
박 사 학 위 논 문
Ph.D. Dissertation

실제적인유닛컨텍스트합성으로거짓경보를

줄인자동화된유닛테스트생성

Automated Unit Test Generation with Realistic Unit Context

Synthesis for Low False Alarms

2017

김 윤 호 (金潤浩 Kim, Yunho)

한 국 과 학 기 술 원

Korea Advanced Institute of Science and Technology



박 사 학 위 논 문

실제적인유닛컨텍스트합성으로거짓경보를

줄인자동화된유닛테스트생성

2017

김 윤 호

한 국 과 학 기 술 원

전산학부



실제적인유닛컨텍스트합성으로거짓경보를

줄인자동화된유닛테스트생성

김 윤 호

위 논문은 한국과학기술원 박사학위논문으로

학위논문 심사위원회의 심사를 통과하였음

2016년 11월 10일

심사위원장 김 문 주 (인)

심 사 위 원 류 석 영 (인)

심 사 위 원 배 두 환 (인)

심 사 위 원 신 인 식 (인)

심 사 위 원 Gregg Rothermel (인)



Automated Unit Test Generation with Realistic Unit

Context Synthesis for Low False Alarms

Yunho Kim

Advisor: Moonzoo Kim

A dissertation submitted to the faculty of

Korea Advanced Institute of Science and Technology in

partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

Daejeon, Korea

November 10, 2016

Approved by

Moonzoo Kim

Professor of School of Computing

The study was conducted in accordance with Code of Research Ethics1.

1 Declaration of Ethical Conduct in Research: I, as a graduate student of Korea Advanced Institute of Science and

Technology, hereby declare that I have not committed any act that may damage the credibility of my research. This

includes, but is not limited to, falsification, thesis written by someone else, distortion of research findings, and plagiarism.

I confirm that my thesis contains honest conclusions based on my own careful research under the guidance of my advisor.



DCS
20097016

김윤호. 실제적인유닛컨텍스트합성으로거짓경보를줄인자동화된

유닛 테스트 생성. 전산학부 . 2017년. 53+iv 쪽. 지도교수: 김문주.

(영문 논문)

Yunho Kim. Automated Unit Test Generation with Realistic Unit Context

Synthesis for Low False Alarms. School of Computing . 2017. 53+iv pages.

Advisor: Moonzoo Kim. (Text in English)

초 록

소프트웨어개발과정에서대부분테스트케이스를수작업으로만들고있기때문에소프트웨어테스팅

이 효율적, 효과적이지 못하다. 또한, 소프트웨어가 크고 복잡해짐에 따라 제한된 개발 시간동안 소프

트웨어의다양한행동을충분히살펴보는것이어렵다. 이와같은문제를해결하기위해소프트웨어각

소프트웨어 유닛의 테스트 드라이버/스텁 함수와 유닛 테스트 케이스를 자동으로 생성하는 자동화된

유닛 테스트 생성 기법이 개발되었다. 하지만 기존의 자동화된 유닛 테스트 생성 기법은 타겟 유닛의

부정확한 컨텍스트로 인해 실제 프로그램 수행 과정에서는 탐색할 수 없는 실행 경로를 탐색하여 많은

수의 거짓 경보를 생성하는 문제가 있다.

본 논문은 실제적인 유닛 컨텍스트를 합성하여 거짓 경보를 줄이고 버그를 자동으로 탐지하는 자

동화된유닛테스트생성기법을제안한다. 본논문은우선세계최초로산업체의대규모 C프로그램에

적용가능한자동화된유닛테스트생성기법 CONBOL을제안한다. CONBOL은자동으로심볼릭유닛

테스트 드라이버/스텁 함수를 생성하고 부정확한 드라이버/스텁 함수로 생성되는 거짓 경보를 줄이기

위한 거짓 경보 제거 휴리스틱을 적용한다. 400만 줄 규모의 대규모 산업체 C 프로그램을 대상으로

CONBOL을 적용한 결과 24개의 새로운 버그를 발견하여 버그 탐지 능력이 우수함을 입증하였다. 본

논문은 두 번째로 실제적인 유닛 컨텍스트를 합성하여 거짓 경보를 크게 줄인 자동화된 유닛 테스트

생성 기법 CONCERT를 제안한다. CONCERT는 테스트 대상 함수 f의 테스트 드라이버/스텁 함수를

생성할 때 f와 “밀접하게 연관된” 다른 함수의 코드를 활용함으로써 실제적인 유닛 컨텍스트를 생성한

다. 테스트 대상 함수 f와 다른 함수 g의 “연관도”는 테스트 대상 소프트웨어가 실행되는 동안 f와 g가

얼마나 많이 같이 실행되었는지를 기준으로 정의된다. 15개 실제 C 프로그램(평균 55KLOC)의 67개

크래시 버그를 대상으로 적용한 결과 CONCERT 는 83.6%의 버그를 탐지하여 높은 버그 탐지 능력을

보이고, 1개의 진짜 경보당 2.4개의 거짓 경보를 보고하여 낮은 거짓/진짜 경보 비율을 보였다.

향후 연구로는 함수 연관도 측정 방법을 더 정확하게 개선하여 거짓 경보를 줄이고 유닛 테스트과

정에서얻은정보를활용하여시스템테스트케이스를생성하고자한다. 또한,함수연관도를리팩토링,

변화 분석 등 다양한 분석 기법에 적용하여 기존 분석 기법을 개선하고자 한다.

핵 심 낱 말 자동화된 유닛 테스팅, 실제적인 유닛 컨텍스트, 거짓 경보 제거, 함수 연관도, 동적 분석,

콘콜릭 테스팅

Abstract

Current testing practice in industry is often ineffective and inefficient to detect bugs since most test

cases are created manually. In addition, the execution space of a complex target program is too large

to explore in limited testing time. As a solution for these problems, automated unit test techniques

automatically generate drivers/stubs for each unit of a target program and test cases to explore the

execution space of each target unit separately. However, these techniques suffer a large number of false

alarms due to approximated inaccurate unit contexts which allow infeasible executions of a target unit.

In this dissertation, I present an automated unit test generation framework that synthesizes realistic



unit context to automatically detect bugs with low false alarms. The first part of this dissertation

presents CONBOL which is the world’s first automated unit testing framework for large industrial C

programs. CONBOL generates symbolic unit testing drivers/stubs automatically and applies heuristics

to reduce false alarms caused by the imprecise drivers/stubs. CONBOL demonstrated its bug detection

effectiveness by detecting 24 new crash bugs in a four million lines long industrial embedded program. The

second part of this dissertation presents the world’s most accurate automated unit testing framework

CONCERT which reduces a large number of false alarms by automatically synthesizing realistic unit

contexts. CONCERT synthesizes test drivers/stubs to represent realistic contexts of a target unit f by

utilizing the code of the other units which are “closely relevant” to f . The “relevance” of other unit g

to f is measured based on how many times g and f are executed together in system executions. In the

experiments on the 67 crash bugs of the 15 real-world C programs (55KLOC on average), CONCERT

demonstrates both high bug detection ability (i.e., 83.6% of the target bugs detected) and low false/true

alarm ratio (i.e., 2.4 false alarms per one true alarm).

As future work, I will improve the function correlation metric for reducing false alarms further. Also,

I plan to develop a framework to build system test cases based on automatically generated unit test cases.

Furthermore, I will utilize unit relevance information for other purposes such as impact analysis.

Keywords Automated unit testing, Realistic unit context, False alarm reduction, Function correlation,

Dynamic analysis, Concolic testing



Contents

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Chapter 1. Introduction 1

1.1 Challenges in Software Testing . . . . . . . . . . . . . . . . . . . . 1

1.2 Background and Limitations on Automated Test Generation

Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 Background on Automated Test Generation Techniques 1

1.2.2 Limitations on Automated Test Generation Techniques 2

1.3 Approach: Automated Unit Test Generation with Realistic

Unit Context Synthesis for Low False Alarms . . . . . . . . . . . 3

1.4 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2. Related Work 5

2.1 Automated Unit Test Generation Techniques . . . . . . . . . . . 5

2.1.1 Direct Function Input Generation based Unit Testing

Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Method Sequence Generation based Unit Testing Techni-

ques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 System Execution Capture based Unit Testing Techniques 7

2.2 Concolic Testing Techniques . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Concolic Testing Technique Research . . . . . . . . . . . 7

2.2.2 Case Studies of the Concolic Testing Techniques . . . . . 8

2.3 Metrics on Relevance between Functions . . . . . . . . . . . . . 9

Chapter 3. Automated Unit Test Generation for Large Scale C Programs 10

3.1 CONBOL Framework . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 CONBOL Overview . . . . . . . . . . . . . . . . . . . . . . 10

3.1.2 CONBOL Trim: Automated Porting of Unit Functions

Written for an Embedded Platform . . . . . . . . . . . . 11

3.1.3 CONBOL Gen: Automated Generation of Unit Test

Drivers and Stubs . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Heuristics to Improve the Effectiveness and Precision of Bug

Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14



3.2.1 Inserting assert() Statements . . . . . . . . . . . . . . . . 14

3.2.2 Inserting Constraints to Satisfy Preconditions . . . . . . 15

3.2.3 Scoring of Alarms . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.4 Annotation Mechanism to Utilize User Feedback . . . . 17

3.3 Case Study on Samsung Project S . . . . . . . . . . . . . . . . . 17

3.3.1 Target Project Description . . . . . . . . . . . . . . . . . 17

3.3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Case Study Results on the Project S . . . . . . . . . . . . . . . . 18

3.4.1 Results of CONBOL Trim, CONBOL Gen, and CON-

BOL PP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.2 Result on Detected Bugs . . . . . . . . . . . . . . . . . . . 18

3.4.3 Coverage and Time Costs . . . . . . . . . . . . . . . . . . 19

3.4.4 Effectiveness of the False Alarm Reduction Techniques . 20

Chapter 4. Realistic Unit Context Synthesis for Low False Alarms 21

4.1 A False Alarm Example Caused by Missing Unit Contexts . . . 21

4.2 CONCERT Technique . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.2 Overall Process of CONCERT . . . . . . . . . . . . . . . 23

4.2.3 Algorithms to Generate Unit Test Drivers and Stubs . . 26

4.2.4 Target-oriented Search Strategy for Target Units . . . . 30

4.3 False Alarm Reduction and Alarm Prioritization Heuristics . . 30

4.3.1 False Alarm Reduction by Keeping Consistency Bet-

ween Allocated Memory and Its Size Variable . . . . . . 31

4.3.2 False Alarm Reduction by Value Range Analysis . . . . 31

4.3.3 False Alarm Reduction by Common Likely-Invariants

of Unit Test Drivers . . . . . . . . . . . . . . . . . . . . . . 31

4.3.4 Alarm Prioritization using Code Complexity and Ex-

ternal Input . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Chapter 5. Empirical Evaluation of Automated Unit Test Generation with

Realistic Unit Context 34

5.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . 34

5.1.2 Target Bugs and Programs . . . . . . . . . . . . . . . . . 34

5.1.3 Concolic Unit Testing Techniques . . . . . . . . . . . . . 35

5.1.4 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1.5 Testbed Setting . . . . . . . . . . . . . . . . . . . . . . . . 37

i



5.1.6 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Experiment Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.1 Experiment Data . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.2 RQ1: Bug Detection Ability . . . . . . . . . . . . . . . . . 40

5.2.3 RQ2: Bug Detection Accuracy . . . . . . . . . . . . . . . 40

5.2.4 RQ3. Effects of the False Alarm Reduction and Alarm

Prioritization Heuristics . . . . . . . . . . . . . . . . . . . 42

Chapter 6. Conclusion and Future Work 45

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2.1 Improving Function Correlation Metrics . . . . . . . . . 45

6.2.2 Utilizing Unit Test Cases to Generate Effective System

Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2.3 Utilizing Dynamic Function Correlation Information for

Various Purposes . . . . . . . . . . . . . . . . . . . . . . . 46

Bibliography 47

Acknowledgments in Korean 52

Curriculum Vitae in Korean 53

ii



List of Tables

2.1 Related work of automated unit test generation techniques . . . . . . . . . . . . . . . . . 6

3.1 Branch Coverages and Time costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Effectiveness of false alarm reduction techniques . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Function coverage profile of Figure 4.1 with the given three system test cases . . . . . . . 24

4.2 Correlation between f and other functions based on Table 4.1 . . . . . . . . . . . . . . . . 25

5.1 Target bugs and programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Average number of root functions per target function, the numbers of functions in a unit

test driver, and a length of a call depth from a root function to a target function . . . . . 38

5.3 Time (in minutes) taken on the 100 machines to generate test inputs . . . . . . . . . . . . 39

5.4 The number of test inputs generated by the concolic unit testing techniques . . . . . . . . 39

5.5 Branch coverage achieved(%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.6 The numbers of the detected target bugs by the concolic unit testing techniques . . . . . . 41

5.7 The numbers of false alarms and false/true alarm ratios of the concolic unit testing techniques 41

5.8 Effects of the false alarm reduction and alarm prioritization heuristics . . . . . . . . . . . 42

5.9 The effect of each false alarm reduction and alarm prioritization heuristic . . . . . . . . . 43

iii



List of Figures

1.1 Comparison of automated test generation in system-level and unit-level, and automated

unit test generation with realistic unit contexts . . . . . . . . . . . . . . . . . . . . . . . . 2

3.1 Overview of the CONBOL framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 An example of an automatically generated unit test driver . . . . . . . . . . . . . . . . . . 13

3.3 Test driver with preconditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Target program with a target function f . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Unit test driver and stubs for f generated by concolic unit testing techniques . . . . . . . 23

4.3 Overall process of CONCERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 Two groups of functions whose code is used in two different unit test drivers/stubs with

a correlation threshold τ = 0.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.5 Static call graph (with correlation with f) of the target program in Figure 4.1 . . . . . . . 29

4.6 Unit test driver for f in Figure 4.1 generated by CONCERT . . . . . . . . . . . . . . . . . 29

4.7 An example that DFS fails to increase the branch coverage of a target function f . . . . . 30

4.8 An example of an unsatisfiable common likely-invariant Φf . . . . . . . . . . . . . . . . . 32

4.9 A diagram of input domain of f which shows likely-invariants of four test drivers φf1 to

φf4 and their satisfiable common likely-invariant Φ′f . . . . . . . . . . . . . . . . . . . . . . 33

iv



Chapter 1. Introduction

1.1 Challenges in Software Testing

As software is pervasively used in our daily life, the reliability of software becomes important.

Software is used not only for non-critical purposes such as entertainment or word-processing, but also for

the safety-critical systems such as automotive controllers and avionics. As software plays an important

role in such systems, the reliability of software is closely related with our modern society. For example,

NIST [66] reported in 2002 that software bugs cost about 59.5 billion dollars to the US economy every

year. For another example, Toyota’s unintended acceleration caused by software bug killed four persons

in a family [70] and Toyota was fined 1.2 billion dollars in US.

Software testing is a de-facto standard method to detect software bugs and increase the reliability

of software. Software testing runs software-under-test with a set of inputs (i.e., test cases) and checks

if outputs of the software satisfy the expected conditions (i.e., test oracles). As different inputs explore

different behaviors of a target program, a sufficient number of quality test cases is a key to the success

of software testing. Companies spends significant effort on software testing to improve the reliability

of their commercial software. According to the 2016 world quality report [5] by the Capgemini group,

industry spends 31% of IT budget for QA and testing in 2016.

Current testing practice in industry, however, often fail to detect bugs in programs because test

cases are usually created manually in industry. The world quality report [5] also says that the 41%

of responders in industry point out reliance on manual testing is a challenge in software development

because it is almost impossible for human developers to test a huge number of various behaviors of

complex target software. For example, the avionics system in F-22 Raptor consists of about 1.7 million

lines of code and the radio and navigation system in S-class Mercedes-Benz has more than 20 million

lines of code [10].

To address aforementioned challenges, automated test generation techniques have been developed to

systematically and automatically generate test cases to explore (all) possible behaviors of software.

1.2 Background and Limitations on Automated Test Genera-

tion Techniques

1.2.1 Background on Automated Test Generation Techniques

Automated test generation techniques operate in two different levels: a system-level and a unit-level.

Automated test generation in system-level takes a whole program as a target-under-test and generates

test cases for the whole system. Bugs detected by automated test generation in system-level are usually

real bugs since a program is assumed to take any inputs and sanity checking of inputs is the duty of

the program. Automated test generation in unit-level generates test cases for each individual unit (i.e.,

functions or methods) separately. To test each unit in isolation with other units of the target program,

unit test drivers and stubs are generated and used. Drivers and stubs simulate the interface between

the target unit and the other units in a simple manner. Automated unit testing can examine various

behaviors of individual units throughly because the behaviors of the unit can be directly controlled

1



Figure 1.1: Comparison of automated test generation in system-level and unit-level, and automated

unit test generation with realistic unit contexts

through drivers and stubs. For more detail on how to automatically generate unit drivers and stubs, see

Section 3.1.3.

1.2.2 Limitations on Automated Test Generation Techniques

Although automated test generation techniques can effectively detect bugs, the techniques have

several limitations.

Limitation of Automated System-level Testing

System tests often do not explore diverse behaviors of a whole target program, but explore only

tiny portion of possible behaviors in a limited testing time because the execution space of a whole

target program is extremely large and each execution is relatively long. In addition, it is very difficult to

generate system-level test cases to explore diverse behaviors of target programs since internal components

of a target program is very difficult to control in fine-granularity through system level test cases (i.e.,

controllability of a target unit is low with system-level tests).

Figure 1.1 (a) illustrates automated test generation in system-level. A largest circle indicates a

whole program and the six smaller circles indicate the inner components of the program. The red circle

in the middle is a target function f . Suppose that we want to examine the various behaviors of f and

generate four different system test cases T1 to T4. The four different system tests can explore only one

behavior of the target component. Even T1 does not execute the target function f , and the three different

system tests T2 to T4 explore the same behavior of f .

Limitation of Automated Unit-level Testing

Automated test generation in unit-level suffers from false alarms, which are serious obstacles for

field engineers to adopt this effective and efficient technique. Creating accurate unit test drivers/stubs

is difficult because each unit has various kinds of inputs (i.e., array, nested struct, etc) on which there

exist implicit constraints (e.g., an input array should be sorted for correct operation of a target unit).

2



Note that such implicit constraints on inputs to each unit are rarely documented in practice. Unit tests

that violate such implicit constraints are infeasible executions and may raise false alarms.

Figure 1.1 (b) illustrates automated test generation in unit-level. A unit test Tu1 executes a feasible

execution path of the target function f , but Tu2 and Tu3 execute infeasible execution paths and may raise

false alarms (i.e., these two execution paths cannot be explored in any system executions) because these

two tests do not satisfy the implicit constraints of f .

1.3 Approach: Automated Unit Test Generation with Realistic

Unit Context Synthesis for Low False Alarms

To overcome the limitations of automated test generation, I have developed an automated unit test

generation framework with realistic unit context synthesis to reduce false alarm. My thesis statement is

as follows:

Automated unit test framework that synthesizes realistic unit context can automa-

tically detect bugs in complex real-world programs with a low false alarm rate.

To validate the thesis statement, I have developed and evaluated an automated unit-test generation

framework (calling it CONCERT) which synthesizes realistic unit contexts to reduce false alarms.

Figure 1.1 (c) illustrates the proposed approach. The figure shows explored behaviors of automati-

cally generated unit tests with realistic contexts. The green area which includes the target function f

and two closely relevant function to f shows a realistic unit context of f . The realistic unit context filters

out tests that may explore infeasible execution paths of the target function. For example, the realistic

unit context filters out Tu4 which is an infeasible test case to the context and, thus, avoids a possible

false alarm caused by Tu4. Tu5 is a feasible test case to the context and it explores f . Tu6 is an infeasible

test case to the context of f , but the context still refines/guides it to explore a feasible execution path

of f .

CONCERT synthesizes test drivers/stubs to build realistic contexts of a target function f by utilizing

the code of the other functions closely relevant to f (see Chapter 4). Then, CONCERT explores diverse

and realistic unit execution scenarios by enforcing various contexts through dynamic symbolic execution

of f and f ’s context (i.e., the closely relevant function code of f which composes the context of f). To

evaluate CONCERT, I have applied CONCERT and related techniques on the 67 bugs of the 15 real-

world C programs (see Section 5.2) and approved my thesis statement by demonstrating that CONCERT

achieves both high bug detection ability (i.e., 83.6% of the target bug detected) and relatively low

false/true alarm ratio (i.e., 2.4 false alarms per one true alarm).

1.4 Outline of Thesis

The remainder of the dissertation is structured as follows. First, in Chapter 2, I present related

work for automated unit test generation techniques. Chapter 3 presents an automated unit testing

framework CONBOL for large industrial embedded software. Through a case study on four million

lines long embedded software, I showed that CONBOL detected 24 crash bugs which had not been

detected by developers nor static analysis tools. In Chapter 4, I present a refined automated unit test

generation framework CONCERT. To reduce false alarms of automated unit test generation, CONCERT

3



synthesizes realist unit contexts by calling functions closely relevant to a target function f during unit

testing. Chapter 5 presents empirical evaluation of CONCERT on 67 crash bugs in 15 real-world C

programs (55KLOC on average). The experiment results show that CONCERT has high bug detection

ability and low false/true alarm ratio. I conclude this dissertation in Chapter 6 with future work.

4



Chapter 2. Related Work

This chapter presents related work on automated unit test generation techniques, concolic testing

techniques, and metrics on relevance between functions.

2.1 Automated Unit Test Generation Techniques

Automated unit test generation techniques analyzes a given unit-under-test and generates input

values of units (i.e., values of parameters, global variables, and class variables in object-oriented langua-

ges) automatically. The automated unit test generation techniques can be classified into three groups

according to how the inputs of units are generated: direct function input generation, method sequence

generation, system execution capture.

Table 2.1 shows a list of related work on automated unit test generation techniques. Most of the

related work show their bug detection ability by demonstrating how many new bugs were detected by the

techniques. TestFul, OCAT, and GenUTest did not report the number of bugs detected, but report only

coverage. Unlike the related work, I scientifically demonstrated the bug detection ability by showing the

recall of the crash bugs (i.e., a number of detected crash bugs
a number of total crash bugs ) in 15 open-source programs.

2.1.1 Direct Function Input Generation based Unit Testing Techniques

Direct function input generation based unit testing techniques generates input values of units di-

rectly. The input values are set by the assignment which are generated by the automated test generation

techniques such as concolic testing [63] and the target units are tested with the input values.

Godefroid et al. [26] developed DART to automatically generate unit test drivers (but not stubs)

and test inputs for C programs by using the combination of concrete execution and symbolic execution.

Sen et al. [63] developed CUTE to automatically generate test inputs. Tillmann et al. [67] developed

Pex for testing .NET programs. Kim et al. [36] developed CONBOL which automatically generates unit

test drivers/stubs and test inputs targeting large-scale embedded software. Note that these techniques

synthesize test drivers and stubs without utilizing the contexts of a target function in the target program,

which may suffer false alarms due to infeasible test executions. Thus, Godefroid et al. [26] targeted public

API functions of libraries to avoid the false alarm problem because public API functions usually work

with all possible test inputs (i.e., no false alarm caused by infeasible unit executions). In contrast,

CONCERT effectively resolves the false alarm problem by utilizing the highly correlated functions of a

target function in unit test drivers/stubs.

Pasareanu et al. [52] developed Symbolic Java PathFinder (JPF) which concretely executes a target

program until a target method f is reached and then starts symbolic execution on f with user-specified

symbolic input setting for f . Although Symbolic JPF alleviates the false alarm problem by providing

realistic contexts to f using concrete system executions, it still requires human expertise to setup sym-

bolic input setting of f . In contrast, CONCERT generates unit test drivers/stubs and test inputs in a

fully automatic way. Chakrabarti and Godefroid [9] developed a unit testing technique which statically

generates partitions of functions based on a static call graph and tests each partition as a unit through

symbolic execution. In this technique, functions in the same partition have the same test drivers/stubs,

5



Table 2.1: Related work of automated unit test generation techniques

Related Target Test generation Bug detection

work language techniques ability

DART [26] C Concolic testing Found a bug in oSIP 2.0.9

CUTE [63] C Concolic testing Found two bugs in SGLIB 1.0.1

Pex [67] .NET Concolic testing Found bugs in .NET libraries

Symbolic JPF [52] Java Symbolic execution Found a bug in the

Onboard Abort Executive system

Chakrabarti and C Concolic testing Found no bug

Godefroid [9]

UC-KLEE [56] LLVM IR Symbolic execution Found 67 bugs in BIND,

OpenSSL, and Linux Kernel

Randoop [50] Java Random testing Found 210 errors in JDK 1.5,

Jakarta Commons, and .NET framework

EvoSuite [22, 23] Java Search-based testing Found 1694 faults

in 100 SourceForge projects

TestFul [2] Java Search-based testing N/A

Garg et al. [24] C++ Random testing and Found 9 bugs in gnuchess

concolic testing

Elbaum et al. [18] Java Capturing system tests Found 7 seeded bugs in Siena

OCAT [29] Java Capturing system tests N/A

GenUTest [54] Java Capturing system tests N/A

CONCERT C Concolic testing Found 86.7% (=56/67) of bugs

in the SIR and SPEC2006 benchmarks

which may fail to generate realistic contexts for each target function f in the partition. In contrast,

CONCERT generates different realistic unit test drivers/stubs for each target function based on dyn-

amic function correlation observed at runtime. Recently, Ramos and Engler [56] developed UC-KLEE

to directly start symbolic execution from the target function using lazy initialization [30]. Through the

manual analysis of the thousands of alarms, they reported that UC-KLEE detected 67 new bugs and the

false/true alarm ratio of crash alarms was 15.4 in bind, openssl, and Linux kernel components.

Most of the aforementioned papers just reported assert violations or bugs detected on a few target

programs without scientifically evaluating bug detection ability using recall and bug detection accuracy

of their techniques. In contrast, this paper rigorously evaluates both bug detection ability with recall

and bug detection accuracy of CONCERT on 15 open source target programs.

2.1.2 Method Sequence Generation based Unit Testing Techniques

Instead of directly set the input values of units, method sequence generation based unit testing

techniques indirectly set the input values by calling a sequence of methods. In object-oriented languages,

member field variables are usually not directly set by the assignment, but manipulated through their

public interface methods. The input values are constructed by calling a sequence of those public methods.

The false alarm problem can be reduced because the public methods can generate unit contexts.

6



Pacheco et al. [50] developed Randoop to create a sequence of method calls randomly. Garg et

al. [24] improved Randoop approach by generating input test cases of the generated method sequence

using concolic testing. Fraser et al. developed EvoSuite [22, 23] for testing Java programs using search-

based strategies. To improve the branch coverage, EvoSuite adopted symbolic execution to complement

search-based testing. Baresi et al. [2] developed TestFul for testing Java programs. TestFul combined

genetic algorithm and a local search (e.g., a greedy search) to improve the speed of test generation.

These techniques also suffer from false alarms.

These techniques may also suffer false alarms due to infeasible test inputs/method sequences genera-

ted. For example, Garg et al. [24] reported that the false/true alarm ratio of testing gnuchess was 0.97.

Fraser et al. [23] reported that 0.56 to 4.24 false/true alarm ratios in their experiments. CONCERT

reports that 2.4 false/true alarm ratio on average over the 15 target programs.

However, it is not straight-forward to directly compare these techniques with CONCERT. This is

because, in contrast to this paper which studies both bug detection accuracy and bug detection ability

based on the previous bug-fix commits of the target programs, the aforementioned papers did not report

bug detection ability in terms of recall, but only bug detection accuracy (i.e., false alarm ratio) of their

techniques. Although the false alarm ratios of these techniques may be low, they can still miss many

bugs to decrease false alarm ratio.

2.1.3 System Execution Capture based Unit Testing Techniques

Automated unit testing techniques in this category capture system execution information (e.g.,

method sequences or argument/return values of function calls) and generate unit tests by utilizing the

captured information. Elbaum et al. [18] proposed a technique to generate unit tests from the system

tests. To generate unit test inputs and oracles for a target method f , the technique captures program

states before and after an invocation of f . Jaygarl et al. [29] developed OCAT which captures object

instances during system execution and generates unit tests from the captured object instances. To

increase test coverage, OCAT mutates object instances to cover uncovered branches. OCAT uses the

captured and mutated object instances as seed objects of Randoop [50] to generate new unit test cases.

Pasternak et al. developed GenUTest [54] to automatically generate unit tests and mock objects using

captured method sequences during system testing.

The aforementioned techniques can be effective for regression testing of evolving software, but not

effective for a single version of software. This is because the executions of the generated unit tests just

replay the same behaviors [18, 54] (or similar behaviors [29]) of the target unit in already performed

system testing. In contrast, CONCERT is effective for even a single version of a program because it

enforces various and realistic runtime contexts to a target function f through dynamic symbolic execution

of not only f but also f ’s drivers/stubs containing the code of closely relevant functions of f .

2.2 Concolic Testing Techniques

2.2.1 Concolic Testing Technique Research

Concolic testing is also known as dynamic symbolic execution, since it utilizes both dynamic testing

and symbolic execution [37]. The core idea of concolic testing is to obtain symbolic path formulas from

concrete executions and solve them to generate test cases by using constraint solvers. Various concolic

7



testing tools have been implemented to realize this core idea [53, 61, 8]. We can classify this work into the

following three categories,, based on how they extract symbolic path formulas from concrete executions:

1. Static instrumentation of target programs

The concolic testing tools in this group instrument a target source program to insert probes to

extract symbolic path formulas from concrete executions at run-time . Many concolic testing

tools adopt this approach, since the approach is relatively simple to implement and, consequently,

convenient when attempting to apply new ideas in tools. In addition, it is easier to analyze the

performance and internal behavior of the tools compared to the other approaches. In this group,

CUTE [63], DART [26], CREST [6] and PathCrawler [71] target C programs, while jCUTE [62]

targets Java programs.

2. Dynamic instrumentation of target programs

The concolic testing tools in this group instrument a binary target program when it is loaded into

memory (i.e., through a dynamic binary instrumentation technique [49]). Thus, even when the

source code of a target program is not available, the target binary program can be automatically

tested. In addition, this approach can detect low-level failures caused by a compiler, a linker, or

a loader. SAGE [27] and Triton [60] are concolic testing tools that use this approach to detect

security bugs in x86-binary programs.

3. Instrumentation of virtual machines

The concolic testing tools in this group are implemented as modified virtual machines, on which

target programs execute. One advantage of this approach is that the tools can exploit all execution

information at run-time, since the virtual machine possesses all necessary information. Pex[68]

targets C# programs that are compiled into Microsoft .Net binaries. KLEE[7] targets LLVM [41]

binaries. jFuzz [28] targets Java bytecode on top of Java PathFinder [69]. BitBlaze [64] and

S2E [13] use a modified version of x86/x64 virtual machine QEMU [3] to perform concolic testing

on x86/x64 binary programs.

2.2.2 Case Studies of the Concolic Testing Techniques

Lakhotia et al. [40] applied CUTE (and AUSTIN [39], which is a test case generation tool based

on genetic algorithms [46]) to the 387 functions of four C programs (libogg, plot2d, time, and zile)

and reported testing results. Marri et al. [45] used PEX to test a client program of CodePlex (a source

control management system) with an intelligent mock file system. Kim et al. [31, 34, 32] report results of

applying CREST to a flash file system. Botella et al. [4] discuss limitations of current concolic techniques

in practice and suggests several solutions.

For automated testing techniques, it is important to employ a proper context when generating test

cases for a given target program. Otherwise, invalid test cases (which violate preconditions/assumptions

of a target program) might be given to a target program and test results cannot be trusted. In other

words, a test engineer should build a testing environment that can feed only valid test cases to a target

program. For this purpose, concolic testing employs “mock objects” [45]/“environment model” [31] to

generate test cases that satisfy “data structure invariants” [63]/“symbolic grammar” [44]/ “grammar-

based constraints” [25]/“preconditions” [4] of a given target program.

8



2.3 Metrics on Relevance between Functions

There exist several metrics between functions to quantify relevance between functions. Chidamber

and Kemerer [11] proposed a response set for classes to measure coupling metric between classes and

methods. Li and Henry [43] proposed a message passing coupling metric which measures the number of

method invocations in a class. Chidamber and Kemerer [12] proposed a coupling metric of two classes

using the number of accesses of field variables and invocations of the methods of another class. Lee et

al. [42] uses the number of method invocations of another class weighted by the number of arguments of

the invoked methods.

However, these metrics have limitations to apply to reduce false alarms in automated unit testing.

For example, the metric using the number of accesses to the common class field variables [12] does not

capture the relation constructed by passing arguments. Lee et al. [42] considered the number of argu-

ments passed but the number of arguments is often not a good weight because one pointer argument can

pass large data structure. In addition, these metrics are static ones and reports provide too imprecise

coupling value to select functions to use in the realistic unit test drivers of a target function. In contrast,

CONCERT uses a dynamic function correlation metric (Section 4.2.2) which effectively reflects depen-

dency between two functions by observing system executions of a target program.

9



Chapter 3. Automated Unit Test Generation for Large Scale

C Programs

I, with Samsung Electronics, have developed CONcrete and symBOLic (CONBOL) testing frame-

work targeting large industrial C programs. CONBOL automatically generates symbolic unit testing

drivers/stubs and performs concolic testing on the generated unit testing drivers/stubs including target

units. In addition, CONBOL implements two false alarm reduction heuristics to remove false alarms.

I have demonstrated bug detection effectiveness of CONBOL by detecting 24 new crash bugs in a four

million lines long smartphone software (calling it ‘project S’) which had not been detected by manual

testing nor static analysis tools such as Coverity [14].

3.1 CONBOL Framework

3.1.1 CONBOL Overview

Figure 3.1: Overview of the CONBOL framework

Figure 3.1 shows the overall structure of the CONBOL framework. CONBOL is developed based

on a concolic testing tool CREST-BV [35], and consists of the following six components - CONBOL

Trim, CONBOL Gen, CONBOL Pre-processor, CONBOL Instrumentor, CONBOL Library, and CON-

BOL Run. The first three components are newly developed modules from scratch and the last three

components are the extension of CREST-BV. The CONBOL framework consists of 5500 LOC in the

Ruby scripting language, 5600 LOC in Ocaml for additional instrumentation, and about 8500 LOC in

C/C++ to implement CONBOL main engine and modify CREST-BV’s symbolic execution engine to

support symbolic array index dereference by using memory model [19]. CONBOL has been developed

by three Samsung engineers for five months.

The work-flow of CONBOL is as follows. Given target C code written for an embedded platform is

transformed to GCC compatible C code by CONBOL Trim. Then, by analyzing this GCC compatible

target C code, CONBOL Gen generates unit test driver/stub code for a target unit function. At the same

time, CONBOL Pre-processor inserts assert() to detect crash bugs more effectively and constraints to

10



satisfy pre-conditions of a target unit to reduce false alarms. This pre-processed GCC compatible target

C file is instrumented and compiled with the unit test driver/stub code and the CONBOL library by gcc.

Finally, the generated Linux binary file is executed by CONBOL Run to explore various execution paths

and report violated assertions having high scores at run time. From the run time execution information,

CONBOL reports crash bug detected and branch coverage achieved so far.

3.1.2 CONBOL Trim: Automated Porting of Unit Functions Written for an

Embedded Platform

CONBOL Trim removes the target functions that cannot be ported to a host PC or modifies the

unit functions of the target embedded software so that the unit functions can be compiled and executed

at the host PC.

Removal of Unportable Functions

First, CONBOL Trim identifies functions that cannot be ported to a host PC. Then, these functions

are replaced with the corresponding symbolic stub functions that return unconstrained symbolic values.

Main causes that make a function unable to run on a host PC are inline assembly code, hardware-

dependent code such as dereference of absolute memory address, and extensions of RVCT (RealView

Compilation Tools) [59] that are not compatible with GCC.

• Inline assembly code:

Embedded programs often contain inline assembly code to control the target embedded hardware

directly. The target functions that contain inline ARM assembly code (the project S runs on the

ARM hardware) are removed, since they cannot run on a host PC of x86 architecture.

• Hardware dependent code:

Embedded software often uses memory-mapped I/Os that map hardware control registers to the

absolute memory addresses. The target functions that contain memory-mapped I/O code are

removed, since they cannot run on a host PC correctly (memory mapped I/Os do not work on

different hardware configurations).

• RVCT compiler extensions:

RVCT compiler allows various extensions in target C code to produce optimized executable binary

files for target hardware. Some RVCT extensions can be ignored or can be translated to correspon-

ding GCC extensions. If RVCT extensions in a function cannot be translated to GCC compatible

code, CONBOL removes the function.

Translation of Target Functions

The project S is developed for the ARM architecture and uses RVCT as a compiler. A problem

is that RVCT is not fully compatible with GCC on an x86 host PC. In addition, CIL (C Intermediate

Language) [48] which is an instrumentation tool that is used by CONBOL Instrumentor does not support

RVCT extensions nor GCC-incompatible syntax. Thus, CONBOL modifies the target unit code to be

compatible with GCC and CIL as follows:

11



• Translation of the RVCT compiler extensions:

If RVCT extensions declare properties of a function but do not impact a target function semantics,

CONBOL Trim simply removes the extensions. If RVCT extensions have corresponding GCC

extensions, we translate the RVCT extensions to the corresponding GCC extensions. For example,

align(8) extension for RVCT (which aligns a data structure in 8 bytes) can be translated to an

equivalent GCC extension attribute ((aligned(8)).

• Resolving type inconsistency:

RVCT does not check type strongly between function declaration and corresponding function defi-

nition, if they are in separate files (this situation occurs frequently in large software such as the pro-

ject S). For example, RVCT allows type inconsistency between the types of parameters in function

declaration and the types of parameters in function definition, if the declaration and the definition

are in different files. CONBOL Trim modifies the function definitions to be type-consistent with

the corresponding function declaration and reports this modification to a user.

3.1.3 CONBOL Gen: Automated Generation of Unit Test Drivers and Stubs

The CONBOL Gen component automatically generates unit test drivers that specify symbolic input

variables for target units and generates stub functions for the functions removed by CONBOL Trim. A

generated unit test driver specifies all parameters of the target unit and all global variables that are

used by the target unit as symbolic inputs. CONBOL Gen specifies a symbolic input for each variable

according to its type as follows:

• Primitive integer types:

If a given parameter variable x or a given global variable y is a primitive integer type such as int

and char, CONBOL specifies the variable as a symbolic input by using the CONBOL declaration

functions such as CONBOL int(x), CONBOL char(y), etc. CONBOL does not support floating point

symbolic variables, since most SMT solvers do not fully support floating point arithmetics.

• Array types:

If a given variable is an array, CONBOL specifies each array element as a symbolic variable ac-

cording to the type of the array element. To avoid performance degradation due to too many

symbolic variables, a user can specify an upper bound n such that CONBOL specifies only the first

n elements of an array as symbolic variables.

• Structure types:

If a given variable s is a structure type, CONBOL specifies every primitive field variable of s as

a symbolic variable recursively (i.e., if s contains a structure t, the primitive field variables of t

are declared symbolically). To reduce the complexity of concolic testing, the pointer variables of a

structure are not declared symbolically and these pointer variables are assigned with NULL.

• Pointer types:

If a given variable pt is a pointer to a variable of a type T, CONBOL allocates memory space

whose size is equal to the size of T and assigns the address of the allocated memory to pt (i.e.,

pt = malloc(sizeof(T))). If T is a primitive type, CONBOL declares the allocated memory as

symbolic by using CONBOL int(), etc. If T is not a primitive type (i.e., a structure), the allocated

memory space is declared as symbolic, following the way to specify variables of ‘Structure types’

symbolically.

12



01:typedef struct Node_{

02: char c;

03: struct Node_ *next;

04:} Node;

05:Node *head;

06:// Target unit-under-test

07:void add_last(char v){

08: // add a new node containing v

09: // to the end of the linked list

10: ...}

11:// Test driver for the target unit

12:void test_add_last(){

13: char v1;

14: head = malloc(sizeof(Node));

15: CONBOL_char(head->c);

16: head->next = NULL;

17: CONBOL_char(v1);

18: add_last(v1); }

Figure 3.2: An example of an automatically generated unit test driver

Figure 3.2 shows an example of unit test driver code generated by CONBOL Gen. Node (lines

1-4) is a structure type that represents a linked list node which contains a character value. The target

unit function is add last(v)(lines 7-10) which takes a character v as an input and adds a new node

containing v to the end of the global linked list. add last() uses a global pointer variable head (line 5).

test add last()(lines 12-18) is test driver code for add last().

CONBOL Gen sets all global variables used by the target unit as symbolic inputs. Since the target

unit add last() uses head, the driver allocates memory space to head (line 14). Next, the driver

declares all fields of the structure pointed by head (except pointer variables) as symbolic variables. In

other words, the driver sets head->c as a symbolic character variable (line 15) and head->next as NULL,

because head->next is a pointer variable of the structure. After the driver finishes setting symbolic

global variables, the driver declares function parameters symbolically (line 17). After the driver finishes

symbolic input setting, it invokes the target unit function with the symbolic parameters (line 18).

This way of declaring symbolic inputs may declare many symbolic variables. However, a large

number of declared symbolic variables does not necessarily generate complex symbolic path formulas,

because each execution of a target program often accesses only a small subset of symbolic variables of

large data structure [35]. For example, in the case study on the project S, each execution of the target

unit generates a symbolic path formula that includes less than 14 symbolic variables on average.

In addition, CONBOL generates symbolic stubs for sub-functions called by a target function. These

symbolic stub functions simply return symbolic values according to their return types without considering

global variable updates. The symbolic return values are constructed in the same way to construct

symbolic inputs. Finally, CONBOL replaces the sub-functions of a target function with the symbolic

stub functions.

13



3.2 Heuristics to Improve the Effectiveness and Precision of

Bug Detection

To improve the effectiveness and precision of bug detection, CONBOL utilizes the following heuristics

which are implemented in CONBOL Pre-processor (PP):

• To detect more bugs (see Section 3.2.1):

CONBOL PP inserts assert(expr) to detect more bugs automatically, where expr is a condition

to satisfy for correct execution (e.g., pt != NULL). Inserted assert(expr) can increase a chance

of detecting bugs that violate expr, since concolic testing generates input values to make each

branching expression (i.e., expr) true and false.

• To reduce false alarms (see Sections 3.2.2– 3.2.4):

First, since the imprecise driver code that violates necessary precondition of a target function can

cause false alarms 1, CONBOL PP tries to guarantee a precondition expr′ of a target unit by in-

serting CONBOL assume(expr′), which enforces symbolic values to satisfy expr′. Second, CONBOL

scores every violated assertion and reports only ones with high scores. Finally, after a developer

filters out a false alarm, CONBOL inserts an annotation at the false alarm location to avoid the

same false alarm in later executions.

3.2.1 Inserting assert() Statements

CONBOL PP automatically inserts assert() statements to detect the following run-time crash

bugs. Since a main goal of CONBOL is fully automated testing in a scalable way, CONBOL targets

run-time crash bugs which do not require human developers to specify properties to check.

• Out-of-bound memory access bugs (OOB):

CONBOL inserts assert(0<=idx expr && idx expr< size) right before the statements that con-

tain array read/write operations, where size is obtained from the corresponding array declaration

statement in the target code. Note that such assertion can increase the probability of detecting

an out-of-bound bug, because CONBOL tries to generate test inputs that make idx expr become

negative or greater than the upper bound to explore a false branch of the assertion.

• Divide-by-zero bugs (DBZ):

CONBOL inserts assert( denominator!=0) right before the statements containing division ope-

rators whose denominators are not constants. Similar to the out-of-bound memory assertions, this

assertion can increase the probability of detecting a divide-by-zero bug by enforcing CONBOL to

generate test inputs that make denominator zero to exercise a false branch of the assertion.

• Null-pointer-dereference bugs (NPD):

CONBOL inserts assert(pointer!=NULL) right before statements that contain pointer dereference

operations. This NPD assertion does not increase a chance to detect a NPD bug, since CONBOL

does not analyze pointer variables symbolically. Now CONBOL inserts NPD assertions for infor-

mation gathering purpose, but we plan to improve CONBOL to analyze pointer variables symbo-

lically in near future.

1For example, if an unsorted array is given to a binary search function, the function may cause an error, even when the

function is correctly implemented.

14



01:int array[10];

02:void get_ith_element(int i){

03: return array[i];

04:}

05:// Test driver for get_ith_element()

06:void test_get_ith_element(){

07: int i, idx;

08: for(i=0; i<10; i++){

09: CONBOL_int(array[i]);

10: }

11: CONBOL_int(idx);

12: //CONBOL_assume(0<=idx && idx<10);

13: get_ith_element(idx);

14:}

Figure 3.3: Test driver with preconditions

3.2.2 Inserting Constraints to Satisfy Preconditions

CONBOL may generate false alarms due to the imprecise unit test driver that violates precon-

ditions of a target unit under test. Figure 3.3 shows an example of such false alarm. The target

unit get ith element()(lines 2-4) receives an index to an element of array declared at line 1 and

returns the element of array at the index. The test driver test get ith element() sets all ele-

ments of array as symbolic variables (lines 8–10) and idx as a symbolic variable (line 11), and exe-

cutes get ith element(idx) (line 13). Note that test get ith element() (lines 6–14) can crash

get ith element() due to the out-of-bound array access, since idx is declared as a symbolic variable and

it can be larger than the array size. However, this violation can be a false alarm, if get ith element(idx)

is always invoked with idx between 0 and 9 in the target program.

Developers often write a unit function based on the assumption that the unit will be called with

‘valid’ parameters. Thus, to reduce false alarms, it is important to insert constraints to satisfy such

preconditions of a target unit. 2 CONBOL PP inserts such constraints of target functions automatically

by using CONBOL assume(expr). 3 In the above example where a precondition of get ith element(idx)

is 0<=idx && idx<10, the unit test driver should generate symbolic input values that satisfy the pre-

condition, which is enforced by CONBOL assume(0<=idx && idx<10) at line 12.

Currently, CONBOL PP inserts the following three types of constraints:

• Preconditions for array indexes:

To avoid false alarms due to infeasible out-of-array indexes, CONBOL PP inserts CONBOL assume(0<=

idx expr && idx expr <size) before the invocation of a target function as a precondition to sa-

tisfy for array accesses through idx expr in the target function, where size is obtained from the

2Constraints to satisfy such preconditions may cause false negatives, if a developer has incorrect assumption. However,

utilizing the constraints to reduce false alarms even at the cost of false negatives can be a good strategy, because it can be

more important to reduce false alarms than to reduce false negatives in industry targeting smartphone market
3CONBOL assume(expr) is a macro of if(!expr) exit(0);. If a current test case tc violates a given precondition (i.e.,

expr becomes false), CONBOL immediately terminates a target unit execution with tc and removes tc, since tc can raise

a false alarm.

15



corresponding array declaration statement in the target code. However, to keep the chance of

detecting array out-of-index bugs, CONBOL PP inserts constraints on idx expr only if idx expr

satisfies all of the following conditions:

1. idx expr should be a form of x + a where x is a symbolic integer variable and a is an integer

constant (i.e., a[x-1] = ... ).

2. x should not be updated in the target function.

3. The target function should not check the value of x (e.g., if(x<=10+y)...).

• Preconditions for constant parameters:

Developers often write a function whose parameter should have one of the pre-defined constant

values. For example, the third parameter of fseek() C standard function should be one of the three

constant values SEEK SET, SEEK CUR and SEEK END. Any values other than these three constants

are invalid values and can cause false alarms when fseek() is tested. Thus, CONBOL PP inserts

constraints to generate a symbolic value that is one of the valid constant parameters for a target

unit.

CONBOL PP identifies such a function f() whose parameter should have one of predefined constant

values by looking at the function invocation statements. If all statements that invoke f() in the

target code pass a constant as a parameter of f(), CONBOL PP inserts constraints to generate

only such constant values for the parameter.

• Preconditions for enum values:

When an enum variable is declared symbolically, this variable is declared as a symbolic integer

variable. To prevent false alarms due to undefined enum values, CONBOL PP inserts constraints

to generate only integer values defined in the corresponding enum type for an enum variable.

3.2.3 Scoring of Alarms

To reduce false alarms, CONBOL assigns a score to each violated assertion that CONBOL inserts

(see Section 3.2.1) and reports only violated assertions with scores larger than a threshold. Main scoring

rules for violated assertions are as follows and CONBOL reports only violated assertions whose scores

are six or higher: 4

1. Every violated assertion gets 5 as a default score.

2. For each violated assertion which contains a variable x, if the target function containing the asser-

tion checks the value of x (e.g., if(x < y+1)...), the score of the assertion increases by 1. A ratio-

nale for this rule is that an explicit check of x in the target function indicates that the developer

of the function considers x important and the assertion on x is important consequently.

3. For each violated assertion assert(expr), the score of the assertion decreases by 1, if expr appears

five or more times in other violated assertions in the entire target software. A rationale for this

rule is the assumption that a developer writes code correctly most of time so that target code does

not have a same bug that appears many times in different locations of the target program.

4CONBOL has 13 scoring rules based on the target code and runtime execution information. The other 10 scoring rules

were not effective to filter out false alarms, and not applied in this case study.

16



3.2.4 Annotation Mechanism to Utilize User Feedback

CONBOL PP utilizes a user feedback through annotations in a target code. CONBOL annotation

is specified as a comment starting with /*CBL. A user can guide CONBOL through this annotation

mechanism to reduce false alarms. For example, if a developer identifies a false alarm located at line l,

CONBOL inserts the following annotation at line l:

/*CBL action=suppress,object=none,log=false... By using this annotation, the identified false alarms

will be suppressed for later executions.

3.3 Case Study on Samsung Project S

The goal of this case study is to evaluate the effectiveness (in terms of a number of detected bugs)

and efficiency (in terms of testing time and false alarm ratio) of CONBOL for large-scale industrial

embedded software. For this purpose, we have applied CONBOL to four million lines long embedded

software developed by Samsung Electronics (calling it project S in this paper).

3.3.1 Target Project Description

The project S has been developed for smartphones. The rough statistics on the structure of the

project S (written in mainly C) is as follows: 5

• Total number of directories: 3123

• Total number of source files: 7243

• Total number of header files: 10401

• Total number of functions: 48743

– Total number of functions having more than one branch: 29324

• Total number of branches: 397854

• Total lines of code: four million lines of C codes

Project S targets ARM platform and uses RVCT compiler infrastructure. We chose the project S

as our target program, because it is important software for commercial smartphones. In addition, the

project S had suffered subtle bugs, which consumed a large amount of developer time and resource.

3.3.2 Experimental Setup

Unit testing has several advantages to improve software quality such as early detection of bugs and

corner case bug detection [58]. Unit testing has additional benefits for embedded software, since unit

testing has less dependency on the target embedded platform by building testing driver/stubs [38]. Thus,

we decided to apply CONBOL to the project S in unit level.

CONBOL uses reverse depth-first search strategy [6] to explore execution paths of the target unit

and increase branch coverage fast. Unit testing of a target unit terminates when

5To secure the intellectual property rights of Samsung Electronics, detailed information on the project S is not written

in this paper.

17



• An assertion to detect a crash bug is violated, or

• All possible execution paths are explored, or

• All test executions of a target unit spend 30 seconds (Timeout1).

In addition, we enforce Timeout2 by which a single test execution of a target unit terminates when the

execution takes 15 seconds.

The experiments were performed on a machine that has Intel i5 3570K (3.4GHz) and with 4GB

RAM, running Debian 6.0.4 32bit version.

3.4 Case Study Results on the Project S

3.4.1 Results of CONBOL Trim, CONBOL Gen, and CONBOL PP

CONBOL Trim removed unportable functions of the project S and the number of final target

functions is 25425 out of the 29324 functions that have more than one branch. Among 3899 (=29324-

25425) removed functions, 2825 functions were removed due to ARM inline assembly, 806 functions

were removed due to hardware dependent code, and 268 functions were removed due to RVCT compiler

extension (see Section 3.1.2). As a result, 86.7% (=25425/29324) of the target functions were tested by

CONBOL.

The size of symbolic setting portions generated by CONBOL Gen is 60.8 lines long on average,

declaring 58.9 symbolic variables and containing 9.51 symbolic stub sub-functions on average. CONBOL

PP inserted 14.3 assertions in each target function on average (i.e., 8.0 NPD assertions, 6.2 OOB asser-

tions, and 0.1 DBZ assertions on average). CONBOL PP also inserted 2.3 precondition constraints in

each target function on average (i.e., 1.4, 0.6, and 0.3 precondition constraints for enum variables, array

indexes 6, and constant parameters, respectively).

3.4.2 Result on Detected Bugs

After testing the 25425 target functions and applying the false alarm reduction techniques, CONBOL

reported 277 alarms.

We filtered out false alarms by reviewing the relevant target source code, especially the calling

context of the target functions. Interestingly, similar alarms occurred repeatedly so that we could remove

most of the alarms without much difficulty. For example, we observed many violations of similar assert

conditions in similar context. In addition, many alarms regarding specific variables were false alarms due

to imprecise environments. For example, all violations of assert(gd[i].f!=0) were false alarms, since

all target functions that access gd are called only after the initialization function init gd() that assigns

all fields of the elements of gd correctly (i.e., init gd() assigns gd[i].f with non-zero for all possible

i’s in real executions). Two authors of Samsung without prior knowledge on the project S spent a week

to remove false alarms. Finally, we reported 50 alarms to the original developers and the following 24

crash bugs among these 50 alarms were confirmed by the original developers of the project S. These 24

crash bugs were reported by testing with all three driver types.

6 The average number of inserted precondition constraints for array indexes is small (i.e., 0.6) due to the three strict

conditions (Section 3.2.2).

18



• 13 array out-of-index bugs:

More than a half of detected bugs are OOB bugs, since the project S utilizes complex data structures

containing arrays. Eight OOB bugs are made, because the index checking statement (line 4) is

located after the array access (line 3) as shown below:

1:void foo(u8 index) {

2: ...

3: g[index-1] = ...;

4: if((index==0)||(index>10)) return;

5: ...}

Note that CONBOL does not insert a precondition constraint for such code, since the code checks

the range of index at line 4 (see Section 3.2.2). The other bugs are due to incomplete checking of

the values of index variables.

• 6 divide-by-zero bugs:

Two of the detected divide-by-zero bugs are as following:

1:u32 foo(u32 t, ...) {

2: ...

3: if (t != 0) { ...

4: if(size < 2) {z=z/(t/10);}

5: else if (size < 3) {z=z/(t/100);}

6: else z=z/(t/1000);}

7: ... }

Lines 4–6 will raise divide-by-zero errors in spite of line 3 that checks a value of the denominator t

due to integer division, if an unsigned 32-bit integer t is less than 10, 100, and 1000, respectively.

The other four bugs are due to missing tests to check if denominator values are zero.

• 5 null-pointer dereference bugs:

Although CONBOL does not support symbolic pointer varaibles, CONBOL detected five null-

pointer dereference bugs, because symbolic test drivers generated by CONBOL set a pointer vari-

able in a structure as NULL (Section 3.1.3).

3.4.3 Coverage and Time Costs

Table 3.1 describes a number of generated test cases, branch coverage, and time cost of CONBOL

for the 25425 target functions. CONBOL covered 59.6% of the target branches with 0.8 million test

cases in 15.8 hours. After removing the time cost caused by the target functions that reached timeout1

or timeout2, CONBOL spent 9.0 hours.

Regarding the branch coverage result, we found the following reasons for the uncovered 40.4%

(=100%-59.6%) of the branches. 7 First, a test execution terminated at an assertion violation and no

further branches were covered in the execution (see Section 3.3.2), which makes 10.8% of the target

7CONBOL Instrumentor transforms a target program to an equivalent extended version whose branches contain only

one atomic condition per branch. Thus, the branch coverage achieved on the original program is much higher than the

coverage data in Table 3.1 on the extended target program.

19



Table 3.1: Branch Coverages and Time costs

Total # of test cases generated 0.8 ×106

Branch coverage(%) 59.6

Total time spent (hour) 15.8

# of functions that reached timeout1 742 (TO:30s)

# of functions that reached timeout2 134 (TO:15s)

Time cost w/o timeout (hour) 9.0

Table 3.2: Effectiveness of false alarm reduction techniques

# of reported alarms OOB NPD DBZ Sum

Total # 3235 2588 61 5884

W/ precondition constraints 2486 2511 58 5055

W/ scoring rules 220 42 15 277

branches uncovered. Second, functions that reach timeout were not covered completely, which makes

9.3% of the branches uncovered. 8 The remaining 20.3% of the branches were not covered due to the

limitations of CONBOL such as lack of symbolic pointer support, setting pointers as NULL in a symbolic

struct input, no support for floating pointer arithmetic, external libraries, etc. 9

3.4.4 Effectiveness of the False Alarm Reduction Techniques

Without applying any false alarm reduction techniques (i.e., without precondition constraints, nor

scoring rules), CONBOL generated 5884 (=3235+2588+61) alarms (the second row of Table 3.2).

By inserting the precondition constraints (Section 3.2.2), 14.1% (= 5884−5055
5884 ) of alarms were removed

(see the third row of the table). Note that OOB alarms were reduced 23.2% (= 3235−2486
3235 ) on average,

respectively mainly due to the precondition constraints for array indexes.

Finally, after applying the scoring rules (Section 3.2.3), 94.5% (= 5055−277
5055 ) of the alarms were

removed (the fourth row of the table). For example, 54.3% of the alarms have score 4 due to the rules 1)

and 3), 36.8% of the alarms have score 5 due to the rules 1), 2) and 3) together, and 3.5% of the alarms

have score 5 due to the rule 1) only.

8In the exploratory experiments, increased timeouts did not improve the coverage much.
9 10.8% and 9.3% were calculated by simply counting the uncovered branches of the target units which raised an alarm

or reached timeout (Section 3.3.2). Thus, we think that more than 20.3 % of the target branches were uncovered due to

the limitations of CONBOL.

20



Chapter 4. Realistic Unit Context Synthesis for Low False

Alarms

A main drawback of the previous automated unit testing techniques is a large number of false alarms

due to the inaccurate unit test drivers/stubs that do not represent real usage scenarios of units in a target

program (see Section 1.2.2). For example, Csallner and Smaragdakis [16] and Ramos and Engler [23]

report that 4.2 and 15.4 false alarms per one true alarm were generated in their automated unit testing

experiments, respectively. CONBOL also raised 10.5 false alarms per one true alarm.

This false alarm issue is a serious obstacle to apply automated unit testing techniques in practice.

Field engineers are sensitive to the false/true alarm ratio, because the field engineers have to analyze every

alarm manually. From my experience of industrial collaboration [35, 33, 36, 51], I have observed that

field engineers want to reduce false alarms even at the cost of large amount of computing resource/time.

To address the false alarm issue, I have developed an automated concolic unit testing technique

CONCERT (CONColic unit tEsting using dynamic function coRrelation meTric). CONCERT auto-

matically synthesizes unit test drivers and stubs which represent realistic contexts of a target function

f (i.e., contexts which do not cause f to perform executions which are infeasible at system-level) by

utilizing the source code of the other functions closely relevant to f in a target program. The relevance

between functions is measured dynamically by observing system executions; if two functions frequently

appear together in the same system executions, the relevance between these functions is considered as

high (see Section 4.2.2).

4.1 A False Alarm Example Caused by Missing Unit Contexts

A target program in Figure 4.1 has a target function f under test (Lines 13–25). f takes two integer

variables as inputs and calls two functions g (Line 20) and h (Line 24). Concolic unit testing techniques

like CONBOL [36] analyze a target function f, insert the OOB assertions at Lines 18 and 22, and generate

a unit test driver/stubs for f as shown in Figure 4.2.

The generated test driver for f declares two integer arguments of f as symbolic (Lines 4–5 in

Figure 4.2). Then, the test driver invokes f with the two symbolic arguments (Line 6). Invocations of g

and h in f are replaced with the invocations of the symbolic stubs stub g and stub h respectively. stub g

does nothing since g does not return a value (Line 8). stub h returns a symbolic integer value (Lines 9–

12). In addition, the assertions targeting OOB bugs (i.e., assert(0<=x && x<5) and assert(0<=n &&

n<5)) are inserted at Lines 18 and 22 of f, respectively.

Executions of the unit test driver/stubs raise alarms as follows. The assertion at Line 18 of f can

be violated since the symbolic argument arg1 to f at Line 6 of the unit test driver (Figure 4.2) can be

larger than or equal to the size of array (i.e., five). Also, the assertion at Line 22 of can be violated

because n can be one of 5, 7, and 9 at Line 19 as stub g which is invoked instead of g at Line 20 does

nothing.

However, all these alarms are false since f is called by only b and b always passes a value between

zero and four as the first argument to f (see Lines 6–7 of Figure 4.1) and n at Line 19 is always less than

or equal to four because of g(&n) invoked at Line 20. In other words, concolic unit testing techniques can

raise false alarms because they generate unit test driver/stubs that are different from the real contexts

21



01:// x, y, and z are inputs of a target program

02:int main(int x, int y, int z){

03: if (x > 0) return b(y,z);

04: else return c(y,z);}

05:

06:int b(int x, int y){

07: if (0 <= x && x < 5) return f(x,y);}

08:

09:int c(int x, int y){

10: return x-y;}

11:

12:// Target function under test

13:int f(int x, int y){

14: int array[5] = {1,3,5,7,9};

15: int n;

16: int result;

17:

18: // assert(0<=x && x<5); //To be inserted by the unit test tech.

19: n = array[x];

20: g(&n); // To be changed to stub_g by the unit test tech.

21: if ((y % 2) != 0){

22: // assert(0<=n && n<5); //To be inserted by the unit test tech.

23: result = array[n];

24: } else result = h(n); //To be changed to stub_h by the unit test tech.

25: return result;}

26:

27: void g(int *p){

28: *p = *p / 2;}

29:

30: int h(int x){

31: return x + 2;}

Figure 4.1: Target program with a target function f

of f which are constructed through b and g.

4.2 CONCERT Technique

This section describes CONColic unit tEsting using dynamic function coRrelation meTric (CON-

CERT) for effective unit testing.

4.2.1 Overview

CONCERT receives source code of a target program, a list of target functions to test, and system

test cases of the target program as inputs. First, it calculates correlation between a target function

22



01: int test_driver_f(){

02: int arg1;

03: int arg2;

04: SYM_int(arg1);

05: SYM_int(arg2);

06: f(arg1, arg2);}

07:

08: void stub_g(int *p) { }

09: int stub_h(int x){

10: int ret;

11: SYM_int(ret);

12: return ret;}

Figure 4.2: Unit test driver and stubs for f generated by concolic unit testing techniques

f and other functions in a target program based on the occurrences of the two functions in each of

the system test executions. Then, based on the correlation information, CONCERT selects a subset of

the closely related functions of f and their code is included in unit test drivers/stubs. Note that these

functions closely related to f can be used to filter out infeasible input values to f and consequently reduce

false alarms caused by such infeasible inputs to f (for example, see Figure 4.6 which utilizes correlated

functions of f (i.e., b and g) to remove false alarms raised in Figure 4.1). Finally, CONCERT applies

concolic testing to the generated test drivers/stubs to enforce various contexts to a target function so to

exercise diverse and realistic target unit test executions.

Note that it is important for unit test drivers/stubs to contain only the functions that are most

closely related to a target function. This is because adding more function code of a target program

to unit test drivers/stubs can significantly increase the symbolic search space, which can degrade both

unit testing efficiency and effectiveness. At one extreme end, a concolic unit testing technique does not

use related function code at all and generates purely symbolic unit test drivers/stubs as described in

Section 3.1.3, which will suffer many false alarms (see Section 4.1). At the other extreme end, a technique

can use all functions of a target program in unit test drivers/stubs, which will result in system testing

and lose the advantage of unit testing. Thus, it is important to include only most closely related function

code to a target function in unit test drivers/stubs for effective unit testing. 1

4.2.2 Overall Process of CONCERT

Figure 4.3 illustrates the four steps of CONCERT which are described in Sections 4.2.2–4.2.2.

Obtaining Function Coverage Profile from System Test Executions

This step executes a target program with given system test cases and obtains a function coverage

profile with respect to the given system test cases. The function coverage profile shows which functions

are executed by each of the system test cases. For example, suppose that CONCERT executes the target

program in Figure 4.1 with the system test cases (0,0,0), (1,1,1), and (1,2,4). With these three test

1 There can be multiple different ways to choose functions whose source code is included in unit testing such as using

dependence of functions, using characteristics of functions, and/or using distances of functions in a call graph.

23



Figure 4.3: Overall process of CONCERT

Table 4.1: Function coverage profile of Figure 4.1 with the given three system test cases

System TC:(x, y, z) TC1:(0,0,0) TC2:(1,1,1) TC3:(1,2,4)

Executed functions main, c main, b, f, g main, b, f, g, h

cases, the target program starting from main will cover {main, c}, {main, b, f, g}, and {main, b, f, g,

h} respectively as shown in Table 4.1.

Computing Correlation between Functions

This step computes correlation between functions in a target program. Suppose that a target

program has n(= α + β + γ + δ) system test executions on two functions f and g where α, β, γ, and δ

are the numbers of system test executions that execute both f and g, only f, only g, and neither f nor

g, respectively. Based on the observations of the two functions in the system executions, we compute φ

correlation coefficient [15] using the following formula:

φ(f, g) =
αδ − βγ√

(α+ β)(γ + δ)(α+ γ)(β + δ)
(4.1)

This φ coefficient indicates the degree of correlation between f and g; higher φ coefficient means f

and g are more closely related. 2 The values of φ(f, g) range from -1 (all system tests execute exclusively

either f or g) to +1 (all system tests execute either both f and g or none of f and g).

For example, Table 4.2 shows the correlation between f and other functions based on Table 4.1.

First column shows the function name whose correlation with f is computed. Second to fifth columns

2 φ coefficient is a special form of the Pearson correlation coefficient [55] for the two binary variables. φ coefficient

cannot be computed for a function which is always executed (e.g., main) or never executed with given system test cases.

We treat such functions have no positive or negative correlation with other functions and assign 0 to the coefficient value.

24



Table 4.2: Correlation between f and other functions based on Table 4.1

Function α β γ δ φ coefficient

main 2 0 1 0 0.0

b 2 0 0 1 1.0

c 0 2 1 0 -1.0

g 2 0 0 1 1.0

h 1 1 0 1 0.5

show the number of the observations α to δ. The last column shows the correlation coefficient value of

each function with f. For example, we compute the correlation between f and h as 0.5 as follows. The

test case (0,0,0) executes none of f and h (i.e., δ is one in the fifth column of the last row in Table 4.2),

(1,1,1) executes only f (β is one in the third column of the last row), and (1,2,4) executes both f and h (α

is one in the second column of the last row). Using the values of α to δ, we can compute the correlation

between f and h as 0.5 (φ(f, h) = 1−0√
2×1×1×2 = 0.5).

Constructing Unit Test Drivers and Stubs

CONCERT generates unit test drivers/stubs for each target function f by including code of the

closely related functions of f; all other functions reachable from ri are replaced with symbolic stubs in

the test driver. It selects the closely related functions of f as follows:

1. Static call-graph construction:

CONCERT constructs a static call graph of a target program. (e.g., Figure 4.5 for the program

in Figure 4.1). In a static call graph, we call node n1 as a predecessor of another node n2 if there

exists a path from n1 to n2 (we call n2 as a successor of n1).

2. Identifying the roots of a target function f

In the static call graph, CONCERT identifies the predecessor functions of f (calling them roots of

f) such that all nodes in the path from the root ri to f have high correlations with f and the all

immediate predecessors of the root ri have low correlation with f (see Algorithm 1 for the detail).

This ri serves as a root function to provide realistic contexts to f by calling other relevant functions

to f . For example, n2 and n6 are identified as roots of f in Figure 4.4 where each node represents

a function and the label of node shows its function name and its correlation with f .

3. Selecting the successor functions of ri which are closely related with f

For each root ri, CONCERT selects the successor functions sij of ri such that all nodes in the path

from ri to sij have high correlation with f (see Algorithm 2 for the detail). Intuitively speaking,

this step selects closely related functions of f that can be directly or transitively invoked from ri

in the unit test driver. For example, CONCERT selects {n2, n4, n5, f, n8, n9, n12} for a root n2 of

f in Figure 4.4(a).

Our conjecture is that sij can contribute to provide realistic contexts to f (e.g., through global

data structure updates) since sij is closely related with f as observed in the given system test

cases. For example in Figure 4.4, n2 may calculate and pass an argument x to n5 and n5 may

update y using x and then pass y as an argument to a target function f under test (i.e., n2 and

25



n5 make a context to f through parameters). Or n4 and n8 may affect f by updating a global

variable z which f uses. Or n9 may affect f if f passes a pointer pt to n9 and n9 updates the

variable pointed by pt.

Running Concolic Testing to Generate Test Inputs

This step applies concolic testing to the generated test drivers and stubs to generate test inputs.

CONCERT utilizes a target-oriented search strategy to explore various behaviors of a target function f

first, and then its driver/stub functions (e.g., b and g in Figure 4.1) (see Section 4.2.4).

4.2.3 Algorithms to Generate Unit Test Drivers and Stubs

A static function call graph G(V,E) is a directed graph where V is a set of nodes representing

functions in a program and E is a relation V × V . Each edge (f, g) ∈ E indicates that f directly calls

g. f is a predecessor of g if there exists a path from the node representing f to the node representing g.

Similarly, f is a successor of g if there exists a path from g to f .

Algorithm 1 takes a call graph G, a target function f , correlation φ between f and the other

functions, and a correlation threshold τ . It selects the root functions of f and the closely related

successor functions of each root function ri, and then returns Roots which contains the root functions of

f and Related which maps ri to a set of the functions in every path from ri to the successor functions

sij of ri such that all nodes in the path from ri to sij have high correlation with f for each ri.

At the beginning of Algorithm 1, f is inserted into the initialized job queue Queue (Line 6) and

the initialized set of visited nodes V isited (Line 7). Then the algorithm iterates until Queue becomes

empty (Line 8) to collect the root functions of f . In the while loop (Lines 8–21), the algorithm pops

a function node v (Line 9) from Queue. At the first iteration, v is f . Then, for each predecessor node

u of v (Lines 11–17), u is added to Queue (Line 13) and V isited (Line 14) for further graph traversal

if φ(f, u) ≥ τ and u is not yet visited (Line 12). In such case, the flag isRoot is set to false because v

cannot be a root of f (Line 15). If isRoot is true after visiting all immediate predecessors of v in the

foreach loop (Lines 11–17), v is designated as a root function of f (Line 19). Once Roots is obtained

completely (i.e., the while loop terminates), the algorithm collects the successor functions of each root

ri ∈ Roots which are closely related to f by calling GetSuccessors (Lines 22–24). Finally, the algorithm

returns Roots and Related such that Related[ri] is a set of the functions which have high correlation

with f and can be directly or transitively invoked from ri in the unit test driver.

Algorithm 2 (GetSuccessors(G, f, ri, φ, τ)) selects successor functions sij of a root function ri such

that every node in the path from ri to sij have high correlation with f. Then, it returns Successors

which contains all selected successor functions.

For example, Figure 4.4 shows two groups of functions in a call graph whose source code is used in

two unit test drivers/stubs for a target function f . Each node represents a function and the label of a

node consists of the function name n and the correlation between the function and f . Suppose that the

correlation threshold τ is 0.7. Then, n2 and n6 are selected as the roots of f and CONCERT generates

two unit test drivers/stubs each of which invokes n2 and n6 respectively. For example, n2 is a root of f

because

• The correlation between n2 and f=0.8 ≥ τ , and

• The only middle node in the path from n2 to f is n5 which has high correlation with f (i.e., 0.9),

and

26



Input: a call graph G(V,E), a target function f ∈ V , a mapping of function correlation

φ : V × V → [−1, 1], and a correlation threshold τ

Output: a set of root functions Roots and a mapping Related : Roots→ P(V )

1 GetFunctionsToUse(G, f, φ, τ){
2 Roots← empty

3 Related← empty

4 Queue← empty

5 V isited← empty

6 Queue.push(f);

7 V isited.add(f);

8 while Queue.isNotEmpty do

9 v ← Queue.pop();

10 isRoot← true;

11 foreach u ∈ V such that (u, v) ∈ E do

12 if φ(f, u) ≥ τ and u /∈ V isited then

13 Queue.push(u);

14 V isited.add(u);

15 isRoot← false;

16 end

17 end

18 if isRoot = true then

19 Roots.add(v);

20 end

21 end

22 foreach ri ∈ Roots do

23 Related[ri]← GetSuccessors(G, f, ri, φ, τ);

24 end

25 return Roots and Related;}
Algorithm 1: Algorithm to obtain the roots of f and the successors of each root that have high

correlation with f

• n2 has only one immediate predecessor n1 which has low correlation with f (i.e., 0.5).

Finally, GetSuccessors(G, f, n2, φ, τ) (Algorithm 2) returns Successors =

{n2, n4, n5, f, n8, n9, n12}. Thus, the source code of the functions enclosed in the dotted line in Fi-

gure 4.4(a) are used in the unit test driver which invokes the root n2. Similarly, n6 is another root

function of f and the functions enclosed in the dotted line in Figure 4.4(b) are used in another unit test

driver which invokes n6.

An Example of Test Drivers/Stubs Generated by CONCERT

Figure 4.1 shows a target program which has main, b, c, a target function f (Lines 13–25), g, and

h. Figure 4.5 shows a function call graph of the target program with corresponding correlations with f

based on the three test cases in Table 4.1. Suppose that the correlation threshold is 0.7. Algorithm 1

returns Roots = {b} and Related[b] = {b, f, g} for Figure 4.1. In the target program in Figure 4.1, b

is the only root of f whose correlation with f is higher than the correlation threshold 0.7 and f and g

27



Input: a call graph G(V,E), a target function f ∈ V , a root function ri ∈ V , a mapping of

function correlation φ : V × V → [−1, 1], and a correlation threshold τ

Output: a set of successor functions Successors

1 GetSuccessors(G, f, ri, φ, τ){
2 Successors← ri;

3 Queue← empty;

4 Queue.push(ri);

5 while Queue.isNotEmpty do

6 u = Queue.pop();

7 foreach v ∈ V such that (u, v) ∈ E do

8 if φ(f, v) ≥ τ and v /∈ Successors then

9 Successors.add(v);

10 Queue.push(v);

11 end

12 end

13 end

14 return Successors;}
Algorithm 2: Algorithm to obtain successors of ri that have high correlation with a target

function f

Figure 4.4: Two groups of functions whose code is used in two different unit test drivers/stubs with a

correlation threshold τ = 0.7

are the only successor functions of the root b whose correlations with f are higher than 0.7. Thus, the

generated unit test driver/stubs contain the source code of b, f, g, and stub h (instead of h). Finally,

the test driver invokes the root function b with symbolic inputs. Figure 4.6 shows the unit test driver

28



Figure 4.5: Static call graph (with correlation with f) of the target program in Figure 4.1

01:int test_driver_f{

02: int param1;

03: int param2;

04: SYM_int(arg1);

05: SYM_int(arg2);

06: b(arg1, arg2);}

07:

08:int b(int x, int y){...}

09:

10:int f(int x, int y){...}

11:

12:void g(int *p){...}

13:

14:int stub_h(int x){

15: int ret;

16: SYM_int(ret);

17: return ret;}

Figure 4.6: Unit test driver for f in Figure 4.1 generated by CONCERT

for f generated by CONCERT. The unit test driver calls b with symbolic arguments and then b calls f

with realistic arguments constructed by b. Also, f calls real g (not stub g) at Line 20 in Figure 4.1 and

uses a realistic n value obtained from g at Lines 23 and 24.

Note that, unlike the previous concolic unit testing technique which suffers from the false alarms

, CONCERT does not raise false alarms in this example. This is because CONCERT generates a unit

test driver/stubs which invokes b to provide realistic arguments to f and uses g instead of the dummy

symbolic stub stub g.

29



01:void f(int x, int y){//x, y are symbolic variables

02: if (x == 0){

03: g(y);

04: }else{ ... }}

05:

06:void g(int y){

07: for (int i=0; i<y; i++){

08: ...

09: }}

Figure 4.7: An example that DFS fails to increase the branch coverage of a target function f

4.2.4 Target-oriented Search Strategy for Target Units

The DFS search strategy has a limitation for CONCERT because it does not distinguish the branches

of a target function f from the branches of f’s driver/stub functions and may result in low branch coverage

of f. Figure 4.7 shows an example that DFS does not cover the else branch of a target function f (Line 4)

because it explores the search space of the closely related g first. Suppose that the initial test case for f

is (0,0). The first symbolic path formula is x = 0 ∧ 0 6< y. The DFS strategy negates the last condition

of the previously generated symbolic path formula and solves the formula x = 0 ∧ 0 < y to generate the

test case (0,1). With (0,1), the secondly generated symbolic path formula is x = 0 ∧ 0 < y ∧ 1 6< y.

Negating the last condition of the secondly generated symbolic path formula will generate the test case

(0,2) and this step repeats indefinitely without covering the else branch at Line 4.

To overcome this limitation, we have developed a target-oriented search strategy to give high priority

to cover the branches of a target function. While the DFS strategy uses one stack to store the branches

to negate in the next iteration, target-oriented search uses two stacks to keep the branches to negate.

One stack (calling it a priority stack) stores the branch conditions to negate in the target function f and

the other stack (calling it a normal stack) stores the branch conditions to negate in the other functions.

target-oriented search always negates the branch conditions in the priority stack first and negates the

branch conditions in the normal stack only when the priority stack is empty. For example, for the first

symbolic path formula of Figure 4.7, target-oriented search strategy stores the branch condition x = 0

of f to the priority stack and the branch condition 0 6< y of g in the normal stack. Thus, since x = 0 is

negated before 0 6< y, target-oriented search covers the else branch in f.

4.3 False Alarm Reduction and Alarm Prioritization Heuristics

This section explains the two static false alarm reduction heuristics (Sections 4.3.1 and 4.3.2), one

dynamic false alarm reduction heuristic (i.e., the common likely-invariant heuristic in Section 4.3.3),

and two alarm prioritization heuristics (Section 4.3.4). The aforementioned two static false alarm re-

duction heuristics and the two alarm prioritization heuristics are general ones (i.e., applicable to not only

CONCERT but also other automated unit testing techniques). However, the common likely-invariant

heuristic is closely related to CONCERT. This is because the heuristic utilizes multiple drivers/stubs of

a target function f to focus on likely-feasible test executions of f.

30



4.3.1 False Alarm Reduction by Keeping Consistency Between Allocated

Memory and Its Size Variable

CONCERT identifies and utilizes implicit consistency between the size of allocated memory and a

variable representing the size of the memory to generate constraints to reduce false alarms caused by the

inconsistency.

For example, suppose that a root function r receives an input pointer ptr to allocated memory

and ptr size which represents the size of the memory as parameters (e.g., void r(int *ptr, int

ptr size)). A unit test driver will dynamically allocates n bytes for ptr (Section 3.1.3) for automated

unit testing. If n 6= ptr size, the corresponding unit test execution may be infeasible due to the

inconsistency which does not occur at real system executions. Thus, a unit test driver should recognize

the relation between ptr and ptr size and dynamically allocate memory whose size is ptr size.

For that purpose, based on the names of variables, CONCERT identifies integer input variables

of a root function r which may represent size of allocated memory among function parameters, global

variables, and struct members as follows. If an integer variable name contains “len”, or “size” (e.g.,

ptr size), CONCERT treats the variable as a size variable. Then, CONCERT finds a corresponding

pointer input variable of r (i.e., parameters, global variables, and struct members) whose name has

the longest common substring of the size input variable name (e.g., CONCERT recognizes the relation

between ptr and ptr size because their variable names are similar). 3

4.3.2 False Alarm Reduction by Value Range Analysis

To avoid false alarms caused by infeasible integer inputs, CONCERT uses a static value range

analyzer [57]. The static value analyzer analyzes not only functions included in a unit test, but also a

whole program to obtain possible value ranges of input variables to a target function (i.e., global variables

and function parameters) in a sound manner. When CONCERT generates test drivers, CONCERT adds

SYM assume(expr) 4 at the beginning of a target function f where expr represents possible value ranges

of input variables of f. If an input value to f is not in the possible range, a current execution terminates

immediately without generating infeasible test input and concolic testing tries the next test execution.

4.3.3 False Alarm Reduction by Common Likely-Invariants of Unit Test Dri-

vers

This heuristic utilizes dynamic invariant generation (e.g., Daikon [20]) to infer a common likely-

invariant of various unit test drivers which corresponds to realistic context of a target function f . Suppose

that f has multiple test drivers/stubs drvfi s. During the test generation, Daikon infers a likely-invariant

φfi of drvfi at the entry of f . Since each of the unit test drivers drvfi serves only partial and approximate

context of f , φfi s can be different each other.

A main idea is that the execution σ of f that satisfies a common likely-invariant of the unit test

drivers Φf (=
∧

i φ
f
i ) is likely feasible since σ satisfies all likely-invariants of various test drivers/contexts

of f . Thus, CONCERT reports only alarms raised from the executions that satisfy Φf at the entry of f .

However, a common likely-invariant Φf can be unsatisfiable because each of test drivers/stubs drvfi s

has only partial context of f. Figure 4.8 shows an example of an unsatisfiable Φf . Unit test drivers drv1

3Currently, CONCERT utilizes only a subset of popular C coding conventions. We plan to extend CONCERT to

conveniently adopt more coding conventions.
4SYM assume(expr) is a macro of if(!expr) exit(0);.

31



01: void drv1(){

02: int x;

03: SYM_int(x);

04: even(x);}

05:

06: void drv2(){

07: int x;

08: SYM_int(x);

09: odd(x);}

00:

11: void even(int n){

12: if (n%2==0){

13: f(n);}}

14:

15: void odd(int n){

16: if (n%2==1){

17: f(n);}}

18:

19: void f(int n){

20: ...

21: }

Figure 4.8: An example of an unsatisfiable common likely-invariant Φf

(lines 1–4) and drv2 (lines 6–9) call even (line 4) and odd (line 9), respectively. even (lines 11–13) calls

a target function f (line 13) if its argument is even. odd (lines 15–17) calls f (line 17) if its argument is

odd. Suppose that we have likely-invariants of drv1 and drv2 at the entry of f as n%2 = 0 and n%2 = 1,

respectively. Then, Φf (i.e., n%2 = 0 ∧ n%2 = 1) is unsatisfiable.

If Φf is unsatisfiable, a minimal unsatisfiable core ψf of Φf is calculated by using Z3 [47]. 5 Then,

CONCERT finds a clause c in ψf such that the number of φfi s that contain c is the smallest and removes

φfi s that contain c from Φf (calling it Φ′f ). In this way, CONCERT can get a satisfiable common likely-

invariant Φ′f which is satisfiable in the largest number of unit driver contexts. Finally, CONCERT applies

Φ′f instead of Φf to filter alarms.

Figure 4.9 shows a diagram of input domain of a target function f and the sets of input values

which satisfy likely-invariants of four test drivers drvf1 to drvf4 at the entry of f (i.e., φf1 to φf4 ); each

ellipse represents a set of input values of f that satisfy a corresponding likely-invariant φfi . Note that a

common likely-invariant Φf is unsatisfiable because the ellipses satisfying φf1 , φf2 , and φf3 have common

intersection (represented as dark area in Figure 4.9) but the ellipse satisfying φf4 does not intersect with

those of φf1 and φf2 . Thus, to obtain a satisfiable common likely-invariant, CONCERT removes φf4 from

Φf and reports only alarms satisfying Φ′f = φf1 ∧ φ
f
2 ∧ φ

f
3 .

5For a given unsatisfiable formula α in CNF, an unsatisfiable core ψ is a subset of clauses of α which is still unsatisfiable.

An unsatisfiable core ψ is minimal if all proper subsets of ψ is satisfiable.

32



Likely‐inv. 
of drvf1

Likely‐inv. 
of drvf2 Likely‐inv. 

of drvf3

Likely‐inv. 
of drvf4

Satisfiable common 
likely‐inv. 

f
1

f
2

f
3

f
4

Input domain of f

Figure 4.9: A diagram of input domain of f which shows likely-invariants of four test drivers φf1 to φf4

and their satisfiable common likely-invariant Φ′f

4.3.4 Alarm Prioritization using Code Complexity and External Input

CONCERT gives high priority to the alarms raised from complex target functions whose cyclomatic

complexity are high because complex functions are difficult to write correctly and tend to have bugs. 6 In

addition, CONCERT assigns high priority to the alarms raised after external input read functions were

invoked (e.g., file system read APIs such as fread, fscanf, and fgetc). This is because the external

input can be an arbitrary value and missing sanity check of external inputs is known as a main cause of

crash bugs.

6This alarm prioritization heuristic might not work for domains where code complexity is tightly controlled like safety

critical systems (e.g., avionics, nuclear power plants, etc). In such domains, the difference of code complexity between

functions might not be meaningful and the code complexity might not be correlated with the probability of bugs.

33



Chapter 5. Empirical Evaluation of Automated Unit Test

Generation with Realistic Unit Context

This chapter presents an empirical evaluation on CONCERT. To evaluate the bug detection ability

and the false/true alarm ratio of CONCERT, I have applied CONCERT together with the other concolic

unit testing techniques to the 15 real-world open source C programs (i.e., the SIR [17] and SPEC2006 [65]

benchmarks). Through the experiments targeting crash bugs of the target programs, CONCERT de-

monstrates both high bug detection ability (i.e., it detects 83.6% of all target bugs) and relatively low

false/true alarm ratio (i.e., 2.4 false alarms per one true alarm). Compared to the previous concolic unit

testing techniques, CONCERT reduces the number of false alarms significantly while maintaining the

comparable bug detection ability.

5.1 Experiment Setup

To evaluate the effectiveness of CONCERT as an automated unit testing technique, we have designed

the three research questions (Section 5.1.1) and compared CONCERT with other concolic unit testing

techniques (Section 5.1.3) on the 15 target programs (Section 5.1.2). Section 5.1.4 describes what we

measured to answer the research questions and Section 5.1.5 describes a setup of our testbed. Section 5.1.6

discusses threats to validity of the experiment.

5.1.1 Research Questions

RQ1. Bug Detection Ability: How many bugs does CONCERT detect compared to the other concolic

unit testing techniques?

RQ1 evaluates the bug detection ability of the concolic unit testing techniques to show the effectiveness

as testing techniques.

RQ2. Bug Detection Accuracy: How much false/true alarm ratio does CONCERT decrease compared

to the other techniques?

RQ2 evaluates the accuracy of the concolic unit testing techniques to detect target bugs in terms of

false/true alarm ratio (i.e., a number of false alarms
a number of true alarms ).

RQ3. Effects of the False Alarm Reduction and Alarm Prioritization Heuristics: How much

false/true alarm ratio do the false alarm reduction and alarm prioritization heuristics decrease? Also,

how much do the false alarm reduction and alarm prioritization heuristics affect the bug detection ability?

RQ3 evaluates the impact of the false alarm reduction and alarm prioritization heuristics (Section 4.3)

to the bug detection accuracy and the bug detection ability of CONCERT.

5.1.2 Target Bugs and Programs

We target the crash bugs because crash bugs are very serious problems in software systems, and

we can detect a crash automatically without user-given test oracles which are rarely available in the

target programs. Also, we target the crash bugs that were confirmed by the original developers through

the bug-fix commits (which have been reported since the benchmark program version was released until

34



Table 5.1: Target bugs and programs

Target Lines # of # of sys. Branch # of

programs functions test cases coverage target Description

and version (%) bugs

Bash-2.0 32714 1214 11 46.2% 6 Shell interpreter

Flex-2.4.3 7471 147 567 45.7% 2 Lexical analyzer generator

Grep-2.0 5956 132 809 50.3% 5 Pattern matcher

Gzip-1.0.7 3054 82 214 55.8% 2 Compression utility

Make-3.75 28715 555 1043 64.5% 3 Build script interpreter

Sed-1.17 4085 73 360 47.3% 2 Stream editor

Vim-5.0 66209 1749 975 35.8% 6 Text editor

Perl-5.8.7 79873 2240 1201 52.3% 6 Perl interpreter

Bzip2-1.0.3 4737 114 6 67.4% 2 Compression utility

Gcc-3.2 342561 5553 9 43.7% 15 C compiler

Gobmk-3.3.14 154583 2682 1354 65.2% 5 Go game program

Hmmer-2.0.42 35992 539 4 75.6% 3 Gene sequence analyzer

Sjeng-11.2 10146 144 3 77.9% 2 Chess game program

Libquantum-0.2.4 2255 101 3 68.5% 3 Quantum computing simulator

H264ref-9.3 51578 590 6 63.6% 5 H264 encoder/decoder

Average 55328.6 1061.0 437.7 57.3% 4.5

December 2015 (i.e., the time of writing this paper)) and can be detected by unit testing (i.e., both the

buggy statements and the violated assertions are located in the same function f). Note that CONCERT

can detect not only the crash bugs, but the violation of functional specification if assert statements to

check the functional correctness are given.

The experiment targets all programs in the SIR [17] and SPEC2006 [65] benchmarks. Table 5.1

describes the 15 open source target programs, including their sizes in code lines, the number of the

functions to test, the number of the system test cases used, branch coverage achieved by executing the

system test cases, the numbers of the target crash bugs, and the brief description of the target programs.

Bash to Vim are taken from the SIR benchmark. Perl-5.8.7 to H264ref-9.3 are taken from the

SPEC2006 benchmark. The experiment does not use mcf-1.2 in the SPEC2006 benchmark because

it has only one system test case. CONCERT does not generate realistic unit drivers/stubs of a target

function for such case (i.e., all executed functions are considered closely relevant each other if there

is only one system test case). For all target programs, we used all system test cases provided in the

benchmarks. The target programs have two to fifteen target crash bugs (4.5 on average) (Section 5.1.4

explains how we select target crash bugs).

5.1.3 Concolic Unit Testing Techniques

We have compared the following five concolic unit testing techniques.

• Symbolic unit testing (SUT): It generates a symbolic unit testing driver with symbolic arguments and

symbolic global variables with no constraints on the symbolic values. Also, SUT uses symbolic stubs

to replace all functions called by a target function f (see Section 3.1.3).

35



• Symbolic unit testing with random alarm selection (SUTR): This technique is same to SUT in terms

of test generation, but it only reports randomly selected alarms; it selects the same number of alarms

reported by CONCERT per target program. For example, since CONCERT reports 540 alarms from

bash-2.0 (=192 true alarms+348 false alarms as shown in the last column of Table 5.8), SUTR

randomly selects 540 alarms out of all alarms reported by SUT.

We compare CONCERT with SUTR to check if CONCERT is more effective as a unit testing technique

than the random alarm selection (i.e., the number of detected bugs of CONCERT is larger than SUTR

and the false/true alarm ratio of CONCERT is lower than SUTR). We repeat the testing runs 30

times to minimize the random effect.

• CONBOL: It is an improved version of SUT with false alarm reduction heuristics and alarm scoring

rule [36]. We have developed a CONBOL prototype on top of SUT with the heuristics and the alarm

scoring rule described in [36].

• CONCERT0: It is similar to CONCERT except that CONCERT0 does not use the false alarm reduction

and alarm prioritization heuristics described in Section 4.3.

• CONCERT: It applies all false alarm reduction heuristics and alarm prioritization heuristics. The alarm

prioritization heuristics report only alarms raised in the functions whose cyclomatic complexity are top

20% high in the target program or alarms raised after external input handling functions are invoked

(see Section 4.3.4).

We implemented CONCERT and the other concolic unit testing techniques in 5300 lines of C++ code

based on CREST-BV [35]. To generate test drivers and stubs, CONCERT uses Clang/LLVM-3.4 [41].

CONCERT uses DAIKON [20] and Z3 [47] to infer likely-invariants of unit drivers and the LLVM-based

static variable range analysis tool [57] to compute the possible ranges of variables.

5.1.4 Measurement

Regarding RQ1 and RQ3, we measure the number of target bugs detected by each of the concolic

unit testing techniques.

We consider that a target bug is detected if a technique generates a unit test execution that covers

one of the buggy statements in a target unit under test and violates the inserted assertions in the

target unit. 1 To identify the buggy statements, we manually analyzed all crash bug-fix commits of

the all subsequently releases of the target programs included in the SIR and SPEC2006 benchmark

programs. 2 We consider that a statement s of a target program is a buggy statement if s corresponds to

the changed/fixed statements in a crash bug-fix commit. For example, we have reviewed total 37 crash

bug-fix commits included in the change-logs for bash. Among the 37 reported crash bugs, only six crash

bugs can be detected by unit testing (i.e., the buggy statement and the assertion violation site exist in

a same target function) and we target these six crash bugs for bash-2.0.

Regarding RQ2 and RQ3, as a number of false alarms, we count the numbers of test executions that

violate the assertions without covering the buggy statements. For true alarms, we count the number of

test executions that cover the buggy statements and violate the assertions.

1Since array out-of-bound bugs do not necessarily crash a target program, we count the number of the assert violations

instead of crashes.
2For hmmer, sjeng, and libquantum, we could not find details of crash bug-fix commits publicly available. Thus, we

manually analyzed the difference of code between the released versions and identified buggy statements based on the

changelogs.

36



5.1.5 Testbed Setting

For the CONCERT and CONCERT0, we set the timeout of concolic testing (i.e., test generation)

as 180 seconds per unit test driver. 3 Target functions can have different timeouts because the number

of unit test drivers of each function can be different. For SUT and CONBOL, we set timeout of test

generation of a target function as the same amount of time to the timeout of the function by CONCERT.

For example, if f has four unit test drivers, the timeout of f for SUT and CONBOL are set as 720 seconds

(=4 × 180). We set the function correlation threshold τ as 0.7 since two random variables which have

0.7 or greater correlation coefficient are interpreted as highly correlated [21].

Since the experiment scale is large (i.e., targeting 15915 functions in the 15 target programs), the

experiments were performed on 100 machines each of which is equipped with Intel quad-core i5 4670K

(4.0GHz) and 8GB RAM, running Ubuntu 14.04.2 64bit version. We run four concolic unit tests on a

machine in parallel to maximize utilization of CPU cores.

5.1.6 Threats to Validity

A threat to external validity is the representativeness of our target programs. We expect that this

threat is limited since the target programs are widely used real-world ones and tested/analyzed by many

other researchers. Another threat to external validity is the possible bias of the system tests we used to

obtain correlation between functions. We tried to minimize this threat by utilizing all available system

test cases in the benchmarks.

The primary threat to internal validity is possible faults in the implementation of the concolic unit

testing techniques we studied. To address this threat, we extensively tested our implementation. A threat

to construct validity is the use of the crash bugs that were already reported in the bug-fix commits. We

target crash bugs that were confirmed by the developers because it would require too much effort to

manually validate the alarms without confirmed reports in this large scale experiment (15915 target

functions with tens of thousands of alarms). However, this threat is limited because all target programs

are well-maintained real-world programs so that these programs may not have many unknown bugs.

5.2 Experiment Result

This section reports and analyzes the experiment results. 4 Section 5.2.1 describes the data obtai-

ned from the experiment which can help readers understand the answers to the research questions in

Sections 5.2.2–5.2.4. For all comparison, we applied Wilcoxn test with a significance level 0.05 to show

the statistical significance. All comparison results mentioned in this section are statistically significant

unless mentioned otherwise.

5.2.1 Experiment Data

Statistics on Generated Unit Test Drivers/Stubs

Table 5.2 shows that CONCERT generated 5.2 unit test drivers for each target function on average

over the 15 target programs (see the second column of the last row). Each unit test driver contains the

3We choose timeout as 180 seconds because exploratory studies with timeout as 60, 300, and 600 seconds suggested

that increases beyond 180 seconds had negligible effects on the overall experiment results.
4The experiment setup and data are available at http://swtv.kaist.ac.kr/data/CONCERT_data.zip

37

http://swtv.kaist.ac.kr/data/CONCERT_data.zip


Table 5.2: Average number of root functions per target function, the numbers of functions in a unit test

driver, and a length of a call depth from a root function to a target function

Targets Avg. # of root func. Avg # of functions Avg. call depth

per target func. in a unit test driver from root to target

Bash-2.0 6.1 8.6 2.4

Flex-2.4.3 4.4 8.7 2.3

Grep-2.0 5.4 10.4 2.7

Gzip-1.0.7 5.1 9.4 3.2

Make-3.75 3.9 10.5 1.6

Sed-1.17 4.7 9.0 2.5

Vim-5.0 6.5 8.8 4.3

Perl-5.8.7 6.3 5.5 3.0

Bzip2-1.0.3 6.2 7.4 2.8

Gcc-3.2 3.8 7.0 2.4

Gobmk-3.3.14 5.3 8.4 3.5

Hmmer-2.0.42 5.7 8.4 3.8

Sjeng-11.2 4.2 7.7 2.1

Libquantum-0.2.4 5.7 9.7 2.5

H264ref-9.3 4.0 9.7 2.5

Average 5.2 8.6 2.8

source code of the 8.6 functions relevant with a target function on average (see the third column). Also,

a target function is located at 2.8 call depth from the root function in a unit test driver on average (see

the fourth column).

Time Cost, Generated Test Inputs, and Branch Coverage

Table 5.3 shows the testing time of the concolic unit testing techniques on 100 machines. SUT,

CONBOL, CONCERT0, and CONCERT spend 29.5, 29.2, 31.4 and 38.4 minutes per target program on

average. CONCERT spend more time than the other techniques because the common likely-invariants

heuristic takes additional time to monitor and analyze the test executions to infer the invariants.

Table 5.4 shows the number of test inputs generated by the concolic unit testing techniques. For

example, CONCERT generates 360323.3 test inputs per target program (or 339.6 per target function)

and SUT generates 1.7 million test inputs per target program or 1585.3 test inputs per target function

on average. CONCERT generates much less number of test inputs than SUT because the size of the unit

test driver of CONCERT is much larger than SUT (the unit test driver of CONCERT has 8.6 functions

on average (see Table 5.2)) which makes each test execution slower than SUT on average. The number

of the test inputs generated by CONBOL is similar to SUT and the number of CONCERT0 is similar

to CONCERT.

Table 5.5 shows the branch coverage of the concolic unit testing techniques. SUT, CONBOL,

CONCERT0, and CONCERT cover 58.0, 57.9, 60.9, and 58.9% of the branches of the target functions,

respectively. 5 The reported branch coverages do not include the branches of the inserted assertions.

5 CREST transforms a target program to an equivalent extended version whose branches contain only one atomic

condition per branch. The branch coverage data in this paper is based on the extended target program.

38



Table 5.3: Time (in minutes) taken on the 100 machines to generate test inputs

Target SUT CONBOL CONCERT0 CONCERT

programs

Bash-2.0 39.7 38.6 41.7 47.7

Flex-2.4.3 3.7 3.7 3.6 4.6

Grep-2.0 3.8 3.8 4.2 5.3

Gzip-1.0.7 2.0 1.9 2.7 3.3

Make-3.75 12.5 12.1 13.1 16.1

Sed-1.17 1.7 1.7 2.1 2.6

Vim-5.0 65.5 63.8 61.1 73.3

Perl-5.8.7 82.2 82.7 72.6 79.8

Bzip2-1.0.3 3.4 3.4 3.9 5.0

Gcc-3.2 120.3 118.5 138.0 179.4

Gobmk-3.3.14 75.4 74.2 87.0 104.4

Hmmer-2.0.42 15.8 16.4 18.9 25.3

Sjeng-11.2 3.5 3.4 3.8 5.0

Libquantum-0.2.4 2.7 2.7 3.2 3.9

H264ref-9.3 11.0 11.3 15.1 20.4

Average 29.5 29.2 31.4 38.4

Table 5.4: The number of test inputs generated by the concolic unit testing techniques

Target SUT CONBOL CONCERT0 CONCERT

programs

Bash-2.0 2263040 2353562 405317 385557

Flex-2.4.3 470504 456389 126341 131444

Grep-2.0 281645 284462 82322 102903

Gzip-1.0.7 91481 90567 55216 64940

Make-3.75 1126144 1171190 383084 305102

Sed-1.17 99290 94326 60453 65710

Vim-5.0 4768589 4816275 1150637 927652

Perl-5.8.7 3097566 3159518 723619 755920

Bzip2-1.0.3 175496 184271 86971 77307

Gcc-3.2 8409823 8830315 1392020 1471351

Gobmk-3.3.14 2924200 3070410 730033 615971

Hmmer-2.0.42 418711 401963 217745 211870

Sjeng-11.2 185493 194768 68103 65360

Libquantum-0.2.4 117410 122107 69783 67647

H264ref-9.3 800384 768369 157636 156116

Average 1681985.1 1733232.8 380618.7 360323.3

39



Table 5.5: Branch coverage achieved(%)

Target SUT CONBOL CONCERT0 CONCERT

programs

Bash-2.0 51.0 50.9 53.6 52.7

Flex-2.4.3 67.7 67.5 65.7 66.2

Grep-2.0 69.5 69.5 71.6 71.2

Gzip-1.0.7 58.5 58.6 64.1 60.7

Make-3.75 57.3 57.0 63.2 62.6

Sed-1.17 54.6 54.4 62.5 58.5

Vim-5.0 44.0 44.1 46.8 46.7

Perl-5.8.7 52.1 52.1 54.7 53.1

Bzip2-1.0.3 57.6 57.8 62.3 58.4

Gcc-3.2 56.1 56.0 62.2 59.0

Gobmk-3.3.14 57.9 57.6 59.3 59.2

Hmmer-2.0.42 62.9 63.0 60.8 60.3

Sjeng-11.2 59.5 59.3 60.8 56.3

Libquantum-0.2.4 66.5 66.3 67.3 64.4

H264ref-9.3 54.7 54.7 58.6 53.8

Average 58.0 57.9 60.9 58.9

5.2.2 RQ1: Bug Detection Ability

Table 5.6 shows the numbers of the target bugs and the detected bugs by the concolic unit testing

techniques. The first column shows the target programs, the second column shows the number of the

target bugs in the target programs, and the third to the last columns show the numbers of the detected

bugs by the concolic unit testing techniques. For example, CONCERT detected 13 bugs among the 15

target bugs (bug detection ratio 86.7% (=13/15)) in gcc-3.2 (see the last column of the 11th row of

Table 5.6). For all 15 target programs, CONCERT detected 56 bugs among the 67 target bugs (bug

detection ratio 83.6% (=56/67)).

CONCERT0 shows the highest bug detection ability (i.e., 92.5% (=62/67) on the 15 target pro-

grams). The bug detection ability of CONCERT is less than CONCERT0 because the false alarm re-

duction and alarm prioritization heuristics miss six (=62-56) target bugs. SUT also shows high bug de-

tection ability (i.e., 91.0% (=61/67)) but at the cost of a huge number of false alarms (see Section 5.2.3).

SUTR shows the worst bug detection ability (i.e., 45.1%(=30.2/67)). Finally, CONBOL detects only 48

bugs.

5.2.3 RQ2: Bug Detection Accuracy

Table 5.7 shows the number of false alarms and the false/true alarm ratios of the techniques. For

example, CONCERT raises 348 false alarms and its false/true alarm ratio is 1.8 on bash-2.0 (= 348/192

where a number of true alarms is 192) (see the last two columns of the third row).

Note that, for every target program, CONCERT raises the smallest number of false alarms and

its false/true alarm ratio is the lowest too (CONCERT raises 432.1 false alarms and its false/true

alarm ratio is 2.4 per program on average (see the last row of Table 5.7)). Thus, we can conclude

40



Table 5.6: The numbers of the detected target bugs by the concolic unit testing techniques

Target No. of the SUT SUTR CONBOL CONCERT0 CONCERT

program target bugs

Bash-2.0 6 5 1.7 4 5 4

Flex-2.4.3 2 2 1.6 1 1 1

Grep-2.0 5 3 1.8 4 4 3

Gzip-1.0.7 2 2 0.6 2 2 2

Make-3.75 3 3 1.9 2 3 3

Sed-1.17 2 2 0.7 2 2 2

Vim-5.0 6 5 3.4 3 5 4

Perl-5.8.7 6 6 2.3 4 6 6

Bzip2-1.0.3 2 2 1.7 2 2 2

Gcc-3.2 15 14 5.6 11 14 13

Gobmk-3.3.14 5 4 1.8 3 5 5

Hmmer-2.0.42 3 3 0.9 2 3 3

Sjeng-11.2 2 2 1.1 2 2 2

Libquantum-0.2.4 3 3 2.5 2 3 2

H264ref-9.3 5 5 2.6 4 5 4

Total 67 61 30.2 48 62 56

Table 5.7: The numbers of false alarms and false/true alarm ratios of the concolic unit testing techniques

SUT SUTR CONBOL CONCERT0 CONCERT

Target # of false/true # of false/true # of false/true # of false/true # of false/true

programs false alarm false alarm false alarm false alarm false alarm

alarms ratio alarms ratio alarms ratio alarms ratio alarms ratio

Bash-2.0 58933 96.9 533.8 85.7 34771 87.8 2545 12.7 348 1.8

Flex-2.4.3 13520 53.2 173.7 52.7 8788 46.7 769 9.6 135 3.2

Grep-2.0 8093 32.4 208.0 29.6 4775 31.2 572 5.0 126 1.4

Gzip-1.0.7 2459 9.1 179.4 7.6 1328 6.9 313 2.8 126 1.6

Make-3.75 36094 82.0 408.0 82.0 19130 54.3 2677 18.1 303 2.8

Sed-1.17 3182 10.9 168.5 9.1 1655 8.7 354 4.2 130 2.3

Vim-5.0 116877 251.3 634.2 230.5 75971 204.2 7244 38.3 488 3.3

Perl-5.8.7 92189 135.0 1283.7 113.3 52548 108.3 5103 18.2 1011 3.6

Bzip2-1.0.3 4570 16.7 128.9 15.8 2971 14.1 576 6.1 90 1.9

Gcc-3.2 250292 145.3 3076.1 128.4 125146 121.0 8909 13.3 2506 4.2

Gobmk-3.3.14 97473 172.5 765.7 143.6 61408 175.0 4284 17.7 546 2.4

Hmmer-2.0.42 7321 20.3 155.0 19.3 4100 18.6 366 4.9 99 1.5

Sjeng-11.2 2021 10.2 130.8 9.2 1173 9.5 223 3.5 99 2.2

Libquantum-0.2.4 3156 15.4 122.7 14.8 2178 17.3 196 3.3 87 2.0

H264ref-9.3 20843 43.2 537.9 41.1 12715 39.4 1109 7.2 387 2.4

Average 47801.5 73.0 567.1 65.5 27243.8 62.9 2349.3 11.0 432.1 2.4

41



Table 5.8: Effects of the false alarm reduction and alarm prioritization heuristics

CONCERT0 CONCERT0 CONCERT0 CONCERT

+static time reduction +static time reduction

+common likely-invariants

Target # of false/true # of false/true # of false/true # of false/true

programs false alarm false alarm false alarm false alarm

alarms ratio alarms ratio alarms ratio alarms ratio

Bash-2.0 2545 12.7 2240 10.1 651 3.2 348 1.8

Flex-2.4.3 769 9.6 531 10.6 191 4.2 135 3.2

Grep-2.0 572 5.0 435 4.1 213 2.2 126 1.4

Gzip-1.0.7 313 2.8 210 2.3 147 1.8 126 1.6

Make-3.75 2677 18.1 2222 17.8 687 6.0 303 2.8

Sed-1.17 354 4.2 262 4.1 157 2.6 130 2.3

Vim-5.0 7244 38.3 4999 28.4 1210 7.5 488 3.3

Perl-5.8.7 5103 18.2 3368 10.8 1719 5.8 1011 3.6

Bzip2-1.0.3 576 6.1 386 7.1 162 3.2 90 1.9

Gcc-3.2 8909 13.3 5791 8.9 2901 4.7 2506 4.2

Gobmk-3.3.14 4284 17.7 3385 13.1 1058 4.4 546 2.4

Hmmer-2.0.42 366 4.9 323 4.7 155 2.3 99 1.5

Sjeng-11.2 223 3.5 179 3.4 111 2.3 99 2.2

Libquantum-0.2.4 196 3.3 151 3.1 107 2.3 87 2.0

H264ref-9.3 1109 7.2 932 5.4 464 2.8 387 2.4

Average 2349.3 11.0 1694.3 8.9 662.2 3.7 432.1 2.4

(-27.9%) (-18.7%) (-71.8%) (-66.4%) (-81.6%) (-77.8%)

that CONCERT is far more accurate to detect the target bugs than the other concolic unit techni-

ques. For example, CONCERT reduces the number of false alarm 99.1% (=(47801.5-432.1)/47801.5),

23.8% (=(567.1-432.1)/567.1), 98.4% (=(27243.8-432.1)/27243.8), and 31.2% (=(2349.3-432.1)/2349.3)

compared to SUT, SUTR, CONBOL, and CONCERT0 respectively. In terms of the false/true alarm ra-

tio, CONCERT decreases the ratio 96.7% (=(73.0-2.4)/73.0), 96.3% (=(65.5-2.4)/65.5), 96.1% (=(62.9-

2.4)/62.9), and 78.2% (=(11.0-2.4)/11.0) compared to SUT, SUTR, CONBOL, and CONCERT0 re-

spectively. Thus, we can conclude that CONCERT is more accurate to detect the target bugs than the

other concolic unit testing techniques.

CONCERT0 raises larger number of false alarms (i.e., 2349.3) and its false/true alarm ratio is higher

than CONCERT since CONCERT applies false alarm reduction and alarm prioritization heuristics (see

Section 4.3 and Section 5.2.4). SUT suffers a huge number of false alarms (i.e., 47801.5) and the highest

false/true alarm ratio (i.e. 73.0). SUTR raises a less number of alarms (i.e., 567.1) than SUT but its

false/true alarm ratio is not much different from SUT. CONBOL also suffers a large number of false

alarms (i.e., 27243.8) and high false/true alarm ratio (i.e., 62.9). Note that CONBOL’s false alarm

filtering and alarm scoring heuristics were optimized for the project S [36] of Samsung Electronics and

the experiment result shows that those heuristics of CONBOL are not generally effective.

5.2.4 RQ3. Effects of the False Alarm Reduction and Alarm Prioritization

Heuristics

Table 5.8 shows the effects of the false alarm reduction and alarm prioritization heuristics. The table

shows that the false/true alarm ratio decreases as more heuristics are applied. For example, the static

42



Table 5.9: The effect of each false alarm reduction and alarm prioritization heuristic

CONCERT w/o CONCERT w/o CONCERT w/o CONCERT w/o CONCERT

keeping value range common likely alarm

Target consistency analysis invariants prioritization

Target # of false/true # of false/true # of false/true # of false/true # of false/true

programs false alarm false alarm false alarm false alarm false alarm

alarms ratio alarms ratio alarms ratio alarms ratio alarms ratio

Bash-2.0 362 2.3 369 1.9 615 2.9 651 3.2 348 1.8

Flex-2.4.3 133 3.4 144 3.6 366 8.1 191 4.2 135 3.2

Grep-2.0 141 1.7 138 1.6 449 4.6 213 2.2 126 1.4

Gzip-1.0.7 134 1.9 135 1.8 264 3.3 147 1.8 126 1.6

Make-3.75 293 2.8 325 3.0 428 3.6 687 6.0 303 2.8

Sed-1.17 133 2.6 137 2.3 260 4.1 157 2.6 130 2.3

Vim-5.0 507 3.8 528 3.6 1186 7.4 1210 7.5 488 3.3

Perl-5.8.7 1202 4.8 1102 4.0 2763 9.1 1719 5.8 1011 3.6

Bzip2-1.0.3 91 2.2 99 2.1 171 3.3 162 3.2 90 1.9

Gcc-3.2 2580 4.7 2632 4.5 3238 5.1 2901 4.7 2506 4.2

Gobmk-3.3.14 563 2.7 574 2.6 887 3.7 1058 4.4 546 2.4

Hmmer-2.0.42 104 1.6 108 1.6 206 2.9 155 2.3 99 1.5

Sjeng-11.2 112 2.7 109 2.4 189 3.7 111 2.3 99 2.2

Libquantum-0.2.4 94 2.5 94 2.1 179 3.7 107 2.3 87 2.0

H264ref-9.3 422 2.8 426 2.5 720 4.0 464 2.8 387 2.4

Average 458.1 2.8 461.3 2.7 794.7 4.6 662.2 3.7 432.1 2.4

time reduction heuristics decreases the false/true alarm ratio of CONCERT0 18.7% (=(11.0-8.9)/11.0)

on average (see the seventh column of the last row). When the static time reduction heuristics and

the common likely-invariants heuristic are applied together to CONCERT0, the false/true alarm ratio

decreases 66.4% on average. Finally, when the alarm prioritization heuristic is applied in addition to all

false alarm reduction heuristics (i.e., CONCERT), the false/true alarm ratio decreases 77.8% on average.

Regarding the bug detection ability, the static time reduction heuristics do not decrease the bug

detection ability (i.e., CONCERT0 + the static time reduction heuristics detects 62 target bugs). But

the common likely invariant heuristic decreases the number of detected bug by three (i.e., CONCERT0

+ the static time reduction heuristics + the common likely invariants detects 59 target bugs). Finally,

the alarm prioritization heuristics (i.e., CONCERT) decrease the number by three (i.e., 56 target bugs

detected).

Table 5.9 shows the effect of each false alarm reduction and alarm prioritization heuristic in terms

of false/true alarm ratio. CONCERT without keeping consistency and CONCERT without value range

analysis have relatively 16.6%(=(2.8-2.4)/2.4) and 8.8%(=(2.7-2.4)/2.4) higher false/true alarm ratio

than CONCERT on average respectively. CONCERT without common likely invariants and CON-

CERT without alarm prioritization have relatively 90.4%(=(4.6-2.4)/2.4) and 51.4%(=(3.7-2.4)/2.4) hig-

her false/true alarm ratio than CONCERT. As shown in the table, the common likely-invariant heuris-

tic is the most effective to reduce false alarms among the false alarm reduction and alarm prioritization

heuristics. Regarding the bug detection ability, CONCERT without keeping consistency and CONCERT

without value range analysis do not change the bug detection ability (i.e., they detect all 56 target bugs

detected by CONCERT). But CONCERT without the common likely invariant and CONCERT without

43



alarm prioritization detect two and three more bugs than CONCERT, respectively (i.e., the common

likely-invariant and the alarm prioritization heuristics decrease bug detection ability 3.6% (=2/56) and

5.4% (=3/56), respectively). Thus, as shown in the experiment, each of the false alarm reduction heuris-

tics and alarm prioritization heuristics is valuable for automated unit testing since each of them decreases

the false/true alarm ratio much at the modest cost of missing bugs.

44



Chapter 6. Conclusion and Future Work

6.1 Conclusion

In this dissertation, I have demonstrated that an automated unit testing technique that synthesizes

realistic unit context can automatically detects bugs in complex real-world programs with low false

alarms. For this purpose, I developed an automated unit test framework CONBOL for large embedded

software and showed that CONBOL had high bug detection ability through the case study on four million

lines long industrial embedded software. In this study, CONBOL detected 24 new crash bugs that had

not been detected by manual testing nor by static analysis tools. However, CONBOL suffered high

false/true alarm ratio (i.e., 10.5) which decreases practicality of the technique.

To resolve this false alarm problem, I extended CONBOL to develop an automated unit testing

technique CONCERT which generates unit test drivers/stubs which closely mimic the target program

contexts with small amount of code to detect many bugs with much less false alarms. The salient idea of

CONCERT is utilizing a dynamic function correlation metric to select and use the code of functions of a

target program that are closely related to a target function under test in unit test drivers/stubs. Finally,

through the experiments, CONCERT demonstrates both high bug detection ability (i.e., it detects 83.6%

of all target crash bugs) and relatively low false/true alarm ratio (i.e., 2.4 false alarms per one true alarm).

To the best of my knowledge, CONCERT is the most accurate automated unit testing framework for

complex C programs in the world.

6.2 Future Work

6.2.1 Improving Function Correlation Metrics

I will utilize static analysis technique to overcome the limitations of the dynamic correlation metric

on functions. For example, the proposed dynamic correlation metric is not applicable to functions which

are not executed at all during system executions since the dynamic correlation is measured based on

the function execution profile. In addition, if a target program has only a few system test cases, the

dynamic correlation may be inaccurately measured since the observed function execution profile provide

little information.

Static analysis such as def-use analysis can supplement dynamic correlation metric for such functions

and refine the correlation information through static relationship between a target function and other

functions. For example, we can apply a high weight to correlation between a target function and another

function if they have high static def-use dependency or short call-graph distance.

6.2.2 Utilizing Unit Test Cases to Generate Effective System Test Cases

I plan to develop a technique to generate a bug triggering system-level tests based on unit tests.

Note that the unit tests contains rich information which can be utilized to generate system tests and a

system test can be considered as composition of unit tests. Basic idea is as follows. First, CONCERT

generates a large number of accurate test cases for each unit and suppose that tf is a generated test

case for a target function f which violates an assertion in f . Then, we guide/control concolic testing or

45



search-based exploration of a target program to reach a state which enforces tf to f . Note that this task

is easier than directly generate a system test that violates given assertions since we utilize information

of a unit failing test (i.e., tf ).

6.2.3 Utilizing Dynamic Function Correlation Information for Various Pur-

poses

I will apply dynamic function correlation information for various light-weight impact analysis [1]

tasks since information of correlation among functions can have interesting applications in software

development. For example, suppose that we recognize that a function f and a function g are closely

correlated in a target program P . Then, such information can guide developers of P to group f and

g together whey they update P . More specifically, if f is modified, g has to be tested together with f

although g is not modified explicitly. Also, we can utilize function group information to identify/define

reusable components and/or we can suggest refactoring guideline based on the function group information

to achieve high cohesion and low coupling.

46



Bibliography

[1] R. Arnold. Software Change Impact Analysis. IEEE Computer Society Press, 1996.

[2] L. Baresi, P. Lanzi, and M. Miraz. TestFul: an evolutionary test approach for Java. In Proceedings

of the International Conference on Software Testing, Verification and Validation (ICST), 2010.

[3] F. Bellard. QEMU, a fast and portable dynamic translator. In Proceedings of the USENIX Annual

Technical Conference, 2005. Freenix Track.

[4] B. Botella, M. Delahaye, S. Hong-Tuan-Ha, N. Kosmatov, P. Mouy, M. Roger, and N. Williams.

Automating structural testing of C programs: Experience with PathCrawler. In Proceedings of the

International Workshop on Automation of Software Test (AST), 2009.

[5] M. Buenen and G. Muthukrishnan. World quality report. Technical report, Capgemini, 2016.

[6] J. Burnim and K. Sen. Heuristics for scalable dynamic test generation. In Proceedings of the

International Conference on Automated Software Engineering (ASE), pages 443–446, 2008.

[7] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic generation of high-coverage

tests for complex systems programs. In Proceedings of the USENIX Symposium on Operating System

Design and Implementation (OSDI), 2008.

[8] C. Cadar, P. Godefroid, S. Khurshid, C. Pasareanu, K. Sen, N. Tillmann, and W. Visser. Symbolic

execution for software testing in practice: Preliminary assessment. In Proceedings of the Internati-

onal Conference on Software Engineering (ICSE), 2011.

[9] A. Chakrabarti and P. Godefroid. Software partitioning for effective automated unit testing. In

Proceedings of the International Conference on Embedded Software (EMSOFT), 2006.

[10] R. Charette. This car runs on code. IEEE spectrum, 46(3):3, 2009.

[11] S. Chidamber and C. Kemerer. Towards a metrics suite for object oriented design. In Proceedings

of the ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages and Ap-

plications (OOPSLA), 1991.

[12] S. Chidamber and C. Kemerer. A metrics suite for object oriented design. IEEE Transactions on

Software Engineering, 20(6):476–493, 1994.

[13] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A platform for in-vivo multi-path analysis

of software systems. In Proceedings of the International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS), 2011.

[14] Coverity. https://www.synopsys.com/software-integrity/products/static-code-analysis.

html.

[15] H. Cramer. Mathematical Methods of Statistics. Princeton University Press, 1946.

[16] C. Csallner and Y. Smaragdakis. JCrasher: an automatic robustness tester for Java. Software-

Practice and Experience, 34(11):1025–1050, 2004.

47

https://www.synopsys.com/software-integrity/products/static-code-analysis.html
https://www.synopsys.com/software-integrity/products/static-code-analysis.html


[17] H. Do, S. Elbaum, and G. Rothermel. Supporting controlled experimentation with testing techni-

ques: An infrastructure and its potential impact. Empirical Software Engineering, 10(4):405–435,

2005.

[18] S. Elbaum, H. Chin, M. Dwyer, and M. Jorde. Carving and replaying differential unit test cases

from system test cases. IEEE Transactions on Software Engineering, 35(1):29–45, 2009.

[19] B. Elkarablieh, R. Godefroid, and M. Levin. Precise pointer reasoning for dynamic test generation.

In International Symposium on Software Testing and Analysis (ISSTA), 2009.

[20] M. Ernst, J. Perkins, P. Guo, S. McCamant, C. Pacheco, M. Tschantz, and C. Xiao. The Daikon

system for dynamic detection of likely invariants. Science of Computer Programming, 69(1):35–45,

2007.

[21] J. Evans. Straightforward Statistics for the Behavioral Sciences. Brooks/Cole Publishing Company,

1996.

[22] G. Fraser and A. Arcuri. EvoSuite: automatic test suite generation for object-oriented software. In

Proceedings of the ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE),

2011.

[23] G. Fraser and A. Arcuri. 1600 faults in 100 projects: Automatically finding faults while achieving

high coverage with EvoSuite. Empirical Software Engineering, 20(3):611–639, 2015.

[24] P. Garg, F. Ivancic, G. Balakrishnan, N. Maeda, and A. Gupta. Feedback-directed unit test ge-

neration for C/C++ using concolic execution. In Proceedings of the International Conference on

Software Engineering (ICSE), 2013.

[25] P. Godefroid, A. Kiezun, and M. Y. Levin. Grammar-based whitebox fuzzing. In Proceedings of the

ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), 2008.

[26] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random testing. In Proceedings

of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI),

2005.

[27] P. Godefroid, M. Y. Levin, and D. Molnar. Automated whitebox fuzz testing. In Proceedings of the

Network and Distributed System Security Symposium (NDSS), 2008.

[28] K. Jayaraman, D. Harvison, V. Ganesh, and A. Kiezun. jFuzz: A concolic whitebox fuzzer for Java.

In Proceedings of the NASA Formal Methods Symposium(NFM), 2009.

[29] H. Jaygarl, S. Kim, T. Xie, and Carl. Chang. OCAT: Object capture based automated testing. In

International Symposium on Software Testing and Analysis (ISSTA), 2010.

[30] S. Khurshid, C. Pasareanu, and W. Visser. Generalized symbolic execution for model checking and

testing. In Proceedings of the International Conference on Tools and Algorithms for the Construction

and Analysis of Systems (TACAS), 2003.

[31] M. Kim and Y. Kim. Concolic testing of the multi-sector read operation for flash memory file

system. In Proceedings of the Brazilian Symposium on Formal Methods (SBMF), 2009.

48



[32] M. Kim, Y. Kim, and Y. Choi. Concolic testing of the multi-sector read operation for flash storage

platform software. Formal Aspects of Computing (FAC), 24(3):355–374, 2012.

[33] M. Kim, Y. Kim, and Y. Jang. Industrial application of concolic testing on embedded software:

Case studies. In Proceedings of the International Conference on Software Testing, Verification and

Validation (ICST), 2012.

[34] Y. Kim, M. Kim, and N. Dang. Scalable distributed concolic testing: a case study on a flash storage

platform. In Proceedings of the International Colloquium on Theoretical Aspects of Computing

(ICTAC), 2010.

[35] Y. Kim, M. Kim, Y. Kim, and Y. Jang. Industrial application of concolic testing approach: A case

study on libexif by using CREST-BV and KLEE. In Proceedings of the International Conference

on Software Engineering (ICSE), 2012. SEIP track.

[36] Y. Kim, Y. Kim, T. Kim, G. Lee, Y. Jang, and M. Kim. Automated unit testing of large industrial

embedded software using concolic testing. In Proceedings of the International Conference on Auto-

mated Software Engineering (ASE), 2013.

[37] J. C. King. Symbolic execution and program testing. Communications of the ACM, 19(7):385–394,

1976.

[38] M. Kucharski. Making unit testing practical for embed-

ded development. http://electronicdesign.com/article/embedded/

Making-Unit-Testing-Practical-for-Embedded-Development, 2011. Online; accessed 31

October 2016.

[39] K. Lakhotia, M. Harman, and P. McMinn. Handling dynamic data structures in search based testing.

In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), 2008.

[40] K. Lakhotia, P. McMinn, and M. Harman. Automated test data generation for coverage: Haven’t

we solved this problem yet? In Proceedings of the Workshop on Testing: Academia-Industry Colla-

boration, Practice and Research Techniques (TAIC-PART), 2009.

[41] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program analysis & trans-

formation. In Proceedings of the International Symposium on Code Generation and Optimization

(CGO), 2004.

[42] Y. Lee, B. Liang, S. Wu, and F. Wang. Measuring coupling and cohesion of object-oriented programs

based on information flow. In Proceedings of the International Conference on Software Quality

(ICSQ), 1995.

[43] W. Li and S. Henry. Object-oriented metrics that predict maintainability. Journal of Systems and

Software, 23(2):111 – 122, 1993.

[44] R. Majumdar and R. Xu. Directed test generation with symbolic grammars. In Proceedings of the

International Conference on Automated Software Engineering (ASE), 2007.

[45] M. Marri, T. Xie, N. Tillmann, J.de Halleux, and W. Schulte. An empirical study of testing file-

system-dependent software with mock objects. In Proceedings of the International Workshop on

Automation of Software Test (AST), 2009.

49

http://electronicdesign.com/article/embedded/Making-Unit-Testing-Practical-for-Embedded-Development
http://electronicdesign.com/article/embedded/Making-Unit-Testing-Practical-for-Embedded-Development


[46] P. McMinn. Search-based software test data generation: A survey. Journal of Software Testing,

Verification, and Reliability, 14(2):105–156, 2004.

[47] L. Moura and N. Bjorner. Z3: An efficient SMT solver. In Proceedings of the International Confe-

rence on Tools and Algorithms for the Construction and Analysis of Systems (TACAS), 2008.

[48] G. Necula, S. McPeak, S. Rahul, and W. Weimer. CIL: Intermediate language and tools for analysis

and transformation of C programs. In Proceedings of the International Conference on Compiler

Construction (CC), 2002.

[49] N. Nethercote and J. Seward. Valgrind: A framework for heavyweight dynamic binary instrumen-

tation. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI), 2007.

[50] C. Pacheco, S. Lahiri, M. Ernst, and T. Ball. Feedback-directed random test generation. In Procee-

dings of the International Conference on Software Engineering (ICSE), 2007.

[51] Y. Park, S. Hong, M. Kim, D. Lee, and J. Cho. Systematic testing of reactive software with non-

deterministic events: A case study on lg electric oven. In Proceedings of the International Conference

on Software Engineering (ICSE), 2015. SEIP track.

[52] C. Pasareanu, P. Mehlitz, D. Bushnell, K. Gundy-burlet, M. Lowry, S. Person, and M. Pape.

Combining unit-level symbolic execution and system-level concrete execution for testing NASA

software. In International Symposium on Software Testing and Analysis (ISSTA), 2008.

[53] C. Pasareanu and W. Visser. A survey of new trends in symbolic execution for software testing and

analysis. Software Tools for Technology Transfer, 11(4):339–353, 2009.

[54] B. Pasternak, S. Tyszberowicz, and A. Yehudai. GenUTest: A unit test and mock aspect generation

tool. Software Tools for Technology Transfer, 11(4):273–290, 2009.

[55] K. Pearson. Notes on regression and inheritance in the case of two parents. In Proceedings of the

Royal Society of London, 1895.

[56] D. Ramos and D. Engler. Under-constrained symbolic execution: Correctness checking for real code.

In Proceedings of the USENIX Security Symposium (SEC), 2015.

[57] R. Rodrigues, V. Campos, and F. Pereira. A fast and low-overhead technique to secure programs

againtst integer overflows. In Proceedings of the International Symposium on Code Generation and

Optimization (CGO), 2013.

[58] R.Osherove. The Art of Unit Testing. Manning Publications, 2009.

[59] Realview compilation tools. http://www.arm.com/products/tools/software-tools/rvds/

arm-compiler.php.

[60] F. Saudel and J. Salwan. Triton: A dynamic symbolic execution framework. In Proceedings of the

Symposium sur la sécurité des technologies de l’information et des communications (SSTIC), 2015.

[61] E. Schwartz, T. Avgerinos, and D. Brumley. All you ever wanted to know about dynamic taint

analysis and forward symbolic execution (but might have been afraid to ask). In Proceedings of the

IEEE Symposium on Security and Privacy (SP), 2010.

50

http://www.arm.com/products/tools/software-tools/rvds/arm-compiler.php
http://www.arm.com/products/tools/software-tools/rvds/arm-compiler.php


[62] K. Sen and G. Agha. CUTE and jCUTE : Concolic unit testing and explicit path model-checking

tools. In Proceedings of the International Conference on Computer Aided Verification (CAV), 2006.

[63] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine for C. In Proceedings

of the Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT

Symposium on the Foundations of Software Engineering (ESEC/FSE), 2005.

[64] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang, J. Newsome, P. Poos-

ankam, and P. Saxena. BitBlaze: A new approach to computer security via binary analysis. In

Proceedings of the International Conference on Information Systems Security (ICISS), 2008.

[65] The SPEC CPU 2006 benchmark suite. https://www.spec.org/cpu2006/.

[66] G. Tassey. The economic impacts of inadequate infrastructure for software testing. Technical report,

National Institute of Standards and Technology (NIST), 2002.

[67] N. Tillmann and J. Halleux. Pex - white box test generation for .net. In Proceedings of the Inter-

national CConference on Tests And Proofs (TAP), 2008.

[68] N. Tillmann and W. Schulte. Parameterized unit tests. In Proceedings of the Joint Meeting of the

European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations

of Software Engineering (ESEC/FSE), 2005.

[69] W. Visser, K. Havelund, G. Brat, and S. Park. Model checking programs. In Proceedings of the

International Conference on Automated Software Engineering (ASE), 2000.

[70] B. Vlasic. Toyota’s slow awakening to a deadly problem. The New York Times, 2 2010. http:

//www.nytimes.com/2010/02/01/business/01toyota.html.

[71] N. Williams, B. Marre, P. Mouy, and M. Roger. PathCrawler: automatic generation of path tests

by combining static and dynamic analysis. In Proceedings of the European Dependable Computing

Conference (EDCC), 2005.

51

https://www.spec.org/cpu2006/
http://www.nytimes.com/2010/02/01/business/01toyota.html
http://www.nytimes.com/2010/02/01/business/01toyota.html

