else
answer = ‘reject’;
Pavg = N/A;
return answer and Pqqq;
end

end

/I BIET for precise verification

DPsum = 0; // sum of estimated probabilities by BIET

for: =1 — mpdo
p = BIET(M, ¢,parg); // Checks M |= ¢ using BIET
Add p t0 psums;

end

Pavg = psum/mB;

if pyyg > 0 then
answer = ‘accept’;
else
‘ answer = ‘reject’;
end

return answer and papg;

}

Figure 5.1: Hybrid SMC algorithm
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Chapter 6. Experimental Study of Hybrid SMC Technique

We have applied SPRT, BIET, and the hybrid SMC technique to ATCS, ABS, and FFCS with precision
parameters as independent variables to check if these target systems satisfy the given requirement properties in
PBLTL. In addition, we have compared the results of the hybrid SMC technique with the results of SPRT and

BIET. We used Simulink/stateflow models of the three systems included in the Matlab R2010a example directory.

6.1 Target Safety Critical Systems

This section presents an overview of the following three safety critical systems in automobile domain:
e Automatic transmission control system (ATCS) [17]
e Anti-lock braking system (ABS) [2]
e Fault-tolerant fuel control system (FFCS) [16]

We selected these systems as target systems to apply SPRT, BIET, and the hybrid statistical model checking (SMC)

technique (Chapter[5) for the following reasons:

e These three automobile systems [[16} [2} [17] are safety critical systems whose reliability is very important.

Many researchers are working to address the reliability issues on safety critical systems [3 18} [25]].

e The three automobile systems are complex real-world applications, not a toy example such as ones in prob-

abilistic symbolic model checker (PRISM) [15] benchmarks.

o Simulink/stateflow models of the three automobile systems are publicly available in Matlab R2010a. Thus,

it is convenient to build a prototype tool for the SMC techniques by using a Simulink/stateflow simulator.

6.1.1 Automatic Transmission Control System

An automatic transmission control system (ATCS) changes an engine gear automatically to drive smoothly.
A main task of ATCS is to select a proper engine gear. As described in Figure[6.I] ATCS receives inputs regarding
car speed, throttle, brake pressure (and engine RPM as a feedback) and calculates an engine RPM and a gear state.
ATCS consists of a torque converter and a transmission control unit. The torque converter calculates an impeller
torque value to deliver power to control the engine RPM based on the engine RPM and the gear state (i.e., if the

impeller torque increases/decreases, the engine RPM increases/decreases). With the sensor inputs on car speed,
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Figure 6.1: Block diagram of ATCS

throttle, and brake pressure, transmission control unit (TCU) selects a proper gear. Based on throttle and brake
pressure values, TCU calculates a up-threshold and a down-threshold of a car speed. If a current car speed is
greater than the up-threshold or less than the down-threshold, TCU changes the engine gear to keep the engine
RPM in safe range.

The size and complexity of the Simulink/stateflow ATCS model in terms of the Halstead metrics [6] are
described in Table[6.1] We counted each atomic block (i.e., a module of a mathematical function or control logic)
as an operator and each input of an atomic block as an operand of the Simulink/stateflow ATCS model. The
automatically generated C code from the model has 2353 LOC in 71 functions.

A requirement property for ATCS is that the engine RPM is less than 6000 for 30 seconds|'|should be greater
than or equal to probability . The property is important in real world, because if the engine RPM is constantly
over 6000, the engine becomes overheated and can be damaged. The property can be expressed in PBLTL as
follows:

Ps¢[G**(engineRPM < 6000)]

6.1.2 Anti-lock Braking System

An anti-lock braking system (ABS) is a safety system that repeatedly increases and decreases the brake
pressure to allow the wheels of a car to interact with the road surface continuously as directed by a driver while
braking. Thus, ABS can prevent the wheels from locking up and avoid skidding, which can enhance the safety
of driving by improving vehicle control and decreasing stopping distances. As described in Figure[6.2] ABS has
the following three sensors: a car speed sensor, a wheel speed sensor, and a brake pedal sensor. ABS receives
data from these sensors and generates the brake pressure and slip as outputs, where slip indicates how properly a

wheel of a car is controlled. ABS consists of a bang-bang controller and a hydraulic control unit. The bang-bang

I'We set the time duration to monitor as 30 seconds, since a default simulation time of the Simulink model of ATCS included in Matlab
R2010a is 30 seconds.
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Table 6.1: Size and complexity of the Simulink models of ATCS, ABS, and FFCS in Halstead metrics

Target Ny:#of | No#of ni:# of na:# of N:program | n: program | V: program D: program E: program
system || operators | operands | distinct distinct length vocabulary volume difficulty effort
operators | operands || (= N1+ Na) | (=n1+n2) | (N X logn) | (=n1/2 x N2/n2) | (=D x V)
ATCS 31 46 27 39 7 66 465.4 15.9 7410.9
ABS 27 36 19 36 63 55 364.2 9.5 3460.1
FFCS 65 111 35 94 176 129 1234.0 20.7 25500.0
ABS
Car speed Feedback
Sensor L e -
\i 1
1
> 1
Bang- Hydraulic !
Wheel speed Brake !
P > bang 2| control > I
sensor . pressure |
controller unit I
E |
1
Brake pedal ’ | N [
sensor - P

Figure 6.2: Block diagram of ABS

controller receives data from the three input sensors and commands the hydraulic control unit to increase/decrease

the brake pressure. In addition, when the brake pedal is pressed, the bang-bang controller calculates slip as follows:

. wheel speed
slip=1— ——
carspeed

When the wheel speed is equal to the car speed, slip becomes zero. When the wheel speed is zero (i.e., the wheel
is locked), slip becomes one, which means that the driver loses control of the car. There is an ideal slip value
(which is 0.2) that maximizes the adhesion between the wheel and the road and minimizes the stopping distance
with available friction. The bang-bang controller tries to adjust slip close to the ideal slip value by controlling the
hydraulic control unit.

The size and complexity of the Simulink/stateflow ABS model in terms of the Halstead metrics are described
in Table[6.T] The automatically generated C code from the model has 3443 LOC in 27 functions.

A requirement property for ABS is that for 17 seconds || when the brake pedal is pressed and the car speed
is greater than 5 m/s, slip is less than or equal to 0.9, should be larger than or equal to probability 6. The property
is important in real world, because if slip becomes close to 1 when a car is driving, the wheel can be locked and a

driver loses control of the car. The property can be expressed in PBLTL as follows:

PG ((brakepressed A carspeed > 5) — slip < 0.9)]

2We set the time duration to monitor as 17 seconds, since a default simulation time of the Simulink model of ABS included in Matlab
R2010a is 17 seconds.
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6.1.3 Fault-tolerant Fuel Control System

Refer to Section[3.1]

6.2 Experiment Setup

6.2.1 Environment Setup

We used the input value generation modules provided in the Simulink/stateflow models of FFCS, ATCS, and
ABS without modification. In addition, we built the stochastic environments for the three automobile systems as

follows:

e ATCS: we built a stochastic environment to ATCS by modeling a random delay to transfer the engine RPM
value from the engine to the torque converter.E] This random delay is modeled by exponential distribu-
tion [14]. We selected a ‘passing maneuver’ scenario from the options of the ATCS model, which simulates
a situation that a driver opens the throttle 100% after 15 seconds. We utilize the following four delay rates

(i.e., mean delay times of transmission in seconds) A € {0.01,0.02,0.03,0.04}.

e ABS: we built a stochastic environment of ABS that generates random delay to the command from the
bang-bang controller to the hydraulic control unit. E] The random delay of the command is modeled by
exponential distribution [[14]. We use a model of ABS representing a single wheel, which can be duplicated
multiple times to create a model for a multi-wheel vehicle. We utilize the following four delay rates (in

seconds) A € {0.001, 0.003,0.005,0.007}.

e FFCS: we built a stochastic environment model for FECS that generates random faults at the EGO, MAP,
and speed sensors as Zuliani et al. [30] did. The random faults are modeled by three independent Poisson
processes with different arrival rates [24]. We assume one fault event remains for one second. When a fault
event occurs in a sensor, FFCS remains in a failure mode in one second and returns to a normal mode. We
utilize the following four inter-arrival fault rates (i.e., mean inter-arrival times of sensor fault) to the three

sensors: (3,7,8), (10,8,9), (20,10,20) and (30,30,30).

6.2.2 Precision Parameter Setup

We use the following precision parameters for SPRT and BIET:

e SPRT:

3This random delay is a real factor, not an artificial one. ATCS has an electronic circuit to deliver data from one sub-component to
another and the data transfer can be delayed non-deterministically due to non-deterministic scheduling and bus contention among multiple
sub-component.

4This random delay is a real factor for the similar reason of the one in ATCS.
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Table 6.2: Experiment result of SPRT for ATCS with A = 0.03 and § = 0.03 for the five trials

threshold 6

a, B 0.5 0.7 0.9 0.99
n ‘ acpt ‘ time n ‘ acpt ‘ time n ‘ acpt ‘ time n ‘ acpt ‘ time
0.1 110 1.0 | 69.9 || 215 1.0 | 143.9 || 343 | 0.0 | 221.8 || 18 1.0 | 12.6
0.01 270 1.0 | 171.0 || 375 1.0 | 301.1 || 410 | 0.0 | 347.1 || 41 1.0 | 271
0.001 || 395 1.0 | 249.0 || 563 1.0 | 361.1 || 985 | 0.0 | 636.7 || 45 1.0 | 30.2

Table 6.3: Experiment result of BIET for ATCS with A = 0.03 for the five trials
interval coverage c
o' 0.9 0.99 0.999

n ‘ D ‘ time n ‘ D ‘ time n ‘ D ‘ time
0.05 630 | 0.8594 | 416.6 1550 | 0.8654 | 1011.9 2665 | 0.8636 | 1753.2
0.03 1845 | 0.8544 | 1208.6 3340 | 0.9000 | 2181.1 6475 | 0.8805 | 4356.5
0.01 14150 | 0.8810 | 9551.8 || 36540 | 0.8740 | 26281.2 || 58870 | 0.8762 | 42945.1

— a half-size of indifference region 6 € {0.01,0.03,0.05}

— error bounds «, 8 € {0.1,0.01,0.001}

e BIETFL

— interval coverage ¢ € {0.9,0.99,0.999}

— a half-size of estimation interval ¢’ € {0.01,0.03,0.05}

— parameters of Beta prior o/ = 3’ = 1 (since we assume the prior density to be a uniform density over

(0,1))

We performed each experiment five times to obtain average verification result over [0, 1] regarding if the
hypothesis Hj is accepted where Hy: a probability for M to satisfy ¢ is greater than or equal to § + . For

the experiments, we used 6 € {0.5,0.7,0.9,0.99}. In addition, we measured the total verification time and total

number of samples for each experiment.

For the hybrid SMC technique, we set §=0.99. This is because the hybrid SMC technique targets safety

critical systems which require high reliability, which can be specified with PBLTL with high 6 values. We use the

following precision parameters which are similar to those of the SPRT and BIET experiments:

e precision parameters for SPRT parg: § € {0.01,0.03,0.05}, , 5 € {0.1,0.01,0.001}.

e precision parameters for BIET parg: ¢ € {0.9,0.99,0.999}, ¢’ € {0.01,0.03,0.05}, o/ = 3’ = 1.

5Qur parameters are similar to those of Zuliani et al. [30], where they use interval coverage c as 0.99 and 0.999 and half-size of estimation

interval  as 0.01 and 0.05. To identify tendency of the experimental results more, we used more parameters.
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threshold for accept decision over [0, 1] thy.=0.5

the probability threshold to apply BIET instead of SPRT thg25=0.95

the number of trials for SPRT mg = 5

the number of trials for BIET mp = 5

6.2.3 Experiment Platform

Figure[6.3|shows the overall snapshot of running FFCS simulation (see the upper window) together with SMC
(see the lower command window). At the upper window of Figure the three component blocks correspond to
the components of FFCS in Figure 2.1] (for example, the control_logic block corresponds to Sensor failure
detector component). All four sensor inputs are represented by a “sensors” block and the fuel rate output is
represented by the fuel_rate block. At In the lower command-line window, the SMC tool displays variable
values related necessary to calculate the probability for FFCS to satisfy ¢. Specifically, p is a calculated probability
and n is a the total number of sample simulation traces so far. In addition, X is a number of successful sample
traces so far. For example, the last line of the low window indicates that 1195 sample traces have been generated
until nowto this point and 1120 traces among them satisfy ¢. Also the same line indicates that the probability for
FFCS to satisfy ¢ is calculated as 0.936508 currently (note that the snapshot of Figure shows on-going SMC
process, not the final result).

We built a statistical model checker as a Matlab module, which executes the Simulink/stateflow models for
FFCS, ATCS, and ABS and monitors inputs and outputs of the models to check if ¢ is satisfied on a current
sample path. After each execution of the models, the SMC module calculates a required number of samples
dynamically based on the precision parameters and the number of success/fail samples generated so far. If a
number of the generated samples reaches the required number, the SMC module generates a verification result.
The SMC module for SPRT is around 80 lines long. The SMC module for BIET is around 70 lines long. The
hybrid SMC module is around 200 lines long. We used Matlab R2010a for the experiments. All experiments were

performed on 64 bit Windows 7 Professional equipped with a 3 GHz Intel processor and 16 gigabytes of memory.

6.3 Results of SPRT and BIET

Tables and [6.3] describe the experiment results of applying SPRT with § = 0.03 and BIET to ATCS
respectively when the delay rate A=0.03. E] In Tables and|6.3] 7 is a total number of required sample execution

paths for the five trials and ¢ime is total verification time taken for the five trials in seconds. acpt in Table[6.2]is

OFull experiment data of applying SPRT and BIET to ATCS, ABS, and FECS is available at http: //pswlab.kaist.ac.kr/data/
issre20l2-expr—-results.zip
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Figure 6.3: Screenshot of the SMC experiment on FFCS

an average result over [0, 1] regarding the hypothesis H, where 0 is ‘reject” and 1 is ‘accept’.  in Table|6.3is an
estimated probability for M |= ¢.

Table[6.2] shows that the probability for ATCS with A=0.03 and § = 0.03 to satisfy the requirement property
¢ (=G*° (engineRPM < 6000)) is between 0.7 and 0.9. This is because acpts are 1.0 when § < 0.7 while acpts
are 0.0 when 6 = 0.9 in Table (the verification result of SPRT with a high 6 value like 0.99 should not be
trusted due to the characteristics of SPRT [28§])).

In addition, we can conclude that the probability is close to 0.9, since n of SPRT increases as 6 increases from
0.5 to 0.9 and decreases sharply from 0.9 to 0.99. For example, Table@ shows that n becomes 110, 215, 343,
and 18 as 6§ becomes 0.5, 0.7, 0.9, and 0.99 with a=£=0.1. This tendency of n indicates that the true probability
for ATCS with A\=0.03 to satisfy ¢ is close to 0.9, since SPRT requires a large number of sample paths to check a
given hypothesis Hj if a true probability is close to 0 [28]. Furthermore, the verification result of BIET coincides
with that of SPRT, since Table [6.3] shows that the estimated probability p is between 0.8544 (with ¢ = 0.9 and
4§’ = 0.03) and 0.9000 (with ¢ = 0.99 and §’ = 0.03).

For the verification speed, Tables [6.2] and [6.3] show that SPRT is much faster than BIET. For example, the
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Table 6.4: Experiment result of the hybrid SMC for ATCS with § = 0.99, § = 0.03, 6’ = 0.01, ¢ = 0.99

delay rate A from engine to torque convertor
o, B 0.01 0.02 0.03 0.04
n ‘ p ‘ acpt ‘ time n ‘ p ‘ acpt ‘ time n ‘ p ‘ acpt ‘ time n ‘ p ‘ acpt ‘ time
0.1 1710 | 0.9956 1 | 1256.1 || 1710 | 0.9956 1| 1173.7 || 1066 | N/A 0 698.9 || 1334 | N/A 0 858.9
0.01 2315 | 0.9956 1 | 1740.8 || 2315 | 0.9956 1| 1642.6 || 4795 | N/A 0 | 3081.9 || 2946 | N/A 0 | 1884.6
0.001 2905 | 0.9956 1| 2320.2 || 2905 | 0.9956 1| 2102.7 || 7804 | N/A 0 | 6020.4 || 3833 | N/A 0 | 29524
Table 6.5: Experiment result of hybrid SMC for ABS with # = 0.99, 6 = 0.03, & = 0.01, ¢ = 0.99
delay rate A from bang-bang controller to hydraulic control unit
o, B 0.001 0.003 0.005 0.07
n ‘ D ‘ acpt ‘ time n ‘ D ‘ acpt ‘ time n ‘ D ‘ acpt ‘ time n ‘ D ‘ acpt ‘ time
0.1 1814 | 0.9953 1 986.5 || 6511 | 0.9826 0 | 2905.9 || 8247 | 0.9773 0 | 3854.4 952 | N/A 0 382.4
0.01 2417 | 0.9953 1| 1344.8 || 8006 | 0.9806 0 | 3619.4 || 9151 | 0.9770 0 | 4290.1 || 2238 | N/A 0 890.2
0.001 || 3179 | 0.9950 1| 1815.3 || 8541 | 0.9810 0 | 3906.1 || 9326 | 0.9791 0 | 4334.0 || 3684 | N/A 0 | 1465.5
Table 6.6: Experiment result of hybrid SMC for FFCS with 6 = 0.99, 6 = 0.03, 8’ = 0.01, ¢ = 0.99
sensor fault rates
o, (3,7,8) (10,8,9) (20,10, 20) (30,30, 30)
n ‘ P ‘ acpt ‘ time n ‘ P ‘ acpt ‘ time n ‘ p ‘ acpt ‘ time n ‘ P ‘ acpt ‘ time
0.1 1299 | N/A 0 3359.6 || 14442 | 0.9575 0 | 36399.3 || 3180 | 0.9920 1 7990.0 || 2121 | 0.9944 1 | 5362.0
0.01 5369 | N/A 0 | 13893.4 || 14130 | 0.9620 0 | 35894.1 || 4651 | 0.9906 1 | 11786.0 || 3747 | 0.9926 1 | 9556.4
0.001 || 7320 | N/A 0 | 19059.9 || 16010 | 0.9592 0 | 41014.6 || 5809 | 0.9895 0 | 14792.1 || 3512 | 0.9939 1] 9017.2

maximum time spent by SPRT in Table[6.2]is 636.7 seconds with § = 0.9 and a=£=0.001, which is less than time
costs of BIET in Table except when BIET is applied with low precision parameters 6’ = 0.05 and ¢ = 0.9
(416.6 seconds).

Thus, if a given PBLTL formula has a high 6 value like 0.99, it is a good idea to apply SPRT first with low
0 values (SPRT result with high 6 value should not be trusted) in hope of eliminating the need to apply BIET. For
example, suppose that we should check Ps¢[G3?(engineRPM < 6000)] for ATCS with A=0.03 and 6 = 0.99.
With a=£=0.1, SPRT takes 435.6 seconds in total (=69.9+143.9+221.8) to conclude that ATCS does not satisfy
the given PBLTL formula with & = 0.99 by checking cases with 8 as 0.5, 0.7, and 0.9 in order (Table ;
the verification result with § = 0.9 is ‘reject’, which consequently makes the result with § = 0.99 as ‘reject’.
However, if we apply BIET, we will obtain the same verification result with higher time cost except a case with
0’ =0.05 and ¢ = 0.9 (416.6 seconds (Table ). The hybrid SMC technique (Figure is developed to utilize

this observation for precise and fast verification.

6.4 Results of the Hybrid SMC Technique

Tables [6.4}{6.6 present the experiment results of the hybrid SMC technique on ATCS, ABS, and FFCS for

6 = 0.99 with § = 0.03, 8’ = 0.01, and ¢ = 0.99, respectively. n is a total number of sample paths required

by SPRT and BIET in the hybrid algorithm for each experiment. p is an estimated probability obtained by BIET
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for each experiment. If BIET is not applied because SPRT rejects a hypothesis H, before reaching thgsp, then p
is N/A. acpt is a result over [0,1] regarding the hypothesis Hy where O is ‘reject’” and 1 is ‘accept’. time is total

verification time taken for each experiment in seconds.

6.4.1 Verification Results

For ATCS, Table [6.4] shows that the corresponding hypothesis Hy with § = 0.99 is accepted for two de-
lay rates A € {0.01,0.02} (i.e., M | P54[G°(engineRPM < 6000)] and rejected for delay rates \ €
{0.03,0.04}. For the experiments with A € {0.03,0.04}, SPRT rejected Hy and BIET was not applied; thus,
corresponding ps are marked as ‘N/A’. This result coincides with the results of SPRT and BIET, since SPRT
concludes that ATCS with A=0.03 does not satisfy the PBLTL formula with § = 0.9 (i.e., acpts are all 0.0 in
Table and BIET concludes that the probability for ATCS with A\=0.03 to satisfy G*°(engineRPM < 6000)
is between 0.8544 and 0.9000 (Section [6.3).

An interpretation of this result is that ATCS may not operate correctly if an engine RPM value is transferred
from the engine to the torque converter with long delay (i.e., delay rate A in exponential distribution is larger than
or equal to 0.03 seconds), since long delay of the data transfer can prevent ATCS from operating promptly. In
addition, we can obtain a practical implication that, to achieve required high reliability specified by the PBLTL
formula with 6 = 0.99, ATCS should use a data-transfer component that transfers data from the engine to the
torque converter with delay rate A < 0.02 or revise the ATCS design to satisfy the PBLTL formula with # = 0.99
even with long delay of the data transfer.

Similarly, for ABS, Table [6.5] shows that the corresponding hypothesis Hy with 6 = 0.99 is accepted for
delay rate \=0.001 (i.e., M = Psg[G7((brakepressed A carspeed > 5) — slip < 0.9)]), and is rejected for
larger delay rates. For FFCS, Table [6.6]shows that the corresponding hypothesis Hy with 6§ = 0.99 is accepted for
fault ratios (20,10,20) (except a=£3=0.001) and (30,30,30) (i.c., M [= Pso[~(F'°°G! (fuelrate = 0))]), and is

rejected for more frequent fault ratios (3,7,8) and (10,8,9).

6.4.2 Verification Speeds

The hybrid SMC technique shows an order of magnitude faster verification speed compared to BIET for the
experiments where the probability for M |= ¢ is less than thgop. E] For example, for ATCS with A\=0.03, the
hybrid technique spent 698.9 seconds (with a=£=0.1, §=0.03, §' = 0.01, and ¢=0.99) to 6020.4 seconds (with
a=£=0.001, 6 = 0.03, &' = 0.01, and ¢=0.99) (Table , while BIET spent 26281.2 seconds for the same
precision parameters (i.e., 6’ = 0.01, ¢ = 0.99) (Table . The hybrid technique is much faster than BIET for
ATCS with A\=0.03, since SPRT of the hybrid technique concludes that ATCS with A=0.03 does not satisfy the

PBLTL formula with 8gprr = 0.9375. Since Osprr = 0.9375 < thgop = 0.95, the hybrid technique does not

7Comparison between the verification speed of the hybrid technique and that of SPRT is not meaningful, since SPRT result is imprecise
for a large 6 value like 0.99.
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apply BIET and conclude that ATCS with A = 0.03 does not satisfy the given PBLTL formula with 8 = 0.99. As
BIET takes an order of magnitude larger time cost than SPRT (Tables [6.2H6.3), the hybrid technique can reduce a
large amount of time cost by removing the time cost of BIET.

However, for the experiments where the probability for M |= ¢ is larger than thgop, the hybrid tech-
nique shows slower verification speed compared to BIET. For example, for ATCS with A=0.02, the hybrid tech-
nique spent 1173.7 seconds (with a=3=0.1, §=0.03, §'=0.01, and ¢=0.99) to 2102.7 seconds (with a=£5=0.001,
0=0.03, §’=0.01, and ¢=0.99) (Table , while BIET spent 820.1 seconds for the same precision parameters
(i.e., 6'=0.01 and ¢=0.99) (see http://pswlab.kaist.ac.kr/data/issre2012-expr-results.
z1ip)). This larger time cost of the hybrid technique is due to the additional applications of SPRT for Ogprr €
{0.5,0.75,0.875,0.9375}.

For ABS and FFCS, we make similar observations to the experiments for ATCS. For the cases where the
probability for M |= ¢ is less than thgop, the hybrid technique is much faster than BIET. For the other cases, the

hybrid technique is slower than BIET.
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Chapter 7. Discussion of Hybrid SMC Technique

Through the case studies of the proposed hybrid SMC technique on ABS, ATCS, and FFCS, we found
three discussion issues such as effectiveness and efficiency of hybrid SMC technique (Section [7.1), independence
between complexity of target system and SMC cost (Section [7.2)), and usefulness of SMC techniques to obtain a
safety certificate (Section[7.3).

7.1 Effective and Efficient Hybrid SMC Technique

Through the empirical evaluation of the hybrid statistical model checking technique on ATCS, ABS, and
FFCS, we found that the hybrid technique is faster and more accurate than a single SMC technique (Section [6.4).
This improvement is achieved by utilizing the different advantages of SPRT and BIET selectively, namely fast
verification speed of SPRT and precise verification result of BIET (Section[6.3)).

The hybrid SMC technique applies SPRT and BIET selectively, because significance of verification speed
and that of verification precision vary depending on a probability p for M to satisfy a requirement property ¢.
Suppose that if p is distant from 6 (e.g., |§ — p| > 0.1), precision may not be very important, because small error
(e.g. +0.01 or -0.01) in an estimated probability does not affect an accept/reject decision on Hy. In this case, the
hybrid technique applies SPRT for fast verification without much concern for precision. If p is close to 8, however,
precision becomes important, because a small error (e.g. +0.01 or -0.01) may affect an accept/reject decision on
Hj easily. In this case, the hybrid technique applies BIET for precise verification result.

Since we are targeting safety critical systems where PBLTL requirements often have 6 values close to 1 (e.g.,
0.99 or 0.999) for high reliability, the hybrid SMC technique can apply SPRT for relatively low 6gprr values first
(e.g., 0.5, 0.75, etc.) in hope to conclude a ‘reject’ decision fast with little concern for precision (a case where
p is distant from #). If SPRT concludes ‘accept’ decisions for the relatively low 0spgrrs (i.e., a case where p is
close to 6), the hybrid SMC algorithm applies BIET for precise verification result. Therefore, the hybrid SMC
technique can produce a final verification result (i.e., accept/reject of Hy) fast and precisely.

Although precise verification result is of the highest priority for SMC, we cannot ignore the time cost. Since
the available project time in industry is always limited, the efficiency of verification techniques is of important
concern, too. For example, ISO-26262 [[11] requires that the reliability of the safety critical system components
should be higher than 99.999% level. To obtain such high reliability through SMC, the time cost of SMC will be
significantly large (it can take several days to several weeks). Therefore, verification speed is also a critical issue
as well as precision and our hybrid SMC technique can be useful for practical application of SMC techniques to

improve the reliability of safety critical systems.
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7.2 Independence between Complexity of Target System and SMC Cost

We found that the complexity of a target system does not affect the cost of the hybrid SMC technique. For
example, although FFCS is more complex than the other systems (e.g., program effort £ of FFCS is 25500.0,
while those of ATCS and ABS are 7410.9 and 3460.1 respectively (Table[6.1))), for similar estimated probability p
with the same precision parameters, a number of sample execution paths n for FFCS is similar to those for ATCS
and ABS. E]For the five experiments with a=/3=0.1 in Tables [6.4116.6| whose p > 0.99, the numbers of execution

paths ns for these experiments are similar.

ATCS with A=0.01 or 0.02: p = 0.9956 and n = 1710

ABS with A=0.001: p = 0.9953 and n = 1814

FFCS with the sensor fault rates (30,30,30): p = 0.9944 and n = 2121

FFCS with the sensor fault rates (20,10,20): p = 0.9920 and n = 3180

As shown above, although the complexities of ATCS, ABS, and FFCS are different, the cost of the hybrid
SMC technique for these target systems does not change much for similar p (i.e., 0.9920-0.9956). A slightly
increasing number of n from 1710 to 3180 for decreasing p from 0.9956 to 0.9920 is due to the characteristics
of BIET; BIET requires more sample paths as p decreases from 1 (Section [2.4.1). Therefore, we can expect that

SMC techniques can be applied to large complex safety critical systems to assure their reliability.

7.3 SMC Techniques to Obtain a Certificate of Safety Standards

There are various international standards (e.g., DO-178C [20] for avionics domain, ISO-26262 [11]] for au-
tomobile domain, IEC-60601 [9] for medical electrical equipment domain, etc.) to assure reliability of safety
critical systems. Since products with a certificate can have a strong competitive power in market, manufacturers
spend a large amount of man power and project time to acquire a high-level certificate for safety standards. For
example, automobile manufacturers such as BMW and GM start to apply ISO 26262 standard for safety critical
components.

To obtain a high-level certificate, vendors should provide strong cases or ‘proof’ that their products achieve
high reliability. For example, ISO-26262 requires that a vendor of automobile components should apply formal
verification techniques to the components to obtain a certificate of automotive software integrity level (ASIL)
D. However, conventional formal verification techniques such as state model checking and theorem proving are
difficult to apply for the purpose due to the state space explosion problem and lack of field engineers who are

proficient in deductive proof.

IFor different target systems, we should use n as a measure of the SMC cost, not time, since time varies depending on the execution time
of a target system.
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From our experience of applying various SMC techniques for safety critical systems on automobile domain
such as ATCS, ABS, and FFCS, we expect that the hybrid SMC technique can be applied successfully to obtain a
high-level certificate of ISO 26262. A main reason is that the hybrid SMC technique is reasonably fast and precise
(Section[7.T)). For example, it takes less than 12 hours to verify FFCS with most precise parameters with regard
to the PBLTL formula. Since most of the time cost is due to the simulation cost, SMC itself will take much less
time to check other PBLTL formulas if any by utilizing saved sample traces. Second reason is that the cost of the
SMC techniques is independent of the complexity of a target system (Section[7.2)), since SMC techniques do not
analyze the complex internal logic of a target system. Finally, SMC techniques are easy to Second reason is the

strong applicability of SMC; SMC requires only executable target system/model.
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Chapter 8. Validating Software Reliability through

Statistical Model Checking

During the last couple of decades, the proportion of software in safety critical systems has significantly in-
creased. Thus, to assure the high level safety, it is essential to improve software reliability. Consequently, it has
become very important to implement and acquire highly reliable software and to satisfy the safety requirements
imposed by the functional safety standards such as IEC 61508 and ISO 26262 [8]. Safety Integrity Level (SIL) in
IEC 61508 or Automobile Safety Integrity Level (ASIL) is defined as a measure of the quality or dependability of
a system [10L [11]]. Safety integrity level for a target system is determined from the assessment of three important
factors: Improved Reliability, Failure to Safety, and Verification & Validation. Improved Reliability is the proba-
bility of a safety-related system satisfactorily performing the required safety functions under all stated conditions
within a stated period of time. To develop a highly reliable software intensive system, a reliability goal is allocated
for a target system according to a target SIL/ASIC level after hazard analysis and risk assessment. Then, software
reliabilities are allocated to each software component at the early stage of a lifecycle. The allocated reliability of
each component is validated through failure detection during the testing phases (e.g., system testing and accep-
tance testing), since there is no way to know whether the allocated component reliabilities can satisfy the overall
system reliability goal at the earlier phases. This late validation can miss subtle defects due to limited project time
and lead to a high software development cost and delayed project delivery. Recently, several software reliability
prediction models have been introduced to quantitatively manage software reliability at early development phases
(i.e., architecture or design phases) based on the structure and usage profile of the components in a software sys-
tem [18]. However, these approaches have some limitations. First, the software reliability models are unrealistic
due to lack of empirical data, especially in the early development phase [3l]. Second, these models assume that
the reliability of each target component is known, which is not true for software components in real-world, unlike
hardware components.

In this chapter, we propose our new SMC-based software reliability validation framework to validate the

reliability of the safety critical system in early development stage (see Section [8.).

8.1 SMC-based Software reliability validation framework

We propose a new framework to validate the allocated component reliabilities in the early development stage

through a statistical model checking (SMC) technique in the early development stage by extending the software
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Figure 8.1: Software reliability validation framework

reliability assessment procedure in IEEE Std. 1633 [1]]. Specifically, we extend IEEE Std. 1633 by adding a new
step, “Validate the Reliability Requirement” after the “Allocate the reliability requirement” step in the software
reliability assessment procedure. Since a good reliability validation depends on analyzing a target system as if it
was operated in the real field, an operational profile, which is a quantitative characterization of how the system will
be used, can be used in the framework [19]]. Figure[8:1]shows the an overview of our software reliability validation
framework which validates the reliability goal using a SMC technique. The detailed process of the framework is

as follows.

1. Based on the reliability goal of a target system obtained at in the “2.2. Specify the reliability requirement”
step in the software reliability assessment procedure of IEEE Std. 1633, a reliability goal R; is allocated to

each component C; at in the “3.3. Allocate the reliability requirement” step.

2. At In the “Validate the Reliability Requirement” step (see the central box in Figure [8.I), SMC generates
random sample execution traces o;s repeatedly until o;s generated are enough to calculate the probability

that C; satisfies reg;; (i.e., P(reqij)). If not, SMC simulates C; again to generate more sample traces.

3. After calculating P(reg;;)s for all reg;;s, the framework validates the allocated reliability goal R; of C; by
comparing R; with calculated reliability R} obtained based on P(reg;;)s and corresponding weight values

for req;; (see the bottom box of “Validate the Reliability Requirement” of Figure . If R] satisfies the
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assigned reliability goal R; (i.e., R, >= R;), the process of the software reliability validation continues for
the next component C; 1 with regard to R; ;. If the calculated reliabilities of all components satisfy the
allocated reliability goals, the framework continues the remaining software reliability assessment procedure

(see the leftward arrow “(1) To continue SW reliability assessment” in Figure @])

. If R; does not satisfy the assigned reliability goal R;, the reliability goals of all components should be
reallocated (see the leftward arrow “(2) To reallocate reliability” in Figure [8.1)). If the reallocation keeps
failing, it may indicate that the target component was designed incorrectly. Thus, after several trials of
the reliability reallocation, the component C'; should be redesigned to improve the reliability of the target

component (see the upward arrow ““(3) To re-design a target component” in Figure [8.T).
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Chapter 9. Case Study of SMC-based Software Reliability

Validation Framework in Automobile

This chapter presents an overview of a fault-tolerant fuel control system (FFCS) in an automobile domain,
which is our main target system to apply the SMC-based software reliability validation framework (see Sec-
tion[0.1). Furthermore, this chapter describes the experiment to apply the SMC-based software reliability valida-
tion framework to FFCS, through which we have demonstrated the advantages of the proposed framework (see

Section[9.2)).

9.1 Target system of case study: fault-tolerant fuel control system

In Figure we present the overall diagram of a fault-tolerant fuel control system (FFCS) [16], which is a
safety critical component of the engine controller in a consumer vehicle. FFCS controls the fuel rate to inject based
on sensor data for best performance, detects a sensor fault, and shuts down an engine for safety in the presence
of multiple sensor failures. FFCS has the following four sensors: throttle angle sensor, speed sensor, exhaust gas
oxygen (EGO) sensor, and manifold absolute pressure (MAP) sensor. FFCS receives these four sensor input and
generates a proper fuel rate and an air-fuel ratio. FFCS consists of the following three components: Sensor Failure

Detector & Estimator (SFDE), airflow calculator, and fuel calculator (see Section for more explanation).

9.1.1 Sensor failure detector and estimator

Figure 0.1]is a block diagram for the SFDE of a FFCS. The SFDE receives four sensor data as input and
generates four sensor data as output and the engine-shut-down command used only when multiple sensor failures
occur. The SFDE consists of a sensor failure detector and a sensor data estimator. The sensor failure detector
receives all four sensor data and decides if each sensor is failed. Sensor failure detector delivers all sensor data,
and, if a sensor fails, notifies the sensor data estimator of the sensor failure. If multiple sensors fail, the sensor

failure detector shuts down the engine since the air-fuel ratio cannot be controlled.

9.1.2 Airflow Calculator

Figure [9.2]is a block diagram of the airflow calculator of FFCS. The airflow calculator receives four sensors
data from the sensor failure detector & estimator (SFDE) component and estimates an airflow value with feedback

correction value. The airflow calculator consists of an airflow estimator and an airflow corrector. The airflow
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Figure 9.2: Block diagram of Airflow Calculator

estimator estimates an airflow value based on throttle sensor, speed sensor, and MAP sensor data. The airflow
corrector calculates a feedback correction value based on EGO sensor, speed sensor, and MAP sensor data to

obtain more accurate fuel rate in the next component, the fuel calculator.

9.1.3 Fuel Calculator

Figure[9.3]is a block diagram of the fuel calculator of FECS. The fuel calculator receives the estimated airflow
data and the feedback correction data from the airflow calculator component and calculates the fuel rate which
keeps an air-fuel ratio optimal. The fuel calculator consists of a fuel calculator and a compensator. The fuel
calculator calculates a feed-forwarded fuel rate based on the estimated airflow value, which makes the air-fuel
ratio optimal. The compensator calibrates the feed-forwarded fuel rate with the feedback correction value and

generates the fuel rate which is finally supplied to the engine and also the air fuel ratio.
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9.2 SMC-based Software Reliability Validation Framework Experiments

on FFCS

In this section, the validation method for allocating the reliability goal of FFCS and generating several safety
functional requirements is described in Section [9.2.1] the experimental setting for applying SMC is described in

Section [9.2.2} and the experimental result of SMC for each component of FFCS is described in Section

9.2.1 Validation Method of the Software Reliability of FFCS

We specify the reliability goal for FFCS as 0.9999 (ASIL D in ISO 26262 [11]] requires 1 — 102 to 1 — 109
reliability goal). Since all components of FFCS (i.e., the SFDE, the airflow calculator, and the fuel calculator) are
combined sequentially, the reliability of a target system Rz can be calculated by multiplying the reliabilities of

the components of the target R;s as follows, where n is a total number of components in the system:

Ry = ﬁR;.
1=1

To satisfy the total reliability of FFCS (i.e., 0.9999), we allocated the reliability goals for the components of

FFCS following the advice from a field expert on the automobile engine controller:

e Sensor failure detector & estimator (SFDE): 0.99997
e Airflow calculator: 0.99997

e Fuel calculator: 0.99997

A basic principle to specify safety functional requirements for reliability validation is to describe a require-
ment for each output of a component (for example, we specify four requirements for the SFDE, each of which
corresponds to output values of throttle angle, speed, EGO, and MAP). This is because a main task of a compo-

nent is to compute output values and, thus, the reliability of a component is closely related with the output values.
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Through the discussion with the field expert, we identified a total of eight requirements for the SFDE, airflow
calculator, and fuel calculator. For example, the SFDE has the following four safety functional requirements for

the four corresponding outputs:

® reqinrottle: The throttle output should not be out of the throttle opening range from 3% to 90%.
® 7eqspeca: The engine speed output should not exceed 628 rad/sec (= 6000 rpm).

e reqrgo: During the initial warm-up period, EGO output should not be out of the range [0,1]. After the

warm-up, EGO output should be between 0.03 and 0.97.

e reqarap: The MAP output should not exceed 1 atmosphere.

We can calculate the reliability of a component R by using a weight to each requirement as follows, where

Wreq,; 1S @ weight value for requirement req;;, and P (reg;;) is the probability result for reg;;.

R; = Z (wrelhj X P(req”))
reqij EREQ)
Through the discussion with the field expert, we determined the weight values: wiprot1e=0.11, Wgpeeq=0.45,
wrcao=0.09, and wj; 4 p=0.35. This indicates that speed and MAP sensors are more important for the reliability

of the SFDE than throttle and EGO sensors.

9.2.2 Experiment Setting of SMC

We used a Simulink/Stateflow model of a FFCS in the Matlab R2010a. We simulated the FFCS model
using Matlab simulator to generate sample execution traces. To validate if the FFCS model satisfies the reliability
goal (i.e., 0.9999), we applied a Bayesian Interval Estimation Testing (BIET) SMC technique. To obtain precise
probability result (i.e., 1 — 10~* goal), we set the SMC precision parameters 5= 0.00005 and c= 0.9999 for BIET
(see Section @]for detailed tool explanation).

We built a stochastic environment model for FFCS that generates random faults at the sensors. We made
a random fault generator module and connected this module to the sensors. The random faults are modeled
by four independent Poisson processes with different arrival rates. Each mean inter-arrival fault rate of each
sensor is given as follows: (throttle, speed, EGO, MAP) = (8, 10, 9, 7). For simplicity, we assume that all the
operations of FFCS have the same occurrence rate. For a larger and complex system, the operational profile must
be considered so that the most frequently used operation will have the most testing. The BLTL model checker
evaluates safety functional requirements (i.€., 7€G¢hrotiics T€qspeed> T€4EGO, and reqas 4 p) over Matlab/Simulink
simulation traces. The current model checker (implemented as a proof-of-concept prototype in 500 lines of Matlab

script) was implemented in a specific way to evaluate the eight safety functional properties. We plan to implement
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Table 9.1: The SMC result for validating reliability of SFDE

Component | Requirement Probability | No. of samples No. of | Verification Calculated
failed samples time (hr) reliability
Sensor Teqihrottie 0.999889 776747 85 318.91
Failure reqspeed 0.999989 92008 0 38.35
Detector & 0.999973
Estimator reqEGo 0.999933 533735 35 222.22
(SFDE) TeqMAP 0.999989 92098 0 38.31
i eedbackCorrection 0.999959 293055 11 121.97
Airflow T€qFeedbackC t 0.999950
Caleulator | reqppimateaair fiow 0.999947 452185 23 193.29
wel Rate 0.999972 177813 4 75.99
Fuel [ el Rat 0.999954
Caleulator | reg i pueiratio 0.999914 638753 54 273.45

a general model checker which can evaluate arbitrary BLTL formulas over Matlab/Simulink simulation traces
and release the model checker publicly. The BIET statistical analyzer was implemented in 50 lines of Matlab
script. The BIET analyzer is independent from the model checker and safety functional requirements (we have
released the BIET analyzer publicly at http://pswlab.kaist.ac.kr/tools/SMC). Note that these two
components of SMC (once we complete the implementation of a general BLTL model checker) can be re-used
for other target systems without modification. Thus, it will not be difficult for practitioners to apply the proposed
software reliability validation framework based on SMC to their safety critical systems. All experiments were
performed on 64 bit Windows 7 Professional equipped with a Intel i5 3.40 GHz and 8 GB of memory. We used
Matlab R2010a for the experiments.

9.2.3 SMC Result

Table 9.T] describes the experiment result of applying SMC to the SFDE. For each safety functional require-
ment, the table describes the probability that the SFDE satisfies the corresponding safety functional requirement,
the number of sample traces generated, the number of failed sample traces, and the verification time in hours.
Finally, based on the probabilities in Table 1, we can calculate the estimated reliability R} of the SFDE with the

weight values as follows.

R, =0.11 x 0.999889 + 0.45 x 0.999989 + 0.09 x 0.999933 + 0.35 x 0.999989 # 0.999973

Since the reliability goal of the SFDE is 0.99997, the calculated reliability of the SFDE by SMC is larger
than the reliability goal and we can conclude that the SFDE satisfies the allocated reliability goal. In each require-
ment’s probability result in SFDE component, the probability results of the requirement reqgpeeq and require-
ment reqns 4 p are higher than the reliability goal of this component, (i.e., all 0.999989), but for the requirement
reqinrottie and reqpao, the probability results are lower than the reliability goal of this component (i.e., 0.999889

for throttle and 0.999933 for EGO). Since the experiments for reqspeeq and reqas 4 p have no failed samples, both
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probability results are same.

For req¢nrottie and reqeco, due to the number of failed samples (85 for reqinrott1e and 35 for reqrco),
their probability results are low. In spite of low probability results of req.nrottie and reqrgo, the reliability of
SFDE, component is higher than the reliability goal of this component since the weight values of regqiprott1e and
reqego are lower than reqgpeeq and reqps 4 p. This indicates that speed and MAP sensors have more criticality
than throttle and EGO sensors. In cases of remained components, the calculated reliability result of the airflow
calculator component is 0.999950, and that of the fuel calculator component is 0.999954. The estimated reliabil-
ities of the airflow calculator component and the fuel calculator component are failed to achieve their reliability
goals. For the airflow calculator component, the probability results of all two requirements, 7eqreedbackCorrection
and 7eqEstimatedAir flow are low (i.e., 0.999959 and 0.999947). This result indicates that the reliability goals
of all components should be reallocated or both factors (i.e., feedback correction and estimated airflow) might
have problems in the airflow calculator component. For the fuel calculator component, the probability result of
requirement reqpyelrate 1S higher than the reliability goal of this component (i.e., 0.999972), but the probability
result of reqa;r FuelRatio are much lower than that of this component (i.e., 0.999914). Thus, the reliability goals
of all components should be reallocated or air fuel ratio factor might have defects in the fuel calculator component.
Therefore, the possible choices are that the reliability goals of all components should be reallocated or these two
components should be redesigned to achieve the reliability goal of each component. The prior suggestion by the

proposed framework is reallocating the reliability goals of all components of FFCS.
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Chapter 10. Conclusion and Future Work

At the outset of this thesis, we believe that SMC technique can be helpful for achieving safety certificates of
safety critical systems such as ISO-26262 for automobile domain and DO-178B/C for avionics soon.

From the empirical evaluation of four state-of-the-art SMC techniques on FFCS, we have demonstrated
that SMC techniques can assess the reliability of a complex safety critical system such as FFCS. Based on the
statistical techniques, SMC techniques can estimate the reliability of a complex safety critical hybrid system, to
which conventional V&V techniques often fail to apply due to high complexity of a target system. Therefore, we
believe that industries on safety critical system domain can benefit from the SMC techniques much.

We have developed a new hybrid SMC technique which integrates SPRT and BIET. By applying this new
hybrid technique to three safety critical systems in the automobile domain (i.e., ATCS, ABS, and FFCS), we have
demonstrated that the hybrid SMC technique achieves precise verification results fast compared to a single SMC
technique - SPRT or BIET. In our experiment, our hybrid SMC technique was around 4 times faster than BIET.

The SMC technique can be utilized for the early validation of software reliability in modeling phase, which is
a salient contribution for ensuring high reliability of safety critical systems. Until the SMC techniques have been
proposed, it was almost impossible to validate the reliabilities of software components for safety critical systems at
the early stage of the development life cycle, due to complex hybrid characteristics caused by continuous dynamics
to interact with physical environment and discrete computations to handle modal operations.

As many safety critical systems such as automobiles and avionics are developed using a model-driven de-
velopment (MDD) approach, the proposed validation framework can be seamlessly integrated in an existing de-
velopment process of industries. Thus, the proposed methodology based on SMC techniques can be realistically
adopted by industries and can contribute to increasing the reliability of software as well as decreasing the overall
development cost through early detection of design faults or incorrect reliability allocation, etc.

As future work, we will collaborate with Hyundai motor company to apply the hybrid SMC technique to real
control components of automobiles. We believe that the hybrid technique can provide more scientific assurance
about the reliability of components than conventional testing techniques. In addition, we plan to use this hybrid

technique in a process to obtain an ISO-26262 certificate.
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Summary

Hybrid Statistical Model Checking Technique for Reliable
Safety Critical Systems
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