
석 사 학 위 논 문
Master’s Thesis

시스템에서 추출한 동적 유닛 컨텍스트를 이용한

효과적인 Concolic 유닛 테스팅

Effective Concolic Unit Testing With Dynamic Unit Contexts

Carved from System Tests

2019

임 현 수 (林炫秀 Lim, Hyunsu)

한 국 과 학 기 술 원

Korea Advanced Institute of Science and Technology

석 사 학 위 논 문

시스템에서 추출한 동적 유닛 컨텍스트를 이용한

효과적인 Concolic 유닛 테스팅

2019

임 현 수

한 국 과 학 기 술 원

전산학부

시스템에서 추출한 동적 유닛 컨텍스트를 이용한

효과적인 Concolic 유닛 테스팅

임 현 수

위 논문은 한국과학기술원 석사학위논문으로

학위논문 심사위원회의 심사를 통과하였음

2018년 12월 10일

심사위원장 김 문 주 (인)

심 사 위 원 이 흥 규 (인)

심 사 위 원 양 은 호 (인)

Effective Concolic Unit Testing With Dynamic Unit

Contexts Carved from System Tests

Hyunsu Lim

Advisor: Moonzoo Kim

A dissertation submitted to the faculty of

Korea Advanced Institute of Science and Technology in

partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

Daejeon, Korea

December 10, 2018

Approved by

Moonzoo Kim

Professor of Computer Science

The study was conducted in accordance with Code of Research Ethics1.

1 Declaration of Ethical Conduct in Research: I, as a graduate student of Korea Advanced Institute of Science and

Technology, hereby declare that I have not committed any act that may damage the credibility of my research. This

includes, but is not limited to, falsification, thesis written by someone else, distortion of research findings, and plagiarism.

I confirm that my thesis contains honest conclusions based on my own careful research under the guidance of my advisor.

MCS
20173493

임현수. 시스템에서 추출한 동적 유닛 컨텍스트를 이용한 효과적인 Con-

colic 유닛 테스팅. 전산학부 . 2019년. 32+iv 쪽. 지도교수: 김문주. (영문

논문)

Hyunsu Lim. Effective Concolic Unit Testing With Dynamic Unit Contexts

Carved from System Tests. School of Computing . 2019. 32+iv pages.

Advisor: Moonzoo Kim. (Text in English)

초 록

Concolic 테스팅과 같은 자동 유닛 테스팅 기술은 다양한 유닛 테스트 실행을 통해 유닛 테스팅의 이점을

향상시킨다. 그러나, 현재의 자동 유닛 테스팅 기술은 기술적인 한계로 인해 시스템 테스트로부터 동적 유닛

컨텍스트(목적 함수가 읽는 모든 전역 변수 및 함수 인자의 값)를 추출해내지 못하고, 이에 담긴 정보를

활용하지 못하고 있다.

이를해결하기위해복잡한 C프로그램을위한새로운 Concolic유닛테스팅도구인 CUT2 를개발했다.

첫번째로, CUT2 는 시스템 테스트로부터 f의 동적 유닛 컨텍스트를 추출해내는 탐지 코드를 목적 프로그램

P에 삽입한다. 이후, CUT2 는 탐지 코드가 삽입된 프로그램을 시스템 테스트를 통해 실행하여 f의 동적

유닛 컨텍스트를 추출한다. 여기서 f의 동적 유닛 컨텍스트를 정확하게 추출하기 위해 CUT2 는 f의 인자

뿐만 아니라 f에 의해 호출되는 함수 및 f에서 읽히는 전역 변수도 추출해낸다. CUT2 는 추출된 f의 동적

유닛컨텍스트를기반으로하여심볼릭테스트드라이버및스텁을생성하고 f의동적유닛컨텍스트를최초

입력값으로 하여 Concolic 테스팅을 수행한다.

CoREBench를 사용한 실험에서 CUT2 는 평균적으로 약 90%의 분기 커버리지를 달성하였으며 이는

기존의 Concolic 유닛 테스팅 기술에 비해 평균적으로 최소 10.9%p의 개선을 이뤄낸 것이다.

핵 심 낱 말 유닛 테스팅, Concolic 테스팅, 동적 유닛 컨텍스트, 실행 캡처 및 추출

Abstract

Automated unit testing techniques like concolic unit testing improve the benefits of unit testing

through diverse unit test executions. However, current automated unit testing techniques do not utilize

valuable information on dynamic unit contexts (DUCs) (i.e., values of all parameters and global variables

read by a target function) in system tests due to the technical difficulty to extract them from system

tests.

I have developed a new concolic unit testing framework CUT2 for complex C programs. First,

CUT2 instruments a target program P to insert probes that capture/carve DUCs of f from system

tests. Second, CUT2 carves DUCs of f while executing the instrumented target program with system

tests. At this step, to carve DUCs of f accurately, CUT2 carves not only parameters of f but also global

variables updated by f and f ’s descendant functions. Third, CUT2 generates a symbolic test driver and

stubs that build symbolic search space based on the carved DUCs of f and performs concolic unit testing

on f using the carved DUCs as initial test inputs for f .

In the experiments on CoREBench, CUT2 achieves around 90% branch coverage on average, which

is at least 10.9%p higher than the existing concolic unit testing techniques on average.

Keywords Unit testing, Concolic testing, Dynamic unit contexts, Capturing/carving executions

Contents

Contents . i

List of Tables . iii

List of Figures . iv

Chapter 1. Introduction 1

1.1 Previous Approaches . 1

1.2 Thesis Statement and Contributions 2

1.2.1 Thesis Statement . 2

1.2.2 Proposed Approach . 2

1.2.3 Technical Challenges and Solutions 2

1.2.4 Contributions . 3

1.3 Structure of the Dissertation . 4

Chapter 2. Concolic Unit Testing with Carved dynamic Unit conTexts (CUT2)

Technique 5

2.1 Motivating Example . 5

2.1.1 Description of the Example 5

2.1.2 Limitation of Concolic Unit Testing 6

2.2 Overview . 7

2.3 Generation of Carving Program PC 10

2.3.1 Primitive variable (Lines 3–5) 10

2.3.2 Array Variable (Lines 6–10) 10

2.3.3 Pointer Variable (Lines 11–28) 10

2.3.4 struct Variable (Lines 29–33) 11

2.3.5 union Variable (Lines 34–37) 12

2.4 Memory Validity Checking . 12

2.5 Generation of Symbolic Driver and Stubs 12

Chapter 3. Experiments and Results 16

3.1 Experiment Setup . 16

3.1.1 Research Questions . 16

3.1.2 Target Program Versions 16

3.1.3 Concolic Unit Testing Techniques to Compare 17

3.1.4 Measurement . 18

3.1.5 Testbed Setting . 18

i

3.1.6 Implementation . 18

3.1.7 Threats to Validity . 18

3.2 Experiment Result . 19

3.2.1 Experiment Data . 19

3.2.2 RQ1: Soundness of Carved DUCs 20

3.2.3 RQ2: Branch Coverage of SUT, SUT’, OTF, and CUT2 21

3.2.4 RQ3: Impact of the DUCs Carved from the Callee

Functions of f on Branch Coverage 21

Chapter 4. Related Works 24

4.1 Automated Unit Testing Techniques based on System Tests . . 24

4.1.1 Generating Unit Tests from System Tests 24

4.1.2 Symbolic Unit Testing based on System Tests 24

4.2 Concolic Testing Techniques . 24

4.2.1 Concolic Testing Engines 24

4.2.2 Concolic Testing Frameworks 25

4.3 Automatic Generation of Mock Objects/Testing Stubs 25

4.4 Capture and Replay Techniques 26

Chapter 5. Conclusion and Future Work 27

5.1 Conclusion . 27

5.2 Future Work . 27

5.2.1 Dynamic Unit Contexts in Automated Debugging 27

5.2.2 Preconditions of a Function 27

5.2.3 Deeper Study on Dynamic Unit Contexts 27

Bibliography 28

Acknowledgments in Korean 31

Curriculum Vitae in Korean 32

ii

List of Tables

3.1 Target program versions and functions . 17

3.2 Size of carved DUCs . 19

3.3 Carving & concolic testing time of CUT2 . 19

3.4 Length of line traces . 20

3.5 Branch coverage of SUT, SUT’, OTF, and CUT2 . 21

3.6 Branch coverage of CUT2− and CUT2 . 22

4.1 Related work of concolic testing techniques . 25

iii

List of Figures

2.1 Motivating example . 5

2.2 Execution paths covered by concolic testing according to the initial input 6

2.3 Overall process of CUT2 . 7

2.4 Example program for Step 1 . 8

2.5 Example of DUC . 9

2.6 Example pseudo-code genreated for an array variable . 10

2.7 Example pseudo-code genreated for a pointer variable . 11

2.8 Example pseudo-code genreated for a st a of struct st type 11

2.9 Symbolic test driver/stub example . 13

3.1 Line trace example . 20

3.2 Example where CUT2 achieves higher branch coverage than the other concolic testing

techniques . 22

iv

Chapter 1. Introduction

As software is widely adopted in our daily lives, the reliability of the software has become a critical

issue. Software testing is a major method to ensure the reliability of the software. Software testing runs

the target software with a set of test inputs and checks if each output of the software meets predefined

conditions. Note that for successful testing, it is important to create a sufficient number of test inputs

with high quality, since each test input explores a different behavior of the target program.

Unit testing is one of a software testing method that focuses on unit, not a whole program (i.e.

system-level testing). In unit testing, developers isolate a target function f from a target program by

stubbing/mocking out the other functions and test only the function f . Therefore, unit testing costs less

than the system-level testing.

However, even though the complexity of unit is smaller than that of the whole system, still it is

almost impossible for developers to manually create test inputs which handle every exceptional case in

unit testing. Moreover, as the size and complexity of the software grows, that of an unit is also increasing

which boosts the cost of unit testing. Thus, to reduce the man-power for testing and test units more

exhaustively, automated unit testing techniques such as random unit testing or symbolic unit testing are

proposed.

1.1 Previous Approaches

Random testing is the most näıve approach in automated testing technique. As the name itself

mentions, random testing randomly generates test inputs for system-unter-test. This technique can

generate a large number of test inputs, but the quality of the generated test inputs is not guaranteed.

Search-based testing is a technique to automatically generate test inputs that achieve specific testing

goals (i.e., cover specific branch, etc.). It first starts with a random test input and selects the better

neighbour according to the fitness or cost function. In other words, the fitness/cost function guides the

search-based testing to find test inputs that meet the specific goals. Therefore, it is important to design

the fitness/cost function properly in search-based testing.

Symbolic execution is an automated testing technique that aims to cover every branch in system-

under-test. It sets the inputs as symbolic values and executes every feasible paths in the system-under-test

symbolically. At the end of the execution, path constraint of each path is obtained and test inputs are

generated by solving such constraints (i.e., finding the concrete values that satisfy the constraint). This

technique is able to automatically generate test inputs that cover every feasible branches in system-

under-test. However, symbolic execution suffers from the path explosion problem which is critical for

the scalability of the technique.

Concolic (CONCrete + symbOLIC) testing is a technique that combines the concrete execution

with symbolic execution. In concolic testing, first, the system-under-test is ran concretely with a test

input. During the execution, the technique collects the branch conditions that the execution path goes

through to generate path constraint for the input. At the end of the execution, some terms in the path

constraint is negated to generate a new path constraint, and a new test input is generated by solving

the generated path constraint. This process is repeated until the feasible branchs in the system-under-

test is fully covered or time is out. The concolic testing technique is widely adopted in various areas

1

recently [2, 3, 4, 5], but none of the concolic unit testing techniques focus on utilizing dynamic unit

contexts of a target function.

1.2 Thesis Statement and Contributions

1.2.1 Thesis Statement

The thesis statement of this dissertation is as follows:

Dynamic unit contexts carved from system tests can improve the effectiveness of automated

concolic unit testing.

1.2.2 Proposed Approach

To validate the thesis statement, this dissertation suggests CUT2 (Concolic Unit Testing with Carved

dynamic Unit conTexts), which is an automated concolic unit testing technique for complex real-world

C programs. For a target function f , CUT2 first carves the dynamic unit contexts (DUCs) of f from

system test case executions (Section 2.3). DUC consists of the values of following items, which can affect

the execution of f :

• Parameters of f at the entry point of f

• Global variables that are read by f and descendants of f at the entry point of f

• Non-const pointer type parameters of direct callees g of f at the exit point of g

• For direct callee g of f , global variables that are read by g and descendants of g at the exit point

of g

• Return value of direct callees of f

Based on the carved DUCs, CUT2 generates symbolic drivers/stubs which declare all variables in

DUC as symbolic ones for concolic unit testing of f (Section 2.5). Then, CUT2 guides concolic unit

testing to generate effective test inputs by utilizing a meaningful DUC as an initial test input. In other

words, CUT2 initializes each symbolic variable with the concrete values in DUC.

1.2.3 Technical Challenges and Solutions

There were several challenges when implementing CUT2 . Mainly, the challenges are caused by

the C programming language’s characteristics, which tackle the carving of DUCs. The main technical

challenges are as follows:

• Challenge 1: Obtaining the size of memory region referred by the pointer.

In order to carve DUCs accurately, the memory region referred by the pointer variable must be

carved precisely. Thus, it is necessary to obtain the exact size of memory region referred by the

pointer. However, the C programming language does not support direct method to acquire such

data.

2

• Challenge 2: Carving void pointer type variables.

Usually, void pointers are casted to some other types of pointers before it is used. For example, a

void pointer can be casted to the pointer of a struct type before it is dereferenced. In such case,

the memory region referred by the pointer should be carved recursively (i.e., in the aformentioned

example case, the struct type data in memory region pointed by the void pointer should be carved

recursively). Therefore, it is necessary to know which type does the void pointer is casted to in

the system execution. However, this information is not available at the source code level.

• Challenge 3: Carving union type variables.

Each field of union type variable is placed on the same position of the memory. Therefore, it is

necessary to know which field of the union type variable is used in the system execution for accurate

carving (Note that we cannot just simply dump the memory region of union variable because if the

union variable uses non-primitive type fields such as struct type field, then this field should be

carved recursively). However, it is not possible to gain such information at the source code level.

CUT2 solves these challenges as follows:

• Solution 1: Obtaining the size of memory region referred by the pointer (Section 2.4).

CUT2 instruments a target program to build the information of the memory region that is used by

the target program by tracking every memory allocation/deallocation in the target program. This

information helps to find the exact size of memory region pointed by the pointer.

• Solution 2: Carving void pointer type variables (Section 2.3.3).

A preprocessing step (Step 1 and 2 of Section 2.2) is added to acquire the type that void pointers

are casted to in the system execution. During the instrumentation step (Step 3 of Section 2.2), this

void pointer casting information is used to generate the code for carving void pointer variables.

• Solution 3: Carving union type variables (Section 2.3.5).

Analogous to the above solution (i.e., Solution 2), the information about the fields that are used

by union variables in the system execution is obtained in the preprocessing step. During the

instrumentation step, this union field usage information is used to generate the code for carving

union variables.

1.2.4 Contributions

The contributions of this dissertation are as follows:

• A new DUC carving tool which handles complex features of the C programming language (Sec-

tion 2.3).

– The tool can obtain the size of memory region referred by pointers, which is not directly

supported by the C programming language (Section 2.4).

– The tool properly carves various pointer types (Section 2.3.3).

∗ void pointer, which could be casted to another type of pointer before it is used, is correctly

carved.

∗ Opaque FILE pointer, which shouldn’t be dereferenced directly, is successfully carved.

3

– The tool properly carves union type, which has multiple fields on the same position of memory

(Section 2.3.5).

• Empirical demonstration of the effectiveness of CUT2 by applying CUT2 on complex real-world C

programs and showing the improved branch coverage compared to the existing techniques (Sec-

tion 3).

– In experiments targeting 7 out of 22 faulty revisions of CoREBench, CUT2 achieves at least

10.9%p higher branch coverage compared to other techniques (i.e., SUT, SUT’, OTF, and

CUT2− (see the Section 3.1.3)).

1.3 Structure of the Dissertation

The remainder of this dissertation is structured as follows. Chapter 2 presents CUT2 , the automated

concolic unit testing technique for complex real-world C programs in detail. Chapter 3 presents the

empirical evaluation of CUT2 on 7 faulty Coreutil program versions in CoREBench. Chapter 4 presents

the related work for automated concolic unit testing and carving/replaying techniques. Finally, Chapter 5

concludes the dissertation with future work.

4

Chapter 2. Concolic Unit Testing with Carved dynamic Unit

conTexts (CUT2) Technique

2.1 Motivating Example

01 ...

02 #define N 100

03 typedef struct _Node{

04 char *str;

05 struct _Node *next;

06 }Node;

07 Node *data=NULL;

08 void input_processing(const char *);

09

10 int main() {

11 char input_str[N];

12 FILE *fp = fopen(...);

13 fgets(input_str, N, fp);

14 parser(input_str);

15 ...}

16

17 size_t my_strlen(const char *str) {

18 const char *s;

19 for (s = str; *s !=NULL ; ++s);

20 return(s - str);}

21

22 // A target function

23 int parser(char *input){

24 // input should be at least 80 characters

25 if (my_strlen(input)< 80){ exit(1);}

26

27 // Checking the input string format

28 if (my_strncmp(input, "HEAD|", 5) != 0){

29 printf("INVALID INPUT\n"); return -1;}

30 if(my_strncmp(input+5,"START0|",7)!=0){

31 printf("INVALID INPUT\n"); return -1;}

32 // 98 more checking conditions

33 ...

34

35 input_processing(input);

36

37 // Checking validity of the processed data

38 for (Node *n=data; n!=NULL; n=n->next){

39 if (strstr(input, n->str)==0){ //not found

40 printf("INVALID DATA\n");return -2;}}

41

42 // Main procedure on data

43 ...

44 ...

45 return 0;}

46

47 void input_processing(const char *const_input){

48 char *token, *input=strdup(const_input);

49 Node *curr;

50

51 token=strtok(input,"|");

52 if (token!=NULL){

53 data=malloc(sizeof(Node))

54 data->str=strdup(token);

55 data->next=NULL;

56 curr=data;}

57 for (token=strtok(NULL,"|"); token!=NULL;

58 token=strtok(NULL,"|")){

59 Node *new_node=malloc(sizeof(Node));

60 new_node->str=strdup(token);

61 new_node->next=NULL;

62 curr->next=new_node;

63 curr=curr->next;}

64 free(input);}

Figure 2.1: A motivating example where concolic unit testing fails to generate test inputs that cover

the main procedure of parser

2.1.1 Description of the Example

Figure 2.1 shows a string parser example where concolic testing fails to generate useful test cases.

Suppose that parser (Lines 23–45) is a target function to test. parser receives a pointer input to an

5

Figure 2.2: Execution paths that are covered by concolic testing according to the initial input. (b)

covers larger area than (a) or (c)

input string (Line 23) and performs the following tasks:

1. Checking a length of an input string (Line 25):

It checks if the length of the input string is greater than or equal to 80 using my strlen.

2. Checking the input string format with 100 rules (Lines 27-33):

It checks if the input string conforms to the given formats. For example, it checks if the prefix of

the input string matches “HEAD” (Line 28).

3. Generating a linked list data by processing the input string (Line 35):

It creates a global linked list whose head node is pointed by data (declared at Line 7) using its callee

function input processing (defined in Lines 47–64). While input processing reads string tokens

(separated by the ‘|’ character) from input one by one (Lines 57–63)1, it creates corresponding

new nodes (Line 59) whose str contains a string token read from input (Line 60), and links the

nodes by setting a next pointer to the next node (Line 62).

4. Checking validity of the generated data (Lines 37–40):

It checks if, for every node in the linked list pointed by data, a string of str appears in input.

Otherwise (i.e., the correspondence between data and input is broken), data is invalid and parser

returns -2.

5. Executing the main procedure on data (Lines 42-44)

Finally, it executes the main procedure code to retrieve and update data. I assume that this code

section is large and complex and, thus, concolic testing should generate test inputs that reach this

section for high test coverage.

2.1.2 Limitation of Concolic Unit Testing

Suppose that I apply concolic unit testing to parser like conventional concolic unit testing (e.g.,

CONBOL [2]). Also, let me assume DFS search strategy and symbolic variables initialized with 0s like

most concolic execution techniques. Then, concolic unit testing generates hundreds of invalid input

1strtok(str, sep) reads a string token separated by sep characters from a string str and returns a pointer to the

string token. strtok keeps track of a stream position of str and strtok(NULL, sep) reads from str a next string token.

strdup(str) duplicates a string str by allocating memory to contain str and returns the allocated memory address.

6

strings and fails to generate useful test inputs that reach the main procedure of parser for the following

reasons (Case of (a) or (c) in Figure 2.2):

First, it will generate 80 invalid input strings that do not reach the main procedure of parser.

Concolic testing keeps generating invalid input strings of increasing lengths (i.e., 0,1,...,79) because of

the loop on symbolic input string in my strlen (Line 19). Second, suppose that concolic unit testing

reaches Line 27. Still it keeps generating additional several hundred invalid input strings due to the 100

string format checkers in Lines 27-33.

In contrast, if concolic unit testing starts with an initial input string that reaches the main procedure

of parser (as in (b) of Figure 2.2), it will generate many test inputs that explore the main procedure

from the beginning. I can obtain such useful initial input strings from system tests since system tests

usually explore normal/main test scenarios.

Note that, to obtain DUCs of a target function f accurately, I have to carve not only parameters

of f but also global variables updated by the descendant functions of f . For example, I have to carve

not only input of parser, but also global states (i.e., data) updated by input processing at the exit

point of input processing. If I do not carve and utilize data updated by input processing, another

validity check at Lines 37–40 will fail and concolic testing will not generate unit test inputs that reach

the main procedure of parser (Lines 42–44).

2.2 Overview

Figure 2.3: Overall process of CUT2

Figure 2.3 shows the overall process of CUT2 that carves and utilizes dynamic unit contexts of a

target function f in a system test si. A dynamic unit context (DUC) of f consists of the values of

7

01 union un {

02 int a;

03 char b;

04 }

05

06 int foo(void *p, union un u) {

07 char *c = (char *)p;

08 printf("%s %c\n", c, u.b);

09 }

Figure 2.4: Example program for Step 1

parameters and global variables read by f at the entry point of f and at the exit points of the direct

callee functions of f . CUT2 stores all values of variables comprising a DUC of f in files during a system

test execution of P . For a pointer variable, the value of the pointer variable and the values in the valid

memory region referred by the pointer are stored together.

CUT2 receives the following inputs and runs in the following two passes:

• source code of a target program P

• a target function f

• a static call graph G of P

• a set of system tests TC

The first pass identifies actual types of data pointed by void pointers and which member variable

of union variable is actually used in a system test si. This is because the type of data pointed by a

void pointer and a member variable accessed by a union variable may change at runtime and the type

information is necessary to generate and insert probe code to carve target data. In the second pass,

CUT2 carves DUCs of f during executing P with a system test si. CUT2 operates in the following way:

• Step 1. CUT2 instruments P and generates the modified program P ′ as follows:

– For every void pointer variable vp read by f or updated by the descendant functions of

f , CUT2 identifies actual type of the data pointed by vp by finding casting expression on

vp. CUT2 inserts the probe code that writes the type casting information of a void pointer

variable to the file usagevp right after the type casting expression.

For example of Figure 2.4, CUT2 inserts the probe at the end of Line 7 to report the type of

data pointed by a void pointer p at Line 7 is char.

– For every union variable u read by f or updated by the descendant functions of f , CUT2 identifies

the member variable of u that is actually accessed by finding the member accessing expression

on u in P . CUT2 inserts the probe code that writes the accessed member information of a

union variable to the file usageu right after the member access of u.

For example of Figure 2.4, CUT2 inserts the probe at the end of Line 8 to report that the

char member b of u is used.

8

Figure 2.5: Example of DUC. (a) is an example code with target function f and (b) is the DUC of f of

(a).

• Step 2. The modified program P ′ runs with a system test si ∈ TC and generates two files usagevp

and usageu. usagevp stores type casting information on void pointer variables and usageu stores

member access information of union variables.

• Step 3. CUT2 generates the carving program PC that carves DUCs of f during the system tests

of P as follows (Section 2.3):

– CUT2 first identifies 1) function parameters of f and 2) global variables read by f . The code

for carving variables of 1) and 2) is generated and inserted at the entry point of f .

– For each direct callee g of f , the following code is generated and inserted at the exit points of

g:

∗ The code for carving every global variable updated by g and its descendant functions

∗ The code for carving non-const pointer parameters

∗ The code for carving the return value if g returns a value

In addition, CUT2 generates symbolic test drivers/stubs for f which declare all carved vari-

ables as symbolic ones and initialize the symbolic variables with the carved variable values.

• Step 4. PC executes with a system test si ∈ TC and generates the carved DUC csif s where csif

consists of the following items (Figure 2.5 shows the example of DUC):

1. The values of the function parameters of f at the entry point of f .

2. The values of the global variables at the entry point of f that are read by f and descendatns

of f .

3. For every direct callee g of f , the values of global variables at the exit points of g that are

updated by g and the descendants of g.

4. For every direct callee g of f , the non-const pointer parameters at the exit points of g (to

carve local data of f that can be updated by g through the pointer parameters of g).

9

01 int len_v = sizeof(v)/sizeof(v[0]);

02 for (int i = 0; i < len_v; i++) {

03 ValueCarver(v[i], "int");

04 }

Figure 2.6: Example pseudo-code genreated for an array variable

5. For every direct callee g of f that returns a value, the return value of g.

If a single system test execution calls f several times, multiple DUCs of f are carved.

• Step 5. CUT2 applies concolic unit testing to f (with the symbolic test drivers/stubs generated

at Step 3 (see Section 2.5)) with a carved DUC csif as an initial test input.

2.3 Generation of Carving Program PC

Algorithm 1 shows how CUT2 generates the probe code that carves csif in high level. The gen-

erated probe code is inserted at the entry point of f or the exit points of f ’s direct callee functions.

V alueCarver(v, Tv) receives a variable v to carve and a type Tv of v and generates code that carves v

according to Tv as follows:

2.3.1 Primitive variable (Lines 3–5)

The algorithm generates the code that simply stores the value of v to a file (i.e., store value(v,

Tv)).

2.3.2 Array Variable (Lines 6–10)

The algorithm applies itself recursively over every element of an array v. Figure 2.6 shows the

pseudo-code generated by the algorithm for an integer array v (the foreach iterations of the algorithm

are implemented as a loop as shown in Fig. 2.6).

2.3.3 Pointer Variable (Lines 11–28)

Not only the value of v itself but also the values in the memory region referred by the pointer v

should be carved together. This is because carved DUCs from a system test si should maintain the

relationship between a pointer and its pointee (i.e., v and ∗v) as well as the relationship between a

pointer with a valid offset k and its pointee (i.e., v + k and ∗(v + k)) as in si. Also, carved DUCs should

maintain the relationship between pointers (e.g., pointer aliasing) as in si. If v is NULL or the pointee

of v is already carved, only the value of v without its pointee is stored (Lines 12–13).

Figure 2.7 shows the example pseudo-code to carve a pointer variable v for integer(s) which Lines 23–

26 of the algorithm generate. First, the code stores the value of a pointer v (i.e., the memory address

contained in v). Then, the code recursively applies V alueCarver to carve each element vi of the valid

memory region starting from v (the foreach iterations of the algorithm are actually implemented as a

10

01 store_value(v, "int *");

02 for (int i = 0; is_valid_memory(v+i); i++) {

03 ValueCarver(*(v+i), "int");

04 }

Figure 2.7: Example pseudo-code genreated for a pointer variable

01 struct st {

02 int x;

03 char y;

04 int *p;

05 } st_a;

06

07 ValueCarver(st_a.x, "int");

08 ValueCarver(st_a.y, "char");

09 ValueCarver(st_a.p, "int *");

Figure 2.8: Example pseudo-code genreated for a st a of struct st type

loop as shown in Fig. 2.7). This validity checking of the memory region is one of the main challenges in

developing CUT2 (see Section 2.4).

V alueCarver handles void pointer and opague FILE pointer variables as follows since I cannot

directly dereference such pointers (FILE pointer is a predefined system type which should not be deref-

erenced directly).

• void pointer (Lines 14–18): void pointer variables are usually casted to pointers of other types

before dereference. Thus, CUT2 first refers to usagevp to know to which type a void pointer is

casted. Let T̂v be the type that v is casted to. The algorithm declares a temporary variable v′ of

the type T̂v and assigns v to v′. Then it calls V alueCarver(v′, T̂v).

• FILE pointer (Lines 19–21): V alueCarver stores the name of a file that a FILE pointer v refers to

and the current stream position on the file. The name of a file that v refers to can be obtained by

using a symbolic link under /proc/self/fd with v’s file descriptor number and the current stream

position of the file can be obtained by using ftell.

2.3.4 struct Variable (Lines 29–33)

V alueCarver carves every member of struct variable recursively. Figure 2.8 shows the definition

of struct st and the example pseudo-code which carves st a of struct st type. struct st consists

of the three members and the algorithm generates code for carving each member.

11

2.3.5 union Variable (Lines 34–37)

Since the member variables of a union variable share the same memory, I have to know which

member of a union variable is actually accessed in a system test execution. The code recursively carves

only the accessed member of v after referring usageu.

2.4 Memory Validity Checking

To carve a pointer variable correctly, the entire valid memory region pointed by the pointer should

be carved. Thus, I have to identify the range of the valid memory region referred by the pointer.

Since the C programming language does not provide a method to obtain the size of a pointed memory

region, CUT2 tracks every allocation/deallocation of the memory region in a target program and uses

this information to obtain the size of the valid memory region pointed by a pointer variable to carve.

CUT2 has a memory manager M which maintains memory allocation information by instrumenting

a target program to track memory allocation/deallocation status. For stack and heap areas, it tracks

memory allocation/deallocation as follows:

• Memory allocated at stack area has corresponding declaration in a target program. For every

declared variable x, CUT2 inserts the code that adds the memory region information on x to M

right after the declaration statement of x. Also, it inserts the code that removes the memory region

information on x from M right before the end of the scope of x.

• Memory at heap area is allocated by using malloc series library functions (e.g., malloc, calloc,

realloc, free). I create hooks for the dynamic memory allocation/deallocation functions that

insert/delete memory region information to/from M .

2.5 Generation of Symbolic Driver and Stubs

I explain how CUT2 generates a symbolic driver and stubs to build symbolic search space based on

a carved DUC through an example. Figure 2.9 shows a (simplified) symbolic test driver, a stub, and

utility functions generated for the example in Fig. 2.1 as follows:

• parser test driver (Lines 1–6)

• input processing stub (Lines 8–10)

• SYM Tv from carved ctx (vn) (Lines 12–39) which performs symbolic setting for a variable v (vn

is a name of v) of type Tv based on a carved DUC. For example, Fig. 2.9 has three such functions:

– SYM NodeP from carved ctx which performs symbolic setting for a variable of Node pointer

type (Lines 12–21)

– SYM Node from carved ctx which performs symbolic setting for a variable of Node type (Lines 23-

30)

– SYM CharP from carved ctx which performs symbolic setting for a variable of char pointer

type (Lines 32-39)

12

01 void parser_test_driver(void){

02 // symbolic input setting for data

03 data=SYM_NodeP_from_carved_ctx("0.data");

04 // symbolic input setting for the parameter ’input’

05 char *input=SYM_CharP_from_carved_ctx("input");

06 parser(input);}

07

08 void input_processing_stub(const char *const_input){

09 // symbolic input setting for data

10 data=SYM_NodeP_from_carved_ctx("1.data");}

11

12 Node *SYM_NodeP_from_carved_ctx(const char *name){

13 Node *mem = load_value(name);

14 if (mem!=NULL){

15 int len=get_pointee_size(name);

16 mem=malloc(sizeof(Node)*len);

17 for (int i=0; i<len; i++){

18 char elem_name[256];

19 snprintf(elem_name,256,"%s.%d",name,i);

20 *(mem+i)=SYM_Node_from_carved_ctx(elem_name);}}

21 return mem;}

22

23 Node SYM_Node_from_carved_ctx(const char *name){

24 Node ret;

25 char field_name[256];

26 snprintf(field_name,256,"%s.str",name);

27 ret.str=SYM_CharP_from_carved_ctx(field_name);

28 snprintf(field_name.256,"%s.next",name);

29 ret.next=SYM_NodeP_from_carved_ctx(field_name);

30 return ret;}

31

32 char *SYM_CharP_from_carved_ctx(const char *name){

33 char *mem = load_value(name);

34 if (mem!=NULL){

35 int len=get_pointee_size(name);

36 mem=malloc(sizeof(char)*len);

37 for (int i=0; i<len; i++){

38 SYM_char(mem+i, name);}}

39 return mem;}

Figure 2.9: The symbolic test driver/stub for the motivating example in Figure 2.1

Since a target function parser reads a global variable data and a parameter input, parser test driver

declares those variables as symbolic based on a carved DUC. For example, it sets a global variable data of

a Node pointer type symbolically using SYM NodeP from carved ctx("0.data")(Line 3) 2 and a parame-

ter variable input of a character pointer type symbolically using SYM CharP from carved ctx("input")(Line 5).

input is set symbolically based on a carved DUC of parser (saying cinput) stored in files as follows.

2The prefix “0.” of “0.data” indicates to use a value of data carved at the entry point of a target function parser.

This is because a global variable can be carved at the entry point of a target function f and at the exit points of the callee

functions gi of f (see Step 4 of Sect. 2.2).

13

First, SYM CharP from carved ctx("input") reads the pointer value (i.e., a memory address) of input

from cinput (Line 34). If the carved input value is not NULL, it obtains the size of the carved mem-

ory region pointed by input using get pointee size (Line 35). Then, it allocates memory (Line 36)

and applies symbolic setting for each memory element in the allocated memory region using SYM char

(lines 37-38). SYM char(mem+i, name) declares a memory location pointed by mem+i as a symbolic value

of char type and initializes the memory location with the carved value of variable whose name is name

in cinput as an initial test input of concolic testing.

data is set symbolically using SYM NodeP from carved ctx (Line 3) which is similar to SYM CharP from carved ctx

(except creation of member variable names at Lines 18–19).

14

Algorithm 1: V alueCarver(v, Tv)

Input: v: a variable to carve, Tv: a type of v

Output: Source code that will be inserted to the target program to carve v.

1 code := empty string

2 switch Tv do

3 case primitive type do

4 code += store value(v,Tv)

5 end

6 case array type do

7 foreach element vi of v do

8 code += V alueCarver(vi, Tvi)

9 end

10 end

11 case pointer type do

12 if v is NULL or the pointee of v is already carved then

13 code +=store value(v,Tv)

14 else if Tv is void pointer type then

15 T̂v := casted type of v (from usagevp)

16 code += declaration of a temp. variable v′ of type T̂v

17 code += assign v to v′

18 code += V alueCarver(v′, T̂v)

19 else if Tv is FILE pointer type then

20 code += code that stores the name of a file that v refers to

21 code += code that stores the current stream position of the file

22 else

23 code += store value(v,Tv)

24 foreach element vi of the valid memory region pointed by v do

25 code+= V alueCarver(vi, Tvi)

26 end

27 end

28 end

29 case struct type do

30 foreach member vi of v do

31 code += V alueCarver(vi, Tvi)

32 end

33 end

34 case union type do

35 mv := accessed member of v (from usageu)

36 V alueCarver(mv, Tmv
)

37 end

38 return code

39 end

15

Chapter 3. Experiments and Results

3.1 Experiment Setup

I have designed the following research questions to evaluate effectiveness of CUT2 in terms of branch

coverage on the CoREBench C programs.

3.1.1 Research Questions

RQ1. Soundness of carved dynamic unit contexts (DUCs): Does a target function f with

a DUC csif carved from a system test si execute in the same way to si?

For RQ1, I use gdb to extract a line trace of f (i.e., a sequence of the executed lines of f in the

execution order) from a system test si and a line of f from csif . Then, I check if these two line traces are

same.

RQ2. Branch coverage of SUT, SUT’, the on-the-fly concolic testing, and CUT2 : How

much does CUT2 achieve branch coverage, compared to SUT, SUT’, and the on-the-fly concolic testing?

For RQ2, I apply CUT2 to a target function f with a DUC csif as an initial test input for all system

tests sis that execute f . For fair comparison, I apply SUT, SUT’, and the on-the-fly concolic testing (see

Section 3.1.3) to f with the same total amount of time spent by CUT2 .

RQ3. Impact of the DUCs carved from the callee functions of f on branch coverage:

How much does CUT2 achieve branch coverage without the DUCs carved from the direct callee functions

of a target function f?

For RQ3, I evaluate the impact of the DUC carved from the direct callee functions of f by comparing

CUT2 and CUT2 without the DUC carved from the direct callee functions of f (i.e., without carving 3),

4), 5) items in Step 4 in Section 2.2).

3.1.2 Target Program Versions

I target the following 7 out of 22 faulty Coreutil program versions in CoREBench and exclude the

following 15 revisions for the following reasons:

• Clang/LLVM cannot handle the following eight versions correctly due to Clang/LLVM file ac-

cess bug (this bug was reported to the developers): 2e636af1, a6a447fc, f7f398a1, 6124a384,

b8108fd2, a860ca32, 86e4b778, 61de57cd, 6fc0ccf7

• The system tests involve a timing issue, which prevents a target unit with a carved DUC from

executing in the same way to the system test: 8f976798, d461bfd2

• The failing system test limits the memory size, which prevents CUT2 from carving DUCs: ec48bead

• The target function is main which may be an inappropriate target function for unit testing:

5ee7d8f5, 2238ab57

• The prototype implementation of CUT2 does not handle overlapped memory region correctly yet

(which is a very rare case): 76f606a9

16

Table 3.1: Target program versions and functions

ID
Target

program

Target functions

Name LoC #Branches #System
tests

Branch
Cov (%)

core.62543570 cp copy reg 401 86 72 55.8

copy internal 1033 212 116 58.5

core.b54b47f9 cut set fields 180 92 295 57.6

cut fields 117 42 175 66.7

core.be7932e8 cut set fields 196 94 287 58.5

cut fields 114 44 175 68.2

core.06aeeecb cut set fields 195 94 203 58.5

cut fields 115 44 109 68.2

core.a04ddb8d ls print color indicator 118 68 22 46.3

quote name 587 186 64 58.9

core.51a8f707 od print char 11 2 1 100.0

decode one format 254 88 5 48.9

core.64d4a280 seq scan arg 41 22 36 68.2

print numbers 55 20 33 65.0

Average 244.1 78.1 113.8 62.8

For each target program version, I target two functions: the faulty function and the most complex

function in terms of cyclomatic complexity. If the most complex function is the faulty function or main,

I target the next most complex function.

Table 3.1 describes 7 target program versions including a program version ID, a target program

name, a target function name, a size of a target function in LoC and a number of branches, a number of

system tests that reach the target function, and the branch coverage of the target function achieved by

the system tests. For all target program versions, I used all passing test cases provided in the Coreutils

package and all failing test cases provided in CoREBench.

3.1.3 Concolic Unit Testing Techniques to Compare

I have compared CUT2 with the following techniques:

• Symbolic Unit Testing (SUT): It generates a symbolic unit test driver with symbolic arguments to

a target function f and symbolic global variables wihtout any constraints on the symbolic values,

like CONBOL [2]. Also, SUT uses symbolic stubs that return a unconstrained symbolic value to

replace all direct callee functions of f .

• SUT’: It is same to SUT but I measure the branch coverage of SUT’ using the branches covered

by the test cases generated by SUT and the branches covered by the given system tests together

(for fair comparison with CUT2 which utilizes system tests).

• On-the-fly concolic testing (OTF): On-the-fly concolic testing performs concrete execution until a

target function f is invoked. When f is first executed, it sets all parameters and all global variables

17

read by f as symbolic and starts concolic testing from f . Thus, an initial context of f is obtained

from the concrete values constructed by the concrete execution starting from main until f is first

invoked. OTF utilizes given system tests as initial test inputs at system level. OTF represents a

hybrid approach of symbolic unit testing and concrete system testing proposed by Pǎsǎreanu et

al. [6]

• CUT2 without the carved DUCs from the callee functions (CUT2−): CUT2− is CUT2 without the

DUCs carved from the callee functions of f . CUT2− uses symbolic stubs like SUT.

All concolic unit testing techniques use DFS (depth first search) strategy in the experiments.

3.1.4 Measurement

To answer RQ1, I write a gdb script that sets breakpoints at every line of f and prints the executed

line whenever gdb reaches the breakpoints. I compare the two line traces using diff. To answer RQ2

and RQ3, I measure the branch coverage of SUT, SUT’, OTF, CUT2 , and CUT2− . For fair comparison

between SUT and CUT2 which utilizes system tests, I measure the branch coverage of SUT’ too.

3.1.5 Testbed Setting

For the experiments, I carve only the first DUC of f from a system test (i.e., one DUC per one system

test). For fair comparison, I make the running times of CUT2 , SUT, SUT’, OTF and CUT2− same.

For CUT2 , I set the maximum number of generated test cases as 1,000 for each carved DUC. I assign

the same amount of the total time spent by CUT2 (including the total amount of time spent to carve

all DUCs and the total amount of time spent by concolic test generation with all DUCs) to SUT and

SUT’. Also, I assign the same amount of the time spent by CUT2 to CUT2− for each system test.

All experiments were performed on machines equipped with Intel i5 3.6 Ghz CPU and 16 GB of

memory running Debian Linux 8 64 bits. I ran one CoREBench docker instance on each machine.

3.1.6 Implementation

The CUT2 prototype implementation is written in 628 lines of C++ code for the first pass instru-

menting tool, and 4,644 lines of C++ code for the second pass instrumenting tool using Clang/LLVM

4.0 [7]. The memory manager library is written in 138 lines of C code.

For concolic testing, I use CROWN [8] which extends CREST [9] to support complex C features

such as bitwise operators, union, bitfields, and so on.

3.1.7 Threats to Validity

A threat to external validity is the representativeness of the target programs. However, I believe

that this threat is limited because Coreutils programs are real-world programs and widely used by many

other researchers. Another threat to external validity is the possible bias of the system tests I used for

the experiments. To reduce this threat, I utilized all system tests provided by CoREBench and Coreutils.

A threat to construct validity is the use of the line traces to show the soundness of carved DUCs.

Two different execution paths might produce the same line trace if two or more branches are located in

one line (mainly due to a macro expansion). To reduce this threat, if a target function has the source

code line which contain two or more branches, I manually analyzed not only line traces but also execution

18

Table 3.2: Average size (byte) of DUCs carved at the entry point of target functions and at the exit

points of the direct callee functions

Avgerage DUC size Avgerage DUC size

ID Name Target Callee ID Name Target Callee

func. func. func. func.

62543570 copy reg 2139.4 4.0 a04ddb8d print color indicator 18658.6 1621.9

copy internal 5267.7 1651.5 quote name 344.4 8273.6

b54b47f9 set fields 1842.8 11.5 51a8f707 print char 131222.0 8.0

cut fields 117.9 830.7 decode one format 1121.0 0.0

be7932e8 set fields 1026.6 306.0 64d4a280 scan arg 897.1 50.1

cut fields 93.5 400.1 print numbers 115.2 57.3

06aeeecb set fields 2066.2 448.4
Average (except print char) 2597.3 1071.2

cut fields 74.0 270.4

Table 3.3: Average carving and concolic testing time of CUT2 per DUC (seconds)

ID Name Carving TC Total ID Name Carving TC Total

Gen. Gen.

62543570 copy reg 0.15 804.32 804.47 a04ddb8d print color indicator 0.25 778.24 778.49

copy internal 0.12 1404.17 1404.29 quote name 0.15 781.42 781.57

b54b47f9 set fields 0.04 673.16 673.20 51a8f707 print char 0.32 231.56 231.88

cut fields 0.10 701.03 701.13 decode one format 0.02 1102.19 1102.21

be7932e8 set fields 0.03 701.42 701.45 64d4a280 scan arg 0.03 405.13 405.16

cut fields 0.09 679.07 679.16 print numbers 0.02 512.03 512.05

06aeeecb set fields 0.04 901.24 901.28
Average 0.10 795.00 795.11

cut fields 0.08 1455.05 1455.13

paths using gdb. Also, in an extreme case, even if carved parameter or global variable values are different

from those in the corresponding system test executions, the two line traces might be same.

A threat to internal validity is possible bugs in the implementations of CUT2 and concolic unit

testing techniques I applied. I extensively tested my implementations to address this threat to internal

validity.

3.2 Experiment Result

This section analyzes the experiment results. For all comparison in the experiments in this section,

I applied Wilcoxon test with a significance level 0.05 to show the statistical significance. All comparison

results in this section are statistically significant unless mentioned otherwise.

3.2.1 Experiment Data

Table 3.2 shows the average size of the carved DUCs. For example, an amount of DUC carved at

the entry point of copy internal of 62543570 is 5267.7 bytes long and the one carved at the exit points

of all direct callee functions of copy internal of 62543570 is 1651.5 bytes long on average (see the left

column of the third row). This table shows that the amount of a DUC carved by the callee functions

19

Table 3.4: Average length of line traces

ID Name Avg. Len. ID Name Avg. Len.

of traces of traces

62543570 copy reg 60.0 a04ddb8d print color indicator 223.2

copy internal 83.6 quote name 127.9

b54b47f9 set fields 342.0 51a8f707 print char 1.0

cut fields 49.3 decode one format 18.0

be7932e8 set fields 139.5 64d4a280 scan arg 29

cut fields 47.5 print numbers 35.2

06aeeecb set fields 174.5
Average 98.0

cut fields 40.9

Figure 3.1: Two line traces of set fields in cut.c (06aeeecb) which are generated from a system test

si and a unit test execution with DUC carved from si

of a target function f is less than the amount of a DUC carved at the entry point of f on average (i.e.,

2597.3 bytes vs. 1071.2 bytes on average except an outlier print char of 51a8f707), but not negligible

amount.

Table 3.3 shows the average execution time of CUT2 including the carving time and the concolic

test generation time per a carved DUC. For example, copy internal of 62543570 takes 0.12 seconds to

carve a DUC from a system test and 1404.17 seconds to generate 1,000 concolic test executions from the

carved DUC as an initial test input on average (see the left column of the third row). On average, the

carving time takes less than 0.013% (= 0.10/795.11) of the total concolic unit testing time. Thus, the

overhead for carving DUCs is insignificant.

3.2.2 RQ1: Soundness of Carved DUCs

I have confirmed that the carved DUCs are sound because a line trace generated from a system test

si and one from DUC carved from si are same for all 14 target functions with all 113.8 system tests per

20

Table 3.5: Branch coverage of SUT, SUT’, OTF, and CUT2 (%)

ID Name SUT SUT’ OTF CUT2 ID Name SUT SUT’ OTF CUT2

62543570 copy reg 51.2 73.3 63.3 82.6 a04ddb8d print color indicator 61.2 78.8 74.1 89.5

copy internal 53.3 71.7 67.1 89.2 quote name 48.3 68.1 70.7 88.3

b54b47f9 set fields 58.7 71.7 73.8 93.5 51a8f707 print char 100.0 100.0 100.0 100.0

cut fields 45.2 81.0 84.5 88.1 decode one format 46.6 65.9 74.7 80.7

be7932e8 set fields 60.6 80.9 79.2 93.6 64d4a280 scan arg 63.6 86.4 86.4 86.4

cut fields 50.0 81.8 79.1 88.6 print numbers 70.0 85.0 85.0 85.0

06aeeecb set fields 61.7 69.1 74.5 94.7
Average 58.6 78.3 78.0 89.2

cut fields 50.0 81.8 79.1 88.6

target function on average (see Table 3.1). For example, Figure 3.1 shows a pair of the line traces of

set fields in cut.c (06aeeecb) generated from a system test and DUC carved from the system test,

respectively. As shown in the figure, the two line traces in Figure 3.1 are exactly same to each other.

Table 3.4 shows the average length of the line traces of target functions. For example of set fields

of cut (ID:06aeeecb) (see the left column of the second last row in the table), the average length of the

extracted line traces is 174.5 lines.

3.2.3 RQ2: Branch Coverage of SUT, SUT’, OTF, and CUT2

Table 3.5 shows the high branch coverage of CUT2 (i.e., 89.2% for the target functions on aver-

age). Also the table shows that CUT2 achieves higher branch coverage than SUT, SUT’, and OTF.

CUT2 achieves 30.6%p (=89.2%-58.6%) higher branch coverage than SUT on average. When I com-

pare CUT2 with SUT’, still CUT2 achieves 10.9%p (=89.2%–78.3%) higher branch coverage on average.

Comparing to OTF, again CUT2 achieves 11.2%p (=89.2%-78.0%) higher branch coverage on average.

Thus, I have confirmed that DUC based concolic unit testing (i.e., CUT2) improves concolic unit test

coverage in a large degree.

Figure 3.2 shows a concrete example showing the advantage of CUT2 over the other concolic testing

techniques. For a target function copy interal, CUT2 covers all 24 branches in Lines 1718, 1790, and

1836 while SUT covers none of them and OTF covers only 14 of them (the system tests cover only 10

of them). This is because those branches depend on src mode, which is updated by the callee function

XSTAT through a pointer parameter src sb (Line 1640). For SUT, the symbolic stub replacing XSTAT

does not set its arguments symbolic and fails to generate test inputs to reach those 24 branches. For

OTF, it spent too much time to explore all callee functions (and their descendant) symbolically and

fails to cover all these branches in given time budget. In contrast, CUT2 covers all these branches by

utilizing the carved DUCs from which CUT2 generates symbolic search space rich enough to cover all

those branches but focuses on a target function by not exploring the descendant functions symbolically

(i.e., using symbolic stubs).

3.2.4 RQ3: Impact of the DUCs Carved from the Callee Functions of f on

Branch Coverage

Table 3.6 shows that DUCs carved from the callee functions of a target function are crucial to achieve

high test coverage. CUT2 achieves 11.4%p (=89.2%-77.8%) higher branch coverage than CUT2− on

21

1609 static bool

1610 copy_internal (char const *src_name, ...

...

1620 struct stat src_sb;

...

1640 if (XSTAT (x, src_name, &src_sb) != 0)

1641 {

1642 error (0, errno, _("cannot stat %s"), ...

1643 return false;

1644 }

1645

1646 src_mode = src_sb.st_mode;

...

1717 if (!S_ISDIR (src_mode) && x->update)

1718 { // 6 branches

...

1788 if (!S_ISDIR (src_mode)

1789 && (x->interactive == I_ALWAYS_NO ...

1790 { // 10 branches

...

1835 if (!S_ISDIR (src_mode))

1836 {// 8 branches

Figure 3.2: Example where CUT2 achieves higher branch coverage than the other concolic testing

techniques

Table 3.6: Branch coverage of CUT2− and CUT2

ID Name Br. Cov. (%) ID Name Br. Cov. (%)

CUT2− CUT2 CUT2− CUT2

62543570 copy reg 73.3 82.6 a04ddb8d print color indicator 72.5 88.3

copy internal 75.9 89.2 quote name 71.7 89.5

b54b47f9 set fields 79.3 93.5 51a8f707 print char 100.0 100.0

cut fields 78.6 88.1 decode one format 67.0 80.7

be7932e8 set fields 75.5 93.6 64d4a280 scan arg 86.4 86.4

cut fields 77.3 88.6 print numbers 75.0 85.0

06aeeecb set fields 78.7 94.7
Average 77.8 89.2

cut fields 77.3 88.6

average. Note that the branch coverage achieved by CUT2− is comparable to SUT’ and OTF (i.e.,

CUT2− (77.8%), SUT’ (78.3%), OTF (78.0%)).

Thus, the experiment results imply that, for high unit test coverage, it is important to utilize DUC

22

provided by the descendant functions of a target function (which coincides with the field wisdom that a

developer has to develop stubs/mock carefully for high unit test effectiveness).

23

Chapter 4. Related Works

4.1 Automated Unit Testing Techniques based on System Tests

4.1.1 Generating Unit Tests from System Tests

Elbaum et al. [11] proposed a technique to generate unit tests from system tests; the technique

carves Java program states before and after an invocation of a target function f to generate unit test

inputs. OCAT [12] captures object instances during system executions and generates unit tests using

Randoop with the captured object and the mutated object instances as seed objects. GenUTest [13]

automatically generates unit tests and mock objects using captured method sequences during system

testing.

A limitation of these techniques is that the executions of the generated unit tests just replay the same

behaviors [11, 13] (or similar behaviors [12]) of a target unit in already performed system testing (i.e.,

they are applicable to only regression testing of evolving software, not to a single version of software). In

contrast, CUT2 automatically generates new tests to explore diverse behaviors and achieve high coverage

by utilizing DUCs carved from system tests as initial test inputs of concolic testing. Also, all these related

techniques depend on Java serialization [1] so that they cannot handle Java programs with unserializable

objects. In contrast, CUT2 develops its own carving tool applicable to complex C programs without

limitation.

4.1.2 Symbolic Unit Testing based on System Tests

Pǎsǎreanu et al. [6] proposed a combined approach of concrete system-level execution and symbolic

unit-level execution in Java Pathfinder (JPF). JPF monitors a concrete execution of a target program to

check that a concrete state satisfies a user-given condition which indicates a starting point of symbolic

execution. When the concrete state satisfies the condition, JPF starts symbolic execution at the location

with user-given symbolic input setting. CUT2 achieves much higher branch coverage than the approach

in [6] (see Section 3.2.3), because CUT2 can reduce symbolic execution space with little loss of useful

contexts by replacing the callee functions of a target function with symbolic stubs based on the DUCs

carved from system tests.

4.2 Concolic Testing Techniques

Several concolic testing techniques have been propsed. Table 4.1 shows breif comparison between

CUT2 and other concolic testing techniques.

4.2.1 Concolic Testing Engines

EXE [10], CREST [9], and CROWN [8] are concolic testing techniques for C programs. They

require a user to write not only symbolic test drivers/stubs but also select which variable/memory

region should be symbolic (i.e., which varaible/memory region works as test inputs). PeX [14] (also

known as IntelliTest) is a concolic unit testing technique for C# programs. PeX requires a user to

24

Table 4.1: Related work of concolic testing techniques

Related Automatic Generation of Utilizing

work Symbolic test drivers Symbolic stubs DUCs

EXE [10] X X X

CREST [9] X X X

CROWN [8] X X X

PeX [14] X X X

DART [15] O X X

SMART [16] O X X

CUTE [17] O X X

CILpp [18] O X X

CONBOL [2] O O X

UC-KLEE [19] O X X

CUT2 O O O

write symbolic unit test drivers/stubs using C# unit testing frameworks such as NUnit. Contrary to

them, CUT2 automatically generates symbolic unit test drivers/stubs for concolic testing. Moreover,

CUT2 automatically selects which variables to be symbolic according to the carved DUCs.

4.2.2 Concolic Testing Frameworks

DART [15], SMART [16], and CUTE [17] generate symbolic unit test drivers (but not symbolic

stubs) and test inputs for C programs. The generated unit test drivers specify only the parameters of a

target function f (not the global variables read by f) as symbolic inputs. CILpp [18] generates symbolic

unit test drivers and test inputs for C/C++ programs. CILpp modifies the unit test drivers generated

from directed-random test generation to symbolic unit test drivers for further enhancement of branch

coverage. On the other hand, CUT2 automatically generates not only test inputs, but also symbolic unit

test drivers/stubs utilizing carved DUCs.

CONBOL [2] generates symbolic unit test drivers/stubs and test inputs targeting large-scale em-

bedded C programs. Recently, UC-KLEE [19] generates symbolic unit test drivers using lazy symbolic

input initialization. The test driver generated by UC-KLEE directly invokes a target function f . During

symbolic execution, whenever f reads un-initialized variables, UC-KLEE specifies the variable as sym-

bolic inputs. UC-KLEE does not replace callees to stubs, but symbolically executes all callee functions.

I could not directly compare UC-KLEE with CUT2 because the UC-KLEE tool is not available and the

UC-KLEE paper does not report branch coverage completely.

4.3 Automatic Generation of Mock Objects/Testing Stubs

Several research work [20, 21, 22, 23, 24] use automated mocking to improve test coverage and

bug detection capability of automated unit testing. Dsc+Mock [20] generates mock objects for testing

the interfaces of Java programs. Dsc+Mock collects type constraints on the interfaces during symbolic

execution and generates mock objects using the solution of the type constraints. Galler et al. [21] proposed

25

a technique to generate mock objects using the design-by-contract specification. Saff et al. [22, 23]

proposed a technique to generate mocking objects from system test executions (i.e., mock objects are

generated based on the interactions between the target code and its environment captured during system

executions). Since these techniques generate only concrete mock objects, not symbolic mocks, they have

a limitation in providing various dynamic unit contexts.

4.4 Capture and Replay Techniques

There exist several research techniques to capture and replay program states for testing and debug-

ging purpose [25, 26, 27, 28, 29, 30]. Many of them are developed to help debugging by reproducing

field failures [25, 26, 27] or concurrent behaviors [28, 29, 30] (e.g., thread scheduling). Since ADDA[25]

captures external events specified by a user to replay field failures, it does not support unit testing di-

rectly. ReCrash [26] captures only parameters of a target Java method while CUT2 carves parameters

and global variables of a target C function to obtain DUCs accurately. BugRedux [27] captures values

of global and local variables on which conditional statements depend on and tries to generate input

values which eventually lead to the same branching decisions as captured. However, Bugredux may fail

to reproduce the captured behavior (e.g., 10% of the program runs in the experiments failed to repro-

duce the target execution paths) while CUT2 carves and replay DUCs precisely (see Section 3.2.2). In

addition, CUT2 generates symbolic test drivers and stubs which utilize DUCs to build symbolic search

space to generate effective test inputs, which is a unique contribution compared to these related tech-

niques [25, 26, 27]. Since the techniques for concurrent behaviors target different domain from CUT2 ,

it is not straightforward to compare them with CUT2 . However, CUT2 can adopt interesting features

of those techniques (e.g., utilizing hardware support and/or parallel records using multi-cores) as future

work.

26

Chapter 5. Conclusion and Future Work

5.1 Conclusion

In this dissertation, I have demonstrated that dynamic unit contexts carved from system tests can

improve the effectiveness of automated concolic unit testing. For this purpose, I developed a new concolic

unit testing technique CUT2 , which utilizes dynamic unit contexts (DUCs) of a target function carved

from system tests as initial test inputs, for complex C programs and showed that CUT2 can effectively

increase branch coverage by applying CUT2 to 7 real-world C program versions in CoREBench. In the

experiments targeting CoREBench, CUT2 achieves 90% branch coverage on average, which is at least

10.9%p higher branch coverage than other concolic unit testing techniques (i.e., SUT, SUT’, and OTF).

In addition, this dissertation emphasizes that utilizing DUCs from the callee functions of a target function

f is important for achieving high branch coverage.

5.2 Future Work

As future work, I plan to find another way to utilize the dynamic unit contexts of a target function

f carved from system tests.

5.2.1 Dynamic Unit Contexts in Automated Debugging

Dynamic unit contexts of a function f contains the input values of f in the system execution. I

expect that DUCs of f from passing test executions and failing test executions have some noticeable

difference. I plan to utilize these differences for automated debugging or at least helping the developers

to debug the program.

5.2.2 Preconditions of a Function

By analyzing DUCs of a target function from various and diverse valid system executions and finding

the common features from those DUCs, I will try to build a tool that finds preconditions of the function

automatically. These preconditions can be utilized for many purposes, such as preventing malicious

inputs.

5.2.3 Deeper Study on Dynamic Unit Contexts

I plan to compare the DUCs of target functions with different characteristics. For example, faulty

functions vs. correct functions and/or simple functions vs. complex functions. If there is a meaningful

result, then this could provide a new insight to detect a bug.

27

Bibliography

[1] ”Java Object Serialization Specification,” https://docs.oracle.com/javase/8/docs/platform/

serialization/spec/serialTOC.html, accessed: 2018-11-27.

[2] Y. Kim, Y. Kim, T. Kim, G. Lee, Y. Jang, and M. Kim, ”Automated unit testing of large industrial

embedded software using concolic testing,” in Proceedings of the 2013 IEEE/ACM 28th International

Conference on Automated Software Engineering, pp. 519-528, Nov 2013.

[3] Y. Kim, Y. Choi, and M. Kim, ”Precise Concolic Unit Testing of C Programs with Extended

Units and Symbolic Alarm Filtering,” Proceedings of the 40th International Conference on Software

Engineering (ICSE), ACM, pp. 315-326, 2018.

[4] Y. Kim, M. Kim, Y. J. Kim, and Y. Jang, ”Industrial Application of Concolic Testing Approach:

A Case Study on libexif by Using CREST-BV and KLEE,” 2012 34th International Conference on

Software Engineering (ICSE), IEEE, pp. 1143-1152, June 2012.

[5] M. Kim, Y. Kim, and Y. Jang, ”Industrial Application of Concolic Testing on Embedded Software:

Case Studies,” 2012 IEEE Fifth International Conference on Software Testing, Verification and

Validation (ICST), IEEE, pp. 390-399, 2012.

[6] C. S. Pǎsǎreanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-Burlet, M.Lowry, S. Person, and M.

Pape, ”Combining unit-level symbolic execution and system-level concrete execution for testing

NASA software,” in Proceedings of the 2008 International Symposium on Software Testing and

Analysis, ser. ISSTA ’08, New York, NY, USA: ACM, pp. 15-26, 2008.

[7] C. Lattner and V. Adve, ”LLVM: A compilation framework for lifelong program analysis & trans-

formation,” in Proceedings of the International Symposium on Code Generation and Optimization

(CGO), 2004.

[8] ”CROWN: Concolic testing for Real-wOrld softWare aNalysis,” https://github.com/swtv-

kaist/CROWN.

[9] J. Burnim and K. Sen, ”Heuristics for Scalable Dynamic Test Generation,” Proceedings of the 2008

23rd IEEE/ACM international conference on automated software engineering, pp. 443-446, 2008.

[10] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler, ”EXE: automatically generating

inputs of death,” Journal of ACM Transactions on Information and System Security (TISSEC), Vol.

12, No. 2, Article No. 10, December 2008.

[11] S. Elbaum, H. Chin, M. Dwyer, and M. Jorde, ”Carving and replaying differential unit test cases

from system test cases,” IEEE Transactions on Software Engineering (TSE), vol. 35, no. 1, pp.

29-45, Jan 2009.

[12] H. Jaygarl, S. Kim, T. Xie, and C. K. Chang, ”OCAT: Object capture-based automated testing,”

in Proceedings of the International Symposium on Software Testing and Analysis (ISSTA), 2010.

[13] B. Pasternak, S. Tyszberowicz, and A. Yehudai, ”GenUTest: A unit test and mock aspect generation

tool,” Software Tools for Technology Transfer, vol. 11, no. 4, pp. 273-290, 2009.

28

[14] N. Tillmann and J. De Halleux, ”Pex: White box test generation for .NET,” in Proceedings of the

2nd International Conference on Tests and Proofs, ser. TAP’08. Berlin, Heidelberg: Springer-Verlag,

pp.134-153, 2008.

[15] P. Godefroid, N. Klarlund, and K. Sen, ”DART: Directed automated random testing,” in Proceedings

of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI),

2005.

[16] P. Godefroid, ”Compositional dynamic test generation,” Proceedings of the 34th annual AMC

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 47-54, 2007.

[17] K. Sen, D. Marinov, and G. Agha, ”CUTE: A concolic unit testing engine for C,” in Proceedings

of the 10th European Software Engineering Conference Held Jointly with 13th ACM SIGSOFT

International Symposium on Foundations of Sotware Engineering, ser. ESEC/FSE13. New York,

NY, USA: ACM, pp. 263-272, 2005.

[18] P. Garg, F. Ivančić, G. Balakrishman, N. Maeda, and A. Gupta, ”Feedback-directed unit test

generation for C/C++ using concolic execution,” 2013 35th International Conference on Software

Engineering (ICSE), pp. 131-141, 2013.

[19] D. A. Ramos and D. Engler, ”Under-constrained symbolic execution: Correctness checking for

real code,” in Proceedings of the 24th USENIX Conference on Security Symposium, ser. SEC’15,

Berkeley, CA. USA: USENIX Association, pp. 49-64, 2015.

[20] M. Islam and C. Csallner, ”Dsc+Mock: A test case + mock class generator in support of coding

against interfaces,” in Proceedings of the Eighth International Workshop on Dynamic Analysis, ser.

WODA’10, New York, NY, USA: ACM, pp. 26-31, 2010.

[21] S. J. Galler, A. Maller, and F. Wotawa, ”Automatically extracting mock object behavior from design

by contract™ specification for test data generation,” in Proceedings of the 5th Workshop on

Automation of Software Test, ser. AST’10. New York, NY, USA: ACM, pp. 43-50, 2010.

[22] D. Saff and M. D. Ernst, ”Mock object creation for test factoring,” in Proceedings of the 5th

ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering,

ser. PASTE’04. New York, NY, USA: ACM, pp. 49-51, 2004.

[23] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst, ”Automatic test factoring for Java,” in Proceedings

of the 20th IEEE/ACM International Conference on Automated Software Engineering, ser. ASE’05.

New York, NY, USA: ACM, pp. 114-123, 2005.

[24] K. Taneja, Y. Zhang, and T. Xie, ”Moda: Automated test generation for database applications via

mock objects,” in Proceedings of the International Conference on Automated Software Engineering

(ASE), 2010.

[25] J. Clause and A. Orso, ”A technique for enabling and supporting debugging of field failures,” in

29th International Conference on Software Engineering (ICSE’07), pp. 261-270, May 2007.

[26] S. Artzi, S. Kim, and M. D. Ernst, ”Recrash: Making software failures reproducible by preserv-

ing object states,” in Proceedings of the 22nd European Conference on Object-Oriented Program-

ming, ser. ECOOP’08, Berlin, Heidelberg: Springer-Verlag, pp. 542-565. 2008. [Online]. Available:

http://dx.doi.org/10.1007/978-3-540-70592-5 23

29

[27] W. Jin and A. Orso, ”Bugredux: Reproducing field failures for in-house debugging,” in 2012 34th

International Conference on Software Engineering (ICSE), pp. 474-484, June 2012.

[28] P. Liu, X. Zhang, O. Tripp, and Y. Zheng, ”Light: Replay via tightly bounded recording,” in

Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Im-

plementation, ser. PLDI’15, New York, NY, USA: ACM, pp. 55-64, 2015. [Online]. Available:

http://doi.acm.org/10.1145/2737924.2738001

[29] R. O’Callahan, C. Jones, N. Froyd, K. Huey, A. Noll, and N. Partush, ”Engineering record and

replay for deployability,” in Proceedings of the 2017 USENIX Conference on Usenix Annual Technical

Conference, ser. USENIX ATC’17. Berkeley, CA, USA: USENIX Association, pp. 377-389, 2017.

[Online]. Available: http://dl.acm.org/citation.cfm?id=3154690.3154727

[30] A. J. Mashtizadeh, T. Garfinkel, D. Terei, D. Mazieres, and M. Rosenblum, ”Towards

practical default-on multi-core record/replay,” in Proceedings of the Twenty-Second Interna-

tional Conference on Architectural Support for Porgramming Languages and Operating Sys-

tems, ser. ASPLOS’17, New York, NY, USA: ACM, pp. 693-708, 2017. [Online]. Available:

http://doi.acm.org/10.1145/3037697.3037751

30

Acknowledgments in Korean

지난 2년의 석사 과정 동안, 제가 이 논문을 완성할 수 있도록 도움을 주신 모든 분들께 이 지면을 빌어

감사의 말씀을 전하고자 합니다. 먼저 언제나 저를 믿고 격려해 준 아버지, 어머니, 그리고 동생에게 감사

드립니다. 부모님의 믿음과 격려가 있었기에 지금까지 해내올 수 있었습니다. 동생의 이해와 배려로 석사

과정을 무사히 지낼 수 있었습니다.

저에게 많은 가르침을 주신 김문주 교수님께 감사드립니다. 많이 부족했던 저를 잘 이끌어주시고, 때

때로 흔들리는 저를 잘 바로잡아주셨기에 이런 훌륭한 결실을 맺을 수 있게 되었습니다. 연구의 분야에서만

국한되는 것이 아닌, 앞으로도 제 인생에 도움이 될 많은 조언들을 주셔서 제가 크게 성장할 수 있었습니다.

제가 이 연구실에서 연구할 수 있도록 기회를 주신 김문주 교수님께 다시 한 번 감사드립니다. 제 연구에

많은 도움을 주신 김윤호 연구조교수님께 감사드립니다. 제가 여러가지 어려움에 부딪힐 때마다 토론을

통해 대안과 실마리를 주시며 이끌어 주셨기에 여기까지 올 수 있었습니다. 그리고 실험을 하는 과정에서

주신 많은 도움에도 감사드립니다. 제가 연구실 생활에 잘 적응할 수 있도록 도움을 주신 김현우, 양웅규

졸업생에게 감사드립니다. 연구실에서 함께 공부한 고봉석, 박건우, Loc Duy Phan, 김진솔, 김찬수, 이아청

학생에게도 감사드립니다. 모두가 각자의 길에서 최고가 되기를 기원합니다.

대학원 생활 동안 항상 힘이 되어준 강승모, 임선우, 임한빈, 정정호 학생에게도 감사드립니다. 언제나

알게 모르게 저를 지탱해주는 원동력이었고, 덕분에 즐겁게 석사 생활을 할 수 있었습니다. 마지막으로 여기

적지 못한 많은 분들께도 감사드립니다.

여러분의 도움으로 만든 이 작은 결실이 다른 사람에게 조금이나 보탬이 되기를 바랍니다.

31

Curriculum Vitae in Korean

이 름: 임 현 수

생 년 월 일: 1995년 01월 09일

전 자 주 소: hyunsu.lim01@gmail.com

학 력

2010. 3. – 2012. 2. 고등학교 (2년 수료)

2012. 2. – 2017. 2. 한국과학기술원 전산학부 (학사)

2017. 3. – 2019. 2. 한국과학기술원 전산학부 (석사)

학 회 활 동

1. 임현수, 김윤호, 김문주, “시스템테스트케이스를이용한 C프로그램의동적유닛입력값자동수집및

재연기술,” Korea Software Congress (KSC), Dec 20-22, 2017 (Distinguished best paper award)

연 구 업 적

1. 임현수, 김윤호, 김문주, “C 프로그램의 동적 및 정적 분석을 이용한 시스템 실행에서의 유닛 입력 값

자동 수집 및 재연,” Journal of KIISE, Vol. 45, No. 10, pp. 1035-1044, October. 2018.

32

	 Contents
	 List of Tables
	 List of Figures
	Introduction
	Previous Approaches
	Thesis Statement and Contributions
	Thesis Statement
	Proposed Approach
	Technical Challenges and Solutions
	Contributions

	Structure of the Dissertation

	Concolic Unit Testing with Carved dynamic Unit conTexts (CUT2) Technique
	Motivating Example
	Description of the Example
	Limitation of Concolic Unit Testing

	Overview
	Generation of Carving Program PC
	Primitive variable (Lines 3–5)
	Array Variable (Lines 6–10)
	Pointer Variable (Lines 11–28)
	struct Variable (Lines 29–33)
	union Variable (Lines 34–37)

	Memory Validity Checking
	Generation of Symbolic Driver and Stubs

	Experiments and Results
	Experiment Setup
	Research Questions
	Target Program Versions
	Concolic Unit Testing Techniques to Compare
	Measurement
	Testbed Setting
	Implementation
	Threats to Validity

	Experiment Result
	Experiment Data
	RQ1: Soundness of Carved DUCs
	RQ2: Branch Coverage of SUT, SUT', OTF, and CUT2
	RQ3: Impact of the DUCs Carved from the Callee Functions of f on Branch Coverage

	Related Works
	Automated Unit Testing Techniques based on System Tests
	Generating Unit Tests from System Tests
	Symbolic Unit Testing based on System Tests

	Concolic Testing Techniques
	Concolic Testing Engines
	Concolic Testing Frameworks

	Automatic Generation of Mock Objects/Testing Stubs
	Capture and Replay Techniques

	Conclusion and Future Work
	Conclusion
	Future Work
	Dynamic Unit Contexts in Automated Debugging
	Preconditions of a Function
	Deeper Study on Dynamic Unit Contexts

	Bibliography
	Acknowledgments in Korean
	Curriculum Vitae in Korean

