Uniqueness of the Paths Explored by the Distributed Concolic Algorithm

Moonzoo Kim and Yunho Kim
CS Dept. KAIST, South Korea
Gregg Rothermel
CSE Dept. Univ. of Nebraska, Lincoln, US

1 Concolic Testing Process

This section presents an overview of the original (non-distributed) concolic testing process that performs static instrumentation of a target program to extract symbolic path formulas, which is the way SCORE operates. The concolic testing process proceeds via the following steps:

1. Declaration of symbolic variables. Initially, a user must specify which variables should be handled as symbolic variables, based on which symbolic path formulas are constructed.
2. Instrumentation. A target source program is statically instrumented with probes, which record symbolic path conditions from a concrete execution path when the target program is executed. For example, at each conditional branch, a probe is inserted to record the branch condition/symbolic path condition; then, the instrumented program is compiled into an executable binary file.
3. Concrete execution. The instrumented binary is executed with given input values. For the first execution of the program, initial input values are assigned randomly. From the second execution onwards, input values are obtained from Step 6.
4. Obtain a symbolic path formula ϕ_{i}. The symbolic execution part of the concolic execution collects symbolic path conditions over the symbolic input values at each branch point encountered for along the concrete execution path for a test case $t c_{i}$. Whenever each statement s of the target program is executed, a corresponding probe inserted at s updates the map of symbolic variables if s is an assignment statement, or collects a corresponding symbolic path condition, c, if s is a branch statement. Thus, a symbolic path formula ϕ_{i} is built at the end of the i th execution as $c_{1} \wedge c_{2} \ldots \wedge c_{n}$ where c_{n} is the last path condition executed and c_{k} is executed earlier than c_{k+1} for all $1 \leq k<n$.
5. Generate a new symbolic path formula ψ_{i}. Given a symbolic path formula ϕ_{i} obtained in Step 4, to obtain the next input values, ψ_{i} is generated by negating one path condition c_{j} and removing subsequent path conditions (i.e., $\psi_{i}=c_{1} \wedge c_{2} \ldots \wedge \neg c_{j}$).
```
01:int main() {
02: int x, y,z, max_num=0;
03: SYM_INT(x); // Declaration of x, y, z
04: SYM_INT(y); // as symbolic integer
05: SYM_INT(z); // variables
06:
07: if(x >= y) {
08: // SYM_COND(x,y, ">=");
09: if(y >= z) {
10: // SYM_COND(y,z, ">=");
11: max_num = x;
12: } else {
13: // SYM_COND(y,z, "<");
14: if (x >= z){
15: // SYM_COND(x,z, ">=");
16: max_num = x;
17: } else {
18: // SYM_COND(x,z, "<");
19: max_num = z;
20: }
21: }
22: } else { ...}
23: printf("%d is the largest number among\
    printf("%d is the largest number among
    // SMT_Solve();
```

Figure 1: Example used to illustrate concolic testing

For example, if a depth first search (DFS) strategy is used, as it often is, to explore the symbolic path formula, then c_{j} is the last symbolic path condition in ϕ_{i} whose negated path condition has not been executed previously. If ψ_{i} is unsatisfiable, another path condition $c_{j^{\prime}}$ is negated and subsequent path conditions are removed until a satisfiable path formula is found. If there are no further new paths to try, the algorithm terminates.
6. Select the next input values $t c_{i+1}$. A constraint solver such as a Satisfiability Modulo Theory (SMT) solver generates a model that satisfies ψ_{i}. This model determines the next concrete input values to try (i.e., $t c_{i+1}$), and the concolic testing procedure iterates from Step 3 using these input values.

We illustrate this process through an example involving Figure 1, which returns the largest number from three given integers.

1. Declaration of symbolic variables. A user declares x, y, and z as symbolic integer variables by using SYM_INT () (lines 3-5).
2. Instrumentation. A concolic testing tool (i.e., SCORE) inserts a probe to record a corresponding path condition at each then branch in an automated manner. Similarly, at each else branch, a probe is inserted to record a corresponding path condition. In Figure 1, probes inserted through instrumentation are shown as comments. For example, at line 10, SYM_COND ($y, z, ">="$) is inserted to record path condition $y>=z$.

Similarly, SYM_COND ($y, z, "<"$) is inserted at line 13 to record path condition $y<z$.
3. Concrete execution. Initial input values for the symbolic variables are randomly chosen. We assume that x, y, and z are assigned 1,1 , and 0 as initial random values, respectively (i.e., $t c_{1}=<1,1,0>$). Then, the instrumented target program executes lines 2-11 and lines 23-26.
4. Obtain a symbolic path formula ϕ_{i}. During the concrete execution of lines 211, the probes record two symbolic path conditions $x>=y$ and $y>=z$ through SYM_COND ($\mathrm{x}, \mathrm{y}, \quad ">="$) (line 8) and SYM_COND ($\mathrm{y}, \mathrm{z}, \mathrm{l}>=\mathrm{=}$) (line 10) respectively. Thus, the symbolic formula $\phi_{1}=(x>=y) \wedge(y>=z)$ is obtained for the first iteration.
5. Generate a new symbolic path formula ψ_{i}. If a DFS algorithm is used, ψ_{1} is $(x>=y) \wedge \neg(y>=z)$.
6. Select the next input values. At line 25 , the target program finishes its first iteration and invokes a constraint solver to solve ψ_{1}. Suppose that an SMT solver solves ψ_{1} and generates 1,1 , and 2 for x, y, and z as a solution (i.e., $t c_{2}=<1,1,2>$). Then, the target program starts the second iteration with these values, and the entire process from Step 3 is repeated.

2 Concolic Algorithm

Algorithm 1 presents the concolic testing algorithm that corresponds to Steps 3 through 6 just detailed. Algorithm 1 receives a current test case $t c_{i}$, neg_limit ${ }_{i}$, and an index i to the test case $t c_{i}$ as parameters. neg_limit i_{i} is an index to the path condition (PC) in ϕ_{i} beyond which PCs should not be negated (lines 7-9) (i.e., c_{k} should not be negated for $k<$ neg_limit ${ }_{i}$), where ϕ_{i} is a symbolic path formula obtained from an execution path on $t c_{i}$. (The use of neg_limit prevents the recursive $\operatorname{Concolic}()$ call in line 13 from generating redundant test cases). Initially, $t c_{1}$ is given as a random value, neg_limit ${ }_{1}$ is 1 , and $i=1$.

The algorithm generates symbolic path formulas ψ_{i} s by negating PCs of ϕ_{i} one by one in decreasing order (line 9). Then, it generates new test cases $t c_{i+1}$ by solving the $\psi_{i} \mathrm{~s}$ (line 11). From each new test case $t c_{i+1}$ generated in the loop, the algorithm generates further test cases to explore execution paths that share a common prefix (i.e., $\left.c_{1} \wedge \ldots \wedge \neg c_{j}\right)$ by calling $\operatorname{Concolic}\left(t c_{i+1}, j+1, i+1\right)$ in a recursive manner (line 13).

Note that the concolic algorithm traverses the execution tree of a target program in a depth first search (DFS) order and, under the assumption that ϕ_{i} truly reflects path ${ }_{i}$ and Solve $\left(\psi_{i}\right)$ can solve $\psi_{i},{ }^{1}$ In addition, generated test cases do not explore the same execution path again (see Corollary 1).

Theorem 1 (UNIQUENESS OF GENERATED TEST CASES)

$\forall k, l \geq 1 .\left(k \neq l \rightarrow t c_{k} \neq t c_{l}\right)$ in Algorithm 1.

[^0]```
Input:
tc}:\mp@code{ith test case to run
neg_limit }\mp@subsup{i}{i}{}\mathrm{ : a position of the PC in }\mp@subsup{\phi}{i}{}\mathrm{ beyond which PCs should not be
negated
i: a number of test cases generated so far
Output:
ntc
A set of generated test cases (i.e., }t\mp@subsup{c}{i+1}{}\textrm{s}\mathrm{ of line 11)
Concolic(tci, neg_limit i,i) {
// Step 3: Concrete execution
pathi}=\mathrm{ an execution path of a target program running on tc
// Step 4: Obtain a symbolic path formula }\mp@subsup{\phi}{i}{}=\mp@subsup{c}{1}{}\wedge\ldots\wedge\mp@subsup{c}{n}{
\phi}=\mathrm{ a symbolic path formula obtained from pathi
j=| \mp@subsup{\phi}{i}{}|;//| | \mp@subsup{\phi}{i}{}|=n\mathrm{ where }\mp@subsup{c}{n}{}\mathrm{ is the last PC in }\mp@subsup{\phi}{i}{}
while j>= neg_limit do
 // Step 5: Generate }\mp@subsup{\psi}{i}{}\mathrm{ for the next input values
 \psi}=\mp@subsup{c}{1}{}\wedge\ldots\wedge\mp@subsup{c}{j-1}{}\wedge\neg\mp@subsup{c}{j}{}
 // Step 6: Selecting the next input values
 tc}\mp@subsup{c}{i+1}{}=\operatorname{Solve}(\mp@subsup{\psi}{i}{});// NULL if \psi \psi is unsatisfiable
 if }t\mp@subsup{c}{i+1}{}\mathrm{ is not NULL then
 i=Concolic(tcci+1,j+1,i+1);
 end
 j=j-1;
end
ntc}=i
return }\mp@subsup{n}{tc}{
}
```

Algorithm 1: Original concolic algorithm

Suppose that there exist $k, l \geq 1$ such that $k \neq l$ and $t c_{k}=t c_{l}$. Then, there exist corresponding symbolic path formulas $\psi_{k-1}$ and $\psi_{l-1}$ whose solution is $t c_{k}\left(=t c_{l}\right)$. (Since $t c_{1}$ is given as a random initial value, $\psi_{0}=$ true.) Since $\psi_{k-1}$ and $\psi_{l-1}$ are symbolic path formulas, if $t c_{k}=t c_{l}$, then $\psi_{k-1}=\psi_{l-1}$ (contrapositive of Lemma 2). However, Lemma 1 shows that there are no $k, l \geq 0$ such that $k \neq l$ and $\psi_{k}=\psi_{l}$. Contradiction.

## Corollary 1 (UNIQUENESS OF EXPLORED PATHS)

Concolic () in Algorithm 1 does not explore the same path again. In other words, $\forall k, l \geq 1 .\left(k \neq l \rightarrow \phi_{k} \neq \phi_{l}\right)$

From Lemma 1 and Lemma 2.
Lemma 1 (UNIQUENESS OF GENERATED SYMBOLIC PATH FORMULAS)
$\forall k, l \geq 0 .\left(k \neq l \rightarrow \psi_{k} \neq \psi_{l}\right)$ in Algorithm 1.

First, if $k=0$ Lemma 1 is trivially true, since $\psi_{0}=$ true and $\forall l \geq 1 . \psi_{0} \neq \psi_{l}$.
Second, suppose that $1 \leq k<l$. There are two places where a new symbolic formula $\psi_{l}$ is generated:

- $\psi_{k}$ is different from $\psi_{l}$ which is generated at the earliest subsequent iteration where a new test case $t c_{l+1}$ is generated, because $\left|\psi_{k}\right|>\left|\psi_{l}\right|$ as $j$ (i.e., $\left|\psi_{l}\right|$ ) decreases monotonically through iterations.
- Case 2: inside a recursive $\operatorname{Concolic}()$ call (line 13)
$\psi_{k}$ is different from any $\psi_{l}$ that is generated inside of a recursive $\operatorname{Concolic}\left(\right.$ tckel $\left._{k+1}, j+1, k+1\right)$ call. This is because $\forall l .\left|\psi_{k}\right|<\left|\psi_{l}\right|$ where $\psi_{l}$ is generated inside of $\operatorname{Concolic}\left(\operatorname{tc}_{k+1}, j+1, k+1\right)$. Note that $\left|\psi_{k}\right|=j$ and $\forall l .\left|\psi_{l}\right|>j$, since neg_limit $_{k+1}$ in $\operatorname{Concolic}\left(t c_{k+1}, j+1, k+1\right)$ is $j+1$ (line 7).

Therefore, since $\left|\psi_{k}\right| \neq\left|\psi_{l}\right|, \psi_{k} \neq \psi_{l}$.
For the cases where $k>l$, the above proof applies in a similar manner. Therefore, there exists no $k, l \geq 0$ such that $k \neq l$ and $t c_{k}=t c_{l}$.

Lemma $2 \forall k, l \geq 0 .\left(\psi_{k} \neq \psi_{l} \rightarrow t c_{k+1} \neq t c_{l+1}\right)$ and $\forall k, l \geq 0 .\left(\psi_{k} \neq \psi_{l} \rightarrow \phi_{k+1} \neq\right.$ $\left.\phi_{l+1}\right)$ in Algorithm 1

Suppose that $\psi_{k}=c_{k 1} \wedge c_{k 2} \ldots \wedge c_{k j_{k}}$ and $\psi_{l}=c_{l 1} \wedge c_{l 2} \ldots \wedge c_{l j_{l}}$. There are three cases to handle to prove Lemma 2.

First, when $k=l$, Lemma 2 is trivially true.
Second, for the cases where $k, l \geq 0 \wedge k<l \wedge \psi_{k} \neq \psi_{l}\left(k<l\right.$ indicates that $\psi_{k}$ is generated before $\psi_{l}$ is generated), there are two relationships between $\psi_{k}$ and $\psi_{l}$. Note that all generated symbolic path formulas $\left(\psi_{i}\right.$ 's) start from the same root of the execution tree (i.e., main () of a target program).

- Case 1: $\psi_{k}$ is not a prefix of $\psi_{l}$

There is at least one path condition $c_{k m}$ such that $\neg c_{k m}$ is a path condition of $\psi_{l}$, since every symbolic path formula starts from the same program entry point. Thus, $t c_{k+1}$ (a solution of $\psi_{k}$ ) cannot satisfy $\psi_{l}$ and $t c_{k+1} \neq t c_{l+1}$. In addition, $\phi_{k+1} \neq \phi_{l+1}$, since $\psi_{k}$ and $\psi_{l}$ are prefixes of $\phi_{k+1}$ and $\phi_{l+1}$ respectively.
For example, $\psi_{k}$ in Figure 2(a) is not a prefix of $\psi_{l} . \psi_{k}$ has $c 1$, but $\psi_{l}$ has $\neg c 1$ which results in $t c_{k+1} \neq t c_{l+1}$ and $\phi_{k+1} \neq \phi_{l+1}$.

- Case 2: $\psi_{k}$ is a prefix of $\psi_{l}$

Suppose that a symbolic path formula $\phi_{k+1}=c_{(k+1) 1} \wedge c_{(k+1) 2} \ldots \wedge c_{(k+1) t}$ is obtained from an execution path on $t c_{k+1}$ (a solution of $\psi_{k}$ ). Then, there is at least one path condition $c_{(k+1) m}$ such that $\neg c_{(k+1) m}$ is a path condition of $\psi_{l}$. This is because every symbolic path formula starts from the same root and $c_{(k+1) m}$ should be negated to generate a subsequent $\psi_{l}$ where $m \geq n e g_{-}$limit $_{k+1}$. Note that neg_limit ${ }_{k+1}$ restricts the range of path conditions to negate so as to prevent repetitive negations on same path conditions (line 7 of Algorithm 1) for all subsequent $\psi_{l}$ 's. Thus, $t c_{l+1}$ cannot satisfy $\phi_{k+1}$. Given that a solution of $\psi_{k}$ (i.e.,


Figure 2: Two relationships between $\psi_{k}$ and $\psi_{l}$
$t c_{k+1}$ ) is a solution of $\phi_{k+1}, t c_{k+1} \neq t c_{l+1}$. In addition, for a similar reason, $\phi_{k+1} \neq \phi_{l+1}$.
For example, $\psi_{k}=c 1(x>0)$ in Figure 2(b) is a prefix of $\psi_{l}=c 1 \wedge \neg c 2((x>$ $0) \wedge \neg(x<5))$. Suppose that $\operatorname{Solve}()$ generates a solution to $c 1$ as $x=1$ (i.e., $t c_{k+1}: x=1$ ). Then, the next symbolic path formula $\psi_{l}$ contains $\neg c 2$, since one path condition in $\phi_{k+1}$ should be negated to generate $\psi_{l}$ and $c 2$ is located lower than $c 1$. Thus, $\psi_{l}=c 1 \wedge \neg c 2$ and its solution $t c_{l+1}$ can be $x=6$.

Third, for the cases where $k, l \geq 1 \wedge k>l \wedge \psi_{k} \neq \psi_{l}$, a similar proof for the second case applies.

## 3 Distributed Concolic Algorithm

The distributed concolic algorithm relies on the fact that the following core part of Algorithm 1 can be processed independently:

From each new test case $t c_{i+1}$ in the loop, the algorithm generates further test cases to explore all possible execution paths that share a common prefix (i.e., $\left.c_{1} \wedge \ldots \wedge \neg c_{j}\right)$ by calling $\operatorname{Concolic}\left(t c_{i+1}, j+1, i+1\right)$ in a recursive manner (line 13).

In other words, the loop in Algorithm 1 generates test case pairs (i.e., $\left.\left(t c_{i+1}, j+1\right) \mathrm{s}\right)$, each of which can be processed by a distributed node independently. To generate test cases in a distributed manner, a node processes ( $t c$, neg_limit) in its queue $q_{t c}$ (lines 14-33 of Algorithm 2) and stores a new pair $\left(t c_{i+1}, j+1\right)$ in $q_{t c}$ (line 27). In this way, a recursive $\operatorname{Concolic}()$ call (line 13 of Algorithm 1) is transformed into a loop with $q_{t c}$ in Algorithm 2 (lines 14-33). Or, a node transfers ( $t c$, neg_limit)s in $q_{t c}$ to other nodes whose $q_{t c}$ is empty so that the other nodes can process ( $t c$, neg_limit)s.

Initially, one startup node running $D \operatorname{str} \operatorname{Concolic}()$ starts the testing process (lines 6-7) and begins generating test cases. Then, the node transfers generated test cases to other nodes that request initial test cases (lines 9-10). If $q_{t c}$ is empty (exiting
the loop of lines 14-33) and the $q_{t c} \mathrm{~s}$ of all distributed nodes are empty, the algorithm terminates (line 39). Otherwise (i.e., there is another node $n^{\prime \prime}$ that has test cases), a current node $n$ requests test cases from another node $n^{\prime \prime}$ (line 35) and receives test cases from $n^{\prime \prime}$ (line 36). The received test cases are then added into $q_{t c}$ (line 37) and the algorithm continues from line 13

This distributed concolic algorithm does not generate redundant test cases (test cases that cover the same path), just as the non-distributed concolic algorithm does not (again, with the assumption that $\phi_{i}$ truly reflects path $h_{i}$ and $\operatorname{Solve}\left(\psi_{i}\right)$ can solve $\psi_{i}$ ). Theorems 2 and 3 confirm this property of the distributed algorithm in the SCORE framework.

Theorem 2 If there is only one node and the node runs DstrConcolic() with startup as true in Algorithm 2, the node does not generate redundant test cases.

A brief proof sketch is as follows. We prove that Algorithm 2 with startup as true is equivalent to Algorithm 1. This can be shown by step-by-step transformation of the recursive Concolic() of Algorithm 1 into the while loop (lines 14-33) with $q_{t c}$ of Algorithm 2 ( $q_{t c}$ simulates a call stack to store actual parameters of recursive Concolic () ). Then, from Theorem 1 and Corollary 1, Algorithm 2 does not generate redundant test cases.

Theorem 3 Algorithm 2 does not generate redundant test cases among the distributed nodes.

A brief proof sketch is as follows. Theorem 2 shows that $\operatorname{DstrConcolic()}$ does not generate redundant test cases on one node. In addition, DstrConcolic() generates test cases based on only ( $t c$, neg_limit) in $q_{t c}$. Thus, a node $n$ that receives ( $t c$, neg_limit) s from a node $n^{\prime}$ generates the same test cases, as if $n^{\prime}$ generates the test cases from these ( $t c$, neg_limit)s. In other words, when Algorithm 2 terminates, the total set of test cases generated by multiple distributed nodes are the same as the set of test cases generated by one node. Consequently, Theorem 3 follows from Theorem 2.

```
Input:
startup: a flag to indicate whether a current node \(n\) is a startup node or not.
Output:
\(T C_{n}\) : a set of test cases generated at a current node \(n\) (i.e., \(t c_{i+1}\) s of line 25)
DstrConcolic(startup) \{
\(q_{t c}=\emptyset ; / /\) a queue containing (\(t c\), neg_limit)s
\(T C_{n}=\emptyset ; / /\) a set of generated test cases
\(i=1\);
if startup then
 \(t c_{1}=\) random value; // initial test case
 Add \(\left(t c_{1}, 1\right)\) to \(q_{t c}\);
else
 Send a request for test cases to \(n^{\prime}\);
 Receive (\(t c\), neg_limit)s from \(n^{\prime}\);
 Add (\(t c\), neg_limit)s to \(q_{t c}\);
end
while true do
 while \(\left|q_{t c}\right|>0\) do
 Remove (\(t c\), neg_limit) from \(q_{t c}\);
 // Step 3: Concrete execution
 path \(_{i}=\) an execution path of a target program running on \(t c\)
 // Step 4: Obtain a symbolic path formula \(\phi_{i}\)
 \(\phi_{i}=\) a symbolic path formula obtained from path \(_{i}\)
 \(j=\left|\phi_{i}\right|\);
 while \(j>=\) neg_limit do
 // Step 5: Generate \(\psi_{i}\) for the next input values
 \(\psi_{i}=c_{1} \wedge \ldots \wedge c_{j-1} \wedge \neg c_{j} ;\)
 // Step 6: Select the next input values
 \(t c_{i+1}=\operatorname{Solve}\left(\psi_{i}\right)\);
 if \(t c_{i+1}\) is not NULL then
 Add \(\left(t c_{i+1}, j+1\right)\) to \(q_{t c}\);
 \(T C_{n}=T C_{n} \cup\left\{t c_{i+1}\right\} ;\)
 \(i=i+1 ;\)
 end
 \(j=j-1\);
 end
 end
 if there is a test case in another node \(n^{\prime \prime}\) then
 Send a request for test cases to \(n^{\prime \prime}\)
 Receive (\(t c\), neg_limit)s from \(n^{\prime \prime}\)
 Add (\(t c\), neg_limit)s to \(q_{t c}\)
 else
 Halt; // no test cases exist in all nodes
 end
end
\(2\}\)
```

Algorithm 2: Distributed \&oncolic algorithm


[^0]:    ${ }^{1}$ In practice, a program $P$ may contain complex arithmetic or binary library calls that cannot be solved or reasoned about by SMT solvers. Thus, the concolic algorithm generates symbolic path formulas without such conditions, and in these cases this may result in the generation of identical symbolic path formulas from different execution paths.

