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Abstract

Although mutation analysis is important for various software analysis tasks, there exists no practical mu-

tation tools for modern, complex, real-world C programs. I have developed MUSIC (MUtation analySIs

tool with high Configurability and extensibility) which generates mutants for modern complex real-world

C programs. I have conducted a case study on Siemens benchmark programs and a modern real-world C

program cURL to compare MUSIC with Milu, Proteum in terms of applicability and number of stillborn

(i.e. syntactically illegal) mutants generated. In this case study, MUSIC successfully generates mutants

without any stillborn mutants.

Another serious obstacle for mutation analysis is the huge cost of running test suites on a large

number of mutants. To resolve this problem, I have proposed a new mutation operator-based mutant

reduction technique REFINER which applies cost-considerate linear regression (i.e., CLARS) on fine-

grained mutation operators. Also, I have applied REFINER to predict hard-to-kill mutation score which

is more valuable to measure test suite quality than commonly used mutation score.

The experiment results show that, while sustaining accurate prediction power to estimate hard-

to-kill mutation score, REFINER selects far fewer mutants than CLARS on the traditional mutation

operators (i.e., 2.0% vs. 16.5%). Also, REFINER predicts hard-to-kill mutation score 4.5, 4.4, and 4.3

times more accurate than mutant reduction techniques that use random selection, Offutt’s four mutation

operators selection, and, only SSDL mutation operator respectively.

Keywords Mutation analysis, practical mutation tool, C programs, hard-to-kill mutation score predic-

tion, fine-grained mutation operator, mutant reduction, cost-considerate linear regression
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Chapter 1. Introduction

Software testing is an investigation conducted to confirm the quality, reliability of software. The

investigation executes a target software against a set of test cases and checks whether the output meets

expected criteria. Unfortunately, if the quality of a test set is bad, passing all the tests cannot guarantee

the quality of target software. For example, a bad test set may have only 25% code coverage, and not

cover, or test many core functions of the target software. So passing such a test set does not guarantee

that the target software operates well as expected. For successful software testing, it is important to

evaluate the quality of the test suite.

Mutation analysis [1] has been used in various aspects of software testing, for test suite quality

evaluation [1, 10, 13], test case prioritization [2, 48, 49], test generation [3, 4, 47], debugging [5, 6, 37],

and its application is getting wider [7, 8]. Mutation analysis generates many variants of a program (called

mutants) by applying a set of syntactic code changes (called mutation operators). Then, it runs test

suites on the mutants, and analyzes the output difference between the original program and the mutants.

A mutant m is killed by a test set T if for some test case t ∈ T , the output of m is different from that

of the original program. For test suite quality evaluation, the ratio of the number of killed mutants over

the number of generated mutants (called mutation score) can be used as a measure of quality of test

suite.

Although mutation analysis is important for various software analysis tasks, there exist few practical

mutation tools for C programs. Existing mutation tools for C programs often fail to generate useful

mutants of a modern real-world C program. For example, Proteum [33, 34, 35] often fails to generate

mutants for modern C programs because it does not support recent C standard later than C89. As

another example, Milu [36] generates many stillborn (i.e., syntactically illegal) mutants due to incorrect

handling of types including typedef, enum, const type qualifier and an array type.

Another obstacle of mutation analysis is its high runtime cost. For example, a mutation testing tool

for C programs MUSIC [9] generates 347,636 mutants for grep-2.0 (5696 LoC) by applying 108 mutation

operators. It takes around 483 hours to run the regression test suite of 809 test cases on all generated

mutants. As the size and complexity of the target software grows, more mutants are generated, which

also increases the time cost of mutation analysis. Considering how frequently real-world software and its

test suite are updated, generating and executing a large set of mutants on a large test suite is impractical.

Hence, in order to reduce the cost of mutation analysis for test suite quality evaluation, various mutant

reduction techniques such as operator-based mutant selection and random selection, have been proposed

to select and use a small, representative subset of all generated mutants to calculate mutation score

accurately.

1



1.1 Related Works

1.1.1 Existing Mutation Tools for C Programs

Delamaro et al. [33, 34, 35] developed PROgram TEsting Using Mutant (Proteum), a mutation

tool supporting the application of mutation throughout software development. The original version of

Proteum supports 75 C mutation operators defined by Agrawal et al. [31], and provides functionalities for

executing generated mutants against given test cases. The second version, Proteum/IM 2.0, provides an

additional 33 C interface mutation operators, which attempts to simulate integration errors (i.e. errors

related to connection between two functions). A drawback of Proteum is that it fails to generate mutants

for modern C programs because it does not support recent C standard later than C89.

Jia and Harman [36] developed Milu, a C mutation testing tool designed for both first order and

high order mutation testing. Milu, by default, supports 28 C mutation operators and comes with two

mode: traditional mode and higher order mode. The traditional mode supports first order mutation

testing, in which users can use pre-defined or customized mutation operators. The higher order mode is

designed for research on subsuming High Order Mutants. A shortcoming of Milu is that due to incorrect

handling of types in C including typedef, enum, const type qualifier and an array type, Milu generates

many mutants containing syntactic errors (i.e. stillborn mutants). Generating many stillborn mutants

may increase even further the time cost of mutation analysis.

1.1.2 Mutation Operator based Mutant Reduction Techniques

Operator-based mutant selection determines a set of mutation operators, and select only mutants

generated by these operators. Offutt et al. [10] identified five out of 22 mutation operators in Mothra

as a selective set of mutation operators sufficient for mutation testing. They conducted experiment on

10 programs, generating five test suites per program which kill all mutants generated by the sufficient

set of the five operators. They then measured the mutation score of these test suites with respect to all

generated mutants. The result shows that all test suites that killed all mutants generated by the five

selected operators have an average mutation score of 0.995 with respect to all generated mutants. On

average, Offutt et al.́s selective mutation operator set selects 22.4% of generated mutants.

Barbosa et al. [11] proposed six guidelines to identify a sufficient set of mutation operators, which

were applied to a set of 27 small C programs. The resulting sufficient set of 10 mutation operators was

compared with Offutt et al. [10], Wong et al. [12], and random mutant selection (10%, 20%, 30%, 40%)

in terms of mutation score, mutant selection percentage. The sufficient set determines the best mutation

score (0.99), and on average, selects 35% of generated mutants.

Namin et al. [13], views the mutant selection problem as an instance of the variable selection problem.

They applied Cost-Based Least Angle Regression (CBLARS), to seven Siemens programs and selected

the first model with R2 higher than 0.98 to identify a sufficient set of 28 C mutation operators. For each

program, they generated mutants using Proteum’s 108 mutation operators, and generated 100 test suites

of various sizes. After conducting explanatory experiment on tcas, the authors noted that executing

all mutants would take too much time to be feasible, so for each of six other programs, they randomly

selected 2000 mutants for experiment. The mutation analysis data of seven programs forms training

data for CBLARS to generate models. The selected set of 28 mutation operators selects 7.4% of around

15,000 mutants selected for experiment.

Deng et al. [27] conducted an empirical evaluation of Statement Deletion (SSDL) mutation operator

2



for Java programs and found that test sets, which kill all SSDL mutants, achieve high mutation scores

with respect to mutants generated by all mutation operators. They conducted experiments on 40 Java

classes, whose size ranging from 1 to 26 methods and from 29 to 433 LoC. For each target class, Java

mutation tool muJava [1] is employed to generate mutants. The total number of SSDL mutants generated

accounted for 19% of all generated mutants. Test suites, which kill all SSDL mutants, are manually

generated. Of 40 generated test suites, the average mutation score was 0.92, and the median mutation

score was 0.93.

1.1.3 Random Mutant Selection Techniques

Random mutant selection was first proposed by Acree et al. [14] and Budd [15]. Wong and

Mathur [16] empirically studied the technique of randomly selecting 10% to 40% mutants generated

with 22 mutation operators in Mothra. They evaluated the selected mutants based on the number of

selected mutants, the number of the test cases needed to kill all selected mutants, and the mutation score

with respect to all non-equivalent mutants. The experiment was conducted using four Fortran programs.

In terms of the mutation scores, average mutation score of the test sets that kills all randomly selected

mutants with respect to all generated mutants are higher than 0.95. The authors concluded that x%

random mutant selection can provide a significant reduction in terms of the number of required test cases

and mutants, and suffer a small loss in ability to predict mutation scores.

Despite the simplicity of random mutant selection, Zhang et al. [17] has shown that it is not inferior

to other operator-based mutant selection techniques. They compared two random selection techniques

with the three operator-based mutant selection techniques – Offutt et al. [10], Namin et al. [13] and

Barbosa et al. [11]. The first random selection technique randomly selects a set of mutants whose size

is equal to the x% of the mutants selected by an operator-based technique. The second one randomly

selects one mutation operator, then randomly selects a mutant generated by that operator. These steps

are repeated until the selected mutant set’s size is equal to the x% of the mutants selected by an operator-

based technique. The two random techniques are evaluated with x = 50%, 75% and 100%. These five

techniques were evaluated on seven Siemens programs. For each selected mutant set, 50 test suites that

kill all mutants in the mutant set were created, and their mutation score with respect to all mutants

were measured. The effectiveness of all five techniques on the seven programs were all above 99%. Also,

they found out that at x = 100%, none of the operator-based mutant selection techniques was superior

to the random mutant selection techniques.

Zhang et al. [19] combined Offutt et al.’s sufficient set of five mutation operators [10] with eight

sampling strategies. The experiment was conducted on 11 Java programs. For each program and

sampling strategies, they sampled from the set of mutants selected by Offutt et al.’s sufficient set 20

times with sampling ratio of 5%, 10%, ..., 95%. Two evaluation approaches were employed. The results

of the first approach show that the test suites that kill all sampled mutants achieve higher than 98%

mutation score with respect to all mutants. In the second approach, 100 test suites were randomly

created for each sample and their mutation scores with respect to the sampled mutants and all generated

mutants were measured. They then applied linear regression and measured R2 to see how well mutation

scores with respect to the sampled mutants can predict mutation scores with respect to all mutants. At

sampling ratio of 5%, the R2 values were high, ranging from 0.945 to 0.998.

3



1.1.4 Predictive Mutation Testing

Zhang et al. [51] proposed Predictive Mutation Testing (PMT), an approach to predict mutation

testing results without executing mutants. PMT builds a binary classification model, which takes as

inputs 15 features of the targeted mutant m and test t, and outputs whether t kills m without executing

m against t. The performance of PMT was evaluated under two application scenario (cross-version

and cross-project) using nine Java projects, which are widely used in previous software testing research.

The following metrics were measured: Precision, Recall, F-measure, Area under ROC curve (AUC) and

Absolute Prediction Error.

For cross-project experiment, the authors conducted a nine-fold cross validation experiment to

evaluate PMT. For each target program P , mutation testing data of eight other programs were used as

training data and data of P was used as testing data. The results show that the Absolute Prediction

Error of seven out of nine projects are below 0.1 and all other metrics are above 0.85. In cross-version

experiment, for each project, up to ten versions of a project were selected. For each version v, the authors

used version v− 1 as training set, and version v as testing set. The results show the Absolute Prediction

Error of 37 out of 39 versions are below 0.05, and almost all other metric values are above 0.9.

The authors compared PMT with traditional mutation testing (using mutation testing tool PIT [52])

in terms of efficiency. The experimental results show that PMT improves the efficiency of mutation testing

by up to 151.4 times while incurring less than 0.1 Absolute Prediction Error.

1.2 Thesis Statement

The thesis statement of this dissertation is as follows:

Fine-grained mutation operators refined from coarse-grained mutation operators can improve

mutant reduction technique practically.

Coarse-grained mutation operators refer to the 108 C mutation operators proposed by Agrawal et

al. [31] and Delamaro et al. [32]. Fine-grained mutation operator is an idea proposed in this disseration

to improve the effectiveness of mutation reduction techniques.

A traditional mutation operator ri can be refined into fine-grained mutation operators ri,1, ri,2, ..., ri,n

whose domains and ranges form partitions of the domain and range of ri, respectively. For example, tra-

ditional mutation operator OLLN (logical operator mutation operator) can be refined into OLLN&&→||,

OLLN||→&&. Note that each fine-grained mutation operator ri,j generates a much smaller number of

mutants than its traditional mutation operator ri. Also, ri and all of its fine-grained mutation operators

ri,1, ri,2, ..., ri,n generate the same set of mutants. More details on fine-grained mutation operator and

its application will be given in Section 1.3.2 and Chapter 3.

1.3 Proposed Approach

1.3.1 MUSIC: Mutation Analysis Tool with High Configurability and Ex-

tensibility

To address the lack of practical mutation tools for C programs, this dissertation proposes MUtation

analySIs tool with high Configurability and extensibility (MUSIC) to generate mutants for modern com-

plex real-world C programs that consist of multiple source files with complex compilation commands.

4



MUSIC implements 75 mutation operators defined by Agrawal et al. [31] and 33 interface mutation op-

erators introduced by Delamaro et al. [32]. MUSIC is designed to be extensible for a user to easily make

a new mutation operator.

One notable feature of MUSIC is its fine-grained configuration of mutant generation, which can

satisfy various purposes of mutation analysis. In other words, MUSIC allows a user to specify a target

domain and a range of a mutation operator and a target scope of mutation. For example, MUSIC can

apply arithmetic mutation operator (OAAN) to only one of {+,-} and mutate it to only * between

Line 100 and Line 200 of target.c.

I have applied MUSIC, Milu, and Proteum to seven Siemens benchmark programs [23] and a modern

large program cURL [39]. I evaluate these tools in terms of applicability and number of stillborn mutants

generated. For both Siemens benchmarks and cURL, MUSIC successfully generates mutants without

any manual modification of the target programs and it generates no stillborn mutant. In contrast,

Proteum requires manual source code modification to generate mutants for Siemens benchmarks and

fails to generate mutants for cURL. Milu generates many stillborn mutants (34.18% and 75.31% of the

mutants for Siemens benchmarks and cURL were syntactically illegal, respectively).

1.3.2 REFINER: Refined Mutation Operator-based Mutant Reduction

To address the time cost problem of mutation analysis, this dissertation proposes REFINEd mutation

operator based mutant Reduction (REFINER), a salient technique to reduce the number of the mutants

generated for mutation analysis. REFINER selects a subset of fine-grained mutation operators that

are refined from the traditional mutation operators, by using cost-considerate least-angle regression

(CLARS) [18].

The motivation of REFINER to target refined mutation operators is based on the observation that

the traditional mutation operators ris may be similar/redundant to each other (i.e., a set of mutants Mi

generated by applying ri may be highly correlated with Mj). In other words, many mutants generated

by the traditional mutation operators are not useful to learn an accurate and efficient prediction model.

In contrast, the correlation between fine-grained mutation operators can be lower than that between

the traditional mutation operators (see RQ1 in Section 4.2.1) and the mutants generated by the refined

mutation operators can be used to learn an accurate and efficient prediction model.

Also, REFINER focuses to accurately predict hard-to-kill mutation score (i.e., mutation score cal-

culated using only hard-to-kill mutants), not mutation score using the whole set of generated mutants

(widely performed in literature [13, 17, 19]). For a given mutant set M and a test suite T of a program

P , a mutant m ∈M is a hard-to-kill mutant if only k% of T can kill m with small k. In this disseration,

k is set to be 3, 5, and 7. REFINER focuses to accurately predict hard-to-kill mutation score because

hard-to-kill mutants are valuable to measure the quality of a test suite [20, 21, 22] as easy-to-kill-mutants

in the whole set of mutants have severe redundancy and inflict noises to measure the quality of target

test suites [50]. To my best knowledge, REFINER is the first mutant reduction technique to predict

hard-to-kill mutation score.

To demonstrate the effectiveness of REFINER, I have applied REFINER to the six real-world C

programs in SIR [23] to predict mutation score of hard-to-kill mutants. The experiment result shows

that

• REFINER selects only 2% of all mutants (in contrast to CLARS on the traditional mutation

operators which selects 16.5% of all mutants), and
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• REFINER generates a very accurate prediction model (i.e., Mean Squared Error (MSE) between

the predicted hard-to-kill mutation scores and real ones is only 0.011 on average over all target

programs).

• REFINER predicts hard-to-kill mutation score 4.5, 4.4, and 4.3 times more accurate than mutant

reduction techniques that use random selection, Offutt’s four mutation operators selection, and

only SSDL mutation operator selection, respectively.

1.4 Contributions

The contributions of this disssertation are as follows:

1. I have developed MUSIC which supports 108 C mutation operators, is highly configurable and easy

to extend for various mutation analysis purposes targeting modern complex real-world C programs.

• MUSIC provides 75 mutation operators defined in Agrawal et al. [31] and 33 interface mutation

operators [32] which do not generate stillborn mutants.

• I am upgrading MUSIC to support fine-grained mutation operators.

2. I have performed a case study to evaluate Milu, Proteum and MUSIC on seven C programs in

Siemens benchmarks and a modern real-world C program cURL and demonstrated that MUSIC

has high applicability and generates no stillborn mutant.

3. The idea and development of fine-grained mutation operators for mutant reduction is salient.

• Through experiments, I have shown that fine-grained mutation operators are less correlated

than the existing traditional mutation operators, which can help REFINER learn a more

accurate and efficient prediction model (Section 4.2.1).

4. I have developed REFINER, a new technique that learns an accurate and cost-efficient model of

the fine-grained mutation operators to predict hard-to-kill mutation score.

• Experiments on six real-world C programs shows that REFINER predicts highly accurate

hard-to-kill mutation scores (MSE between predicted and real hard-to-kill mutation scores is

only 0.011 on average) while using only 2% of all mutants.

5. Through the experiments on the six real-world C programs, I also show that REFINER outperforms

the existing mutant reduction techniques.

• REFINER predicts hard-to-kill mutation score 4.5, 4.4, and 4.3 times more accurate than ran-

dom selection, Offutt’s four mutation operators selection, and only SSDL mutation operator

selection, respectively.

1.5 Structure of the Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 describes MUSIC, and compare

it with Proteum, Milu. Chapter 3 describes REFINER. Chapter 4 explains the experiment setup to

evaluate REFINER compared to other mutant reduction techniques in Section 4.1, reports the experiment

results in Section 4.2, and discusses observation from the experiments Section 4.3. Finally, section 5

concludes the dissertaion with future work.
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Chapter 2. MUSIC: Mutation Analysis Tool with High

Configurability and Extensibility

I have implemented MUSIC based on the modern compiler framework Clang/LLVM 7.0 [43]. MUSIC

is written in around 19,923 lines of C++ code, which consists of 292 header and source files. MUSIC is

available at https://github.com/swtv-kaist/MUSIC.

Sect. 2.1 describes how a user applies MUSIC to a large complex project conveniently. Sect. 2.2

explains high configurability of MUSIC. Sect. 2.2.1 shows that a user can create his/her own new mutation

operators easily with support of MUSIC. Sect. 2.2.2 explains how MUSIC avoids generating stillborn

mutants. The component architecture of MUSIC referred through the subsections is shown in Fig. 2.1.

Figure 2.1: Simplified UML diagram of MUSIC

2.1 Applicability

To generate mutants for a large, complex project consisting of many directories and files with

file-specific compilation commands, MUSIC utilizes a compilation database. This is because mutant

generation often depends on specific compilation commands.

For example, util.c in the left code of Fig. 2.2 illustrates such situation. Without compilation

information, a mutation tool assumes that a flag UTIL is not defined and generates an AST of the

code as shown in the right part in Fig. 2.2, which fails to generate mutants on Line 4 even if a user

actually compiles util.c with a flag UTIL as true. MUSIC can utilize all such compilation information

from a given compilation database and a user can apply MUSIC to complex large projects conveniently.

7

https://github.com/swtv-kaist/MUSIC


A user can easily generate a compilation database for a project by running CMake [40] with the -

DCMAKE EXPORT COMPILE COMMANDS flag. Also, Gyp/Ninja [41] or BEAR [42] can be used for the purpose.

Figure 2.2: Example of code without proper compilation information

A compilation database is a collection of compilation commands for a set of files. MUSIC receives

compilation database in a JSON format. Each entry in a compilation database has three fields:

1. A file to which the compilation applies to

2. Compilation commands used

3. A directory in which this command is executed

2.2 Configurability

MUSIC provides mainly four options to selectively generate mutants for multiple C source files as

follows:

1. -m mut op[:A[:B]]: to select a mutation operator to apply (e.g., OAAN) and, optionally, a set of

target token(s) to replace (e.g., A can be {+,*}) and a set of new token(s) to use (e.g., B can be

{-,/}). mut op can be one of the 108 pre-defined mutation operators as follows:

(a) 75 mutation operators defined in Agrawal et al. [31]

(b) 33 mutation operators defined by Delamaro et al. [32]

For example, OAAN mutates arithmetic operators (+, -, *, /, %) to other arithmetic operators. A

user can specify a target domain of OAAN as {+} and a target range as {*, /} as shown in Fig. 2.3.

Note that specified domain and range of -m must be type-compatible to a mutation operator (e.g.,

for OAAN, target domain and range cannot contain < or >>).

2. -rs mut range start: to specify a starting position of a target mutation range (i.e., a triple of a

target file name, a line number, a column number)

3. -re mut range end: to specify an ending position of a target mutation range

4. -l max num: to limit a maximum number of mutants generated per mutation point and mutation

operator
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Figure 2.3: Usage of option -m to mutate + to * and / by modifying OAAN domain and range

• Some mutation operators may generate many mutants. For example, CCCR mutates constant

literals to another constant literals in a target program, which can generate many mutants.

If -l 10 is given, for each mutation point of CCCR, MUSIC arbitrarily generates at most 10

mutants of CCCR.

2.2.1 Extensibility

One advantage of MUSIC is that it supports a user to create his/her own new mutation operators

conveniently. A mutation operator of MUSIC is defined as a rule to modify a target source file. Such

rule specifies a target domain and a range of a mutation operator as a set of tokens such that a mutation

operator replaces tokens in a target domain with ones in a target range.

A mutation operator of MUSIC extends ExprMutantOperator which mutates C expressions, or

StmtMutantOperator which mutates C statements (see the bottom right part of Fig. 2.1). These two

classes extend an abstract class MutantOperatorTemplate which has a mutation operator name, its do-

main and range, and four utility functions (two for validating domain and range and two setter functions

for domain and range). Also each mutation operator implements the following two core functions:

• IsMutationTarget function to check whether a current statement/expression should be mutated

• Mutate function to actually apply mutation

For example, suppose that a user would like to make a new mutation operator SANL (String

mutation operator to Add a New Line character) which mutates StringLiteral expressions by adding

a newline character ‘\n’ at the end of a target string. The domain of SANL is a set of strings in a target

source file to mutate. Fig. 2.4 shows how function SANL::IsMutationTarget is defined.

9



1: bool IsMutationTarget(Expr *e, ...) {

2: if (!isa<StringLiteral>(e))

3: return false;

4:

5: if (!user_given_domain_.empty()) {

6: return user_given_domain_.find(ConvertToString(e));

7: }

8: else true; // all strings are targeted

9: }

Figure 2.4: IsMutationTarget function for SANL

For Mutate function, the goal is to add a new MutantEntry to MutantDatabase. MutantEntry con-

tains a mutation operator name, start and end locations of target a statement/expression, target token(s)

to mutate and new tokens to replace target token(s). Figure 2.5 shows how function SANL::Mutate can

be implemented.

1:void Mutate(Expr *e, MusicContext *context) {

2: CompilerInstance *CI = context->comp_inst_;

3: SourceLocation start_loc = e->getLocStart();

4: SourceLocation end_loc = GetEndLocOfExpr(e, CI);

5:

6: string token = ConvertToString(e);

7: string new_token = token.substr(token.size()-1)+"\\n\"";

8:

9: context->mutant_database_.AddMutantEntry(

10: mutation_op_name_, start_loc, end_loc,

11: token, new_token);

12:}

Figure 2.5: Mutate function for SANL

In addition, MUSIC provides several utility classes to help a user build his/her own mutation

operators conveniently. For example, suppose that a user wants to make a new mutation operator SCSR

which mutates a string to another string in a target program. MUSIC provides SymbolTable class that

contains categorized lists of statements/expressions of an entire target source file. For SCSR, a user can

utilize SymbolTable::stringliteral list which is a list of StringLiteral expressions in the target

source code file (i.e., a user can obtain strings to replace a target string by calling ConvertToString on

each element of stringliteral list ).
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2.2.2 No Stillborn Mutants

MUSIC minimizes number of generated stillborn mutants by utilizing type information. First, MU-

SIC avoids stillborn mutant generation by utilizing type information of operands of target C operators.

For example, Fig. 2.6 shows how MUSIC prohibits generating stillborn mutants. Applying OAAN to

mutate + to % on Line 5 will generate a stillborn mutant because % should take only integer operands

but the second operand of % (i.e., f) is a floating number. MUSIC prevents this mutation by analyzing

types of operands in a target expression (i.e., arr[1]+f).

1: int foo() {

2: float f = -1.0; int a = 1; int arr[2];

3: arr[0] = a;

4: scanf("%d", &arr[a]);

5: int sum = arr[1] + f;

6:

7: if (arr[1] < 0) {

8: done:

9: return (int) f;

10: }

11:

12: if (sum < 0)

13: goto done;

14:

15: return sum;

16: }

Figure 2.6: Example source code to show how to avoid stillborn mutants

Second, MUSIC avoids stillborn mutant generation by utilizing type information of target variables

(including contexts of target variables which are stored in StmtContext class). For example, while

parsing an expression containing a target variable a with unary increment (i.e., a++), decrement (i.e.,

a--), address-of (i.e., &a) or dereference operator (i.e., *a), MUSIC does not mutate a target variable a

to a constant. For another example, if VSRR (Scalar Variable Replacement) mutates an integer variable

a (used as an index of an array) to a floating variable f at Line 4 of Fig. 2.6, the generated mutant will

be syntactically illegal, because an array index must be a integer type. Thus, MUSIC does not mutate

a to f.

Third, MUSIC utilizes information about goto, switch statements to prevent stillborn mutants

violating C syntax. For example, SSDL (Statement Deletion) should not be applied to if-statement

on Line 7 of Fig. 2.6 because removal of Line 8 will cause a compile error due to missing target label

statement of goto at Line 13. For switch statements, MUSIC checks all case labels’ values to prevent

stillborn mutants caused by a duplicated case label error.
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2.3 Case Study: Siemens Benchmarks and cURL

I evaluate applicability and efficiency (i.e., a number of stillborn mutants generated) of MUSIC by

applying MUSIC to the seven Siemens benchmark programs in Software-artifact Infrastructure Reposi-

tory (SIR) [23] and a large real-world modern C program cURL [39]. Also, I compare MUSIC with Milu

and Proteum which are popular mutation tools for C programs.

I target Siemens benchmark programs because they have various C language constructs including

integer and floating-point arithmetic, structs, pointers, memory allocations, loops, switch statements

and complex conditional expressions. For this reason, these programs have been widely studied in testing

and debugging literature [44, 45, 46]. Siemens benchmark programs are 312.6 LoC long on average (see

the second column of Table 2.1).

cURL is a command line tool and library for transferring data through various network protocols

including HTTP, FTP, IMAP, etc. I choose cURL because cURL is a very popular open-source project

which has 6,700 stars in GitHub. To maintain mutant generation time reasonably, I build cURL to

support only HTTP protocol and perform mutant generation on only the cURL command line tool, not

library. cURL with only HTTP protocol support is 12,753 LoC long.

2.3.1 Applicability

MUSIC clearly shows better applicability than Milu and Proteum. I could apply MUSIC to cURL

easily because it takes multiple preprocessed or unpreprocessed C files as input using compilation

database (Sect. 2.1). In contrast, Milu and Proteum take only a single preprocessed C source file as

input. In other words, to apply Milu and Proteum, a user has to manually handle complex compilation

information (including macro definitions, header files in separate directories, and so on) for each C file

one by one, which causes significant manual overhead for a large project.

Moreover, Proteum often fails to generate mutants for C programs compatible with recent C99 or

C11 standards (for example, the system header files of Siemens benchmarks are compatible with C99

standards). A manual workaround for this problem is as follows:

1. A user identifies statement(s) sf of a target program that make Proteum fail.

2. A user modifies sf to s′ so that Proteum can process a target program without failure.

3. A user generates mutants and then revert s′ of every mutant to sf .

I had to modify five lines for each of printtokens, printtokens2, totinfo, and one line for each

of the remaining four Siemens benchmark programs. As an example, Fig. 2.7 shows how I modify the

preprocessed source file of totinfo. The five lines colored with red in the leftmost box cause parsing

errors to Proteum due to inline keyword (Lines 149 and 155), built-in functions (Lines 152 and 158), and

built-in type (Line 347). I generate a temporary source file by removing the problematic lines (see the

middle box of Fig. 2.7) and apply Proteum to the temporary file. After Proteum generates mutants, I

revert the removed lines in each of the mutants (see the right box of Fig. 2.7).

For cURL, Proteum fails to generate a mutant even after I have identified and modified more than

20 lines in the preprocessed tool main.c source file which contains main() of cURL. For Milu, I had to

manually generate 38 preprocessed source files and apply Milu to each of the preprocessed source files

separately. Therefore, MUSIC shows higher applicability to a large real-world modern C program such

as cURL than Milu and Proteum.
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Figure 2.7: Source code modification of tot info to apply Proteum

Figure 2.8: Example of stillborn mutants generated by Proteum

2.3.2 Efficiency

The fifth column of Table 2.1 shows that MUSIC generates no stillborn mutants for Siemens bench-

mark programs. In contrast, 33.18% and 3.68% of all mutants generated by Milu and Proteum are

syntactically illegal and uncompilable, respectively (the sixth column of Table 2.1).

An example of a stillborn mutant generated by Proteum is shown in Fig. 2.8. Proteum’s VLSR (Local

Scalar Variable Replacement) mutates a condition variable command on Line 329 to a floating variable

ratio. Since switch statement cannot take a floating variable, the generated mutant is syntactically

illegal.

Fig. 2.9 shows an example of a stillborn mutant generated by Milu. When applying Milu to mutate

function numeric case in printtokens, all 170 generated mutants were syntactically illegal due to the
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Table 2.1: Number of mutants generated by Milu, Proteum and MUSIC on Siemens C Benchmark

programs

Target LOC Mutation #Gen. #Stillborn %Stillborn

Program Tool Mutants Mutants Mutants

printtokens 343

Milu 3077 995 32.34

Proteum 4273 200 4.68

MUSIC 11274 0 0.00

printtokens2 355

Milu 2424 523 21.58

Proteum 4680 162 3.46

MUSIC 4791 0 0.00

replace 513

Milu 3927 353 8.99

Proteum 10872 509 4.68

MUSIC 9925 0 0.00

schedule 296

Milu 1310 640 48.85

Proteum 2241 103 4.60

MUSIC 2365 0 0.00

schedule2 263

Milu 1919 915 47.68

Proteum 2950 114 3.86

MUSIC 3033 0 0.00

tcas 137

Milu 874 271 31.01

Proteum 2872 74 2.58

MUSIC 3415 0 0.00

totinfo 281

Milu 2381 996 41.83

Proteum 6390 122 1.91

MUSIC 10486 0 0.00

Average 312.6

Milu 2273.1 670.4 33.18

Proteum 4896.9 183.4 3.68

MUSIC 6469.9 0 0.00

Figure 2.9: Example of stillborn mutants generated by Milu
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syntax errors occurred in function definition: redefinition of parameter ch and inclusion of semicolon in

the list of function parameters.

For cURL, MUSIC generates no stillborn mutant while Milu generates 31,232 ones (i.e., 75.31% of

the generated mutants are syntactically illegal). I found that this large number of stillborn mutants is

caused by incorrect handling of types including typedef, enum, const type qualifier and an array type.
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Chapter 3. REFINER: Refined Mutation Operator-based

Mutant Reduction

3.1 Overview

Figure 3.1: The overall process of REFINER

REFINER aims to minimize the number of mutants for predicting hard-to-kill mutation scores

of a test suite. REFINER utilizes a set of existing programs and their test suites as corpus to learn

a prediction model using a small number of representative mutation operators to predict hard-to-kill

mutation scores. Figure 3.1 describes the overall process of REFINER. Given corpus programs (Pi)

and a set of test suites for Pi (TSi), REFINER produces (1) R′ = {rq1 , rq2 , ..., rqL′}, a small subset of

the fine-grained mutation operators R = {r1, r2, ..., rL} (see Section 3.3) to generate mutants and (2)

φR′ , a linear function to compute an expected hard-to-kill mutation score from the mutation testing

results using R′. The resulting pair, R′ and φR′ , works as a mutation testing model for predicting the

hard-to-kill mutation score of a given test suite T of a target program P through the following steps:

• Step 1. Apply each mutation operator r ∈ R′ to P for generating a set of mutants Mr .

• Step 2. Run each mutant of Mr with the given test suite T .

• Step 3. For each mutation operator r, compute a mutation score Sr(T ) as the ratio of the number

of killed mutants by T in Mr to all mutants in Mr. I refer to Sr(T ) as a mutation score per

mutation operator r.

• Step 4. Predict a hard-kill-mutation score of T by evaluating φR′ .

Having given corpus (i.e., pairs of programs and the test suites) as training data, REFINER searches

for a combination of fine-grained mutation operators to satisfy the following two objects at the same

time:

1. Accuracy: a linear combination of mutation scores per mutation operator should accurately predict

actual hard-to-kill mutation scores of a test suite, and

2. Efficiency: the total number of generated mutants should be significantly smaller than the number

of mutants generated by all available mutation operators.
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I extend the approach of Namin et al. [13] to the following directions:

• Develop a set of fine-grained mutation operators (see Section 3.3) to reduce mutation testing cost

further, and

• Predict the mutation scores of hard-to-kill mutants (instead of all mutants) to reduce mutation

testing cost even further

REFINER targets hard-to-kill mutation score because it can assess fault detection capability of a

test suite more accurately than the whole set of all mutants [13, 17, 19, 20, 21]. To my best knowledge,

REFINER is the first approach to predict hard-to-kill mutation score of a test suite.

The remaining of Chapter 3 is structured as follows. Section 3.2 details how REFINER trains a

model using given corpus programs and test suites. Section 3.3 presents fine-grained mutation operators

employed by REFINER. Finally, Section 3.4 explains how REFINER works in details with an example.

3.2 Prediction Model Training

3.2.1 Training data generation

Figure 3.2: The overall process of the training phase of REFINER

REFINER utilizes a linear regression technique CLARS (Cost-considerate Least Angle Regression)

to train a linear model that accurately predicts hard-to-kill mutation score of a test suite based on a set

of mutation scores per mutation operators. To train a prediction model, REFINER conducts mutation

testing on given corpus programs with given corpus test suites, measures the mutation scores per mutation

operator and the hard-to-kill mutation score of each test suite, and feed this data to CLARS.

Figure 3.2 describes how the Prediction Model Training module (shown in Figure 3.1) constructs

training data and trains a prediction model using CLARS. For each corpus program Pi with a set of

test suites TSi = {T i
1, T

i
2, ...}, REFINER first generates mutants M i = {mi

1,m
i
2, ...} by employing all

fine-grained mutation operators R (see Section 3.3).

From all generated mutants, REFINER eliminates trivially equivalent and duplicated mutants [24]

after mutant generation. REFINER identifies an equivalent mutant by checking whether or not the

MD5 checksum of the compiled binary executable of a mutant is the same as that of the original target

program. In a similar way, two mutants are identified as duplicated mutants if the compiled binary

executables of the two mutants have the same MD5 checksum.

Running each mutant mi
j with each test suite T i

k, REFINER constructs a killmap KM i : M i×TSi →
{0, 1} of a corpus program Pi, such that KM i(mi

j , T
i
k) = 1 if and only if mutant mi

j is killed by test suite
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T i
k. Following previous studies on mutant selection techniques [13, 17], REFINER considers mutants

that are never killed by any test suite as equivalent mutants, and eliminate them from the mutant set.

Note that, although the number of fine-grained mutation operators in R is greater than the number of

the existing coarse-grained mutation operators (i.e., Proteum), R is designed to generate the same set

of mutants (see Section 3.3).

From the set of obtained killmaps, REFINER first gives a natural number index to all test suites of

all corpus programs, such that test suites can be referred as T ′1, T
′
2, ..., T

′
U . Then, REFINER constructs

a vector vi for each test suite T ′i such that the k-th element of vi, vi[k] contains the mutation score per

fine-grained mutation operator rk. REFINER combines vectors v1 to vU to construct a U ×L matrix W .

In addition, REFINER computes the hard-to-kill mutation score of each test suite and then constructs

a column vector h where the k-th row of h, h[k] contains the hard-to-kill mutation score of test suite T ′k.

Last, REFINER constructs a cost vector γ where γ[k] represents the total number of mutants generated

by fine-grained mutation operator rk over all corpus programs.

3.2.2 Cost-considerate Least Angle Regression (CLARS)

CLARS is a linear regression technique that finds a list of coefficients c1, c2, ..., cn , and a constant

(intercept) b, that fit given data of independent variables X = {x1, x2, ..., xn}, and a dependent variable,

y. Unlike conventional linear regression techniques, CLARS additionally receives a cost factor, di for

each independent variable xi. In a training for achieving high accuracy (i.e., low error), CLARS selects

and uses only a small subset of input variables, X ′ ⊆ X such that the sum of their cost factors becomes

minimized. As a result of training, a coefficient of an independent is assigned with a non-zero value if the

corresponding independent variable is selected by CLARS. Otherwise, the coefficient of a non-selected

independent variable is assigned with zero (i.e., X ′ = {xi ∈ X|ci 6= 0}). When the accuracy objective is

to minimize Mean Squared Errors (MSE), CLARS searches for a linear model such that

• minimize
∑n

i=1(xi × ci + b− y)2/n, and

• minimize
∑

xi∈X′ di

REFINER feeds W as independent variables, h as dependent variables, and γ as cost factors obtained

from the mutation testing results of the corpus programs (see Section 3.2.1) to CLARS. For given data,

CLARS produces a coefficient vector C and a constant vector b that minimizes |(W × C + b) − h|2/U
(i.e, Mean Squared Errors) and, at the same time, minimize the total number of mutants generated by

the selected fine-grained mutation operators,
∑

rk∈R′ γ[k] where R′ = {rk ∈ R|C[k] 6= 0}. Note that

a fine-grained mutation operators rk is selected by CLARS when C[k] is not zero. CLARS considers

the sum of weights of the non-zero coefficients as the cost of a trained model, and leads a training to

minimize both the square sum of error and the cost simultaneously.

Compared to Namin et al. [13], REFINER applies CLARS to minimize the Mean Squared Errors

(MSE) of prediction, instead of maximizing R2. For training an accurate prediction model of hard-to-kill

mutation score, I believe that minimizing MSE is a more appropriate training objective than maximizing

R2. Note that, since R2 measures the linearity of predicted results rather than the accuracies, larger

values of R2 can be obtained even when the predicted values differ considerably from the truth values

but the predicted values and the truth values have high linear correlation [25].
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3.3 Fine-grained Mutation Operators

I define total 3711 fine-grained mutation operators by refining existing coarse-grained mutation op-

erators. The fine-grained mutation operators are designed to generate the same set of mutants generated

by the existing mutation operators. The benefit of the fine-grained mutation operators is that RE-

FINER can explore more diverse combinations of mutation operators, thus, have a higher chance to find

more accurate and more efficient prediction model, compared to the existing coarse-grained mutation

operators.

My conjecture is that the traditional mutation operator ri might be similar/redundant to each other

(i.e., a set of mutants Mi generated by applying ri may be highly correlated with Mj) (see RQ1 in

Section 4.2.1)). This means that many of the mutants generated by the traditional mutation operators

ri are not useful to learn an accurate and efficient prediction model. On the other hand, the correlation

between fine-grained mutation operators is lower than that between the traditional mutation operators.

For example, more than 80% of all pairs of the traditional mutation operators in make has high correlation

(i.e., Pearson correlation r ≥ 0.9) while around only 40% of all pairs of the fine-grained mutation

operators in make has high correlation. Thus, CLARS using the fine-grained mutation operators can

learn an accurate and cost-efficient prediction model because the fine-grained mutation operators are

more distinct and low-cost than the traditional mutation operators.

The comprehensive set of the traditional mutation operators for C programs consists of 75 mutation

operators defined by Agrawal et al. [31] and 33 interface mutation operator defined by Delamaro et

al. [32]. A mutation operator can be represented as a multi-valued function that maps source code

patterns (i.e., domain) to transformed source code patterns (i.e., range or codomain). Suppose that

there exists a traditional mutation operator ri with domain Xi and range Yi. Then, ri maps a source

code pattern x ∈ Xi to one or more instances in Yi (i.e., ri(x) ⊆ Yi). For traditional mutation operator

ri, I define a set of fine-grained mutation operators ri,1, ri,2, ..., ri,n, such that the domains (ranges) of

all refined mutation operators form a partition of the domain (range) of ri. As a result, I define 3711

fine-grained mutation operators from the 108 traditional ones.

I classify the domains and ranges of the traditional mutation operators into four and five cate-

gories, respectively. Then, I define fine-grained mutation operators according to their domain and range

categories. The domains of the traditional mutation operators can be classified to the following four

categories:

1. A set of operators:

Traditional mutation operators whose domain is in this category replace an operator into another.

For example, OAAN (arithmetic operator mutation) has a domain of {+,−, ∗, /,%} and replaces

a single arithmetic operator (e.g., +) with another (e.g., ∗).

2. A set of variables:

Traditional mutation operators whose domain is in this category replace a variable into another

variable, constant, or expression (e.g., mutating a variable x into ++x). For example, VLSR (scalar

references mutation using local scalar references) has a domain of {v|v is a local scalar variable}
and replaces a single local scalar variable (e.g., x) with another (e.g., y).

3. A set of constants:

Traditional mutation operators whose domain is in this category replace a constant into another
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00:/* A simple binary search program */

01:int main(){

02: int array[]={10,20,30,40,50,60,70,80,90,100};

03: int n = 10, value=30, low, high, mid, i

04: low = 1;

05: high = n;

06: while (low < high) {

07: mid = (low + high)/2;

08: if (array[mid] < value)

09: low = mid + 1;

10: else

11: high = mid;

12: }

13:

14: if ((low < n) && (array[low] == value)){

15: printf("Found, array[%d]=%d\n", low, value);

16: else

17: printf("Not found\n");}

Figure 3.3: An example program

constant, variable, or expression. For example, CLCR (constant replacement using local constants)

has a domain of {c|c is a local constant} and replaces a local constant with another.

4. A set of statements:

Traditional mutation operators whose domain is in this category replace a statement into another.

For example, SSDL (statement deletion) has a domain of {s|s is a statement} and deletes one

statement by replacing it with an empty statement (i.e. ;).

The range of the traditional mutation operators include the four categories of the domain (i.e.,

operators, variables, constants, and statements) and expressions (i.e., traditional mutation operators that

replace a variable or a constant with an expression have a set of expressions as a range). For example,

in Figure 3.3, IndVarIncDec (Indirect Variable Increment Decrement) replaces a local variable with an

expression obtained by adding ++ or -- before or after the target local variable (e.g., IndVarIncDec

mutates a = b + c to a = b + c++ or a = b + --c, in which c is a local variable).

I define fine-grained mutation operators as follows, according to their domain and range categories:

1. A set of operators:

A fine-grained mutation operator is defined to have its domain and range as a singleton set of

operators. For example, the domain and range of OAAN is {+,−, ∗, /,%} and a fine-grained

mutation operator OAANop1→op2 has its domain and range as one of {+}, {−}, {∗}, {/}, and
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{%}. One example of OAAN fine-grained mutation operators is OAAN+→∗, which has domain

and range as {+} and {∗}, respectively.

2. A set of variables:

A fine-grained mutation operator is defined to have its domain and range as one of the n partitions

of the entire set of variables as follows. First, I make an ordered list lv of all target variables in the

target program (the variables are sorted in a lexicographical order on the variables’ names). Second,

I divide lv into n partitions p1,...,pn whose sizes are almost equal (if the size of the domain/range

is not divisible by n, p1 to pm (m < n) has one more element than pm+1 to pn). Finally, I define

a fine-grained mutation operator on each of p1, ..., pn, each of which could be a domain and/or a

range.

Figure 3.3 shows an example program that does a simple binary search. Since the domain and

range of VLSR is a set of local scalar variables, VLSR has {high, i, low, mid, n, value} as its

domain and range. Thus, the domain and range of a fine-grained mutation operator of VLSR with

n = 10 are one of the following partitions: p1={high}, p2= {i}, p3={low}, p4={mid}, p5={n},
and p6={value}, p7 = p8 = p9 = p10 = ∅. A fine-grained mutation operator VLSRi→j has its

domain and range as pi and pj , respectively. For example, VLSR1→2 replaces a variable high with

a variable i.

3. A set of constants:

A fine-grained mutation operator on a set of constants is defined as similar to that on a set of

variables. I make an ordered list of constants and divide the ordered list into multiple partitions

whose sizes are almost equal, on which the fine-grained mutation operators are defined.

Looking at Fig. 3.3 again, CLCR (Local Constant Replacement) has {1, 2, 10, 20, 30, 40,

50, 60, 70, 80, 90, 100} (12 elements) as its domain and range. Thus, the domain and range

of a fine-grained mutation operator of CLCR with n = 10 are one of the following partitions:

p1={1, 2}, p2= {10, 20}, p3={30}, p4={40}, p5={50}, p6={60}, p7={70}, p8={80}, p9={90},
and p10={100}. A fine-grained mutation operator CLCRi→j has its domain and range as pi and

pj , respectively. For example, CLCR1→2 replaces a constant 1 or 2 with another constant 10 or

20.

4. A set of statements: A fine-grained mutation operator on a set of constants is defined as similar

to those on a set of variables and a set of constants. I make an ordered list of statements in an

ascending order of the statements’ line number and divide the ordered list into multiple partitions

whose sizes are almost equal, on which the fine-grained mutation operators are defined.

Again, in Figure 3.3, SSDL has {4, 5, 6, 7, 8, 9, 11, 14, 15, 17} (each number represents a statement

at that line) (10 elements in total) as its domain. Thus, the domain of a fine-grained mutation

operator of SSDL with n = 10 are one of the following partitions: p1={4}, p2= {5}, p3={6},
p4={7}, p5={8}, p6={9}, p7={11}, p8={14}, p9={15}, and p10={17}. A fine-grained mutation

operator SSDLi has its domain as pi. For example, SSDL1 removes the statement at Line 4 (i.e.,

low=1;).

5. A set of expressions as a range: For a fine-grained mutation operator ri,j of a traditional mutation

operator oi that has a set of expressions as its range, ri,j is defined to have its range as a singleton

set of C expressions.
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Table 3.1: An example of mutation scores of the traditional and and fine-grained mutation operators

in the training set

Pro- Test- r1 r2 r3 h

gram suite r1,1 r1,2 r1,3 r2,1 r2,2 r2,3 r3,1 r3,2 r3,3

T 1
1 0.20 0.15 0.07 0.14 0.09 0.07 0.12 0.09 0.06 0.00 0.22 0.08 0.10

P1 T 1
2 0.20 0.15 0.71 0.38 0.27 0.00 0.00 0.07 0.56 0.83 0.78 0.70 0.36

T 1
3 1.00 0.23 0.71 0.62 0.36 0.20 0.59 0.40 0.38 0.75 1.00 0.65 0.54

T 2
1 0.20 0.11 0.24 0.18 0.25 0.09 0.05 0.12 0.11 0.24 0.36 0.22 0.17

P2 T 2
2 0.67 0.47 0.47 0.53 0.44 0.27 0.35 0.34 0.26 0.43 0.64 0.43 0.43

T 2
3 0.93 0.63 0.59 0.71 0.88 0.68 0.60 0.71 0.74 0.71 0.93 0.78 0.73

# mutants 25 32 31 88 27 37 37 101 35 33 23 91

Table 3.2: An example of mutation scores of the traditional and and fine-grained mutation operators

in the validation set

Pro- Test- r1 r2 r3 h

gram suite r1,1 r1,2 r1,3 r2,1 r2,2 r2,3 r3,1 r3,2 r3,3

T1 0.00 0.17 0.22 0.14 0.26 0.18 0.33 0.26 0.15 0.09 0.09 0.11 0.17

P T2 0.65 0.00 0.44 0.36 0.21 0.65 0.67 0.51 0.23 0.18 0.48 0.30 0.38

T3 0.05 0.57 0.33 0.33 0.53 0.29 0.71 0.53 0.73 0.32 0.87 0.65 0.50

# mutants 20 23 27 70 19 17 21 57 26 22 23 71

For example, the domain D of IndVarIncDec is a list of local variables sorted in a lexicographical

order of variable names, and the range of IndVarIncDec is {v++, ++v, v--, --v} where v is a

local variable in D. A fine-grained mutation operator IndVarIncDeci→j has its domain as pi which

is the ith partition of D and its range as one of {v++}, {++v}, {v--}, and {--v}. For example, in

Figure 3.3, IndVarIncDec1→2 replaces a variable high (p1 = {high}) with ++high.

3.4 Example

This example shows that REFINER can select fewer mutants and predict a mutation score more

accurately than REFINERTRD. Suppose that there are three traditional mutation operators r1, r2, and

r3 and refine each traditional mutation operator ri into three fine-grained mutation operators ri,1, ri,2,

and ri,3. REFINER and REFINERTRD learn a linear regression model using P1 and P2, and apply the

learned model to predict a hard-to-kill mutation score of P using a subset of fine-grained and a subset

of traditional mutation operators, respectively.

Table 3.1 shows the mutation scores and the number of generated mutants of the fine-grained and

traditional mutation operators for the corpus programs P1 and P2. The first and second column show

the program and test suite names. The third to fourteenth columns show the mutation score of the

corresponding fine-grained or traditional mutation operator (column) using the corresponding test suite
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(row). The last column shows the mutation score of the hard-to-kill mutants. The last row show the

total number of generated mutants of fine-grained and traditional mutation operators for P1 and P2.

Similarly, Table 3.2 shows the mutation score and the number of generated mutants of the fine-grained

and traditional mutation operators for the program P in the validation set.

Applying CLARS with the fine-grained mutation operators achieves a higher accuracy in prediction

(0.005 vs. 0.011 in Mean Squared Error (MSE) of mutation scores on the selected mutants and all

mutants) and selects fewer mutants (62 vs. 141 mutants) than applying CLARS to the traditional ones

as shown below:

• REFINERTRD selects r1, r3 and generates the following model:

0.81S1(T ) + 0.16S3(T )− 0.03 (3.1)

where Sk(T ) is a mutation score of a test suite T with respect to the mutants generated by a

mutation operator rk. This model selects 141 out of 198 mutants of P , and predicts the hard-to-

kill mutation scores of 3 test suites of P to be 0.10, 0.31, 0.34 respectively. The MSE between the

predicted mutation scores (0.10, 0.31, 0.34) and actual mutation scores (0.17, 0.38, 0.50) is 0.011.

• REFINER selects r1,1, r2,1, r3,3 and generates the following model:

0.07S1,1(T ) + 0.34S2,1(T ) + 0.31S3,3(T ) + 0.024 (3.2)

This model selects 62 out of 198 mutants of P , and predicts the hard-to-kill mutation scores of

3 test suites of P to be 0.14, 0.29, 0.47 respectively. The MSE between the predicted mutation

scores (0.14, 0.29, 0.47) and actual mutation scores (0.17, 0.38, 0.50) is 0.005.

As the example shows, REFINER using fine-grained mutation operators can reduce more mutants

and predict mutation score more accurately than the traditional mutation operator-based mutant selec-

tion.
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Chapter 4. Experiments and Results

4.1 Experiment Setup

4.1.1 Research Questions

I have designed the following research questions to evaluate the effectiveness of REFINER on six

SIR programs.

RQ1. Correlation between the fine-grained mutation operators: How much are the refined

mutation operators correlated to each other in terms of the mutation scores compared to the coarse-

grained mutation operators?

RQ2. Effect of the fine-grained mutation operators on REFINER: How much do the

selected fine-grained mutation operators affect the size of M ′ and the accuracy of the predicted hard-to-

kill mutation score compared to the coarse-grained mutation operators?

RQ3. Comparison of REFINER with random mutant selection: With the same number

of the selected mutants, how much does REFINER increase the accuracy of the predicted hard-to-kill

mutation score compared to the random mutant selection technique?

RQ4. Comparison of REFINER with existing mutation-operator based mutant selec-

tion techniques: How much does REFINER reduce the number of selected mutant and increase the

accuracy of the predicted hard-to-kill mutation score compared to the existing mutation operator-based

mutant selection techniques?

4.1.2 Mutant Selection Techniques to Compare

I have evaluated REFINER and the following mutant selection techniques in the experiments:

• REFINER: For fine-grained mutation operators of REFINER, I extended MUSIC [9] to implement

3711 fine-grained mutation operators refined from the 108 coarse-grained mutation operators. RE-

FINER uses the R package developed by Michael Lerch [18, 26]. REFINER is configured to apply

CLARS to the training dataset for 10 minutes, and selected the model with the lowest MSE with

respect to the training dataset. The training is stopped after 10 minutes because, after 10 minutes,

MSE is almost converged (i.e., MSE difference between models is less than 0.0005).

To evaluate REFINER with a target SIR program, REFINER uses the other five SIR programs

and their test suites as corpus to train a prediction model, and then the trained prediction model

is evaluated with the target SIR program (i.e., six-fold cross-validation).

• REFINERTRD: This technique is similar to REFINER but uses the coarse-grained mutation op-

erators instead of the fine-grained mutation operators (REFINERTRD is similar to the method of

Namin et al. [13]). I used this technique for answering RQ2.

• RNDSN : This technique randomly selects the same number of mutants to the number of mutants

generated by REFINER. I used this technique for answering RQ3.
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Table 4.1: Statistics of SIR target programs

Target LoC #tests #generated #used #hard-to-kill k% mutants

pgms. mutants mutants k = 3 k = 5 k = 7

flex 7254 567 1968398 1146413 312561 337336 347732

grep 5696 809 347636 187913 78929 86532 95984

gzip 3040 208 739923 371289 107033 114904 198787

make 9820 1006 585224 282328 169702 172148 173035

sed 3980 360 174759 72187 11064 16290 20264

space 5489 13585 183444 108598 55377 61075 65137

Avg. 5879.8 2755.8 666564.0 361454.7 122444.3 131380.8 150156.5

• E-SELECTIVE: This technique uses the mutants generated by only four C mutation operators

OAAN, ORRN, OLLN and OLNG to predict mutation score. These four C operators corresponds

to Offutt et al.’s sufficient set of 5 Fortran mutation operators. Only four out of five has a corre-

sponding C mutation operators, indicated in parenthesis in the list below:

1. ABS: Absolute Value

2. AOR: Arithmetic Operator Replacement (C: OAAN)

3. LCR: Logical Connector Replacement (C: OLLN)

4. ROR: Relational Operator Replacement (C: ORRN)

5. UOI: Unary Operator Insertion (C: OLNG)

E-SELECTIVE was used for answering RQ4.

• SSDL: This technique uses only mutants generated by applying SSDL mutation operator to predict

mutation score. SSDL has been studied in previous researches as a cost-effective mutant selection

approach [27, 28, 29]. This technique was used for answering RQ4.

4.1.3 Target Programs

Table 4.1 shows the information on the six target C programs in the SIR benchmark [23] used in

the experiments, including their names, executable LoC, numbers of test cases and numbers of mutants

generated by the 108 coarse-grained mutation operators. Each target program has 5879.8 LoC, 2755.8

test cases, and 666564.0 generated mutants on average. I chose SIR programs as target programs because

they use various C language features such as integer and floating-point arithmetic, pointer arithmetic,

loops, switch-case, and structs.

4.1.4 Test Suite Generation

For each of the six SIR programs, I generated 1000 test suites. To generate a test suite, I randomly

selected a test case from the pool of the test cases provided in the SIR benchmark and added to the test

suite until it reached the chosen size. For each program P and its test suite T (provided in SIR), let |T |
be the size of T . For each test suite size of 1%× |T |, 3%× |T |, 5%× |T |, ..., 99%× |T |, I generated 20

test suites. In other words, I generated 20 test suites having 1% × |T | test cases, 20 test suites having
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3%× |T | test cases, and so on. I chose these test suite sizes because I want to generate test suites that

achieve various range of hard-to-kill mutation score from 0.0 to 1.0.

4.1.5 Hard-to-kill Mutation Scores

I identified hard-to-kill mutants of the six SIR programs and measured hard-to-kill scores of all

generated test suites. Similar to the training generation process of REFINER (see Section 3.2.1), I

generated all possible mutants by applying all coarse-grained mutation operators of MUSIC, and then

eliminate trivially equivalent, duplicated mutants, and equivalent mutants with respect to the given test

suites. In total, out of 3,999,384 mutants generated by MUSIC, I eliminated 962,300 equivalent mutants

and 868,356 redundant mutants.

I referred to the remaining mutants as used mutants and reported the number of the used mutants

for each program in the fifth column of Table 4.1. For each program, the used mutants which are killed

by less than 3%, 5%, and 7% of available test suites are represented as hard-to-kill 3%, hard-to-kill 5%,

hard-to-kill 7% mutants respectively. The number of the hard-to-kill mutants for each program is showed

in the sixth to the last column of Table 4.1.

4.1.6 Measurement

To evaluate the mutant selection techniques, I measure the following two items:

• Number of the selected mutants (either by REFINER, random mutant selection, Offutt et al.’s

selective mutation operators or SSDL)

• Mean Square Error (MSE) between actual hard-to-kill mutation score of each test suite and the

mutation score measured by a mutant selection technique (i.e., predicted hard-to-kill mutation

score by the technique).

To reduce the variance of random selection, I repeated the experiment that uses random mutant

selection techniques 30 times and reported the average value of the results.

4.2 Experiment Results

This section reports and discusses the experiment results to answer the research questions with

regard to M as a set of mutants generated by all the coarse-grained mutation operators.

4.2.1 RQ1: Correlation between Fine-grained mutation operators

The experiment results in Figure 4.1– 4.6 show that the coarse-grained mutation operators are more

highly correlated to each other than the fine-grained mutation operators , which supports my conjecture

in Section 3.3. As a representative case, Figure 4.4 shows the Pearson correlation distribution of the

pairs of the coarse-grained mutation operators (left of Figure 4.4, and the fine-grained mutation operators

(right of Figure 4.4) for make. In case of make, around 80% of the coarse-grained mutation operator pairs

are highly correlated to each other in terms of mutation scores (Pearson’s Correlation ≥ 0.90), while only

40% of fine-grained mutation operator pairs are highly correlated to each other. The other five target

programs show the similar distribution. Thus, I can conclude that the fine-grained mutation operators

are more distinct than the traditional mutation operators, which can help REFINER generate more

accurate and efficient models.
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Figure 4.1: Pearson correlation distribution of the pairs of the coarse-grained mutaion operators (left)

and the fine-grained mutaion operators (right) of flex

Figure 4.2: Pearson correlation distribution of the pairs of the coarse-grained mutaion operators (left)

and the fine-grained mutaion operators (right) of grep

Figure 4.3: Pearson correlation distribution of the pairs of the coarse-grained mutaion operators (left)

and the fine-grained mutaion operators (right) of gzip
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Figure 4.4: Pearson correlation distribution of the pairs of the coarse-grained mutaion operators (left)

and the fine-grained mutaion operators (right) of make

Figure 4.5: Pearson correlation distribution of the pairs of the coarse-grained mutaion operators (left)

and the fine-grained mutaion operators (right) of sed

Figure 4.6: Pearson correlation distribution of the pairs of the coarse-grained mutaion operators (left)

and the fine-grained mutaion operators (right) of space

28



Table 4.2: The number and ratio of the mutants selected by, and MSE of REFINERTRD and REFINER

Targets

REFINERTRD REFINER
#selected
mutants

%selected
mutants MSE

#selected
mutants

%selected
mutants MSE

Hard-to-
kill 3%

flex 195062 17.0% 0.049 9062 0.8% 0.072

grep 55672 29.6% 0.008 3846 2.0% 0.037

gzip 18882 5.1% 0.040 912 0.2% 0.034

make 59272 21.0% 0.129 6777 2.4% 0.035

sed 1363 1.9% 0.016 1810 2.5% 0.057

space 57353 52.8% 0.010 3821 3.5% 0.005

Avg. 64600.7 17.9% 0.042 4371.3 1.2% 0.040

Hard-to-
kill 5%

flex 9718 0.8% 0.016 9806 0.9% 0.013

grep 30000 16.0% 0.008 5172 2.8% 0.007

gzip 13593 3.7% 0.053 1285 0.3% 0.025

make 39973 14.2% 0.073 7328 2.6% 0.002

sed 19028 26.4% 0.043 1262 1.7% 0.015

space 37944 34.9% 0.012 3454 3.2% 0.002

Avg. 25042.7 6.9% 0.034 4717.8 1.3% 0.011

Hard-to-
kill 7%

flex 46440 4.1% 0.031 20808 1.8% 0.018

grep 97274 51.8% 0.002 4354 2.3% 0.008

gzip 1052 0.3% 0.014 1412 0.4% 0.006

make 17468 6.2% 0.001 3829 1.4% 0.015

sed 2880 4.0% 0.007 1733 2.4% 0.013

space 1407 1.3% 0.031 3662 3.4% 0.002

Avg. 27753.5 7.7% 0.014 5966.3 1.7% 0.010

4.2.2 RQ2: Effect of the Fine-grained mutation operators of REFINER

Table 4.2 shows the experiment results of REFINER and REFINERTRD for predicting hard-to-kill

3%, 5% and 7% mutation scores. The first column shows category of hard-to-kill mutants, and the

second column shows the names of target programs. The third to the fifth columns and the sixth to

the last columns show the numbers of the selected mutants, the ratios of the selected mutants over M,

and MSE of the hard-to-kill mutation scores onM and on the mutants selected by REFINERTRD and

REFINER, respectively. The average MSE with respect to training dataset of the selected models in

cross validation experiments is 0.0001 and 0.0005 for REFINER and REFINERTRD, respectively.

The experiment results in Table 4.2 show that REFINER using fine-grained mutation operators

selects much fewer mutants and achieves more accurate prediction of hard-to-kill mutation scores than

REFINERTRD. For predicting hard-to-kill 3% mutation scores, REFINER selects 4371.3 mutants (i.e.,

1.2% ofM) with MSE = 0.040, on average, while REFINERTRD selects 64600.7 mutants (i.e., 17.9% of

M) with MSE = 0.042, on average. REFINER selects 93.2% (=4371.3/(64600.7-4371.3)) less mutants

and achieves 4.9% lower MSE than REFINERTRD. Similarly, for predicting hard-to-kill 5% and 7%

mutation scores, REFINER selects 81.1% and 77.9% less mutants and achieves 67.6% and 28.6% lower

MSE than REFINERTRD, respectively.
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Table 4.3: The number and ratio of the mutants selected by, and MSE of RNDSN and REFINER

Targets

RNDSN REFINER
#selected
mutants

%selected
mutants MSE

#selected
mutants

%selected
mutants MSE

Hard-to-
kill 3%

flex 9062 0.8% 0.060 9062 0.8% 0.072

grep 3846 2.0% 0.046 3846 2.0% 0.037

gzip 912 0.2% 0.132 912 0.2% 0.034

make 6777 2.4% 0.045 6777 2.4% 0.035

sed 1810 2.5% 0.096 1810 2.5% 0.057

space 3821 3.5% 0.010 3821 3.5% 0.005

Avg. 4371.3 1.2% 0.065 4371.3 1.2% 0.040

Hard-to-
kill 5%

flex 9806 0.9% 0.052 9806 0.9% 0.013

grep 5172 2.8% 0.035 5172 2.8% 0.007

gzip 1285 0.3% 0.116 1285 0.3% 0.025

make 7328 2.6% 0.043 7328 2.6% 0.002

sed 1262 1.7% 0.049 1262 1.7% 0.015

space 3454 3.2% 0.007 3454 3.2% 0.002

Avg. 4717.8 1.3% 0.050 4717.8 1.3% 0.011

Hard-to-
kill 7%

flex 20808 1.8% 0.048 20808 1.8% 0.018

grep 4354 2.3% 0.024 4354 2.3% 0.008

gzip 1412 0.4% 0.029 1412 0.4% 0.006

make 3829 1.4% 0.027 3829 1.4% 0.015

sed 1733 2.4% 0.031 1733 2.4% 0.013

space 3662 3.4% 0.005 3662 3.4% 0.002

Avg. 5966.3 1.7% 0.027 5966.3 1.7% 0.010

4.2.3 RQ3. Comparison of REFINER with Random Mutant Selection

Compared to RNDSN , REFINER achieves much more accurate prediction of hard-to-kill mutation

scores while using the exact same number of mutants as shown in Table 4.3. In Table 4.3, the first column

shows category of hard-to-kill mutants, and the second column shows the names of target programs. The

third to the fifth columns show the results of RNDSN , and the sixth to last columns show the results of

REFINER. For each technique, Table 4.3 shows the the numbers of the selected mutants, the ratios of

the selected mutants overM, and MSE of hard-to-kill mutation scores onM and the mutants selected

by the technique.

REFINER achieves 1.6 times (=0.065/0.040), 4.5 times (=0.050/0.011), and 2.7 times (=0.027/0.010)

lower MSE than RNDSN while selecting the exact same number of mutants to predict hard-to-kill 3%,

5%, 7% mutation scores respectively. Figure 4.7 shows the plot of predicted hard-to-kill 5% mutation

scores of RNDSN (Triangle) and REFINER (Circle) against the actual hard-to-kill 5% mutation scores

for test suites of six SIR programs. The closer a point is to the y = x line, the more accurate the

prediction is. Hard-to-kill mutation scores predicted using RNDSN mutants tend to overestimate the

actual hard-to-kill mutation scores of test suites, while REFINER’s predictions are consistently closer to

the actual hard-to-kill mutation scores.
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Figure 4.7: Actual vs Predicted Hard-to-kill 5% Mutation score of SSDL, E-SELECTIVE, RNDSN and

REFINER in six SIR programs

31



Table 4.4: The number and ratio of the mutants selected by, and MSE of E-SELECTIVE, SSDL, and

REFINER

Targets

E-SELECTIVE SSDL REFINER
#Sel.

Muts
%Sel.
Muts. MSE

#Sel.
muts

%Sel.
Muts. MSE

#Sel.

Muts
%Sel.
Muts MSE

Hard-to-
kill 3%

flex 1820 0.2% 0.068 1372 0.1% 0.059 9062 0.8% 0.072

grep 3315 1.8% 0.028 1604 0.9% 0.040 3846 2.0% 0.037

gzip 1989 0.5% 0.140 852 0.2% 0.119 912 0.2% 0.034

make 4385 1.6% 0.037 2630 0.9% 0.042 6777 2.4% 0.035

sed 1912 2.6% 0.091 972 1.3% 0.105 1810 2.5% 0.057

space 2564 2.4% 0.011 2074 1.9% 0.011 3821 3.5% 0.005

Avg. 2664.2 0.7% 0.063 1584.0 0.4% 0.063 4371.3 1.2% 0.040

Hard-to-
kill 5%

flex 1820 0.2% 0.059 1372 0.1% 0.051 9806 0.9% 0.013

grep 3315 1.8% 0.020 1604 0.9% 0.030 5172 2.8% 0.007

gzip 1989 0.5% 0.119 852 0.2% 0.100 1285 0.3% 0.025

make 4385 1.6% 0.035 2630 0.9% 0.040 7328 2.6% 0.002

sed 1912 2.6% 0.045 972 1.3% 0.055 1262 1.7% 0.015

space 2564 2.4% 0.008 2074 1.9% 0.008 3454 3.2% 0.002

Avg. 2664.2 0.7% 0.048 1584.0 0.4% 0.047 4717.8 1.3% 0.011

Hard-to-
kill 7%

flex 1820 0.2% 0.054 1372 0.1% 0.046 20808 1.8% 0.018

grep 3315 1.8% 0.012 1604 0.9% 0.020 4354 2.3% 0.008

gzip 1989 0.5% 0.032 852 0.2% 0.022 1412 0.4% 0.006

make 4385 1.6% 0.033 2630 0.9% 0.037 3829 1.4% 0.015

sed 1912 2.6% 0.028 972 1.3% 0.036 1733 2.4% 0.013

space 2564 2.4% 0.006 2074 1.9% 0.006 3662 3.4% 0.002

Avg. 2664.2 0.7% 0.027 1584.0 0.4% 0.028 5966.3 1.7% 0.010

4.2.4 RQ4. Comparison of REFINER with Existing Operator-based Mutant

Selection Techniques

The experiment results in Table 4.4 show that, REFINER can predict hard-to-kill mutation scores

more accurately than SSDL and E-SELECTIVE (i.e., REFINER achieves lower MSE than SSDL and

E-SELECTIVE). The first column shows category of hard-to-kill mutants, and the second column shows

the names of target programs. The third to the fifth columns show the results of E-SELECTIVE, the

sixth to the eighth columns show the results of SSDL, and the ninth to last columns show the results of

REFINER. For each technique, Table 4.4 shows the the numbers of the selected mutants, the ratios of

the selected mutants overM, and MSE of Hard-to-kill mutation scores onM and the mutants selected

by the technique.

In terms of MSE, E-SELECTIVE and SSDL performs similarly. On average, E-SELECTIVE

achieves MSE = 0.063, 0.048, 0.027 and SSDL achieves MSE = 0.063, 0.047, 0.028 in predicting hard-

to-kill 3%, 5%, 7% mutation scores, respectively. REFINER achieves 1.6 times (=0.063/0.040), 4.3

times (=0.047/0.011), 2.7 times (=0.027/0.010) more accurate prediction of the hard-to-kill 3%, 5%,

7% mutation score than E-SELECTIVE and SSDL. In terms of the number of selected mutants, on

average, REFINER selects 1.9 times more mutants than E-SELECTIVE, and selects 3.2 times more

mutants than SSDL. It is worth noting that REFINER achieves higher accuracy not just by selecting
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more mutants than E-SELECTIVE and SSDL but by selecting mutants carefully using CLARS. Selecting

1% random mutants achieves 0.0482 of MSE for hard-to-kill mutation score prediction, and selecting

25% random mutants achieves 0.0477 of MSE. It means that selecting 25 times more mutants without

careful selection does not increase accuracy of predicting hard-to-kill mutation score.

Figure 4.7 shows the plot of predicted hard-to-kill 5% mutation scores of E-SELECTIVE (× Sign),

SSDL (+ Sign), and REFINER (Circle) against the actual hard-to-kill 5% mutation scores for test suites

of make and sed respectively. The figures demonstrate that hard-to-kill mutation scores predicted using

E-SELECTIVE and SSDL tend to be higher than the actual hard-to-kill mutation scores of test suites,

similar to RNDSN . On the other hand, the hard-to-kill mutation scores predicted by REFINER are

closer to actual hard-to-kill mutation score, compared to the other two techniques.

4.3 Discussion

4.3.1 Advantage of the Fine-grained Mutation Operators

I demonstrate that each of the fine-grained mutation operator of REFINER generates less redundant

set of mutants than the traditional coarse-grained mutation operators (see Section 4.2.1). Thus, the

fine-grained mutation operators can provide better diversity to various mutation analysis techniques

(e.g., mutation-based fault localization, mutation-based test prioritization [30], and mutation-based test

generation [4]) such that the techniques can find specific mutation strategies customized for a specific

target domain/application effectively. For instance, fine-grained mutation operators can be used for

incremental mutation testing strategies for mutation-based fault localization to select/prioritize mutants

in more cost-effective ways.

4.3.2 Accurate Prediction of Hard-to-Kill Mutation Scores even with Low-

quality Test Suites

From the experiment results, I have observed that for the low-quality test suites (i.e., test suites

whose actual hard-to-kill mutation score is low), REFINER predicts hard-to-kill mutation scores much

more accurately than RNDSN , E-SELECTIVE, and SSDL (see Figure 4.7). For example of make’s test

suites whose actual hard-to-kill 5% mutation score is lower than 0.2, MSE of REFINER’s predicted

hard-to-kill mutation score is 0.033 while MSE of E-SELECTIVE (the second most accurate technique

for the low-quality test suite of sed) is 0.187 which is 5.7 times higher than that of REFINER. This is

because RNDSN , E-SELECTIVE, and SSDL techniques selects many easy-to-kill mutants which make

the prediction of hard-to-kill score inaccurate. In practice, REFINER predicts the hard-to-kill mutation

score much more accurately than RNDSN , E-SELECTIVE, and SSDL. This is because most test suites in

real-world are of low quality and, consequently, their actual predication accuracy of hard-to-kill mutation

score will be low.

4.3.3 Advantage of Learning-based Model to Predict Mutation Scores

REFINER generates an accurate and efficient prediction model of hard-to-kill scores for each

program. REFINER selects 198.3 fine-grained mutation operators to construct the prediction mod-

els on average. REFINER selects 149 fine-grained mutation operators for sed (the smallest model in

terms of the selected mutation operators) and 273 fine-grained mutation operators for flex (the largest
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one). I do not observe a single fine-grained mutation operator that has the largest size of the effect (i.e.,

the absolute value of the coefficient) for all six target programs.

One interesting observation is that no fine-grained mutation operators refined from the four coarse-

grained mutation operators in E-SELECTIVE is in the top 10 mutation operators in terms of the size

of effect of the mutation operator in the models. Also, no fine-grained mutation operator refined from

SSDL is included in the six models.

These observations imply that, for predicting hard-to-kill mutation scores accurately and efficiently,

learning-based approach is more appropriate than selecting specific mutation operators.
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Chapter 5. Conclusion and Future Work

5.1 Conclusion

In this dissertation, I have developed MUSIC, a configurable and extensible mutation tool for C

programs; and REFINER, a fine-grained mutation operator-based mutant reduction technique to predict

hard-to-kill mutation score accurately and efficiently.

MUSIC is developed as a solution to the lack of practical mutation testing tool for modern, complex,

real-world C programs. Through a case study on Siemens benchmark programs and a large real-world

modern C program cURL, I have demonstrated that MUSIC has much higher applicability and generates

no stillborn mutant comparing to two famous mutation tool for C programs, Proteum and Milu.

To address the large cost problem of mutation analysis, I have proposed REFINER. A salient idea

of REFINER is to define and utilize fine-grained mutation operators in mutation operator-based mutant

reduction techniques to accurately and efficiently predict the hard-to-kill mutation score. This idea is

based on the observation that the existing coarse-grained mutation operators is redundant/similar to each

other in a large degree, and fine-grained mutation operators are less correlated, which can help REFINER

produce models accurately and efficiently predicting the hard-to-kill mutation score. I have evaluated

REFINER and other mutant reduction techniques through experiments on the six SIR programs and the

experiment results show that REFINER selects less than 2.0% of all mutants on average and achieves

the lowest prediction error in terms of MSE compared to REFINERTRD, RNDSN , E-SELECTIVE, and

SSDL.

5.2 Future Work

As future work, for MUSIC, I plan to apply MUSIC to more C projects to evaluate its applicability

further. Also, since mutation analysis is actively used for various software analysis tasks, I plan to

provide more diverse mutation operators in MUSIC. Furthermore, I plan to find other ways to ensure

that MUSIC never generates stillborn mutants. I am upgrading MUSIC to support fine-grained mutation

operators.

For REFINER, I plan to develop program semantics-based mutant reduction heuristics and combine

these heuristics with REFINER to improve mutant reduction furthermore. In addition, I plan to apply

REFINER to select mutants for mutation-based fault localization, and test case generation. In fault

localization, the effectiveness of REFINER can be measured in terms of accuracy of fault detection.

In test case generation, the effectiveness of REFINER can be measured in terms of code coverage of

generated test suites or number of bugs detected.

35



Bibliography

[1] Jia Y, Harman M. An analysis and survey of the development of mutation testing. IEEE transactions

on software engineering. 2010 Jun 17;37(5):649-78.

[2] Do H, Rothermel G. On the use of mutation faults in empirical assessments of test case prioritization

techniques. IEEE Transactions on Software Engineering. 2006 Oct 9;32(9):733-52.

[3] Fraser G, Zeller A. Mutation-driven generation of unit tests and oracles. IEEE Transactions on

Software Engineering. 2011 Sep 15;38(2):278-92.

[4] Kim Y, Hong S, Ko B, Phan DL, Kim M. Invasive software testing: Mutating target programs to

diversify test exploration for high test coverage. In 2018 IEEE 11th International Conference on

Software Testing, Verification and Validation (ICST) 2018 Apr 9 (pp. 239-249). IEEE.

[5] Moon S, Kim Y, Kim M, Yoo S. Ask the mutants: Mutating faulty programs for fault localization.

In 2014 IEEE Seventh International Conference on Software Testing, Verification and Validation

2014 Mar 31 (pp. 153-162). IEEE.

[6] Papadakis M, Le Traon Y. Metallaxis-FL: mutation-based fault localization. Software Testing, Ver-

ification and Reliability. 2015 Aug;25(5-7):605-28.

[7] Papadakis M, Kintis M, Zhang J, Jia Y, Le Traon Y, Harman M. Mutation testing advances: an

analysis and survey. InAdvances in Computers 2019 Jan 1 (Vol. 112, pp. 275-378). Elsevier.

[8] Jia Y, Harman M. An analysis and survey of the development of mutation testing. IEEE transactions

on software engineering. 2010 Jun 17;37(5):649-78.

[9] Phan DL, Kim Y, Kim M. MUSIC: Mutation Analysis Tool with High Configurability and Ex-

tensibility. In2018 IEEE International Conference on Software Testing, Verification and Validation

Workshops (ICSTW) 2018 Apr 9 (pp. 40-46). IEEE.

[10] Offutt, A.J., Lee, A., Rothermel, G., Untch, R.H., Zapf, C.: An experimental determination of suffi-

cient mutation operators. ACM Transactions on Software Engineering and Methodology (TOSEM)

5(2), 99-118 (1996)

[11] Barbosa EF, Maldonado JC, Vincenzi AM. Toward the determination of sufficient mutant operators

for C. Software Testing, Verification and Reliability. 2001 Jun;11(2):113-36.

[12] Wong WE, Maldonado JC, Delamaro ME. Reduncing the Cost of Regression Testing by Using

Selective Mutation. InAnais VIII Conferência Internacional de Tecnologia de Software: Qualidade

de Software 1997 Jun.

[13] Siami Namin A, Andrews JH, Murdoch DJ. Sufficient mutation operators for measuring test effec-

tiveness. InProceedings of the 30th international conference on Software engineering 2008 May 15

(pp. 351-360). ACM.

[14] Acree AT, Budd TA, DeMillo RA, Lipton RJ, Sayward FG. Mutation Analysis. GEORGIA INST

OF TECH ATLANTA SCHOOL OF INFORMATION AND COMPUTER SCIENCE; 1979 Sep.

36



[15] Budd TA. MUTATION ANALYSIS OF PROGRAM TEST DATA.

[16] Wong WE, Mathur AP. Reducing the cost of mutation testing: An empirical study. Journal of

Systems and Software. 1995 Dec 1;31(3):185-96.

[17] Zhang L, Hou SS, Hu JJ, Xie T, Mei H. Is operator-based mutant selection superior to random

mutant selection?. InProceedings of the 32nd ACM/IEEE International Conference on Software

Engineering-Volume 1 2010 May 1 (pp. 435-444). ACM.

[18] Lerch MD. Statistics in the presence of cost: cost-considerate variable selection and MCMC conver-

gence diagnostics (Doctoral dissertation, Montana State University-Bozeman, College of Letters &

Science).

[19] Zhang L, Gligoric M, Marinov D, Khurshid S. Operator-based and random mutant selection: Better

together. InProceedings of the 28th IEEE/ACM International Conference on Automated Software

Engineering 2013 Nov 11 (pp. 92-102). IEEE Press.

[20] Yao X, Harman M, Jia Y. A study of equivalent and stubborn mutation operators using human

analysis of equivalence. InProceedings of the 36th International Conference on Software Engineering

2014 May 31 (pp. 919-930). ACM.

[21] Papadakis M, Chekam TT, Le Traon Y. Mutant quality indicators. In2018 IEEE International

Conference on Software Testing, Verification and Validation Workshops (ICSTW) 2018 Apr 9 (pp.

32-39). IEEE.

[22] Visser W. What makes killing a mutant hard. InProceedings of the 31st IEEE/ACM International

Conference on Automated Software Engineering 2016 Aug 25 (pp. 39-44). ACM.

[23] Do H, Elbaum S, Rothermel G. Supporting controlled experimentation with testing techniques: An

infrastructure and its potential impact. Empirical Software Engineering. 2005 Oct 1;10(4):405-35.

[24] Kintis M, Papadakis M, Jia Y, Malevris N, Le Traon Y, Harman M. Detecting trivial mutant

equivalences via compiler optimisations. IEEE Transactions on Software Engineering. 2017 Mar

20;44(4):308-33.

[25] Legates DR, McCabe Jr GJ. Evaluating the use of “goodness-of-fit” measures in hydrologic and

hydroclimatic model validation. Water resources research. 1999 Jan;35(1):233-41.

[26] https://github.com/mdlerch/ccs

[27] Deng L, Offutt J, Li N. Empirical evaluation of the statement deletion mutation operator. In2013

IEEE Sixth International Conference on Software Testing, Verification and Validation 2013 Mar 18

(pp. 84-93). IEEE.

[28] Delamaro ME, Deng L, Durelli VH, Li N, Offutt J. Experimental evaluation of SDL and one-op

mutation for C. In2014 IEEE Seventh International Conference on Software Testing, Verification

and Validation 2014 Mar 31 (pp. 203-212). IEEE.

[29] Untch RH. On reduced neighborhood mutation analysis using a single mutagenic operator. InPro-

ceedings of the 47th Annual Southeast Regional Conference 2009 Mar 19 (p. 71). ACM.

37

https://github.com/mdlerch/ccs


[30] Shin D, Yoo S, Papadakis M, Bae DH. Empirical evaluation of mutation-based test case prioritization

techniques. Software Testing, Verification and Reliability. 2019 Jan;29(1-2):e1695.

[31] Agrawal H, DeMillo R, Hathaway R, Hsu W, Hsu W, Krauser EW, Martin RJ, Mathur AP, Spafford

E. Design of mutant operators for the C programming language. Technical Report SERC-TR-41-P,

Software Engineering Research Center, Purdue University; 1989 Mar 20.

[32] Delamaro ME, Maidonado JC, Mathur AP. Interface mutation: An approach for integration testing.

IEEE transactions on software engineering. 2001 Mar;27(3):228-47.

[33] Delamaro ME, Maldonado JC, Mathur AP. Proteum-a tool for the assessment of test adequacy for

c programs user’s guide. InPCS 1996 Apr (Vol. 96, pp. 79-95).

[34] Maldonado JC, Delamaro ME, Fabbri SC, da Silva Simão A, Sugeta T, Vincenzi AM, Masiero

PC. Proteum: A family of tools to support specification and program testing based on mutation.

InMutation testing for the new century 2001 (pp. 113-116). Springer, Boston, MA.

[35] Delamaro ME, Maldonado JC, Vincenzi AM. Proteum/IM 2.0: An integrated mutation testing

environment. InMutation testing for the new century 2001 (pp. 91-101). Springer, Boston, MA.

[36] Jia Y, Harman M. MILU: A customizable, runtime-optimized higher order mutation testing tool for

the full C language. InTesting: Academic & Industrial Conference-Practice and Research Techniques

(taic part 2008) 2008 Aug 29 (pp. 94-98). IEEE.

[37] Hong S, Lee B, Kwak T, Jeon Y, Ko B, Kim Y, Kim M. Mutation-based fault localization for real-

world multilingual programs (T). In2015 30th IEEE/ACM International Conference on Automated

Software Engineering (ASE) 2015 Nov 9 (pp. 464-475). IEEE.

[38] Hong S, Kwak T, Lee B, Jeon Y, Ko B, Kim Y, Kim M. MUSEUM: Debugging real-world multilin-

gual programs using mutation analysis. Information and Software Technology. 2017 Feb 1;82:80-95.

[39] https://curl.haxx.se/

[40] https://cmake.org/

[41] https://gyp.gsrc.io/

[42] https://github.com/rizsotto/Bear

[43] Lattner C, Adve V. LLVM: A compilation framework for lifelong program analysis & transformation.

InProceedings of the international symposium on Code generation and optimization: feedback-

directed and runtime optimization 2004 Mar 20 (p. 75). IEEE Computer Society.

[44] Abreu R, Zoeteweij P, Van Gemund AJ. Spectrum-based multiple fault localization. InProceedings

of the 2009 IEEE/ACM International Conference on Automated Software Engineering 2009 Nov 16

(pp. 88-99). IEEE Computer Society.

[45] Lo D, Cheng H, Han J, Khoo SC, Sun C. Classification of software behaviors for failure detection:

a discriminative pattern mining approach. InProceedings of the 15th ACM SIGKDD international

conference on Knowledge discovery and data mining 2009 Jun 28 (pp. 557-566). ACM.

38

https://curl.haxx.se/
https://cmake.org/
https://gyp.gsrc.io/
https://github.com/rizsotto/Bear
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