
석사 학위논문

Master’s Thesis

비결정적 이벤트를 처리하는 반응형 소프트웨어를

위한 자동화 테스팅 기법:

LG 전기 오븐 사례 연구

Automated Testing of Reactive Software with Non-deterministic Events:

A Case Study on LG Electric Oven

박 용 배 (朴 容 培 Park, Yongbae)

전산학과

Department of Computer Science

KAIST

2015

비결정적 이벤트를 처리하는 반응형 소프트웨어를

위한 자동화 테스팅 기법:

LG 전기 오븐 사례 연구

Automated Testing of Reactive Software with Non-deterministic Events:

A Case Study on LG Electric Oven

Automated Testing of Reactive Software with

Non-deterministic Events:

A Case Study on LG Electric Oven
Advisor : Professor Kim, Moonzoo

by

Park, Yongbae

Department of Computer Science

KAIST

A thesis submitted to the faculty of KAIST in partial fulfillment

of the requirements for the degree of Master of Science in Engineering

in the Department of Computer Science . The study was conducted in

accordance with Code of Research Ethics1.

2014. 12. 16.

Approved by

Professor Kim, Moonzoo

[Advisor]

1Declaration of Ethical Conduct in Research: I, as a graduate student of KAIST, hereby declare that

I have not committed any acts that may damage the credibility of my research. These include, but are

not limited to: falsification, thesis written by someone else, distortion of research findings or plagiarism.

I affirm that my thesis contains honest conclusions based on my own careful research under the guidance

of my thesis advisor.

비결정적 이벤트를 처리하는 반응형 소프트웨어를

위한 자동화 테스팅 기법:

LG 전기 오븐 사례 연구

박 용 배

위 논문은 한국과학기술원 석사학위논문으로

학위논문심사위원회에서 심사 통과하였음.

2014년 12월 16일

심사위원장 김 문 주 (인)

심사위원 송 준 화 (인)

심사위원 한 동 수 (인)

MCS

20133276

박용배. Park, Yongbae. Automated Testing of Reactive Software with Non-deterministic

Events: A Case Study on LG Electric Oven. 비결정적 이벤트를 처리하는 반응형 소프

트웨어를 위한 자동화 테스팅 기법: LG 전기 오븐 사례 연구. Department of Computer

Science . 2015. 34p. Advisor Prof. Kim, Moonzoo. Text in English.

ABSTRACT

In our daily lives, we utilize numerous devices controlled by software including home appliance

products such as electric ovens and refrigerators. Such devices has reactive software which repeat receiving

a user input/event through an event handler, updating their internal state based on the input, and

generating outputs. A challenge to test a reactive program is to check if the program correctly reacts to

various non-deterministic sequence of events because an unexpected sequence of events may make the

system fail due to the race conditions between the main loop and asynchronous event handlers. Thus,

it is important to systematically generate various sequences of events by controlling the order of events

and relative timing of event occurrences with respect to the main loop execution.

In this dissertation, we report our industrial experience to solve the aforementioned problem by

developing a systematic event generation framework based on concolic testing technique. The framework

systematically generates both event ordering and event timing to test reactive software by transforming

source code of the target software. The source code transformation adds a symbolic variable that decides

whether or not an event is raised at a specific location in the target program. Using the transformed

code, a concolic testing technique systematically generated various values on the symbolic variables to

test various event ordering and timing.

We have applied the framework to a LG electric oven and detected several critical bugs in both unit

testing and integration testing. In unit testing, we applied the framework to three modules where 2 con-

currency bugs are found. In integration testing, we found a bug that causes the oven not response to any

user inputs due to the illegal state transition. To evaluate effectiveness and efficiency of the framework,

we also compared our framework with noise injection random testing technique. The comparison results

show that our framework finds a corner-case bug faster than the random testing technique.

i

Contents

Abstract . i

Contents . ii

List of Tables . iv

List of Figures . v

Chapter 1. Introduction 1

Chapter 2. Background and Related Works 3

2.1 Concolic Testing Techniques . 3

2.1.1 Concolic Testing Algorithm 3

2.1.2 Concolic Testing Tools . 4

2.2 Reactive Software Testing Techniques 5

2.2.1 Testing using Hardware Simulators 5

2.2.2 Model Checking . 5

2.2.3 Interrupt Timing Analysis 6

2.2.4 Noise Injection Random Testing 6

Chapter 3. Project Overview 8

3.1 Background . 8

3.2 LG Electric Oven . 8

3.3 Electric Oven Controller Software 8

Chapter 4. Systematic Event Generation Framework 12

4.1 Instrumentation of Target Program 12

4.2 Systematic Event Generation . 14

4.3 Record and Replay of the Generated Event Scenarios 15

Chapter 5. Testing the Oven Controller Software with the Event Generation

Framework 17

5.1 Unit-level Testing . 17

5.1.1 CQ Data Structure . 17

5.1.2 Unit Testing Setup for CQ 18

5.2 Integration Testing . 18

5.2.1 Test Oracles . 19

5.3 Noise Injection based Random Testing Technique 20

ii

Chapter 6. Testing Results on LG Electric Ovens 22

6.1 Results of the Unit Testing . 22

6.2 Results of the Integration Testing 24

Chapter 7. Lessons Learned 30

7.1 Effectiveness of the Event Generation Framework 30

7.2 Systematic Testing vs. Random Testing 30

7.3 Industrial Adoption of the Advanced Testing Techniques 30

7.3.1 High Demand of Corner-case Bug Detection for Home

Appliance Domain . 30

7.3.2 Necessity of Training Developers 31

7.4 Technical Challenges . 31

7.4.1 Outdated Requirement Specification 31

7.4.2 Micro-controller Specific Low-level Compilation 31

Chapter 8. Conclusion and Future Work 32

8.1 Summary . 32

8.2 Future Works . 32

8.2.1 Improving Efficiency . 32

8.2.2 Improving Effectiveness 32

References 33

Summary (in Korean) 35

– iii –

List of Tables

5.1 Code metrics of units under test . 18

6.1 Time to detect the bugs in Circular Queue . 24

6.2 Time to detect the bug in the controller program and branch coverage 26

6.3 The number of executed probes and length of path constraints in concolic testing 27

iv

List of Figures

3.1 LG electric oven . 9

3.2 Architecture of the electric oven controller software . 9

3.3 Requirement specification of the LG electric oven . 10

4.1 Overall process of the event generation framework . 13

4.2 Example showing how the three strategies insert the probes 13

4.3 Pseudo code of a probe for the event type ev1 . 15

4.4 Pseudo code of event scenario record and replay . 16

5.1 Unit testing driver for CQ . 19

5.2 Test oracle for the integration testing . 20

5.3 Noise injection based random testing . 21

6.1 Buggy dequeue() of the circular queue CQ . 23

6.2 Error caused by the overwriting bug . 23

6.3 Error caused by the inconsistency bug . 24

6.4 Buggy KeyHandler() code of the oven control software . 25

6.5 Branch coverage of STMT for each maximum number of events per the main loop iteration 28

6.6 Branch coverage per probe insertion strategy when n = 4 28

6.7 Venn diagram of the number of covered branches in integration testing 29

v

Chapter 1. Introduction

As embedded software is prevalent in the ubiquitous computing society, ensuring correctness of

embedded software becomes important. Most embedded software is reactive software as embedded

software is part of a large system and interacts with other sub-systems of the large system through

events. Reactive software continuously interacts with users and environment by receiving events and

generating responses. Reactive software continuously processes the following tasks:

• Receiving events from users/environments through an event handler. For example of an electric

oven, the key event handler adds a key value of the auto-cook button to the input buffer when a

user pushes the auto-cook button to start cooking food (see Figure 1 and Figure 2).

• Updating internal state according to a given event and generating response for a given event

through the main loop. For example, an electric oven updates its internal state as a cooking mode

and calculates electric voltage/current for the auto-cooking operation, which will be given to the

heaters.

An event handler can receive an event any time. If an event is given while the main loop is computing

its internal state, the main loop is suspended and the event handler is executed. After the event handler

completes its task, the execution of the main loop resumes. The reason for executing an event handler

quickly after the event arrival is to prevent from losing the event.

Due to this event-driven feature, the behaviors of reactive software depends on not only input values,

but also event ordering and timing. Both the event handlers and the main loop of reactive software read

and write the same memory area called shared memory. So, event ordering affects the behaviors of

reactive software because the behavior of an event handler depends on contents of the shared memory

which the previous execution of the event handlers may change. Similarly, event timing changes the

behavior of the main loop if an event handler updates the shared memory before the main loop access

the shared memory. We use a term an event scenario to indicate both ordering and timing of events.

Consequently, a concurrency error may occur due to race condition among the main loop and the

event handlers. The execution order and timing of the main loop and the event handlers may be non-

deterministic because events can be non-deterministically generated by users and other external entities.

Incorrect synchronization on shared memory access between the main loop and the event handlers induces

erroneous behavior.

Unfortunately, developers of reactive software often do not recognize this issue seriously because

they think that reactive software is simple enough to be free from complex concurrency problems. The

reason that reactive software in home appliance devices such as electric ovens and refrigerators runs in a

single thread makes developers overlook concurrency errors in their software. So, such reactive software

often suffer corner-case bugs that can be triggered by exceptional execution scenarios only.

Furthermore, it is hard to detect concurrency errors in both manual testing and automated testing

by conventional techniques. The manual testing is ineffective for finding corner-case bugs because human

testers are not capable of precisely controlling. Conventional testing techniques such as concolic testing

do not generate various execution order/timing of events. Model checking is not effective for checking

reactive software in industry due to high cost of abstract model creation and state explosion problems.

– 1 –

Developers in industry cannot afford time to create abstract models for reactive software due to hard

time-to-market pressure. As the number of states of given model increases exponentially with the number

of events, model checking may not generate outputs within limited time and memory space.

In this dissertation, we report our industrial experience to solve the aforementioned problem by

developing a systematic event generation framework. The framework can systematically generate various

event scenarios. The main idea of the framework is to utilize concolic execution (a.k.a. dynamic symbolic

execution) to systematically generate events at every important execution point of the main loop (i.e.,

the framework can generate race conditions between the main loop and the event handlers if any. See

Section 4).

We have applied the systematic event generation framework to the controller software of a LG electric

oven and detected several new bugs including atomicity violation bugs at the input buffer (Section 6.1)

and an illegal state transition bug (Section 6.2) at system level, which make the oven fail to react to any

button/dial and a user cannot control the oven at all. The contributions of this paper are as follows:

• This dissertation addresses the challenges to test reactive systems with non-deterministic events

in detail, particularly concurrency problems caused by race conditions between the main loop and

the input event handlers. The clearly reported problem in the paper can help field engineers avoid

possible threats in reactive software (Section 6).

• We have developed a systematic and automated framework to generate test executions of various

event sequences, which can improve the quality of the reactive software compared to the industrial

practice of ad-hoc manual testing (Section 4).

• We have demonstrated the effectiveness of the event generation framework by detecting new bugs

(Section 6) in an industrial reactive system (i.e., a LG electric oven).

The rest of the dissertation is organized as follows. Chapter 2 describes background and related

works. Chapter 3 explains the overview of this testing project including the description of the LG electric

oven. Chapter 4 explains the systematic event generation framework based on concolic testing technique.

Chapter 5 describes the testing setup of the project. Chapter 6 reports the testing results. Chapter 7

discusses lessons learned from this project. Chapter 8 summarizes the dissertation and provides future

works.

– 2 –

Chapter 2. Background and Related Works

This chapter provides background and related works. We provides concolic testing technique that

our technique uses, previous testing techniques for reactive software, and their limitations.

2.1 Concolic Testing Techniques

Concolic (CONCrete + symbOLIC) testing (dynamic symbolic execution) [24, 28] runs a given

program with concrete inputs, creates a symbolic path constraint from the concrete execution, and

generates a new test input from analysis of the symbolic path constraints [6]. A path constraint is a

condition that should be satisfied to visit a specific path. In concolic testing, the input values of the

path constraint is represented as symbolic variables instead of concrete values.

2.1.1 Concolic Testing Algorithm

The inputs of concolic testing are target program code, a test driver code, and terminating condition.

The output of concolic testing is test inputs and test execution results of the generated inputs. The

general algorithm of concolic testing consists of the following steps.

1. Select input variables to be handled symbolically.

2. Instrument the target program to record symbolic path constraints.

3. Choose input values for the instrumented programs and run the instrumented programs using the

test driver.

4. Obtain a symbolic path constraint from the execution of instrumented program.

5. Negate a branch of the obtained symbolic path constraint to create a new symbolic path constraint.

6. Find input values that satisfy the new symbolic path constraint.

7. If the given termination condition is satisfied, stop concolic testing, Otherwise, repeat step 3 with

the generated input values of step 6.

In step 1, a user (or a tester) decides which input variables should be declared to be symbolic

variables. A user adds API function calls of the concolic testing tool at the beginning of the test driver

execution to declare symbolic variables.

In step 2, the concolic testing tool instruments both the target program and the test driver to record

symbolic path constraints. The concolic testing tool statically adds probes at branching statements to

record which branches are taken in program executions.

In step 3, the concolic testing tool runs the modified test driver to test the target program. If it is

the first time that step 3 is performed, input values of the test driver is the given input values. Otherwise,

input values from step 6 are used.

– 3 –

In step 4, a symbolic path constraint is created from the execution of the inserted probes. When the

inserted probe is executed in step 3, the probe collects symbolic conditions of branches through dynamic

analysis of the target program and creates a symbolic path constraint.

In step 5, the concolic testing tool negates a branch of the symbolic path constraint that obtained in

step 4 to create a new symbolic path constraint. If the obtained symbolic path constraint has multiple

branched that can be negated, the concolic testing tool selects one of them based on search strategy.

For example, depth-first search strategy selects the last branch of the symbolic path constraint first and

breadth-first search strategy selects the first branch of the symbolic path constraint first.

In step 6, input values that satisfy the negated symbolic path constraint is generated using SMT

solvers or SAT solvers (e.g., Z3 [25], STP [10], CVC4 [2]). If the solver cannot generate input values

that satisfy the symbolic path constraint, repeat step 5 to create another symbolic path constraint (i.e,

negates another branch).

In step 7, the concolic testing tool checks terminating condition. A user can decide the terminating

condition using the maximum number of test inputs, the maximum testing time, branch coverage, etc.

Conventional concolic testing technique generates input values but does not generates event scenar-

ios. To test reactive software, developers may create event scenarios but this manual approach may not

affordable for industrial software projects under hard time-to-market pressure. Our framework generates

both input values and event scenarios with less human effort than conventional concolic testing technique

because our framework automatically generates both input values and event scenarios.

2.1.2 Concolic Testing Tools

Concolic testing technique is implemented in various tools such as DART [12], CUTE [30], jCUTE [29],

CREST [3], EXE [5], and KLEE [4].

DART (Directed Automated Random Testing) is a concolic testing tool for C programs. DART

executes a program with random concrete inputs at the beginning to collect symbolic path constraints.

After that, DART applies concolic testing technique to generate input values. A limitation of DART is

that DART cannot symbolically handle dereferencing a pointer whose address aims the input.

CUTE (Concolic Unit Testing Engine) extends DART to handle data structures with pointers.

CUTE uses a logical input map that represents all inputs, including memory graphs to represent the

input memory graph symbolically at the beginning of an execution.

jCUTE (CUTE for Java) combines concolic testing and race-detection and flipping algorithm to test

multi-threaded programs with data inputs. The algorithm finds two statements that are executed in

different threads and access same memory location. If the execution order of the two statements can be

changed, jCUTE changes the execution order to create a new thread schedule.

CREST is an open-source concolic testing tool that developed by Jacob Burnim in 2008. CREST

is an extensible platform for building search strategies. CREST supports various search strategies such

as DFS, random, and heuristics based on control flow graphs to explore large search space efficiently.

EXE is applied to complex system programs such as DHCP server daemons, regular expression

libraries, and file system libraries that handles untyped data structure (i.e., void* in C language) and

byte array manipulations. To perform concolic execution on the complex system code, EXE builds

symbolic path constraints for all C expressions with a single bit level accuracy so that EXE handles

pointers, unions, bit-fields, and bit-operators.

KLEE extends EXE to optimize performance of symbolic path constraints to handle larger programs.

KLEE also handles interactions with external environments (i.e., system API calls). For example, KLEE

– 4 –

provides symbolic file system whose files and their contents are symbolically generated to test programs

with file I/O.

2.2 Reactive Software Testing Techniques

2.2.1 Testing using Hardware Simulators

A couple of works generated event scenarios using hardware simulators to test reactive software.

Regehr et al. [27] presents a technique that fires hardware events called interrupts at random times.

The technique modified a hardware simulator Avrora to fire interrupts and monitor malicious behaviors.

Similar to noise injection random testing, the technique may not generate buggy event scenarios with

low probability.

Higashi et al. [14] extends Regehr et al.’s approach. Instead of firing interrupts at random times,

the Higashi et al.’s technique fires an interrupt after a memory-access instruction is executed in a CPU

emulator to find race conditions. The technique changes input values of interrupt handlers to generate

buggy execution scenarios. However, the input values should be provided by users for the technique.

A limitation of testing using hardware simulators is that it is hard to apply the techniques when

hardware simulators are not available. In our case study, generating event scenarios using simulators

were not applicable because LGE used cheap microcontrollers whose hardware simulators do not exist.

2.2.2 Model Checking

Researchers have applied model checking techniques such as Verisoft [11] and SPIN [15] that have

been applied to multi-threaded programs to find bugs in reactive programs.

Fidge et al. [9] applies model checking to an interrupt-driven avionic reactive software by manually

creating state-transition model. Fidge et al. translates each basic block of target code into a transition to

reduce possible states and transitions of the target software. The state of the model consists of variables

for registers, program counter, current time, and interrupt time. Registers are memory locations for data

and program counter represents the next basic block to be executed. The current time and the interrupt

time decide when an interrupt will occur. The current time increases by 1 when a transition of a basic

block is performed. The interrupt time is chosen by model checker non-deterministically. If the current

time is larger than or equal to the interrupt time, the transition corresponding to the interrupt handler

is performed. Otherwise, a transition of a basic block corresponding to program counter is performed.

Fidge et al. used a bounded model checker SAL [26] to verify the model and found a counter example

that the target software prints wrong output values.

Holzmann et al. [16] introduces a technique that mechanically extracts a state machine from anno-

tated code of state-oriented reactive software. To recognize possible states of the target software, a user

should mark conditional statements where check the current states and the occurrence of the event in

the target software. From the annotated conditional statements, the technique finds possible states and

actions (i.e., event handler code) that each state will perform when an event is generated. To automat-

ically translate the code or actions into the model, the technique uses a table maps a C statement into

abstracted representation of the C statement.

Chandra et al. [7] applies Verisoft to a CDMA library of Lucent Technology. Chandra et al. created

a test driver to simulate the environment for the target software. The CDMA library runs on the base

station of CDMA network and the CDMA library manages connections between the base station and

– 5 –

mobile phones. So, the CDMA library should be tested under the various behaviors of mobile phones.

Chandra et al. uses non-deterministic operations (VS toss) of VeriSoft to select actions among available

actions in test drivers.

The limitations of these techniques for industrial application are high cost of model creation and

state explosion problem. A user has to write an abstract model of the target program (or specify a non-

deterministic execution environment by using VS toss(n) for Verisoft), which is not affordable for most

industrial software projects under hard time-to-market pressure. Also, the number of states increases

exponentially as the number of event type increases.

Compared to these model checking techniques, our approach is more affordable to industrial setting

because our framework, with relatively less human effort, can generate test executions with various

sequences of events including relative timing of the events in fine granularity. Also our approach avoids

state explosion problem because our technique focuses on execution paths instead of states.

2.2.3 Interrupt Timing Analysis

Kotker et al. [21] presents a testing technique that utilizes sequential versions of interrupt-driven

programs for timing analyses. Given inter-arrival time between interrupts and priority of interrupts, the

technique predicts worst-case execution time of the interrupt-driven program.

Also, Yu et al. [32] introduces a framework called SimLatte that estimates worst-case interrupt

latencies using a genetic algorithm. The genetic algorithm of SimLatte takes the target program and

initial test cases to generate new test cases that cause significant interrupt latencies to find worst-case

interrupt latencies. The initial test cases are generated by random test case generation technique. The

genetic algorithm creates new test cases by crossover which switches part of input values or event scenarios

of two test cases. Yu et al. applies both SimLatte and random testing technique to three embedded

system applications and the results shows that SimLatte is more effective than random testing technique.

Unlike these works, our technique systematically generates various event scenarios and also various

input values by concolic testing technique to detect functional errors in event-driven reactive software.

2.2.4 Noise Injection Random Testing

Lei et al. [23] presents a framework for testing message-passing programs. A message-passing

program consists of a collection of processes which interact each other by sending and receiving mes-

sages. So, a message-passing program is reactive software that interacts with the environment via

messages. Thus, non-deterministic ordering and timing events (messages) may causes concurrency er-

rors in message-passing programs. The framework inserts random noise before statements that generate

messages. Instead of inserting random noise before every message generating statements, the framework

uses coverage criteria to select locations of random noise that may increase coverage.

Similar to Lei et al., for multi-threaded program testing, Stoller [31] introduces a technique called

rstest that inserts a statement that calls a scheduling function that would cause a context-switch to the

target Java source code. The scheduling function randomly makes the choice between doing nothing or

calling sleep() or yield().

While noise injection random testing automatically generates various event scenarios, random testing

may not generate event scenarios whose possibility to be generated by random testing is low and thus

noise injection random testing may not generate buggy event scenarios. Our case study results show that

noise injection random testing is not effective to find a corner-case concurrency error that occurs when

– 6 –

two events are generated at specific timing (Section 6.1). Compare to noise injection random testing, our

technique generates systematically generate event scenarios to explore corner-case event scenarios faster

than noise injection random testing.

Also, noise injection random testing cannot guarantee reproduce of generated event scenarios. Even

if same random seed is used to produce the same noise duration, the same event scenario may not be

generated because the environment such as OS, and other process that running on the same machine

affects execution time.

– 7 –

Chapter 3. Project Overview

3.1 Background

Before starting this project in 2014, the authors at KAIST had collaborated with the LGE re-

search department on automated testing techniques for embedded software using concolic testing (a.k.a.,

dynamic symbolic execution) [30] in 2013. Through the collaboration with KAIST, LGE was partly

convinced of the advantages of concolic testing techniques in terms of the corner-case bug detection

capability as shown in the several industrial applications [17–20]. Thus, as the first step to adopt a new

technology in a long term roadmap, LGE decided to start a project to apply concolic testing to simple

home appliance products first.

This pilot project was five months long and the project team consisted of a professor and two

graduate students from KAIST, a research engineer from the LGE research department, and a senior field

engineer from the LGE production department for home appliance products. A main goal of this project

was to develop a systematic testing framework based on concolic testing technique to detect corner-case

bugs in the home appliance products of LGE. We target the controller software of an electric oven which

has been on market for three years. The electric oven has a well-defined requirement specification for its

behavior (see Figure 3.3). The full source code of the oven controller software was given to the KAIST

authors. It took around two months for the KAIST authors to understand the domain knowledge of the

electric oven and its controller code (Section 3.3).

3.2 LG Electric Oven

Figure 3.1 shows a target LG electric oven. The target electric oven is a high-end multi-function elec-

tric oven and it provides dozens of pre-defined cooking recipes for dishes such as steaming dumpling and

baking bread using the four heating mechanisms (steam, charcoal heater, roast heater, and microwave).

The oven has temperature sensors, a door sensor, a cooling fan, and a lamp inside. The front panel

of the oven has four buttons (defrost, auto-cook, enter, and stop buttons), two multi-function dials (a

function dial and a control dial), and LED display at the center of the panel. The oven provides multiple

functionalities which a user can select by a sequence of button and dial inputs (see Figure 3.3).

3.3 Electric Oven Controller Software

Figure 3.2 shows the architecture of the electric oven controller software. The controller software

consists of a main loop, two input event handlers (a key/door event handler and a timed event handler),

two output event handlers (a LED event handler and a cook command event handler), and the shared

memory between the main loop and the event handlers.

• Main loop:

For each iteration, the main loop updates the control state based on the given input data in the

input buffer, and generates the hardware control commands such as LED command or cooking

command. In addition, the main loop directly reads sensor data such as oven temperature.

– 8 –

Key
interface

Door

Charcoal heaterSteam outlet

Roast
heater

Microwave
emitter

Auto‐
cook
button

LED display Control
dial

LED display

Enter
button

Stop
buttonFunction

dial
Defrost
button

Figure 3.1: LG electric oven

Key input

Cooking
command

LED
commandShared

memory
Input buffer

Input signals

Key/door
Event
Handler Main Loop

LED output

Cooking device
control output

Oven controller software

Shared memory Shared memory

Timed
Event
Handler

Timer

Door input

LED
Handler

Cook
Command
Handler

Output signals

Figure 3.2: Architecture of the electric oven controller software

• Input event handlers:

The key/door event handler is invoked when a key event or a door event is given by a user (i.e.,

when a user presses a key or opens a door). The timed event handler is invoked every second 1

to report time progress (e.g., cooking time progress). These input event handlers transform an

external input signal representing a physical event into input data and then store the data in the

input buffer, which will be retrieved by the main loop.

• Output event handlers:

The LED event handler and the cook command handler are executed every 1 milliseconds 1 and

100 microseconds 1 to convert the commands generated by the main loop to low-level signals which

activate the oven hardware such as the LED display and a microwave emitter.

Figure 3.3 shows the (simplified) requirement specification on the controller software as an abstract

state transition machine, which was specified by the original developers of the controller software. A

state of this state machine consists of the two variables curMode and curView which represent a current

1 To secure the intellectual property rights of LGE, the exact time intervals of the event handlers are not written in the

paper.

– 9 –

menu,
default

menu,
select-recipe

menu,
cook-option

function-L

control-R

control-L

cooking,
simple-cook

auto-cook

enter

defrost

cooking,
preheating

cooking,
default

door-open
or stop

enterstop or
door open

enter

enter
complete

complete

curMode,
curView

event
Legend

init,
default

5 sec

States in the
cooking mode

function-R

door-open
or stop

finish,
default

pause,
default

enter
enter enter

complete

menu,
manual-cook

menu,
clean

menu,
clean-defrost

Initial state

Figure 3.3: Requirement specification of the LG electric oven

operation mode and a current LED panel view of an oven respectively. curMode can be one of the

following values:

• init: an initial mode when the oven boots up

• menu: a cook menu selection mode

• cooking: a mode where steam/heaters are being used

• finish: a mode representing the cooking is completed

• pause: a mode representing a situation where a user pauses cooking by pressing the stop button at

cook mode.

curView can be one of default, select-recipe, manual-cook, clean-defrost, cook-option, clean, simple-cook,

and preheating (each of which shows the LED display differently).

The state transition machine transits from one state to another based on a given input data (in-

cluding key events, a door event, and time progress). The key events include events for the four buttons

(i.e., defrost, auto-cook, enter, and stop) and events for the two dials (i.e., function-L and function-R

that represents events of turning the function dial counter-clockwise or clockwise, respectively. Similarly,

control-L and control-R are defined for the control dial). For example, when the oven is initially turned

on, the state (i.e., curMode and curView) of the oven is set as (init,default) (see the left most state in

the figure). After 5 seconds from the oven is turned on, the state changes to (menu,default) where a

user can give a command through the four buttons and the two dials on the front panel. Note that the

controller should not transit to “undefined” states that are not specified in the state transition machine.

For example, when the oven state is in cooking mode (see the middle three states in the figure), its

corresponding curView should be one of simple-cook, default, or preheating. 2

The main loop can be preempted by an event handler but an event handler is non-preemptible

(i.e., when an event handler runs, the main loop or another event handler cannot execute (no nested

interrupt handlers allowed)). In other words, whenever an event is raised, CPU immediately suspends

2 The full state machine specification defines a state as a tuple of the five variables and contains 122 states and 634

transitions. Figure 3.3 is an abstract version and has non-deterministic transitions due to the abstraction.

– 10 –

the main loop execution and starts executing a corresponding event handler; CPU resumes the main

loop execution after the event handler completes its task.

The target control software has 658 functions in 180 files, and the total source code lines is 19,655

lines long (3505 branches) in C. The controller software runs on an 8 bit micro-controller without under-

lying OS. The controller software implements an event by using an interrupt signal and an event handler

as a function registered for the signal.

– 11 –

Chapter 4. Systematic Event Generation

Framework

We have developed an event generation framework that can systematically control event generation

in the following two ways (and their combination) where e1, e2, and e3 indicate different events:

• Controlling the order of events:

The framework can generate multiple sequences of events such as e1.e2.e3..., e1.e3.e2..., e2.e1.e3...,

and so on.

• Controlling the relative timing of the event occurrence with respect to the main loop execution:

The framework can generate multiple sequence of events such as [e1@l1.e2@l2.e3@l3]1[]2...,

[e1@l1.e2@l3]1[e3@l5]2..., []1[e1@l3.e2@l3.e3@l4]2... where l1, l2, ... are the code locations in the

main loop and [e3@l5]2 means that e3 occurs right before the main loop executes the statement

at l5 at its second iteration. Note that for the same order of events e1.e2.e3, there exist various

sequences of different relative timing cases.

Figure 4.1 shows the overall process of the event generation framework. The framework instruments

the main loop of the target C source code by statically inserting probes at every important code location

in the main loop (Section 4.1) where a probe is a function call whose parameter is a unique integer called

location id representing code location of the probe. Then, the probes invoke event handlers systematically

by controlling each probe through concolic testing (Section 4.2). As a result, the framework outputs both

input values and event scenarios. Since an event generation immediately leads to invocation of an event

handler that is registered to handle the event, the inserted probes directly invoke event handlers (without

generating events) at “important” execution point of the main loop. “important” code location varies

depending on the instrumentation strategy (see Figure 4.2).

4.1 Instrumentation of Target Program

First, a user should specify a segment of the target program as the main loop by adding #pragma

SEGF start and #pragma SEGF end before and after the segment. The framework inserts the probes in

the specified main loop segment recursively so that the bodies of the callee functions in the segment will

be instrumented with the probes and so on (see main task() in Figure 4.2(b)).

We have developed the following three strategies to insert the probes, which have different bug

detection capabilities and different runtime costs:

• Statement-based strategy inserts a probe at every source code statement in the specified target code

segment.

• Basic block-based strategy inserts the probe at the beginning of every basic block in the target code

segment.

– 12 –

Event Generation Framework

Source
code

Code
transform

Transformed
code

Concolic
testing

Event
scenarios

Input
values

Input

Outputs

Figure 4.1: Overall process of the event generation framework

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

…
int main() {
while (…) {
#pragma SEGF start
main_task();
#pragma SEGF end}}

void main_task() {
int x;
x=10;//a local var
f(y);//a global var
f(*ptr);}

void ev1Hdl(){
… ; y++; …}

(a) Original target source code

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

…
int main() {
while(…) {
#pragma SEGF start
p(1); main_task();
#pragma SEGF end}}

void main_task() {
int x;
p(2); x=10;
p(3); f(y);
p(4); f(*ptr);}

void ev1Hdl(){
… ; y++; …}

(b) Instrumented source code by
the statement-based strategy

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

…
int main() {
while(…) {
#pragma SEGF start
p(1); main_task();
#pragma SEGF end}}

void main_task() {
int x;
p(2); x=10;
f(y);
f(*ptr);}

void ev1Hdl(){
… ; y++; …}

(c) Instrumented source code by
the basic block-based strategy

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

…
int main() {
while(…) {
#pragma SEGF start
main_task();
#pragma SEGF end}}

void main_task() {
int x;
x=10;
p(1); f(y);
p(2); f(*ptr);}

void ev1Hdl(){
… ; y++; …}

(d) Instrumented source code by
the shared variable access strategy

Figure 4.2: Example showing how the three strategies insert the probes

• Shared variable access-based strategy inserts the probe at every statement in the target code segment

that accesses (i.e., reads or writes) a global variable shared by an event handler. This strategy

conservatively assumes that a statement that uses a pointer may access a shared variable.

The statement-based strategy inserts more probes than the basic block-based one because a basic

block usually contains multiple statements. Consequently, the statement-based strategy will generate

execution scenarios where event handlers are invoked more frequently than the execution scenarios gen-

erated by the basic block-based strategy. Thus, we can expect that the statement-based strategy will

have higher bug detection capability but require more testing time than the basic block-based strategy.

Compared to the statement-based strategy, the shared variable access-based strategy may insert a

less number of probes (because only a subset of the statements in the target segment accesses a shared

variable) but achieve comparable bug detection capability. This is because the main loop and an event

handler interact/interfere with each other through a shared variable and all such interferences can be

enforced by the probes inserted by the shared variable access-based strategy.

Figure 4.2(a) shows example target code to insert the probes. Suppose that a user specifies line 5 as

the main loop by inserting line 4 (#pragma SEGF start) and line 6 (#pragma SEGF end). Also, suppose

that ev1Hdl() at lines 14-15 is registered as an event handler for events of the ev1 type (for example, the

electric oven has 10 events of the key/door type including enter, stop, etc. (see Section 3.3)). Figure 4.2(b)

shows the instrumented target code by the statement-based strategy. The framework inserts a probe

p(1) before main task() at line 5 where 1 is a probe ID which is a unique number for each probe. Also,

– 13 –

the framework inserts probes into the body of main task() (i.e., inserting p(2), p(3), and p(4) at lines

10 to 12). Similarly, the framework inserts probes into the body of f() recursively (not shown in the

figure). Note that the framework does not insert a probe at lines 14-15 because ev1Hdl() is not called

from main task() or its sub-functions. Figure 4.2(c) shows the instrumented target code by the basic

block-based strategy. The framework inserts probes at only line 5 and line 10 because Figure 4.2(c)

has only two basic blocks beginning at line 5 and line 10, respectively. Figure 4.2(d) shows the shared

variable access based strategy. The framework inserts a probe at line 11 because f(y) reads a global

variable y which is shared by an event handler ev1Hdl() (line 15). In addition, the framework inserts a

probe at line 12 because f(*ptr) may dereference to a shared variable.

Two graduate students spent 2 months to develop the idea of the current systematic event generation

mechanism and implement the framework. The event generation framework is written in 1540 lines of

C++ code using Clang library [1].

4.2 Systematic Event Generation

The event generation framework systematically generates various sequences of event handler in-

vocations including various relative timing of event handler invocations with respect to the main loop

execution through concolic execution.

Figure 4.3 shows the pseudo code of probe ev1() that can invoke ev1Hdl() which is registered to

handle an event of the type ev1. ev1Loc at line 1 is a two dimensional symbolic array whose values decide

which probe will invoke ev1Hdl() at a specified main loop iteration. ev1Loc[NUM ITER EV1][MAX EV1 OCCUR]

at line 1 indicates that the instrumented target program will invoke ev1Hdl() at most MAX EV1 OCCUR

times at each iteration of the main loop for total NUM ITER EV1 iterations. ev1Loc[i] contains a sub-array

that has a list of the IDs of the probes each of which will invoke ev1Hdl() once at the i+ 1 th iteration

(i.e., ev1Loc[i][j] indicates an ID of a probe that will invoke ev1Hdl() at the i+ 1 th iteration). For

example, ev1Loc[1][0]=3, ev1Loc[1][1]=0, ev1Loc[1][2]=2 indicates that the ev1Hdl() will be in-

voked by the probes whose IDs are 3 and 2 at the second main loop iteration. Note that ev1Loc[1][1]

is ignored because 0 is not a valid probe ID (i.e., no probe has an ID 0). iter at line 2 indicates the

current iteration of the main loop (iter will be increased by one at the end of every main loop iteration).

Lines 4 to 7 declare each element of ev1Loc as a symbolic integer variable. We use CREST-BV [19] to

perform the dynamic symbolic execution, which is an instrumentation based dynamic symbolic execution

tool for C programs (faster than KLEE [19]) (CREST-BV is the extension of CREST [3] by supporting

bit-vector arithmetic).

Lines 9 to 18 explains probe ev1(). isInHdl at line 10 indicates if a current probe is being executed

by an event handler. A probe should not invoke an event handler if it is called by an event handler since

the oven software does not allow nested interrupt handlers (Section 3.3). 1 If isInHdl is false and the

current probe is the one to invoke ev1Hdl() (i.e., ev1Loc[iter][j] == probeId at line 13), isInHdl is

set as true and ev1Hdl() is invoked. After ev1Hdl() completes its task, the current element of ev1Loc

is marked as completed (line 16) and isInHdl is set back to false (line 17).

For example, a sequence of events [e@l1.e@l3]1[e@l5]2 can be generated by setting evLoc[0]={1,3,0}
and evLoc[1]={5,0,0} with the assumption that each main loop iteration generates maximum three

events. In this way, the framework can generate various execution scenarios by systematically invoking

1 A probe may be executed by an event handler because some functions may be called by both main loop and the event

handler.

– 14 –

01:int ev1Loc[NUM_ITER_EV1][MAX_EV1_OCCUR];

02:int iter=0;

03:

04:void init(){

05: for(i=0;i<MAX_ITER_EV1;i++)

06: for(j=0;j<MAX_EV1_OCCUR;j++)

07: sym_int(ev1Loc[i][j]);}

08:

09:void probe_ev1(int probeId){

10: static int isInHdl = FALSE;

11: if(!isInHdl){

12: for(j=0;j<MAX_EV1_OCCUR;j++){

13: if(ev1Loc[iter][j]==probeId){

14: isInHdl = TRUE;

15: ev1Hdl();

16: ev1Loc[iter][j]=COMPLETED;

17: isInHdl = FALSE;

18:} } } }

Figure 4.3: Pseudo code of a probe for the event type ev1

event handlers at every important execution points of the main loop.

Finally, the event generation framework performs the aforementioned task for every event type sepa-

rately at each inserted probe. For example, the LG oven has four different event types (Section 3.3)). ev1,

ev2, ev3, and ev4 and each probe inserted handles the above task for every event type (i.e., invoking

probe ev1(x), probe ev2(), probe ev3(), and probe ev4()). Thus, the framework can comprehen-

sively generate various sequences of invocations of event handlers including exceptional ones such as an

execution that contains multiple invocations of an event handler at the single code location of the main

loop (see Figure 6.3).

If the reactive software reads input values, additional symbolic variables should be declared to

generates input values. If the reactive software reads a variable in the main loop, one dimensional array

whose size is the number of maximum main loop iteration is required and each element of the array

should be declared as a symbolic variable. If the reactive software reads a variable in the event handler,

two dimensional array which has the same structure of ev1Loc is required to symbolically decide the

input value for each event handler invocation.

4.3 Record and Replay of the Generated Event Scenarios

To help developers debugging the errors, the framework can record and replay the generated event

scenarios. Figure 4.4 shows the pseudo code of function init() that record the event scenario and

function read() that reads the recorded event scenario for replay. init() of Figure 4.4 contains the

same code of init() in Figure 4.3 except init() of Figure 4.4 has a line that writes the contents of

ev1Loc into a file. After that, read() reads the values of the file or the standard input. If the behaviors

of the target program are deterministic, the behaviors of the program depends on only input values and

– 15 –

01:int ev1Loc[NUM_ITER_EV1][MAX_EV1_OCCUR];

02:

03:void init(){

04: FIlE* outputFile = fopen(FILE_NAME, "a");

05: for(i=0;i<MAX_ITER_EV1;i++) {

06: for(j=0;j<MAX_EV1_OCCUR;j++) {

07: sym_int(ev1Loc[i][j]);

08: fprintf(outputFile,"%d,",ev1Loc[i][j]);

09: } }

10: fclose(outputFile);

11:}

12

13:void read(){

14: for(i=0;i<MAX_ITER_EV1;i++) {

15: for(j=0;j<MAX_EV1_OCCUR;j++) {

16: scanf("%d,",&ev1Loc[i][j]);

17:} } }

Figure 4.4: Pseudo code of event scenario record and replay

the event scenario. Since the framework controls both input values and event scenarios, using the same

input values and event scenario (i.e., the same values of ev1Loc) always lead the same behavior.

– 16 –

Chapter 5. Testing the Oven Controller Software

with the Event Generation Framework

We first applied the framework to test units of the controller (Section 5.1) and then to test the entire

controller software (Section 5.2). Also, we applied noise-based random testing techniques for comparison

(Section 5.3).The experiments were performed on the machine with Intel I5 4.2 GHz and 16 Gigabyte

memory, which runs 64 bits Ubuntu 14.04 linux.

5.1 Unit-level Testing

We have applied the framework to the following three units:

• a circular queue (calling it CQ) to which the input event handler store input values and from which

the main loop loads input values (input buffer in Figure 3.2).

• a load module that enforces the voltage and the current to the heaters

• a model option unit that recognizes the oven hardware and enables/disables relevant oven features.

Table 5.1 shows the size (the number of files, LOC, the number of functions) of the each module that

we tested. We selected these three units to apply the event generation framework because the original

developer of the oven controller put high priority to test these three units due to the significance of these

three units for reliable oven products. In particular, the correctness of a circular queue (CQ) is very

crucial because the main loop computes and updates the state of the oven based on the data obtained

from CQ. In addition, CQ is a general unit which can be reused in other products of LGE. Thus, it

is important to detect bugs in CQ if any. We focus to describe how we applied the event generation

framework to test CQ in detail. 1

5.1.1 CQ Data Structure

CQ contains the following variables:

• qArray is an array that serves as a buffer for input values

• headIdx points to an element of qArray to pop up

• tailIdx points to an element of qArray to store a new input value

• queueFull indicates if the queue is full. If headIdx==tailIdx and queueFull is false, the queue

is empty. If headIdx==tailIdx and queueFull is true, the queue is full.

In addition, CQ uses dequeue() (see Figure 6.1) and enqueue() to add (store) and remove (pop

up) a new value to/from the queue.

1To secure the intellectual property rights of LGE, information on the units is not written in the dissertation except

CQ that uses a publicly available algorithm.

– 17 –

Table 5.1: Code metrics of units under test

Module name # of .c files # of .h files LOC # of functions

Circular queue 1 1 145 7

Load 3 3 765 33

Model option 1 1 69 6

5.1.2 Unit Testing Setup for CQ

Figure 5.1 explains how we setup the unit testing driver for CQ. test init() at line 3 initializes

the data structure of CQ symbolically as follows, to generate various execution scenarios:

• qArray: We set the size of qArray as three which is a minimal number to represent various situations

such as headIdx 6= tailIdx and qArray has a valid element which is pointed by neither of these

two variables (see Figure 6.3). In addition, qArray is initialized to have three concrete values 1, 2,

and 3.

• headIdx and tailIdx are declared as symbolic integer variables whose ranges are between zero

and two because the size of qArray is three.

• queueFull is declared as a symbolic Boolean variable such that if queueFull==true, headIdx must

be equal to tailIdx.

As a result, test init() represents all possible states of CQ whose size is three.

We specified line 7 of Figure 5.1 as the main loop body which removes a value from CQ. Also we

set up that the input event handler calls enqueue(v++) where v is initially 4 (at line 16). We tried to

setup symbolic environment minimal to represent various scenarios but still avoid unnecessarily large

symbolic search space that will increase the testing time. We configured the event generation framework

to generate executions that run the main loop three times and invoke the input event handler at most

twice per main loop iteration (i.e., NUM ITER EVKEY=3 and MAX EVKEY OCCUR=2).

As a test oracle, lines 11 and 12 check if the values read by dequeue()s are equal to the values

written by enqueue()s.

We used two search strategies for dynamic symbolic execution: DFS and random negation which

randomly selects a branch condition to negate. We tested the instrumented CQ for 30 minutes per search

strategy. For the random negation search strategy, we repeated the testing 30 times.

5.2 Integration Testing

We have applied the event generation framework to the integrated controller software after removing

the functions that have heavy hardware dependency such as a EEPROM module and a heater driver

module. Note that the event generation framework serves as a hardware emulator to invoke event handlers

for physical events so that we can test most part of the controller software without the real hardware.

The target controller software we tested contains 527 functions in 12,691 lines of C code which is around

80% of the all functions or 65% of the all lines of the controller software. The code of integration testing

contains 2,807 branches.

The target controller program has one main loop with the four event handlers (i.e., the key/door

event handler, the timed event handler, the LED event handler, and the cook command handler in

– 18 –

1:...

2:int main() {

3: test_init();

4: int qSize = getQSize();

5: for (i=0; i < qSize; i++) {

6: #pragma SEGF start

7: data=dequeue();

8: #pragma SEGF end

9: readData[count++] = *data; }

10:

11: for(i=0; i < count; i++)

12: assert(readData[i]==writtenData[i]);

13:}

14:void eventHandler() {

15: writtenData[wi++]=v;

16: enqueue(v++);

17:}

Figure 5.1: Unit testing driver for CQ

Figure 3.2). We built a symbolic environment to invoke the input event handlers with various key/door

events (e.g., enter, stop, function-L, door-open, etc) and timed events systematically. For the main

loop, we modified the main loop code to iterate twelve times (i.e., NUM ITER EV = 12). We configured

the event generation framework to invoke an event handler at most n times for each of the four event

types (i.e., a key/door event type, a timed event type, a LED event type, and a cook command event

type) per main loop iteration where n ∈ {2, 3, 4} (i.e., MAX EV OCCUR ∈ {2, 3, 4}).
We used two search strategies for concolic testing: DFS and random negation. We tested the

instrumented the controller software for 1 hour per search strategy. For the random negation search

strategy, we repeated the testing 30 times.

5.2.1 Test Oracles

For test oracles, the full state machine specification is utilized (see Figure 3.3 which is the abstract

version of the full state transition machine). In other words, assert() statements are inserted at the

statements that make state transitions to check if the relations of source states and the destination states

are consistent with the specification. (i.e., following the state machine specification).

Figure 5.2 shows the code of the test oracles. STATE is data structure containing curMode and

curView to represent a state. a performTransition() decides the next state (i.e., performTransition()

modifies currentState) based on the current state (currentState) and the input events (eventBuffer).

eventBufferSize indicates how many input events eventBuffer has. We inserted checkTransition()

after the transition is performed to check whether the performed transition is correct or not. The full

state machine specification is stored as a map from a source state and an event to destination states. The

getNextState() finds the next state from the map. For example, if the source state is (menu, default)

and the event is defrost, getNextState() returns (menu, clean-defrost).

– 19 –

01:STATE_MAP map;

02:STATE currentState, previousState;

02:

03:void main() {// the main loop thread

04: initStateMap();

05: ...

06: while(...) {

07 ...

08: performTransition(eventBuffer, eventBufferSize);

09: checkTransition(eventBuffer, eventBufferSize);

10: previousState = currentState;

11:} }

12:

12:void checkTransition(EVENT[] eventBuffer, int eventBufferSize) {

13: STATE intermediate = previousState;

14: for (int i = 0; i < eventBufferSize ; i++) {

15: intermediate = getNextState(map, intermediate, eventBuffer[i]);

16: }

17: assert(isSameState(currentState,intermediate) == TRUE);

18:} }

Figure 5.2: Test oracle for the integration testing

5.3 Noise Injection based Random Testing Technique

To demonstrate the effectiveness and the efficiency of the event generation framework through

comparison, we applied noise injection based random testing techniques to the target program. A noise

injection based random testing is a popular technique to test concurrent programs because it can detect

concurrency bugs without complex analysis of the target program [8,22].

Figure 5.3 shows the pseudo code of the noise injection based random testing framework. To

apply a noise injection based random testing, we create 2 threads; one thread runs the main loop and

the other thread repeatedly generates events. We used the Pthread signaling mechanism to mimic

event handling mechanism of a reactive software (i.e., generates signals to the main thread by invoking

pthread kill(main loop thread, SIGUSR<i>)). When the main thread receives an event (i.e., an

interrupt signal SIGUSR<i>), the main thread suspends its current execution and executes the registered

event handler (e.g., evHnd() at line 7).

To inject random timing noise, we insert timing delays to both the main loop thread and the event

generation thread to diversify event generation scenarios.

• Main loop thread:

As shown at line 4 and 5, we insert 200 microseconds delay at every statement in the main loop

and its callee functions recursively (in the similar way of the statement-based strategy to insert the

probes) so that an event generation thread can probabilistically raise multiple events during the

200 microseconds delay at each statement of the main loop. 2

2An event generation thread takes around 65 microseconds on average to execute usleep() and pthread kill() (lines

– 20 –

01:int main() {// the main loop thread

02: ...

03: while(...) {

04: delay(200); stmt1();

05: delay(200); stmt2();

06:} }

07:

08:void evHnd() { ... }

10:void *evGen(...){//the event generation thread

11: while(...) {

12: usleep(rand() % MAX_EVENT_GEN_SLEEP);

13: pthread_kill(main_loop_thread...);

14:} }

Figure 5.3: Noise injection based random testing

• Event generation thread:

We insert the following three maximum timing delays at each event generation: 500, 1000, and 1,500

microseconds (i.e., MAX EVENT GEN SLEEP at line 12 can be 500, 1000 or 1500). The average value

of rand()%MAX EVENT GEN SLEEP is MAX EVENT GEN SLEEP/2 because the distribution of rand() is

uniform.

We selected 500 microseconds as granularity of timing delays because the average value of rand()%500

is 250 which is similar to 200. So the timing delay of maximum 500 microseconds has a high probability

of generating an event at every statement and the timing delay of maximum 1000 microseconds has a

high probability of generating an event at every other statement. We used the current time-stamp as

random seed.

For the unit testing of CQ, we used the similar unit testing driver in Figure 5.1 except that CQ is

initialized randomly not symbolically. We tested CQ for 30 minutes and repeated the random testing 30

times.

For the integration testing, the random testing uses the similar integration testing driver used for

the event generation framework except that input events to generate are selected randomly. We tested

the controller software for 1 hour and repeated the random testing 30 times.

12-13 of Figure 5.3) because usleep(0) takes 60 microseconds on average due to system call overhead. Thus, the 200

microseconds delay can allow generating three events at each statement of the main loop.

– 21 –

Chapter 6. Testing Results on LG Electric Ovens

This section describes the results of applying the systematic event generation framework to the LG

electric oven. We spent a month to apply the framework to the controller.

6.1 Results of the Unit Testing

We detected the following two atomicity violation bugs in CQ (Section 5.1) by using the event

generation framework 1.

• an overwriting bug which causes the queue to overwrite the oldest value in the queue with a new

value and cause dequeue() (see Figure 6.1) to incorrectly return the new value instead of the oldest

value

• an inconsistency bug which causes the queue to lose all values in the queue because the queue

considers itself empty while it is not

Figure 6.1 describes a simplified dequeue() of the circular queue which has these two bugs.

Figure 6.2 illustrates the overwriting bug. Suppose that the size of the queue is 3 and the queue

contains three elements 1, 2, and 3 as specified in the testing setup of CQ (Section 5.1). After executing

line 4 of dequeue(), result points to the first element of qArray. After executing line 5 and line

6, headIdx points to the second element and queueFull becomes false, respectively. Suppose that

enqueue(4) is invoked between line 6 and line 8 (enqueue() can proceed only when queueFull is false).

Note that enqueue(4) overwrites the first element with 4 because tailIdx points to the first element

and queueFull is false. As a result, dequeue() will return 4 instead of the oldest value 1. A main cause

for the original developers to miss this bug is that they could not imagine or test an execution scenario

where the input event handler which calls enqueue() is invoked between line 6 and line 8 of dequeue()

when the queue is full.

Figure 6.3 illustrates the inconsistency bug. Suppose that the size of the queue is 3 and the queue

contains only two valid elements 1 and 2. After executing line 5 of dequeue(), headIdx points to the

second element. Suppose that enqueue(4) and enqueue(5) are executed by the event handler between

line 5 and line 6. Then, the third element and the first element have 4 and 5, respectively. After

executing line 6, although the queue contains 5, 2, and 4, the queue considers itself empty because

queueFull becomes false. We fixed these two bugs by modifying the circular queue algorithm and

related variables.

Note that it is more difficult to detect the inconsistency bug than the overwriting bug because the

bug triggering condition for the inconsistency bug (i.e., two consecutive invocation of the input event

handler between line 5 and line 6) is stronger than the condition for the overwriting bug (i.e., one

invocation of the input event handler between line 6 and line 8).

1 The overwriting bug and the inconsistency bug are multi-variable atomicity violation bugs [13] on headIdx/queueFull

and queueFull/*result, respectively. However, we decide to use a term ‘atomicity bug’ in this paper because field engineers

are more familiar with the term.

– 22 –

1:void* dequeue() {

2: void* result = NULL;

3: if (!isEmpty()) {

4: result = headIdx;

5: headIdx = getNextIdx(headIdx);

/* the inconsistency error can occur

if two enqueue()s occur here. */

6: queueFull = false;

/* the overwriting error can occur

if enqueue() occurs here. */

7: } else result = NULL;

8: return result; }

Figure 6.1: Buggy dequeue() of the circular queue CQ

Main loop execution

1:dequeue()

6:queueFull
=false;

enqueue(4)

event

8:return
result;

queueFull
==true 1 2 3

headIdx tailIdx

qArray
CQ status

queueFull
==false 1 2 3

headIdxtailIdx

qArray

queueFull
==true 4 2 3

qArray

result

result headIdxtailIdx

Figure 6.2: Error caused by the overwriting bug

Table 6.1 shows the testing results of the event generation framework and the random techniques.

The systematic event generation framework inserted 17, 11, and 12 probes in CQ by the statement-based,

basic block-based, and shared variable access-based strategies, respectively. For example, the statement-

based strategy detects the inconsistency bug in 15.30 seconds (after executing CQ 1128 times) with the

DFS search strategy (see the second column of the third row in the table). With the random search

strategy, the statement-based strategy detects the bug at every testing run (i.e., 30 minutes testing) of

the 30 testing runs; it detects the bug in 339.63 seconds on average after executing CQ 19418.60 times.

But the basic block-based strategy failed to detect the bug (indicated as ‘N/A’ in the table) because it

did not insert the probe between line 5 and line 6 of Figure 6.1 that are in the same basic block.

Compared to the event generation framework, the random testing technique completely failed to

detect the inconsistency bug with maximum 1,500 microseconds delay at event generation (see the third

row and the 12th column of the table). Although the random testing technique detected the bug with

maximum 500 and 1,000 microseconds delays, the probability to detect the bug is only 20% and 23%,

respectively (see the eighth and 10th columns of the third row of the table). Consequently, the average

time taken to detect the bug for these two delays is more than 100 (=1577.90/15.30) times longer than

– 23 –

Main loop execution

1:dequeue()

5:headIdx=
getNextIdx(…)

enqueue(4)
event

6:queueFull
=false

queueFull
==false 1 2 -

headIdx tailIdx

qArray
CQ status

queueFull
==false 1 2 -

tailIdxheadIdx

qArray

queueFull
==true 5 2 4

qArray

tailIdxheadIdx

enqueue(5)

queueFull
==false 5 2 4

qArray

tailIdxheadIdx

8:return
result;

event

Figure 6.3: Error caused by the inconsistency bug

Table 6.1: Time to detect the bugs in Circular Queue

Event generation framework Random testing

Statement Basic Block Shared Var. Acc. 0–500 µsec. 0–1000µsec. 0–1500 µsec.

DFS Random DFS Random DFS Random
Detect. Detect. Detect. Detect. Detect. Detect.

rate time rate time rate time

Overwriting 3.00 0.47
N/A N/A

0.07 0.33
1.00

0.01
1.00

0.01
1.00

0.01

bug (228) (35.13) (2) (25.70) (1.27) (1.97) (2.57)

Inconsistency 15.30 339.63
N/A N/A

40.37 320.67
0.20

1653.00
0.23

1577.90
0.00

1800.00

bug (1128) (19.41K) (2674) (19.41K) (0.33M) (0.31M) (0.36M)

the event generation framework.

This is because the bug triggering scenario for the inconsistency bug is a very exceptional one and

the probability for the random technique to synthesize this scenario is very low. Also random techniques

generates redundant execution scenarios repeatedly which wastes testing time. We say the two execution

scenarios are same if their initial CQ states and event scenarios (i.e., event timing) are same. The

percentages of redundant execution scenarios in maximum 500, 1,000, and 1,500 microseconds delay

are 21.6%, 26.5%, and 31.1%, respectively. In contrast, the event generation framework systematically

tries to analyze all execution scenarios with the DFS search strategy, which can certainly detect the

bug much faster than the random technique. For the overwriting bug which is easier to detect than the

inconsistency bug, random testing detected the bug faster than the event generation framework. Both

the event generation framework and the random testing techniques cover around 70% of the branches of

CQ.

6.2 Results of the Integration Testing

Through the integration testing, we observed more than 100 assert violations. For example, we found

that the controller made an illegal state transition from the state (menu,default) to (cooking,select-recipe),

which is an undefined state. In other words, the full state machine specification has no such state. Thus,

once the oven controller gets into the undefined state, the oven fails to react to any user input.

– 24 –

01:int curMode, curView;

02:int nextMode, nextView;

03:void main() {

04: while (1) {

05: curMode = nextMode;

06: curView = nextView;

07: int keyCnt = GetKeySize();

08: for (int i = 0; i<keyCnt; i++)

09: KeyHandler(GetKey());

10:} }

11:void KeyHandler(int keyId) {

12: switch (curMode) {

13: case MENU:

14: switch (curView) {

15: case DEFAULT:

16: switch (keyId) {

17: case DEFROST:

18: nextView=CLEAN_DEFROST;

19: break;

20: case AUTO_COOK:

21: nextMode=COOKING;

22: nextView=SIMPLE_COOK;

23: break;

24: ...

25:} } }

Figure 6.4: Buggy KeyHandler() code of the oven control software

This illegal transition was made by the two consecutive events auto-cook and defrost at the same

main loop iteration on (menu,default) state. In other words, the error occurs when a user presses

the auto-cook button then immediately turns the function dial counter-clockwise when the oven is in

the menu mode. This error does not occur if a user presses the auto-cook button and then turns the

function dial not immediately (e.g., with 0.5 second interval between the two actions). The original oven

developers confirmed this problem by replaying the erroneous scenario with the real oven device.

After analyzing the erroneous test executions, we found a bug at the function KeyHandler() which

makes multiple state transitions in one main loop iteration. Using KeyHandler(), the controller can

handle multiple events fast in one main loop iteration. But this makes the controller program complicated

and KeyHandler() does not operate correctly with unexpected event sequences.

Figure 6.4 shows the simplified main loop and KeyHandler(). The main loop of the oven software

handles multiple key inputs in a single main loop iteration to provide better responsiveness to users.

curMode and curView represent the current state (Section 3.3) and nextMode and nextView represent

the next state of the oven control software. nextMode and nextView are modified in KeyHandler()

and the next state becomes the current state after line 5 and line 6 are executed. After the current

state is changed, the main loop reads key data from the input event buffer and calls KeyHandler() for

– 25 –

Table 6.2: Time to detect the bug in the controller program and branch coverage

Techniques Detect. time # of exec. Branch coverage

STMT 195.10 3991.40 50.2%

n = 2 BB 172.63 3800.33 50.0%

SVA 113.63 2932.10 50.9%

Event STMT 208.60 2920.60 51.8%

generation n = 3 BB 249.43 3845.10 51.7%

framework SVA 150.47 2858.57 52.1%

STMT 280.03 3210.60 52.6%

n = 4 BB 249.63 3307.43 52.8%

SVA 197.93 2594.03 53.4%

Random
500 µsec. 22.63 1.77 55.4%

testing
1000 µsec. 23.63 1.97 54.9%

1500 µsec. 24.30 1.47 54.3%

each key input event. KeyHandler() has nested switch statements to perform actions depending on the

current state which is represented by curMode and curView, and a key input. When the current state is

(menu,default) and the input event buffer has a key input defrost, for example, line 18 of KeyHandler()

is executed and the next state is (menu,clean-defrost).

In the above erroneous execution, KeyHandler() updates the current state from (menu,default) to

(cooking,simple-cook) with auto-cook event first (see Figure 3.3) by executing line 20-23 of 6.4. Then,

with defrost event, KeyHandler() incorrectly updates the current state based on the previous state

(i.e., (menu,default)), not the recently updated state (i.e., (cooking,simple-cook) at line 18 of Figure 6.4.

Since some event such as defrost may update the current state partially (i.e., updating only curView,

not curMode), KeyHandler() updates curView to clean-defrost with defrost (as shown at the top of

Figure 3.3) because KeyHandler() think that the current state is still (menu,default). As a result,

KeyHandler() updates the current state as (cooking,clean-defrost) which is an undefined state.

A main cause for the original developers to miss this bug is that they could not imagine or test

an execution scenario where a user presses the auto-cook button and turns the function dial almost

same time (i.e., at the same main loop iteration). After fixing KeyHandler(), all assert violations were

removed.

Table 6.2 shows the testing results of the event generation framework and the random techniques

on the controller software. The systematic event generation framework inserted 5,009, 2,339, and 1,294

probes by the statement-based, basic block-based, and shared variable access-based strategies, respec-

tively. The event generation framework detected the illegal transition bug with the random search

strategy, but not with DFS at all. With the random search strategy, the shared variable access-based

strategy (SVA) with MAX EV OCCUR=2 detects the bug at every testing run (i.e., 1 hour testing) of the 30

testing runs. It detects the bug in 113.63 seconds after executing the controller software 2932.10 times

on average (see the second row of the table). Also, we can observe that SVA is faster than STMT and

BB to detect the bug for all n values. In addition, the bug detection time increases as MAX EV OCCUR

increases from 2 to 4 (i.e., from 113.63 seconds to 197.93 seconds) because larger MAX EV OCCUR makes

larger search space, which requires more time to detect the bug.

The event generation framework and the random testing covered 50-55% of the branches of the target

– 26 –

Table 6.3: The number of executed probes and length of path constraints in concolic testing

Techniques # of executed probes Path constraint length

STMT 19419.04 940.33

n = 2 BB 16129.21 1072.30

SVA 12786.93 1522.93

STMT 24875.50 1600.86

n = 3 BB 20937.96 1879.20

SVA 17326.37 2969.26

STMT 28211.48 2452.70

n = 4 BB 23919.24 2953.03

SVA 20127.40 4760.46

controller software. The random testing achieves higher branch coverage than event generation framework

because random testing calls event handler more frequently than the event generation framework. The

number of each event handler invocations is 943.8 per main loop iteration in average.

The random testing techniques detected the bug five times faster than the event generation frame-

work with the shared variable access-based strategy (SVA) with MAX EV OCCUR=2. For example, with the

maximum timing delay of 500 microseconds at the event generation thread, the random testing technique

detected the bug in 22.63 seconds after executing the program 1.77 times on average (see the fifth row

of the table). Note that the symbolic search space of this integration testing is large (i.e., by containing

more than 100 symbolic variables and each execution generates around 6,000 symbolic conditions to solve

on average due to the large number of the inserted probes). Therefore, the event generation framework

based on the concolic testing was slower than the random testing to detect the illegal state transition

bug in the control software.

Table 6.3 shows the number of executed probes per execution and length of symbolic path constraints

in average. The number of executed probes with SVA is lower than the number of executed probes with

the other strategies because SVA inserts fewer probes than the other strategies. We observed that

executed paths of SVA is longer than the other strategies because concolic testing with SVA negates

more input-related branches than the other strategies. Concolic testing with SVA have more probability

to negate input-related branches than the other strategies because the number of executed probes with

SVA is low.

Figure 6.5 shows branch coverage of STMT per n ∈ {2, 3, 4} where n is the maximum number of

events per the main loop iteration. The horizontal axis represents the execution time, and the vertical

axis represents branch coverage. At the beginning of the test, the branch coverage of small n is higher

than that of large n because the testing with small n quickly covers branches due to shorter execution

time. After certain point, however, the testing with large n achieves higher coverage than that of small n

because the testing with large n generates event scenarios that the testing with small n. This phenomenon

also appears in BB and SVA.

Figure 6.6 shows branch coverage per probe insertion strategy (STMT, BB, SVA) where n (the

maximum number of events per the main loop iteration) is 4. The graph shows that SVA is more

efficient than BB and STMT because the branch coverage of SVA is always higher than that of BB and

STMT. SVA also achieves higher branch coverage than BB and STMT when n = 2 and n = 3.

Figure 6.7 represents 2 venn diagrams to show the number of covered branch per each strategy

– 27 –

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

Br
an
ch
 c
ov
er
ag
e

Time (s)

		n	 	2
		n	 	3
		n	 	4

Figure 6.5: Branch coverage of STMT for each maximum number of events per the main loop iteration

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

Br
an
ch
 c
ov
er
ag
e

Time (s)

		STMT
		BB
		SVA

Figure 6.6: Branch coverage per probe insertion strategy when n = 4

and each n ∈ {2, 3, 4}. Figure 6.7(a) shows the number of covered branches per maximum number of

events per the main loop iteration. 88 branches are not covered when n = 2 but they are covered when

n = 4. Figure 6.7(b) shows the number of covered branches per probe insertion strategy. SVA covers 21

branches that STMT or BB cannot cover and missed 15 branches that STMT or BB covered. There is

– 28 –

n 2

n 3 n 4

2

3 39

2 0

1,427

49

STMT

BB SVA

0

5 21

10 12

1,489

4

(a) Covered branches of STMT
for each ∈ 2,3,4

(b) Covered branches for each probe
insertion strategy when 4

Figure 6.7: Venn diagram of the number of covered branches in integration testing

no branch that only STMT can cover.

– 29 –

Chapter 7. Lessons Learned

7.1 Effectiveness of the Event Generation Framework

Through the project, we confirmed that the event generation framework can detect critical corner-

case bugs effectively (Section 6). This is because the framework can generate various timing scenarios of

the event occurrences systematically based on concolic testing including exceptional ones which human

engineers cannot think (Section 4). Thus, by applying the framework, developers can effectively improve

the quality of industrial reactive software.

7.2 Systematic Testing vs. Random Testing

We have compared the event generation framework with the carefully designed random testing

techniques (Section 5.3). We observed that the systematic framework detected the corner-case bug

(i.e., the inconsistency bug) 100 times faster than the random testing on small unit (i.e., CQ) because

the probability for the random techniques to synthesize the corner-case execution scenarios is very low

due to the generation of the redundant test executions. However, we observed that the huge symbolic

search space is a bottleneck for the framework; the random testing techniques were 5 times faster than

the framework on the whole controller software whose testing generates huge symbolic search space

(Section 6.2).

Thus, it is beneficial to utilize various automated testing techniques together because they have

different characteristics. For example, a user can apply the event generation framework to unit testing

first but apply the carefully designed random techniques to system level testing first.

7.3 Industrial Adoption of the Advanced Testing Techniques

Through the discussion with the LGE field engineers, we could make the following observations for

the successful technology transfer.

7.3.1 High Demand of Corner-case Bug Detection for Home Appliance Do-

main

In general, home appliance developers are sensitive to corner-case bugs because home appliances

can make tragic physical accidents (e.g., an electric oven may explode). Also, the relatively long lifetime

of the home appliance products encourages developers to improve the quality of their products. Thus,

the original developers of the electric oven appreciated the bug reports and showed high interest to the

framework. As a result, LGE and KAIST plan to improve the event generation framework and apply

the framework to three more home appliance domains in 2015.

– 30 –

7.3.2 Necessity of Training Developers

Another reason for the smooth acceptance of the framework by the developers is that the developers

were already exposed to advanced software analysis techniques before the project began. For example,

one of the developers worked on model checking during his master study. Also, one KAIST author made

a series of the eight lectures on dynamic symbolic execution including detailed tool design of CREST to

LGE developers in 2012. Thus, the developers can estimate the benefit and the manual effort required

to apply the new technique to their products and feel more comfortable to adopt the technique.

7.4 Technical Challenges

Through the project, we identified the following technical challenge to improve the quality of target

software further.

7.4.1 Outdated Requirement Specification

We confirmed the importance of the requirement specification by utilizing the state machine specifi-

cation to detect the illegal state transition bug (Section 6.2). However, we had to revise the specification

with the help of the original developers since the original specification was outdated. It might be neces-

sary to develop a technique to generate static/dynamic invariant constraints and utilize the constraints

as test oracles since test oracle generation is important for testing but still largely dependent on human

engineers.

7.4.2 Micro-controller Specific Low-level Compilation

Most home appliance software are compiled using the micro-controller specific compilers, which

sometimes compile source code in a non-standard way due to the hardware characteristics. For example,

an original developer told us that, for hardware dependent variables, sometimes integer type casting does

not follow the standard C semantics. We could not find problems caused by such issues because we did

not test the hardware dependent functions in this project. We will try to analyze such low-level issues

in the next year project.

– 31 –

Chapter 8. Conclusion and Future Work

8.1 Summary

We reported our industrial experience to test a real-world reactive software with non-deterministic

events using the systematic event generation framework based on concolic testing technique. To en-

able systematic testing of various event handler execution scenarios, we have developed an automated

event generation framework that inserts probes in the main loop of the target reactive program and

selects probes that calls the event handlers using symbolic variables of concolic testing. We applied the

framework to a LG electric oven controller software and detected several critical errors in the controller

software, which had not been detected by the field engineers before. In addition, the comparison with

random testing technique shows that our framework is more effective to find corner-case bugs. This

project result was evaluated high by LGE and we plan to apply the framework to three more target

domain next year and extend the framework to resolve the technical issues found in the project.

8.2 Future Works

8.2.1 Improving Efficiency

We will apply static def-use analyses to reduce the number of inserted probes to improve efficiency

of the framework. We found that the number of inserted probes are important factor of efficiency

(Section 6.2. In our approach, shared variable access-based strategy inserts probes at every statement

that dereferences pointer because we assume that every pointer dereference accesses a shared variable.

Def-use analyses may reduce the number of probes if we do not insert probes at a statement that

dereferences a pointer of non-shared variables.

8.2.2 Improving Effectiveness

The implementation of the probe of our approach cannot distinguish multiple invocations of the

probe in the same main loop iteration and declaring additional symbolic variables to distinguish multiple

probe invocations generate more fine-grained event scenarios than the current approach. The first invo-

cation of the probe can call the event handlers but the next invocations of the same probe cannot call the

event handlers because the probe removes all elements with ID of the invoked probe from ev1Loc. We

will change the condition of calling the event handler so that the condition become true if the number of

previous invocations of the probe and the values of symbolic variables are same to distinguish multiple

invocations of the same probe.

– 32 –

References

[1] Clang: a C language family frontend for LLVM. http://clang.llvm.org.

[2] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King, A. Reynolds, and

C. Tinelli. Cvc4. In Proc. of Int. Conf. on Computer Aided Verification (CAV), 2011.

[3] J. Burnim. CREST - automatic test generation tool for C. http://code.google.com/p/crest/.

[4] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic generation of high-coverage

tests for complex systems programs. In Proc. of USENIX Conf. on Operating System Design and

Implementation (OSDI), 2008.

[5] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. EXE: Automatically generating

inputs of death. In ACM Conference on Computer and Communications Security (CCS), 2006.

[6] C. Cader, P. Godefroid, S. Khurshid, C. S. Pâsâreanu, K. Sen, N. Tillmann, and W. Visser. Symbolic

execution for software testing in practice - preliminary assessment. In Proc. of Int. Conf. on Software

Engineering (ICSE), 2011.

[7] S. Chandra, P. Godefroid, and C. Palm. Software model checking in practice: An industrial case

study. In Proc. of Int. Conf. on Software Engineering (ICSE), 2002.

[8] Orit Edelstein, Eitan Farchi, Yarden Nir, Gil Ratsaby, and Shmuel Ur. Multithreaded Java program

test generation. In ACM-ISCOPE Conference on Java Grande (JGI), 2001.

[9] C. Fidge and P. Cook. Model checking interrupt-dependent software. In Proc. of Asia-Pacific

Software Engineering Conference (APSEC), 2005.

[10] Vijay Ganesh and David L. Dill. A decision procedure for bit-vectors and arrays. In Proc. of Int.

Conf. on Computer Aided Verification (CAV), 2007.

[11] P. Godefroid. Verisoft: A tool for the automatic analysis of concurrent reactive software. In Proc.

of Int. Conf. on Computer Aided Verification (CAV), 1997.

[12] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random testing. In Proc. of

ACM SIGPLAN on Programming Language Design and Implementation (PLDI), 2005.

[13] C. Hammer, J. Dolby, M. Vaziri, and F. Tip. Dynamic detection of atomic-set serializability viola-

tions. In Proc. of Int. Conf. on Software Engineering (ICSE), 2008.

[14] M. Higashi, T. Yamamoto, and Y. Hayase. An effective method to control interrupt handler for

data race detection. In Proc. of Workshop on Automation of Software Test (AST), 2010.

[15] G. Holzmann. The Spin Model Checker. Wiley, New York, 2003.

[16] G. J. Holzmann and M. H. Smith. A practical method for verifying event-driven software. In Proc.

of Int. Conf. on Software Engineering (ICSE), 1999.

– 33 –

http://clang.llvm.org
http://code.google.com/p/crest/

[17] M. Kim, Y. Kim, and Y. Choi. Concolic testing of the multi-sector read operation for flash storage

platform software. Formal Aspects of Computing (FAC), 24(2), 2012.

[18] M. Kim, Y. Kim, and Y. Jang. Industrial application of concolic testing on embedded software:

Case studies. In Proc. of Int. Conf. on Software Testing, Verification and Validation (ICST), 2012.

[19] Y. Kim, M. Kim, Y. Kim, and Y. Jang. Industrial application of concolic testing approach: A case

study on libexif by using CREST-BV and KLEE. In Proc. of Int. Conf. on International Conference

on Software Engineering (ICSE) SEIP track, 2012.

[20] Y. Kim, Y. Kim, T. Kim, G. Lee, Y. Jang, and M. Kim. Automated unit testing of large industrial

embedded software using concolic testing. In Proc. of Int. Conf. on Automated Software Engineering

(ASE) experience track, 2013.

[21] J. Kotker, D. Sadigh, and S. A. Seshia. Timing analysis of interrupt-driven programs under context-

bounds. In Proc. of Int. Conf. on Formal Methods in Computer Aided Design (FMCAD), 2011.

[22] B. Křena, Z. Letko, T. Vojnar, and S. Ur. A platform for search-based testing of concurrent software.

In Proc. of the Workshop on Parallel and Distributed Systems: Testing, Analysis, and Debugging

(PADTAD), 2010.

[23] Y. Lei and E. Wong. A novel framework for non-deterministic testing of message-passing programs.

In Proc. of Int. Symposium on High-Assurance Systems Engineering (HASE), 2005.

[24] R. Majumdar and K. Sen. Hybrid concolic testing. In Proc. of Int. Conf. on Software Engineering

(ICSE), 2007.

[25] L. Moura and N. Bjorner. Z3: An efficient SMT solver. In Proc. of Int. Conf. on Tools and

Algorithms for the Construction and Analysis of Systems (TACAS), 2008.

[26] L. Pike. Model checking for the practical verificationist: a user’s perspective on SAL. In Proceedings

of the Automated Formal Methods Workshop (AFM), 2007.

[27] J. Regehr. Random testing of interrupt-driven software. In Proc. of ACM Int. Conf. on Embedded

Software (EMSOFT), 2005.

[28] K. Sen. Concolic testing. In Proc. of Int. Conf. on Automated Software Engineering (ASE), 2007.

[29] K. Sen and G. Agha. CUTE and jCUTE : Concolic unit testing and explicit path model-checking

tools. In Proc. of Int. Conf. on Computer Aided Verification (CAV), 2006.

[30] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine for C. In Proc. of European

Software Engineering Conference/Foundations of Software Engineering (ESEC/FSE), 2005.

[31] S. D. Stoller. Testing concurrent java programs using randomized scheduling. Electronic Notes in

Theoretical Computer Science (ENTCS), 70(4):142–157, 2002.

[32] T. Yu, W. Srisa-an, M. B. Cohen, and G. Rothermel. Simlatte: A framework to support testing

for worst-case interrupt latencies in embedded software. In Proc. of Int. Conf. on Software Testing,

Verification and Validation (ICST), 2014.

– 34 –

Summary

Automated Testing of Reactive Software with Non-deterministic
Events: A Case Study on LG Electric Oven

일상 생활 속에서 사용하는 자주 사용하는 전자레인지, 냉장고와 같은 가전제품에는 하드웨어를 제어

하는 반응형 소프트웨어가 포함되어 있다. 반응형 소프트웨어는 이벤트 핸들러를 실행하여 사용자 입력과

이벤트를받고,입력받는이벤트에따라서내부상태를변경한후에,결과를출력하는것을반복한다. 이러한

반응형 소프트웨어에서는 이벤트의 발생이 비결정적(non-deterministic)이며, 이벤트 핸들러와 메인 루프의

실행 순서가 경쟁 상태이기 때문에 개발자가 의도하지 않은 이벤트 발생 순서에 의해서 오류가 발생할 수

있다. 따라서반응형소프트웨어를효과적으로테스팅하기위해서는사용자입력값에따라서소프트웨어가

올바르게 동작하는 가를 확인하는 것뿐만이 아니라, 다양한 이벤트 발생 순서와 발생 시점에 따라서 소프트

웨어가 올바르게 동작하는 가를 확인해야 한다. 즉, 반응형 소프트웨어를 테스트할 때, 메인 루프의 실행을

기준으로 한 상대적인 이벤트 발생 시점과 이벤트의 순서를 제어하여 소프트웨어의 다양한 행동을 관찰하는

것이 중요하다.

본 논문은 산업체에서 개발하는 반응형 소프트웨어를 테스트하기 위해서 concolic 테스팅 기법을 기반

으로한 이벤트 생성 프레임워크를 소개하고, 실제 반응형 소프트웨어에 적용한 사례연구를 설명한다. 이

프레임워크는 실행 이벤트의 발생 순서와 시간을 체계적으로 생성하기 위해서 반응형 소프트웨어의 소스

코드를 수정하고, 수정된 코드에 대해서 concolic 테스팅을 수행한다. 코드 수정 단계에서는 심볼릭 변수를

추가하고, 대상 프로그램의 특정 실행 시점에 이벤트를 발생시킬지를 심볼릭 변수로 결정한다. 이후 수정된

코드로 concolic테스팅을수행하면, concolic테스팅은심볼릭변수를체계적으로변경하면서다양한이벤트

발생 시점과 순서를 생성한다.

이벤트 생성 프레임워크를 LG전자의 전기 오븐에 적용하여 단위 테스트와 통합 테스트를 수행한 결과,

오븐 제어 소프트웨어 내의 버그를 찾아내었다. 단위 테스트에서는 오븐 제어 소프트웨어의 3개의 모듈에

프레임워크를 적용하였고, 2개의 동시성 버그를 찾아내었다. 통합 테스트에서는 오븐이 비정상적인 상태로

전환되어 사용자의 입력이 무시되는 버그를 찾아내었다. 그리고 프레임워크가 얼마나 효과적이고 효율적인

가를 실험적으로 보이기 위해서 랜덤 테스팅 기법과 비교하였으며, 프레임워크가 렌덤 테스팅보다 발견하기

어려운 버그를 더 효과적이고 효율적으로 찾는다는 것을 실험적으로 보였다.

– 35 –

감 사 의 글

2년간의 석사 과정 동안, 제가 이 논문을 완성하는데 도움을 주신 모든 분들께 이 지면을 빌어 감사의

말씀을 전하고자 합니다. 먼저 어려운 때가 있을 때마다 격려 해준 아버지, 어미니, 동생에게 감사 드립니

다. 바쁘다는 핑계로 제가 자주 전화 드리지 못하였지만, 부모님께서는 저에게 자주 전화를 해주셨고, 제가

어려울 때 격려 해주신 것이 큰 힘이 되었습니다.

두 번째로 저에게 가르침을 주신 김문주 교수님께 진심으로 감사 드립니다. 2년간의 석사과정 기간

동안 흔들리는 저를 바로잡아 주시고, 올바른 길로 인도해 주신 덕분에 연구와 소프트웨어 자동화 테스팅에

대해서 잘 배울 수 있었습니다. 그리고 제가 연구하는 동안 작은 결점 하나 놓치지 않도록 도와주시고,

저의 부족한 부분을 채워 주신 덕분에 ICSE에 제출할 수준의 논문을 쓸 수 있었습니다. 또한 동시성이라는

어려운 분야를 이해하는데 도움을 주시고, 논문을 쓰는 과정에서 함께 고민해주신 홍신 박사과정과 concolic

테스팅에 대해서 저에게 아낌없는 조언을 해주신 김윤호 박사과정에게 감사 드립니다. 그리고 사례 연구를

진행하는 동안 많은 도움을 주신 LG전자의 조준희 주임님, 이동주 주임님, 장훈 주임님께 감사 드립니다.

세 번째로 석사 과정을 먼저 졸업하시면서 저에게 다양한 길을 알려주신 김영주, 안재민, 문석현 졸

업생께 감사 드립니다. 저의 석사 과정 동안에 조언해 주신 것과 더불어서, 함께 있으면서 연구를 어떻게

하는가에 대해서 배울 수 있었습니다. 그리고 글을 짜임세 있게 쓰는데 도움을 주셨던 문영주 박사님께도

감사 드립니다. 또한 연구실에서 함께 생활한 연광흠 석사과정과 연구실 후배인 곽태훈, 김태진 학생에게

감사 합니다.

마지막으로 2년 동안 함께 있어준 친구, 동아리 선후배, 경기북고등학교 동창에게 감사 드립니다.

KAIST에서 생활하는 동안에 다양한 분야에 대해서 보고 들으면서 시야를 넓히는데 도움이 되었습니다.

그리고 공부와 연구를 위한 훌륭한 환경을 제공해 주신 KAIST 전산학과의 여러분께 감사 드립니다.

여러분께서 도와주신 만큼, 이 논문이 다른 사람에게 큰 도움이 되었으면 합니다.

– 36 –

이 력 서

이 름 : 박 용 배

생 년 월 일 : 1989년 4월 3일

출 생 지 : 경기도 부천시

본 적 지 : 경기도 수원시 장안구 조원동 한일타운 105동 406호

주 소 : 경기도 수원시 장안구 조원동 한일타운 105동 406호

E-mail 주 소 : yongbae2@gmail.com

학 력

2005. 3. – 2007. 2. 경기북과학고등학교 (2년 수료)

2007. 3. – 2013. 2. 한국과학기술원 전산학과 (B.S.)

2013. 3. – 2015. 2. 한국과학기술원 전산학과 (M.S.)

경 력

2009. 6. – 2009. 8. LG전자 서초CTO 인턴십 (DTV 원격 제어 시스템)

2013. 3. – 2013. 6. CS204 Discrete Math 조교

2013. 9. – 2013. 12. CS453 Automated Software Testing 조교

학 회 활 동

1. Y. Park, Y. Kim and M. Kim, A Comparative Study of Static Analysis Tools:A Case Study on

libexif by Using Coverity and Sparrow, Proceedings of the 39th KIISE Fall Conference, vol. 39, no.

2, pp. 55-57, 2012 (Best paper presentation award).

2. Y. Park, Y. kim, J. Cho and M. Kim,심볼릭 라이브러리를 이용한 효과적인 Concolic 테스팅, Korea

Conference on Software Engineering (KCSE), 2014, (Best paper award).

3. S. Hong, Y. Park, and M. Kim, Detecting Concurrency Errors in Client-side JavaScript Web Ap-

plications, IEEE International Conference on Software Testing, Verification and Validation (ICST),

2014 (Acceptance rate: 28%).

– 37 –

연 구 업 적

1. Y. Kim, Y. Park, and M. Kim, A Comparative Study of Static Analysis Tools through a Case Study,

Journal of KIISE: Computing Practices and Letters, Vol 19, Num 8, Aug 2013.

2. Y. Park, S. Hong and M. Kim, Performance Bug Detection in Web Applications through Cross-

browser Profiling, Journal of KIISE: Computing Practices and Letters, Vol. 19, Num. 11, Nov. 2013

(Undergraduate award).

수 상 실 적

1. WAVE: Testing Framework to Detect Concurrency Bugss in Dynamic Web Application, Qualcomm

Innovation Award 2013, 2013

2. 조합적동시성커버리지를이용한효과적인동시성프로그램테스트생성, Best paper award at KIISE’s

33rd student research paper competition (graduate student track), 2014

– 38 –

