
Analysis on Unit-level Concolic

Testing for Real-world C Programs

Zidong Yang

School of Computing – KAIST

Advisor: Prof. Moonzoo Kim

December 15th 2021

1

Background

Concolic Unit Testing

• Automatically generating test cases to cover all execution paths of target function.

// Symbolic input: a, b, c

void f(int a, int b, int c) {

if (a == 1)

if (b == 2)

if (c == a + b)

Error();

}

• Concolic unit testing will generate 4 test cases

for the function f

• First TC: (0,0,0)

• SPF (symbolic path formula): a!=1

• Next SPF: !(a!=1)

• Next TC: (1,0,0)

• SPF: a==1 && b!=2

• Next SPF: a==1 && !(b!=2)

• Next TC: (1,2,0)

• SPF: a==1 && b==2 && c!=a+b

• Next SPF: a==1 && b==2 && c==a+b

• Next TC: (1,2,3)

• All the paths are covered
(1,2,0)

(0,0,0)

(1,0,0)

(1,2,3)

a!=1

b!=2

a==1

c!=a+b
c==a+b

b==2

2

Related Work

• The following table lists the unit-level test case generation techniques.

3

Tool

Test Case

Generation Approach Driver? Stub?

Support

Local Static

Variable Comb. SS

Random

Value Gen

If 1st TC

Crash

Support

Func Pointer

Stub for

File-

handling

Func

Utilize

different

testing

engine

CUTE Concolic Testing ✔ ❌ ❌ ❌ ❌ ❌ ❌ ❌

UC-KLEE Symbolic Execution ✔ ❌ ❌ ✔ ❌ ❌ ❌ ❌

CONBOL Concolic Testing ✔ ✔ ❌ ❌ ❌ ❌ ✔ ❌

CONBRIO Concolic Testing ✔ ✔ ❌ ❌ ❌ ❌ ✔ ❌

MAESTRO

Concolic Testing ,

Fuzzing ✔ ✔ ✔ ✔ ❌ ✔ ❌ ✔

CR2imp Concolic Testing ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Motivation

• In principle, concolic unit testing can achieve 100% branch coverage.

• The experimental results (branch coverage) on real-world subjects are not

as good as expected.

– The following table shows the branch coverage achieved by concolic unit

testing.

Subject # Branch Branch Coverage

flex2.4.3 2,021 22.6%

grep2.0 3,416 22.7%

The detailed experimental settings and

results will be shown later.

• Concolic unit testing may have some limitations that prevent it from

achieving high branch coverage.

– To discover these limitations, we need to analyze the not-covered branches of

the real-world subjects.
4

Thesis Statement

Concolic testing can be improved to achieve high branch

coverage by addressing its limitations identified through

systematic coverage analysis on real-world subjects.

Systematic coverage analysis:

1. Obtain the coverage achieved by concolic testing.

2. For each target real-world subject, find all the not-covered branches.

3. Analyze each not-covered branch to discover the limitations

of concolic unit testing.

• This dissertation performs coverage analysis on the result of CROWN2.0 ver 2020, a popular

commercial concolic unit testing tool.

5

Contributions

• I highlight 13 common problems of CROWN2.0 ver 2020 by extensively analyzing
324 groups of not-covered branches on 6 different widely-used target subjects.

• flex, grep, gzip, sed, libquantum, and sjeng

• I propose and implement 6 ideas that address 8/13 common problems
• My solutions improved branch coverage of CROWN 2.0 ver 2020 by up to 188% on a target

subject (i.e., sed) and by 77% on average on the 6 subjects.

• I provide a detailed report to explain the reasons of 324 not-covered branch
groups.

• The detailed report can contribute to the concolic testing research.

6

CROWN2.0:

Commercial Concolic Unit Testing Tool (1/2)

• CR2 (CROWN2.0) automatically generates driver/stubs for the unit testing of a target function.

• The driver symbolically sets all global variables and parameters of the target function.

Type Description Code Example

Primitive set a corresponding symbolic value int a;
SYM_int(a);

Array set all elements of the array int a[3];
for(int i=0; i<3; i++) {SYM_int(a[i]);}

Pointer allocate an array with n symbolic pointee elements and

make the pointer point to the array (n is decided by users)

int *a;
a = malloc(n* sizeof(int));
for(int i=0; i<n; i++) {SYM_int(a[i]);}

Structure set symbolic for each field of the structure struct _st{int e1,char *e2} a;
SYM_int(a.e1);
a.e2 = malloc(n* sizeof(char));
for(int i=0; i<n; i++) {SYM_char(a.e2[i]);}

• CR2 replaces the external function (i.e., the function defined in other C file) with stub function.

• Example is provided in the next page.

7

CROWN2.0:

Commercial Concolic Unit Testing Tool (2/2)

• CR2 replaces the external functions invoked by the target function with stubs.

1. extern int h();
2. int a[10];
3. int f(char * b){
4. return h()+ a[0] + b[0];
5. }

1. void f_driver(){
2. for(int i=0; i<10; i++){
3. SYM_int(a[i]);
4. }
5. char * b = malloc(n*sizeof(char));
6. for(int i=0; i<n; i++){
7. SYM_char(b[i]);
8. }
9. f(b);
10.}

target.c

1. int h(){
2. int h_ret;
3. SYM_int(h_ret);
4. return h_ret;
5. }

Driver

Stub

Replace external function

with stub function that returns

a symbolic variable.

Each element of the

array is symbolic.

Pointer points to an array

that has <n> symbolic

elements.

1. int h(){…}
2. …

other_file.c

8

Target Subjects

• This part introduces the experimental settings and experimental results of the

baseline CR2 (version 2020).

• The coverage analysis is based on the baseline results.

• This paper targets six subjects (four from SIR and two from SPEC2006).

• Four SIR subjects are frequently used by Linux users.

• I choose two SPEC2006 subjects to avoid making the analysis results

overfitted to one benchmark.

Benchmark Subject Loc # Branch # Function

SIR

flex2.4.3 11,864 2,021 144

grep 2.0 10,930 3,416 119

gzip1.0.7 6,358 1,446 80

sed1.17 8,060 2,395 63

SPEC2006
libquantum0.2.4 5,059 724 111

sjeng11.2 18,057 6,364 164
9

Experimental Setup

Baseline Technique (CR2 ver 2020)

• The experimental settings of baseline CR2 are as follows.

• Array size: 3

• The # elements of an allocated array that a pointer points to.

• Strategy: dfs (depth-first-search)

• The search heuristic of concolic testing (e.g., dfs, rev-dfs, random)

• Timeout1: 60s

• The maximum execution time of a test case.

• Timeout2: 300s

• The test case generation time for each function.

• Target Subjects: Six subjects

• 4 from SIR benchmark and 2 from SPEC2006 benchmark.

• Machine: Ubuntu 18.04 with AMD 8-core Ryzen 7 3800 XT (3.9GHz) and 16 GB RAM

10

Baseline Results

• The following table shows the branch coverage achieved by the baseline technique

(i.e., CR2 ver 2020)

Benchmark Subject Loc

Branch

Function

Branch

Coverage

Function

that Reach

Timeout2

Avg TCgen

Time (s) for

Each Func

SIR

flex2.4.3 11,864 2,021 144 22.6% 20 15.3

grep 2.0 10,930 3,416 119 22.7% 9 27.3

gzip1.0.7 6,358 1,446 80 41.4% 9 52.7

sed1.17 8,060 2,395 63 17.7% 1 15.8

SPEC2006
libquantum0.2.4 5,059 724 111 41.6% 5 5.5

sjeng11.2 18,057 6,364 164 27.9% 20 26.7

Avg: 28.9%

The branch coverage achieved by baseline
CR2 on average for 6 subjects is poor 11

Analysis

on Baseline Results

• To discover the limitations that make CR2 only achieve 28.9% branch coverage on average, I

performed an analysis for each subject.

Snapshot of coverage report

Line #

Covered

branches Not-covered

branch

Download

Coverage Report

.

Check the not-covered branches

and discover the reasons

STEP 01 STEP 02 STEP 03

Check

Coverage Report

Download the coverage

report of each target subject

Summarize

Limitations

Summarize and list

all the limitations

12

Limitations

Overview

• After analyzing the not-covered

branches of six subjects, 13

limitations of CR2 are discovered.

• The table on the right shows the

information of each limitation.

Abbreviation Description

FTCC First TC crashes

NSEF No support for external C library functions (except for C file handling functions)

NSFF No support for external file-handling functions

NSFP No support for function pointers

NSGP No support for global void pointer

NSLS No support for local static variable

NSSF No support for symbolic file

NSSP No support for symbolic pointers

RT1 Timeout1 is reached

TIWC Target program’s Illegal write to the structure of CROWN

UB Existence of unreachable branches in unit-testing

USV Uncovered branch caused by the unrealistic symbolic input values

WDFS Weakness of dfs

13

• CR2 cannot set local static variables as symbolic, and the unit driver calls the target function

only once.

• This feature may produce some not-covered branches.

Limitations

NSLS: No support for Local Static Variables

1. void f1(){
2. static int var = 0;
3. if(var == 1){
4. ... // not-covered branches
5. }else{
6. ... // f1 is not called
7. }
8. var += 1;
9. }

f1_driver(){
...
f1();

}

nsls.c

The driver code calls f1 once.

The local static variable var is initialized with 0

CR2 cannot cover line 4 because the value of var is 0

The value of var is updated, so the 2nd

execution of f2 can cover line 4.

14

Solution: Execute f1 twice

Report Example

NSLS: No support for Local Static Variables

Subject: Sed

15

2295. static void
2296. init_syntax_once()
2297. {

...
2299. static int done = 0;
2300.
2301. if(done)
2302. return; // not-covered

... // done is not altered
2317. done = 1;
2318. }

File Name: sed.c
Function Name: init_syntax_once
Reason: NSLS

Line No: 2302

Description:
1. Line 2299: done is a local static variable, and it is assigned with 0

2. Line 2301: the “then” branch cannot be reached as the value of

done is 0

3. Line 2317: done is set to 1, which means the second execution of

the target function (i.e., init_syntax_once) can cover line 2302

• CR2 executes the target function only once for each TC, so

line 2302 cannot be covered.

Source code of function init_syntax_once

Limitations

WDFS: Weakness of Dfs

1. long f2(int a){
2. long b = 0;
3. if(a < 0){
4. ... // not-covered branches
5. }
6. for(int i=0; i<a; i++){
7. b += i;
8. }
9. return b;
10. }

wdfs.c

The symbolic variable a is assigned

with 0 for the first test case

The first TC will not cover line 4

because the value of a is 0

In the “for” loop, each non-negative value of

a produces a unique execution path (i.e., a TC).

…
a=231-1

a=1

a=0

execution paths of f2

execution paths of

line 4

a=2

• Path explosion problem happens because the dfs strategy has
to generate 𝟐𝟑𝟏 test cases before covering line 4.

• Test case generation timeout is reached.

execution paths of

lines 6-8

16

Solution: use rev-dfs

17

Report Example

WDFS: Weakness of DFS

38. int board[144]; // symbolic array
…
448. bool nk_attacked(int square, int color){

...
453. static const int bishop_o[4] = {11,-11,13,-13};

...
460. if (color&1){

... // not-covered
498. }
499.
500.
501. else{

...
508. if(basq=bpawn && ...) return true;
509. // a_sq = 0, ndir = 11 initially
510. while(basq != frame){
511. if(basq == bbishop || basq == bqueen) {...}
512. if(basq != npiece) {...}
513. a_sq += ndir;
514. basq = board[a_sq]; // board[0,11,22,…,143]
515. }
516. }

...
542. }

File Name: attacks.c
Function Name: nk_attacked
Reason: WDFS

Line No: 461-498

Description:
1. Line 460: color is a symbolic integer, and it is assigned with 0, the

“else” branch is explored first.

2. Lines 503-515 have huge possible execution paths (i.e., at least

2<𝐿508> ∗ 2<𝐿510> ∗ 4<𝐿511> ∗ 2<𝐿512>
13 unique paths)

3. Dfs strategy has to explore all the paths mentioned above before

exploring lines 461-498. Timeout2 will be reached.

Source code of function nk_attacked

Subject: Sjeng

Solutions

Overview

• I provide 6 ideas to overcome the limitations mentioned previously.

Implement combined strategy

Target: WDFS
01 02

0403

05 06

Execute target function multiple times

Target: NSLS

Static analysis for function pointers

Target: NSFP

Random values for symbolic inputs

Target: FTCC

Stub for all file-handling functions

Target: NSFF

Utilize other concolic testing tool

Targets: NSEF, NSSP, USV

18

• This approach allows the users to decide the number of calls (M) to the target function.

19

Solutions

NSLS => Execute Target Function Multiple Times

1. void f1(){
2. static int var = 0;
3. if(var == 1){
4. ... // not-covered branches
5. }else{
6. ... // f1 is not called
7. }
8. var += 1;
9. }

1. f1_driver(){
2. ...
3. for(int i = 0; i < M; i++){
4. f1();
5. }
6. }

nsls.c driver.c

Line 4 can be covered if

M is greater than 2

Covered

Solutions

WDFS => Implement Combined Strategy

• The combined strategy is to overcome the limitation of dfs strategy.

• It integrates four search strategies (i.e., dfs, rev-dfs, cfg, random) of CROWN

and works as follows.

The users give the test case generation timeout 𝑇

Generate test case using dfs strategy in 𝑇/4

If dfs strategy finishes in 𝑇/4, we assume CROWN has explored

all the paths of the target function, and stop the TC generation

process.

Otherwise, we assume dfs stuck in the complex statements

(e.g., loop statement).

We run the remaining 3 search strategies in order, each strategy

uses 𝑇/4Accumulate all the test cases generated by the combined

strategy.

20

Evaluation

Experimental Results

• I developed CR2imp to intergrade the six ideas mentioned above.

• The experimental settings of CR2imp are identical to the ones of baseline CR2.

21

CR2imp improved the branch coverage relatively by

77% on average for six subjects.

Benchmark Subject Loc

Branch

Function

Branch

Coverage

(CR2)

Avg TCgen

Time (s) for

Each Func

(CR2)

Branch

Coverage

(CR2imp)

Avg TCgen

Time (s) for

Each Func

(CR2imp)

#

Crash

TCs

SIR

flex2.4.3 11,864 2,021 144 22.6% 15.3 53.2% 122.7 4,341

grep 2.0 10,930 3,416 119 22.7% 27.3 52.7% 56.7 9,172

gzip1.0.7 6,358 1,446 80 41.4% 52.7 50.1% 98.9 10,359

sed1.17 8,060 2,395 63 17.7% 15.8 51.1% 54.9 10,315

SPEC2006
libquantum0.2.4 5,059 724 111 41.6% 5.5 50.4% 9.8 3,392

sjeng11.2 18,057 6,364 164 27.9% 26.7 50.1% 93.7 19,477

CR2imp reports more than 40k crash TCs.

Avg: 28.9% 23.9 51.3% 72.8

Crash Deduplication

• CR2imp reports more than 40k crashes.

• Manually analyzing all the crashes is impractical and time-consuming.

• Many crashes may have the same execution path (i.e., they are duplicate crashes).

• I developed a crash deduplication approach, which compares the first K stack frames of the

crashes to remove the duplicate crashes.

• Crash deduplication results are shown in the following table.

22

Target Subject # Crash TC # Unique Crash TC

(K=3)

Unique Crash TC

(K=5)

flex2.4.3 4,341 123 124

grep 2.0 9,172 241 248

gzip1.0.7 10,359 56 56

sed1.17 10,315 166 167

libquantum0.2.4 3,392 289 289

sjeng11.2 19,477 581 579

I analyzed these

crashes to find the root

cause of them.

Crash Analysis

23

• After analyzing the 595 crashes, three causes of false alarms are identified.

• USIV. Unrealistic Symbolic Input Value

• USVI. Unrealistic Symbolic Variable Initialization

• ICIO. Invalid Comparison Caused by Integer Overflow

Crash Analysis

USIV: Unrealistic Symbolic Input Values

24
Source code of function copy (grep)Driver code of function copy (grep)

2. CR2 assigns src->nelem

with 19 to cover line 7539

3. Crash happens because dst->elems[i]

only has 3 (<<19) elements

1. src and dst are used

as the parameter of copy

• The following is a false alarm example, which is caused by USIV, of subject grep.

Conclusion

25

• Discovered 13 limitations of CR2 through systematic coverage

analysis on six subjects.

• Proposed six ideas to address the discovered limitations

• Developed CR2imp that integrates the six ideas and improved the

branch coverage relatively by 77% on average

Future Work

26

• More analysis on the detected crashes.

• Performing experiment on more subjects.

• Integrating other testing tools (e.g., AFL).

• Obtaining seed TC from system level TC to guide concolic testing

Q&A

T H A N K Y O U F O R W A T C H I N G

27

Crash Analysis

USVI: Unrealistic Symbolic Variable Initialization

28

• The driver code will ignore some useful statements in the target source code.

• For example, a global pointer variable b is initialized with an array a which has 100 elements (L2),

but the driver code just ignores this important information and make b point to a new array which

has 3 elements only (L6).

1. int a[100];
2. int *b = a;
3. void target(){…}

5. void target(){
6. b = malloc(3*sizeof(int));
7. ...
8. }

Source code
Driver code

Crash Analysis

ICIO: Invalid Comparison Caused by Integer Overflow

29

• Integer overflow may cause some unexpected branches to be covered

under error conditions, causing some crashes when executing that branch.

slide+0(w) slide+9136(d) slide+9136(d)+23632(e)

memcpy(L1520)

Overlap CRASH

0 9136 23632

• L1518: both w, d and e are unsigned variable, so

(unsigned)(0-9136) =4294958160 > 23632 and the “then” branch is

executed.

• L1520: memory overlap crash happens when executing memcpy.

memcpy(des, src, n)
Functionality: Copy n bytes from src to des.
Crash: if des+n>src, memory overlap crash will happen

