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초 록

유닛 레벨 Concolic 테스팅은 짧은 시간 안에 각 함수의 다양한 실행을 하면서 높은 분기 커버리지를

보이는테스트를생성할수있는기술이다. 하지만,현재의 Concolic테스팅기법은여러문제점을가지고있

는데, 예를 들어 유닛 레벨 Concolic 테스팅 기법으로는 void 타입의 포인터가 어떤 타입으로 변환 (casting)

되어 사용되는지 알 수 없으며, 외부 라이브러리 함수도 제대로 다룰 수가 없다. 따라서, 실제 프로그램에

유닛 레벨 Concolic 테스팅 기법을 적용하였을 때 충분한 분기 커버리지를 달성하지 못하게 된다.

본 논문에서는 상용 유닛 레벨 Concolic 테스팅 도구인 CROWN2.0 ver 2020을 6개의 실제 프로그램에

적용한 실험을 구성하였다. 해당 실험에서 324개 그룹의 달성하지 못한 분기를 모두 분석하여, 현재 도구가

가지고 있는 13개의 제한점으로 정리하였다. 각 제한점에 대해 왜 해당 분기가 달성되지 못하였는지, 코드

예시를 포함한 설명을 추가하여 차후 Concolic 유닛 테스팅 도구 개발자가 각 제한점을 이해하고, 개선할 수

있도록 하였다. 또한, 각 제한점에 적용할 수 있는 해결법을 제시하고 구현하여, 종합적으로 6개의 테스트

대상 프로그램에서 77%의 분기 커버리지 향상을 보였다.

핵 심 낱 말 소프트웨어 테스팅, 자동화 테스트 케이스 생성, Concolic 테스팅, 단위 테스팅

Abstract

Unit-level concolic testing has become popular as it explores every execution path of each function

in a short time with high branch coverage. However, the current concolic unit testing tool suffers a set of

limitations. For example, the unit-testing tool cannot determine the actual type of what a void pointer is

cast to, and external library functions are not fully supported. Therefore, the branch coverage obtained

on real-world programs is not satisfying.

This dissertation conducts comprehensive experiments on six real-world subjects using CROWN2.0

ver 2020, a popular commercial unit-level concolic testing tool. In the experiments, all the 324 groups

of unexplored branches of the target subjects are thoroughly analyzed, and this dissertation summarizes

the analysis into 13 limitations of the current testing tool. For each limitation, this dissertation provides

detailed explanations why the corresponding uncovered branches are not covered with code examples. I

expect these explanations can help the developers to understand and improve the concolic unit testing

tool in the future. Also, this dissertation proposes and applies solutions the obtained limitations, which

gives an average improvement on the branch coverage of 77% for six subjects.

Keywords Software testing, automated test case generation, concolic testing, unit testing
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Chapter 1. Introduction

Software testing is one of the main technical approaches to improve the reliability and safety of

software. The software testing procedure provides a set of inputs and checks whether the target software’s

outputs are consistent with the expected ones. As the size of software increases, the proportion of software

testing in the software development cycle is also enlarged. In particular, it is important to choose the

method of generating test cases.

The software testing has four granularity levels, i.e., unit testing, integration testing, system testing,

and acceptance testing.

• Unit testing. Unit testing ensures that a section of an application (known as the ”unit/function”)

meets its design and behaves as intended. Unit testing is the most fine-grained testing approach in

the software testing process. Independent units/functions of the software under test will be tested

in isolation from other parts of the software.

• Integration testing. It is also called assembly testing. Integration testing is based on unit testing

to design and assemble all modules into a subsystem or system as required and then check whether

the interaction between the functions within each module is normal.

• System testing. System testing considers the hardware, software, and operators as a whole

architecture and checks whether any part does not follow the system specification.

• Acceptance testing. It is the last testing step before deploying the software. The purpose is to

ensure that the software is ready and can be used by the users to perform the required functionalities

and tasks of the software.

For each granularity of software testing, the first step and an essential part are to generate the test

cases. The quality of software depends on the test suites, and the quality of test suites depends on the

test case generation techniques that generate them.

There are two ways to generate test cases: manual testing and automatic testing. Manual testing

requires a lot of labor costs, and automated testing overcomes this shortcoming. As a result, automated

testing has become more and more popular. The existing automated testing techniques can be mainly

divided into the following three categories.

1.1 Previous Approaches

(1) Random Testing. The random testing technique randomly generates test inputs that meet the

requirements of the corresponding sampling functions, e.g., Uniform distribution, Gaussian distribution.

The key part of this technique is randomness. This technique is simple and easy to implement with

a high degree of automation. It is very effective for testing certain types of software and finding the

corner case bugs. However, the efficiency of random testing is not satisfying in that it achieves very

low branch coverage. Moreover, it generates a lot of redundant test cases, i.e., the test cases with the

same execution path. To tackle those limitations, researchers proposed improved random testing. For

example, adaptive random testing chooses the next input which is most diverse against (fastest away

1



from) the already obtained inputs[2, 4, 3, 5]. Fuzzing testing favors the inputs that can cover more

not-covered branches[6, 7, 8, 9, 10, 11].

(2) Search-based Test Case Generation. The search-based test generation technique uses heuris-

tic search technologies such as a genetic algorithm to generate test cases automatically. Unlike random

testing that randomly samples test cases from the entire input space, the search-based technique needs to

define a specific fitness function that is used to guide the search process so that an appropriate solution

can be found. The efficiency of search-based testing highly depends on the quality of the fitness function,

which makes it essential to design a good fitness function[12, 13, 14, 15, 16, 17].

(3) Constraint-based Test Case Generation. The constraint-satisfaction problem appears in

many fields, especially computer science, e.g., software verification and software testing. One of the

representative theories of this problem is Software Modular Theory (SMT), which gives SMT solvers.

The main idea of constraint-based test case generation is to provide some conditions to the SMT solver

that is used, and then the SMT solver checks the satisfiability of those conditions in the test case gener-

ation. There exist many research papers which focus on SMT-based testing. Godefroid et al. developed

DART to automatically generate unit test drivers to generate test cases for C programs by using concolic

execution[18]. Sen et al. developed CUTE to generate test inputs using concolic testing[19] automat-

ically. Burnim et al. developed CREST[24] which contains a variety of path exploration algorithms,

making it more scalable and able to test large-scale software systems. Kim et al. developed CREST-

BV[20] which extends CREST by adding the support of bit-vector. Kim et al. developed CONBOL,

which automatically generates drivers/stubs and test inputs for large embedded software[21]. Kim et

al. developed CONBRIO to automatically generate unit drivers/stubs with an extended unit to achieve

high bug detection ability and low false alarm ratio[22].

Concolic testing is one of the most important test case generation technologies based on constraint

solving techniques. Unlike manual testing, it tries to explore every execution path of the target subject.

However, the system-level concolic testing suffers the path explosion problem when the search space of

the target subject is massive.

Unit-level concolic testing reduces the exploration space by focusing on functions rather than the

whole system to address this problem. Doing so achieves higher branch coverage and detects bugs more

quickly than the system-level testing in principle. However, the experiment results on the real-world

program are not desirable due to a set of limitations1. For example, concolic unit testing on grep2.0

only achieves 22.6% branch coverage. Thus, to improve the effectiveness of concolic unit testing, we

need to thoroughly analyze the results w.r.t branch coverage on real-world programs and discover the

limitations. Accordingly, we may propose solutions to improve the branch coverage.

1.2 Thesis Statement and Contributions

1.2.1 Thesis Statement

The thesis statement of this dissertation is as follows:

Concolic testing can be improved to achieve high branch coverage by addressing its

limitations identified through systematic coverage analysis on real-world subjects.

1I will explain these limitations in chapter 4
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1.2.2 Contributions

The contributions of this dissertation are as follows:

• I highlight 13 common problems of CROWN2.0 ver 2020 by extensively analyzing 324 groups of

not-covered branches on six different widely-used target subjects. Some common problems might

be generalized to be found in other concolic testing engines.

• I propose six ideas and implement these ideas for 10/13 common problems in CROWN2.0 ver 2020,

which has successfully improved the coverage of CROWN2.0 ver 2020 by up to 188% on one target

subject (77% on average on six target subjects).

• I provide a detailed report to describe the reasons of 324 branch groups to be not-covered. The

detailed report could further aid the future of concolic testing research2.

1.3 Structure of Dissertation

The remainder of this dissertation is structured as follows. Chapter 2 introduces the background

of unit-level concolic testing. Chapter 3 performs experiments on six real-world subjects (four from SIR

benchmark[27] and two from SPEC 2006 benchmark[28]) and presents the initial testing results. Chapter

4 analyzes each group of unexplored branches and shows 13 limitations of current testing tool. Chapter

5 proposes solutions for these limitations and evaluates the effectiveness of these solutions. Chapter 6

lists the crashes detected by CROWN2.0 and explains how to deduplicate the crashes which have the

same execution path. Chapter 7 presents the related work for automated software test case generation

techniques. Chapter 8 shows the conclusion and future works.

2The report is available at https://bit.ly/not-covered-branches
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Chapter 2. Concolic Unit Testing Tool and Its Working

Mechanism

This chapter introduces the background of concolic testing techniques and explains how the unit-level

concolic testing tool CROWN2.0[23] works.

2.1 Background of Concolic Testing

Concolic (Concrete + Symbolic) testing (aka. dynamic symbolic execution) is a technique that

tries to explore all the execution paths of a target program. When a target program P is put into test

with symbolic input variables, concolic testing first executes the target program with the initial value

of the symbolic variables (usually assigned with zero). Then concolic testing collects the symbolic path

formula (a sequence of constraints) achieved by current execution. To cover a new path, one constraint

of the current execution would be negated, and new test cases would be generated.

There are many searching heuristics to determine which constraint should be altered. For example,

DFS (depth-first search) always alters the last constraint of the current execution, Random-negation

randomly negates one constraint from the given symbolic path formula[24].

After negating one constraint, the new symbolic path formula would be put into the underlying

SMT solver (e.g., Z3[25], STP[26]) to decide whether the new symbolic path formula is satisfiable or not.

If the new symbolic path formula can be satisfied, the SMT solver would output the new test inputs and

assign them to the symbolic variables.

Then concolic testing repeats the same process until all the paths of the target program are covered

or the conditions specified by the users are satisfied (e.g., the given timeout for test case generation is

reached). The example in the next section explains how the concolic testing technique works in detail.

2.2 Motivating Example

The function (triangle type) in figure 2.1 accepts three integer inputs (line 7: a,b and c) and checks

the type of triangle according to the input values.

For concolic testing, first, we set the three inputs a, b, and c as symbol variables, and execute the

first test case (input values are zero). When the first test case is executed, we get the SPF (symbolic

path formula) of the execution (a <= 0). Then we get a new SPF (a > 0) and a new input (a, b, c =

1,0,0) by negating the last constraint (a <= 0). Then we execute the second test case to obtain it’s SPF

(a > 0&b <= 0), and negate the last constraint of the current SPF to obtain the new SPF (a > 0&b > 0)

and the third test case (a, b, c = 1,1,0) We repeat the procedure iteratively until all paths of the target

function are covered.

Table 2.1 shows the detailed process. The first column shows the test input number. The second

column shows the value of the current test input. The third and fourth columns show the SPF of the

current test input and the SPF that should be satisfied by the next test input. The fifth column shows

the value of the next test input.
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1 #include <assert.h>

2 /*

3 * triangle.c

4 * This example is taken from Software Testing: A Craftsman ’s Approach

2/e,

5 * by P. C. Jorgensen.

6 */

7 int triangle_type(int a, int b, int c){

8 int i, j, k, match =0;

9

10 int result =1;

11

12 if(a <= 0 || b <= 0 || c <= 0) {

13 result = 2;

14 } else{

15 if(a == b) match = match + 1;

16 if(a == c) match = match + 2;

17 if(b == c) match = match + 3;

18 if(match == 0) {

19 if(a + b <= c) result = 2;

20 else if(b + c <= a) result = 2;

21 else if(a + c <= b) result = 2;

22 else result = 3;

23 } else {

24 if(match == 1) {

25 if(a+b <= c) result = 2;

26 else result = 1;

27 } else {

28 if(match == 2) {

29 if(a+c <= b) result = 2;

30 else result = 1;

31 } else {

32 if(match == 3) {

33 if(b + c <= a) result = 2;

34 else result = 1;

35 } else result = 0;

36 }

37 }

38 }

39 }

40 return result;

41 }

Figure 2.1: Triangle Example

2.3 Generation of Symbolic Driver and Stubs

The most important thing is how to declare symbolic variable for different types of inputs (e.g.,

pointer, structure). For different types of inputs of a target function, CROWN2.0 automatically generate

unit driver and stub code to set symbolic inputs. The remaining part of this chapter explains how the

driver and stub code are generated.
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Table 2.1: Execution Paths of Triangle Program

TC Input (a,b,c) Current SPF Next SPF Next Input (a,b,c)

1 0,0,0 a<=0 a>0 1,0,0

2 1,0,0 a>0 & b<=0 a>0 & b>0 1,1,0

3 1,1,0 a>0 & b>0 & c<=0 a>0 & b>0 & c>0 1,1,1

4 1,1,1
a>0 & b>0 & c>0

&a==b & a==c & b==c

a>0 & b>0 & c>0

&a==b & a==c & b!=c
UNSAT

a>0 & b>0 & c>0

&a==b & a!=c
1,1,2

5 1,1,2
a>0 & b>0 & c>0

&a==b & a!=c &b!=c&a+b<=c

a>0 & b>0 & c>0

&a==b & a!=c &b!=c&a+b>c
2,2,3

6 2,2,3
a>0 & b>0 & c>0

&a==b & a!=c &b!=c&a+b>c

a>0 & b>0 & c>0

&a==b & a!=c &b==c
UNSAT

a>0 & b>0 & c>0

&a!=b
2,1,2

7 2,1,2
a>0 & b>0 & c>0

&a!=b & a==c & b!=c & a+c >b

a>0 & b>0 & c>0

&a!=b & a==c & b!=c & a+c <= b
2,5,2

8 2,5,2
a>0 & b>0 & c>0

&a!=b & a=c & b!=c & a+c <= b

a>0 & b>0 & c>0

&a!=b & a==c & b==c
UNSAT

a>0 & b>0 & c>0

&a!=b & a!=c
1,2,2

9 1,2,2

a>0 & b>0 & c>0

&a!=b & a!=c & b==c

& b+c >a

a>0 & b>0 & c>0

&a!=b & a!=c & b==c

& b+c <= a

4,2,2

10 4,2,2

a>0 & b>0 & c>0

&a!=b & a!=c & b==c

& b+c <= a

a>0 & b>0 & c>0

&a!=b & a!=c & b!=c
1,2,3

11 1,2,3
a>0 & b>0 & c>0

&a!=b & a!=c & a+b<=c

a>0 & b>0 & c>0

&a!=b & a!=c & a+b>c
3,1,2

12 3,1,2

a>0 & b>0 & c>0

&a!=b & a!=c & a+b>c

&b+c<=a

a>0 & b>0 & c>0

&&a!=b & a!=c & a+b>c & b+c>a
1,3,2

13 1,3,2

a>0 & b>0 & c>0

&&a!=b & a!=c & a+b>c & b+c>a &

a+c<=b

a>0 & b>0 & c>0

&&a!=b & a!=c & a+b>c & b+c>a &

a+c>b

3,4,5

14 3,4,5

a>0 & b>0 & c>0

&&a!=b & a!=c & a+b>c & b+c>a &

a+c>b

Finish Finish

2.3.1 Driver Code Generation

In the driver code, all the global variables used by the target function and all the parameters of the

target function are declared as symbolic variables according to their types as follows.

• Primitive type.

• Array type.

• Pointer type.

• Structure type.

The first four examples below show how CROWN2.0 handles the four aforementioned types of inputs.

In addition, I created a much complex case (the fifth example) that contains two or more different input
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1 #include "crown.h" // head file used by CROWN2 .0

2 /*

3 int primitive_exp(int a){

4 return a;

5 }

6 */

7 int primitive_exp_driver (){

8 int a;

9 SYM_int(a);

10 primitive_exp(a);

11 }

Figure 2.2: Set Symbolic Variable of Primitive Type

1 #include "crown.h" // head file used by CROWN2 .0

2 /*

3 int a[10];

4 int array_exp (){

5 return a[1];

6 }

7 */

8 int array_exp_driver (){

9 for(int i0=0; i0 <10; i++){

10 SYM_int(a[i0]);

11 }

12 array_exp ();

13 }

Figure 2.3: Set Symbolic Variable of Array Type

types to demonstrate that CROWN2.0 can handle the complex case properly.

Primitive Type

For a variable of primitive type, CROWN2.0 specifies that variable as symbolic by using the API

SYM < type >1. Figure 2.2 shows an example.

• Line 3: The function primitive exp has a parameter of integer type

• Lines 8 - 10 : CROWN2.0 declares a symbolic variable a and uses it as the parameter of the target

function

Array Type

CROWN2.0 sets each element of that array as symbolic. The detailed code example is listed in

Figure 2.3

• Line 3: The global variable a is an array and has 10 elements.

• Line 5: a is used by the target function array exp

• Lines 9 - 12: CROWN uses a for-loop to set each element of the array a as symbolic, then the

target function array exp would be called.
1The API SYM < type > assigns zero to all input variables for the first TC
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1 #include "crown.h" // head file used by CROWN2 .0

2 /*

3 int pointer_exp(int* a){

4 return a[0];

5 }

6 */

7 int pointer_exp_driver (){

8 int * a = malloc (3* sizeof(int)); // n = 3

9 for(int i0=0; i0 < 3; i0++){

10 SYM_int(a[i0]);

11 }

12

13 pointer_exp(a);

14 }

Figure 2.4: Set Symbolic Variable of Pointer Type

Pointer Type

CROWN2.0 allocates < n > (decided by the users) elements for the pointee type (CROWN2.0

considers a pointer p points to an array which has < n > elements) and sets each element as symbolic

variable. Figure 2.4 shows an example where < n > is assigned with three by default.

• Line 3: The target function pointer exp has a parameter a, which is a pointer and points to an

integer.

• Line 8: CROWN2.0 allocate < n > elements for the pointer a. In the example, < n > is three.

• Lines 9 - 11 : CROWN2.0 uses a for-loop to set all < n > elements of a as symbolic.

• Line 13: The target function pointer exp would be called.

Structure Type

CROWN2.0 sets each element of that structure as symbolic according to the element type recursively.

Suppose the element is not a primitive type (e.g., pointer type, array type, structure type). In that case,

CROWN2.0 sets symbolic input for the element, following how it declares symbolic according to the

element type.

Specifically, to prevent the infinite recursive dereferences (e.g., a structure has a pointer that points

a variable of the same type with the structure), CROWN2.0 follows a pointer to the structure within

a bound three by default and assigns NULL to a pointer that is in the layer not reachable within the

bound. The figure 2.5 explains the bound and layer in detail.

In figure 2.5, the struct Node has a pointer element next points to a same type with Node. From

layer zero to layer two, next is allocated with a struct Node. But at layer three, next is assigned with

NULL as layer three reaches the given bound three.

Figure 2.6 shows how to declare a symbolic variable of structure type.

• Lines 3 - 7: A structure type A is declared, which has three elements, an integer element, an

character element and a pointer element.

• Line 8: The target function struct exp has a parameter a whose type is structure A

8



Figure 2.5: Recursive Declaration Example

1 #include "crown.h" // head file used by CROWN2 .0

2 /*

3 struct A{

4 int ele1;

5 char ele2;

6 int *ele3;

7 };

8 int struct_exp(struct A a){

9 ...

10 return 0;

11 }

12 */

13 int struct_exp_driver (){

14 struct A a;

15 SYM_int(a.ele1);

16 SYM_char(a.ele2);

17 a.ele3 = malloc (3* sizeof(int)); // n = 3

18 for(int i0=0; i0 <3; i++){

19 SYM_int(a.ele3[i0]);

20 }

21 struct_exp(a);

22 }

Figure 2.6: Set Symbolic Variable of Structure Type

• Lines 14 - 16: CROWN2.0 declares a variable a of type A and sets its elements of primitive type

(ele1 and ele2) as symbolic.

• Lines 17 - 20: For the pointer variable ele3, CROWN2.0 allocates n (n is three in the example)

elements for ele3 and uses a for-loop to declare each element of ele3 as symbolic.

• Line 21: The target function struct exp would be called.

Complex Type Example

The figure 2.7 contains a more complex case where a structure contains elements of two or more

aforementioned types. I will explain how CROWN2.0 works for the complex case step by step.

• Lines 3 - 7: A structure type A is declared, which has three elements, an integer element, a character

element and a pointer element points to a variable of type A.
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1 #include "crown.h" // head file used by CROWN2 .0

2 /*

3 struct A{

4 int ele1;

5 int ele2 [10];

6 struct A* next;

7 };

8 int complex_exp(struct A a){

9 ...

10 return 0;

11 }

12 */

13 complex_exp_driver ()

14 {

15 struct A a;

16 SYM_int(a.ele1);

17 for(int i0=0;i0 <10;i0++){

18 SYM_int(a.ele2[i0]);

19 }

20 a.next = malloc (3 * sizeof(struct A));

21 for(int i0=0;i0 <3;i0++){

22 SYM_int(a.next[i0].ele1);

23 for(int i1=0;i1 <10;i1++){

24 SYM_int(a.next[i0].ele2[i1]);

25 }

26 a.next[i0].next = malloc (3 * sizeof(struct A));

27 for(int i1=0;i1 <3;i1++){

28 SYM_int(a.next[i0].next[i1].ele1);

29 for(int i2=0;i2 <10;i2++){

30 SYM_int(a.next[i0].next[i1].ele2[i2]);

31 }

32 a.next[i0].next[i1].next = malloc (3 * sizeof(struct A));

33 for(int i2=0;i2 <3;i2++){

34 SYM_int(a.next[i0].next[i1].next[i2]. ele12);

35 for(int i3=0;i3 <10;i3++){

36 SYM_int(a.next[i0].next[i1].next[i2].ele2[i3]);

37 }

38 a.next[i0].next[i1].next[i2].next = NULL;

39 }

40 }

41 }

42 complex_exp(a);

43 }

Figure 2.7: Set Symbolic Variable of Structure Type (complex case)

• Line 8: CROWN2.0 detects that the target function complex exp has a parameter a whose type is

structure A. So CROWN2.0 creates a variable a of type A and uses it as the parameter of function

complex exp (line 15)

• Line 16: CROWN2.0 sets elements of primitive type of a (ele1) as symbolic.

• Lines 17 - 19: For the array variable ele2, CROWN2.0 uses a for-loop to declare each element of

ele2 as symbolic.
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(a) Source Code (b) Stub Code

Figure 2.8: Create Stub for Library Functions

• Lines 20 - 21: For a pointer variable next, CROWN2.0 allocates n (three in the example) elements

for it. CROWN2.0 detects that the pointer next points to a variable of structure type A, so

CROWN2.0 recursively sets the symbolic variable for the pointer next, and increases the recursion

layer by one.

• Lines 22 - 27: Do the same process for layer one.

• Lines 28 - 33: Do the same process for layer two.

• Lines 34 - 38: Do the same process for layer three, but the variable next is assigned with NULL

(line 38) because the default bound is three.

2.3.2 Stub Code Generation

CROWN2.0 generates symbolic stubs for the library functions, which are called by the target func-

tion and do not belong to POSIX2 library. These symbolic stub functions return symbolic variables

according to their return types. The symbolic return variables are created in the same way to create

the symbolic inputs of four different types mentioned in Sect. 2.3.1. Finally, CROWN2.0 replaces the

original functions with the symbolic stub functions.

Figure 2.8 shows an example on how to create stub for library functions. In the source code of

target subject, the target function calls two library functions, i.e., h (L4) and strlen (L4). But strlen

is a POSIX library function, so CROWN2.0 only creates stub for the external library function h (Lines

1-5 of stub code)

2CROWN2.0 runs on unix operating system, where the POSIX library is available. Other library functions may not be

available and make compilation error happen (e.g., undefined reference to function f)
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Chapter 3. Experiment Setup and Baseline Result

This chapter presents the evaluation of the baseline version (i.e., original CROWN2.0 + assign NULL

to FILE pointer) of CROWN2.0 ver 2020 (in the rest part of thesis, I will use CR2base to represent the

baseline CROWN2.0). To discover the limitations of CR2base, I have performed experiments on six real-

world open-source C programs (four from SIR benchmark and two from SPEC2006 benchmark). And

the branch coverage achieved by CR2base is displayed, which shows that the experimental results are not

satisfactory as they are in theory.

3.1 Experiment Setup

3.1.1 Target Subjects

This experiment targets six real-world subjects. Four subjects, which the Linux users frequently use,

are selected from the SIR benchmark. And two subjects are selected from the SPEC2006 benchmark1.

Both SIR and SPEC 2006 are representative benchmarks to measure the effectiveness of software testing.

Each subject in these benchmarks has a set of system test cases and the branch coverage (reported by

gcov ) achieved by executing the system-level test cases2.

Table 3.1 describes the six open-source target subjects, including the size of each subject (reported

by script cloc), the number of branches of each subject, the number of system-level test cases, the branch

coverage of the system-level test cases.

3.1.2 Testbed Settings

Since CR2base has multiple arguments, I will explain each argument and how I set each argument

correspondingly.

• Timeout1. The maximum execution time of a test case.

• Timeout2. The test generation time for each unit/function.

• Strategy. The search heuristic of concolic testing (e.g., DFS, reversed DFS)

• Array Size. The number of elements N that should be allocated for the pointer p (i.e., CR2base

considers p points to an array which has N elements )

For Timeout1 and Timeout2, I set them as 60s and 300s respectively. The reason why I set these

arguments is because the exploratory studies with timeout suggests that the increase of Timeout1 and

Timeout2 beyond 60s and 300s has negligible effects on the overall experimental results. For searching

strategy, I use dfs (depth first serach) strategy in the experiments. For array size, I use the default value

used by CR2base (three). CR2base uses CROWN1, to generate test inputs for each function. The initial

value of each symbolic variable is assigned with zero following the default behavior of CR2base.

1The reason why I choose two benchmarks is to avoid making the analysis results overfit to one benchmark.
2The SIR benchmark contains many manually added test cases to satisfy the test adequacy criteria (e.g., trigger the

artificial faults in the target program)
1CROWN is a instrumentation based concolic testing tool to generate test inputs for C programs (website:

https://github.com/swtv-kaist/CROWN)
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Table 3.1: Detail of Target Subjects

Benchmark Target Subject Loc # of Branch # of Func # of Sys. TC
Branch

Coverage

SIR

flex2.4.3 11864 2021 144 567 45.7%

grep2.0 10930 3416 119 809 50.3%

gzip1.0.7 6358 1446 80 214 55.8%

sed1.1.7 8060 2395 63 360 47.3%

SPEC2006
libquantum0.2.4 5059 724 111 3 68.5%

sjeng11.2 18057 6364 164 3 77.9%

Table 3.2: The Experimental Results of CR2base

Target Subject # of Func # of Branch
Branch Cov Achieved by

CR2base
Avg TCgen Time (s)

for Each Function

flex2.4.3 144 2021 22.6% 15.3

grep2.0 119 3416 22.7% 27.3

gzip1.0.7 80 1446 41.4% 52.7

sed1.1.7 63 2395 17.7% 15.8

libquantum0.2.4 111 724 41.6% 5.5

sjeng11.2 164 6364 27.9% 26.7

The experiments are performed on eight machines, each of which is equipped with AMD 8-core

Ryzen 7 3800XT (3.9 GHz) CPU and 16 GB RAM, running Ubuntu 18.04 64 bit version.

3.2 Measurement

I measure the branch coverage for each unit (function), then I use grcov to collect the coverage of

all units and summarize the coverage of each subject.

3.3 Baseline Result

Table 3.2 shows the branch coverage achieved by the TCs, which are generated by the CR2base. The

first to third columns show the name, the number of functions, and the number of branches for each

subject. The fourth column shows the branch coverage achieved by CR2base. The fifth column shows

the average test case generation time of all functions in each subject.

Figure 3.1 shows the distribution of TC generation time for six target subjects (x-axis is the # of

function and y-axis is the TC generation time). The average branch coverage is 29.0% only, which shows

that CR2base may have its limitations or weaknesses for being applied to test the real-world programs.

Therefore, we need to find out the probable limitations and thus improve the effectiveness of CR2base.

In figure 3.1, we can find the number of functions whose test case generation time reaches 300s only

account for about 10% of the total number of functions. The branch coverage for the remaining 90%

functions is supposed to be 100% in principle. Therefore, I collected information about these functions

and showed the detail in table 3.3.

13



(a) (b)

(c) (d)

(e) (f)

Figure 3.1: TC generation time distribution for 6 target subjects

Table 3.3: Branch Cov for Functions Not Reach Timeout2

Subject
# Function

Not Reach Timeout2
# Branch # Covered Branch

flex2.4.3 124 1855 348

grep2.0 110 3153 655

gzip1.0.7 71 1306 498

sed1.1.7 62 1858 330

libquantum0.2.4 111 677 236

sjeng11.2 144 5956 1535
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The third column of Table 3.3 lists the total number of branches of functions whose test case

generation time did not reach 300s, and the fourth column indicates the branch coverage achieved by

CR2base for these functions.

It is worth noting that although CR2base finished the test case generation process for these functions

within a given time (300s), the branch coverage achieved by CR2base is still not satisfactory (should be

100% in principle). So there may exist some weaknesses which prevent CR2base from generating more

test cases. I will explain these weaknesses in detail in the next chapter.

15



Chapter 4. Limitations of The Current Concolic Testing Tool

As explained in Chapter 3, the branch coverage achieved by CR2base is only 29.0% on average. There

may exist some limitations in CR2base. For this reason, a detailed analysis of each subject is necessary

to discover the limitations. This chapter explains the limitations found while analyzing the source code

of the target subjects.

4.1 Analysis Details

To discover the limitations of CR2base, I first open the lcov report of each subject and then collect

the groups of branches that CR2base does not cover from the first line until the last line of the subject.

Then 324 groups of not-covered branches are discovered, and each group contains 31 branches on average.

For each group of not-covered branches, I utilize the test case generation log and gdb to analyze why

these branches cannot be covered. Finally, I discovered 13 limitations of CR2base. The short descriptions

of all 13 limitations are listed in Table 4.1.

4.2 Limitations

4.2.1 FTCC: The Execution of First TC Crashes

CR2base uses CROWN engine to run concolic testing. The effectiveness of CROWN engine depends

on the execution result of the first TC. Specifically, suppose the execution of the first TC crashes. In

that case, CROWN engine cannot generate more than 1 test case because the execution path of the first

test case cannot be obtained, which is essential to generate the next test input.

Therefore, it is the user’s responsibility to choose a good seed test case to avoid the crash of the

first TC. If the seed test case is not specified, CROWN assigns zero to all symbolic variables for the first

TC and executes the first TC by default. CR2base cannot determine the seed test case for each unit. In

this case, the default behavior of CROWN engine is adopted.

Figure 4.1 shows one example that causes the crash of the first TC. In the example, for the first

TC of the function example1, CR2base assigns the parameter a of example1 with zero. At line 15, the

division by zero error happens (the value of a is zero), which prevents CR2base from generating more

than one test cases.

4.2.2 NSEF: No Support for External C Library Functions (Except for C

File-Handling Functions)

The CROWN engine tries to obtain the symbolic path formula (SPF) from the source code of the

target program and the execution of the current test case. Then CROWN negates a constraint in the

SPF to generate the next test case.

In principle, all the branch conditions that are executed by the current test case should be included

into the SPF. However, there may exists branch conditions that use external functions whose source code

are not available (e.g., library function). In this case, CROWN cannot obtain the constraints for these
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Table 4.1: 13 Limitations

Number Abbreviation Description

1 FTCC The Execution of First TC Crashes

2 NSEF
No Support for External C Library Functions

(Except for C File-Handling Functions)

3 NSFF No Support for External File-handling Functions

4 NSFP No Support for Function Pointers

5 NSGP No Support for Global Void Pointer

6 NSLS No Support for Local Static Variable

7 NSSF No Support For Symbolic File

8 NSSP No Support For Symbolic Pointers

9 RT1 Timeout1 Is Reached

10 TIWC Target Program’s Illegal Write to The Structure of CR2base

11 UB Existence of Unreachable Branches in Unit-testing

12 USV Uncovered Branch Caused by The Unrealistic Symbolic Input Values

13 WDFS Weakness of Dfs

1 /*

2 example1_driver (){

3 int a;

4 // a is assigned with 0 for the 1st TC

5 SYM_int(a);

6 example1(a)

7 }

8 */

9 int example1(int a)

10 {

11 int b = 0;

12 for(int i=0; i<a; i++){

13 b = b + a;

14 }

15 int c = b / a;

16 return c;

17 }

Figure 4.1: The example of FTCC

branch conditions so that the “then” or “else” branch of these branch conditions cannot be covered.

Figure 4.2 explains this kind of limitation.

• At line 11, s is a parameter of function example2 and it points to an array which has three (array

size) symbolic element.

• At line 14, an external function strcmp is called, and this function returns -1. The “then” branch

of the “if” statement at line 15 cannot be covered because of the following two reasons:

Reason 1: strcmp is an external function, so CROWN engine cannot write the constraint

(strcmp(s, “aaa”)! = 0) into the SPF. Not to mention negating this constraint to cover the “then”

branch.
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1 /*

2 example2_driver (){

3 char *s;

4 s = malloc (3* sizeof(char));

5 for(int i=0; i<3; i++){

6 SYM_char(s[i]);

7 }

8 example2(s)

9 }

10 */

11 int example2(char* s)

12 {

13 ... //s is not altered

14 if(strcmp(s, "aaa") == 0){

15 ... // not covered

16 }

17 else{

18 ...

19 }

20 ... // s is not used by other conditions

21 return 0;

22 }

Figure 4.2: The example of NSEF

Reason 2: s is not used by other branch conditions (i.e., the value of s would not be altered)

4.2.3 NSFF: No Support for External File-handling Functions

Similar to section 4.2.21. If a branch condition uses the variable whose value is assigned by the file-

handling functions, the “then” or “else” branch of this branch condition would not be covered. Figure

4.3 explains this problem.

At line 4, var is assigned with the return value of getchar (i.e., get a character from stdin). The

value of var becomes concrete, so five branches (i.e., line 6, line 9, line 12, line 15, and line 19) cannot

be guaranteed to be fully covered by CR2base.

4.2.4 NSFP: No Support for Function Pointers

For a variable fp of function pointer type, CR2base cannot determine which function should be

assigned to fp. Hence, the NULL value is assigned to the function pointer fp, which may cause crash

in the unit-testing. Figure 4.4 shows the crash caused by this limitation.

• At line 1, fp is a function pointer. CR2base is not intelligent enough to obtain all the functions

that may be assigned to fp. Hence, fp is assigned with NULL

• At line 22, crash happens (dereference on NULL pointer) when executing the target function

example4 , which prevents CR2base from generating more than one test cases.

1The reason why I separate file-handling functions from external functions is because all the 6 subjects uses file-handling

functions.
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1 int example3 ()

2 {

3 ...

4 char var = getchar (); // get a character from stdin

5 if(var == ’a’){

6 ...

7 }

8 else if (var == ’b’){

9 ...

10 }

11 else if (var == ’c’){

12 ...

13 }

14 else if (var == ’d’){

15 ...

16 }

17 ...

18 else{

19 ...

20 }

21 return 0;

22 }

Figure 4.3: The example of NSFF

1 void (*fp)(); // function pointer

2 void cand1();

3 void cand2();

4 void tmp_func1 (){

5 ...

6 fp = cand1;

7 ...

8 }

9 void tmp_func2 (){

10 ...

11 fp = cand2;

12 ...

13 }

14 /*

15 example4_driver (){

16 ...

17 fp = 0; // fp is assigned with NULL

18 example4 ();

19 }

20 */

21 void example4 (){ // fp

22 fp();

23 ... // not covered

24 }

Figure 4.4: The example of NSFP
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1 void* glob; // function pointer

2

3 /*

4 example5_driver (){

5 ...

6 glob = 0; // glob is assigned with NULL

7 example4 ();

8 }

9 */

10 void example5 (){ // glob = NULL

11 int * a = glob;

12 if(a == NULL){

13 ...

14 }

15 else{

16 ... // not covered

17 }

18 ...

19 }

Figure 4.5: The example of NSGP

4.2.5 NSGP: No Support for Global Void Pointers

For a variable of void pointer type, CR2base cannot determine which concrete pointer type (e.g., int*

, char*) the void pointer should be casted to, so NULL value is assigned naively. If a branch condition

depends on the value of the void pointer or the value of the variable that the void pointer points to, the

branch may not be covered. Figure 4.5 shows an example of this limitation.

• At line 1, glob is a global void pointer.

• At line 6, glob is assigned with NULL because CR2base cannot determine the type that glob should

be casted to.

• At line 11, variable a is assigned with the value of glob (NULL).

• At line 12, only the “then” branch of the “if” statement can be covered by CR2base. The “else”

branch (line 15- line 17) cannot be covered because the value of a is NULL.

4.2.6 NSLS: No Support for Local Static Variables

CR2base cannot set local static variables as symbolic. And for the execution of each test case,

CR2base calls the target function only once. So if the target function consists of local static variables and

a branch condition in the target function uses the these variables, there may exist not-covered branches.

The detailed example in Figure 4.6 displays this problem.

• At line 9, the local static variable i is assigned with zero.

• At line 10, the “then” branch of “if” statement cannot be covered because the driver code only

calls the target function once, which makes the value of i always be zero.
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1 /*

2 example6_driver (){

3 ...

4 example6 (); // example6 is called only once for each execution

5 }

6

7 */

8 void example6 (){

9 static int i = 0;

10 if(i == 1){

11 ... // not covered

12 }

13 else{

14 ... // example6 () is not called

15 }

16 i = i + 1;

17 }

Figure 4.6: The example of NSLS

1 FILE * f; // FILE pointer

2 ...

3 /*

4 example7_driver (){

5 ...

6 f=NULL; // FILE pointer f is assigned with NULL

7 example7 ();

8 }

9 */

10 void example7 (){

11 if(!f){

12 ... // not coverd

13 }

14 else{

15 ...

16 }

17 ...

18 }

Figure 4.7: The example of NSSF

4.2.7 NSSF: No Support for Symbolic File

In the CR2base, the symbolic file is not supported (i.e, NULL is assigned to the FILE pointer by the

driver function). Hence, some branches,e.g., a branch condition checks the value of the FILE pointer,

may not be covered by CR2base. The example in Figure 4.7 shows the problem.

• At line 1, a FILE pointer f is declared

• At line 6, f is assigned with NULL by the driver function.

• At line 11, only the “else” branch of “if” statement (i.e., lines 14 - 16) can be covered by CR2base

because the value of f is NULL.
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1 /*

2 example8_driver (){

3 ...

4 char * buf = malloc (3* sizeof(char));

5 for(int i=0; i<3; i++){

6 SYM_char(buf[i]);

7 }

8 int size;

9 SYN_int(size); // the initial value of size is 0;

10 example8(buf , size);

11 }

12 */

13 void example8(char *buf , int size){

14 char * pb = buf;

15 char * pe = pb + size;

16 ... // size is not used by other branch conditions

17 if(pb != pe){

18 ... // not covered

19 }

20 ... // size is not used by other branch conditions

21

22 }

Figure 4.8: The example of NSSP

4.2.8 NSSP: No Support for Symbolic Pointer

CR2base cannot declare the pointer variable as symbolic variable because the pointer’s value (address)

should not be symbolic. So if a branch condition uses pointer variables, CR2base may not cover this branch

condition because the pointer variables are not symbolic variables, and CROWN engine cannot write

the constraint of this branch condition into SPF. The toy program in figure 4.8 explains this kind of

limitation.

• At line 9, size is assigned with zero (by the marco SYM int). The value of size is never altered

since it is not used by any branch conditions.

• At line 15, pb and pe point to the same address for the value of size is 0.

• At line 17, the “then” branch of “if” statement cannot be covered because the condition pb == pe

is always satisfied and CR2base cannot support the symbolic pointer.

4.2.9 RT1: Timeout1 Is Reached

If the execution of current test cases reaches timeout1, CR2base will terminate the execution. In this

case, the coverage of current test case cannot be recorded by CR2base. The infinite loop is one of the

reasons that cause the execution to reach timeout1, and figure 4.9 explains this problem.

• At line 5 and line 7, a and b are assigned with zero by the driver function.

• At line 14, the “while” loop will never stop because the value of a and b are always 0 and 0∗2 == 0,

so timeout1 is reached, and the coverage of the current test case cannot be recorded.
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1 /*

2 example9_driver (){

3 ...

4 int a;

5 SYM_int(a);

6 int b;

7 SYM_int(b);

8 example9(a,b);

9

10 }

11 */

12 void example9(int a, int b){

13 ... // a and b are not altered

14 while(a <= b){

15 a = a * 2;

16 }

17 ... // a and b are not altered

18 }

Figure 4.9: The example of RT1

#0 0x00000000005ad477 in crown :: SymbolicMemoryWriter :: MemElem ::read (

this=0x808480 , addr =8355808 , n=8, val=..., next_elem =0 x7e6cb0)

at libcrown/symbolic_memory_writer.cc:85

#1 0x00000000005acdc7 in crown :: SymbolicMemoryWriter ::read (this=0x7dccb8 ,

addr =8355808 , val =...) at libcrown/symbolic_memory_writer.cc:224

#2 0x0000000000595aa4 in crown :: SymbolicInterpreter ::Load (this=0x7dcc20 ,

id=10025 , addr =8355808 , value =...) at libcrown/symbolic_interpreter.cc:77

#3 0x00000000005898be in __CrownLoad (id=10025 , addr =8355808 , ty=6, val=0,

fp_val =0) at libcrown/crown.cc:360

#4 0x00000000004870a3 in re_match_2 (bufp=0x7f7fd0 , string1 =0 x7e71b0 "",

size1=0, string2 =0 x7f2210 "", size2=0, pos=0, regs=0x7f28d0 , stop =0)

at grep.c:4837

#5 0x0000000000486436 in re_search_2 (bufp=0x7f7fd0 , string1 =0 x7e71b0 "",

size1=0, string2 =0 x7f2210 "", size2=0, startpos=0, range=0,

regs=0x7f28d0 , stop =0) at grep.c:4618

Figure 4.10: Example Crash Trace of TIWC

4.2.10 TIWC: Target Program’s Illegal Write to The Structure of CR2base

CR2base uses memory to record the SPF obtained from the execution of the current test case. In

principle, the memory space used by CR2base and the one used by the subject should not conflict with

each other. However, the collision may happen (e.g., illegal memory access) and CR2base engine cannot

continue the test case generation process. Figure 4.10 shows an example in function re search 2 of file

“grep.c” of subject “grep”.

As crash site #0, the function crown :: SymbolicMemoryWriter :: MemElem :: read, which is an

internal function of CROWN engine, crashes due to target program’s illegal write to the memory used

by CR2base. The crash of CR2base terminates the test case generation process.
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1 #define INC(a) if(a < 0) b+=1; else return;

2 /*

3 example10_driver (){

4 ...

5 int a;

6 SYM_int(a);

7 example10(a);

8 }

9 */

10 void example10(int a){

11 int b = 0;

12 INC(a);

13 ...// a is not altered

14 INC(a);

15 }

Figure 4.11: The example of UB

4.2.11 UB: Existence of Unreachable Branches in Unit-testing

There may exist an unreachable branch in the target program. The SPF of the unreachable branch

is UNSAT, so that CR2base cannot generate a test case to reach the branch. Figure 4.11 shows the

example. Both line 12 and line 14 use the macro INC declared at line 1.

• At line 12, if the “then” branch is covered, the value of a should be less than zero, otherwise the

function example10 will be terminated (by executing “return” statement)

• At line 14, the value of a is always less than zero, and the “else” branch cannot be covered.

4.2.12 USV: Uncovered Branch Caused by The Unrealistic Symbolic Input

Values

The CR2base uses a black-box solver to generate values for all symbolic variables according to the

given SPF. The values obtained from the solver may not appear in the system-level execution of the

target function. Then crash may happen, which makes CR2base unable to record the crash test case

coverage. The example in figure 4.12 shows how the unrealistic values cause crash.

At line 12, to cover the “then” branch of “if” statement, the SMT solver outputs 4296947295 and

assigns it to a. In such case, line 16 will access buf [10000000] which causes crash because the array buf

only contains 10 elements. Due to the crash, the coverage for the “then” branch of line 11 cannot be

recorded.

4.2.13 WDFS: Weakness of Dfs

The dfs (default strategy used by CR2base) tries to explore each execution path in a depth-first-

search way. This strategy has a limitation on exploring loop statement. Because the loop statements

contain more execution paths than other statements. If dfs strategy is applied, all the timeout2 may be

consumed on exploring loop statement only.

The example in Figure 4.13 and its execution paths in Figure 4.14 explains this problem.
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1 int buf [10];

2 /*

3 example11_driver (){\

4 ...

5 unsigned int a;

6 SYM_unsigned_int(a);

7 example11(a);

8 }

9 */

10 void example11(unsigned int a){

11 int lc;

12 if(a != 0){

13 int ind = 0;

14 do{

15 ...

16 lc = buf[a++];

17 }while(ind < a)

18 }else{

19 ...

20 }

21

22 }

Figure 4.12: The example of USV

1 /*

2 example12_driver (){

3 ...

4 int a;

5 SYM_int(a);

6 example12(a);

7 }

8 */

9 long example12(int a){

10 long b = 0;

11 if(a < 0) {

12 ... // not covered

13 }

14 for(int i=0; i< a; i++){

15 b+=i;

16 }

17 return b;

18 }

Figure 4.13: The example of WDFS

• At line 9, CR2base detects that function example12 has an parameter a of integer type, so CR2base

declares a symbolic variable and uses it as the parameter of function example12 (lines 4 - 6)

• At line 11, a is a symbolic variable (assigned with 0), so the “for” loop at line 14 are explored first.

• At line 14, each non-negative value of a produces an unique execution path. For example, if a is

assigned with 2, line 14 would be executed three times, if a is assigned with 10, line 14 would be

executed 11 times. Hence, the “for” loop contains 231 paths, and CR2base has to explore all the
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Figure 4.14: Execution paths of figure 4.13

paths before exploring line 12, i.e., generating 231 test cases before reaching line 12.

Figure 4.14 shows the execution paths of figure 4.13. As we can see, CR2base has to cover all the

paths of the right side before covering the left side. To avoid such case, CR2base should not be limited to

using one search strategy, but utilize the advantages of multiple search strategies and adjust the search

strategy adaptively to achieve higher coverage.

For example, we can create a strategy that gives priority to input values that can cover more branches

instead of more paths, in this way, even though different input values may cover different paths, they

may have the same branch coverage. For example, the value of a in the current test case is 2, and there

are two candidate values of a (3 and 0) for the next test case. These two values have different execution

paths, but if a is assigned with 3, the branch coverage is the same as the one when a is 2 (both cover

the “if” and “else” branches of the “for” statement at line 14), so we choose 0 as the value of a for the

next test case.
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Chapter 5. Proposed Solutions

In chapter 4, I discovered 13 limitations of the baseline CR2base. In this chapter, I will explain the

six solutions for the limitations mentioned in chapter 4.

5.1 Apply Combined Strategy (to solve WDFS)

As explained in figure 4.13, the dfs strategy may make CR2base spend all its running time on a

complex statement, e.g., loop statement. So a single search strategy may not cover as many execution

paths as possible within the specified time (given by the user). To avoid such a case, I propose a combined

strategy that utilizes all four CROWN search strategies (i.e., dfs, rev-dfs, random, and cfg). Algorithm

1 shows how the combined strategy works.

• Line 1: The combined strategy first divides T (timeout2) into four time slots, each slot has T
4 .

• Line 2: In the given time slot, the algorithm tries to generate test cases using the dfs strategy

• Lines 3 - 4: Check whether CROWN engine finishes its execution in the given time slot or not. If

the dfs strategy ends in a slot, we assume all the paths of the target program are explored and

then stop the test case generation process.

• Lines 6 - 9: In the opposite case, we assume that the complex statements (e.g., loop statement)

make dfs strategy reach the given time slot. To solve this problem, I utilize different search

strategies by stopping the dfs strategy and running the remaining three strategies (i.e., rev-dfs,

random, cfg) in order (line 6 - line 8); each strategy uses a time slot. Then we accumulate all the

test cases generated by the four strategies and output all of them (line 9).

5.2 Create Stub for All File-handling Functions (to solve NSFF)

I observed that all six subjects use at least one file-handling function (i.e., functions in “stdio.h”).

The file-handling functions play an important role in the Linux system (operating system used by

CR2base). So I collected all the functions declared in “stdio.h” and replaced them with their corre-

sponding stub functions.

Regarding stub function, I make it return symbolic variable (whose type is the same as the original

function). Table 5.1 shows the detained information. The first and second columns show the return

types in detail. The third to seventh columns show the names of all functions of “stdio.h”.

The return types can be classified into three categories,i.e., primitive integer type (including char,

int, long, and unsigned long), character pointer type, and FILE pointer type. The remaining part of this

section will explain how to handle these three categories, respectively.

• Primitive Integer Type. As explained in figure 5.1 ,for functions that return integer type, the

original function is replaced by stub function using macro (line 1: #define). The stub function will

declare and return a symbolic variable according to the return type of the original function (lines

4 - 9).
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Algorithm 1 Working Mechanism of Combined Strategy

Input: T : timeout2 which is giver by the user

Output: a sequence of TCs

1: t← T
4

2: TC1 ← Run(dfs, t) . Run(x, y): run strategy x in y seconds, return test cases

3: if CROWN finishes in t then

4: TC ← TC1

5: else

6: TC2 ← Run(revdfs, t)

7: TC3 ← Run(random, t)

8: TC4 ← Run(cfg, t)

9: TC ← TC1 + TC2 + TC3 + TC4

10: end if

11: return TC

Table 5.1: Return Types of File-Handling Functions

Return Type Function Name

Primitive

Type

void clearerr perror rewind setbuf

int

fclose feof ferror fflush fgetc

fgetpos fprintf fputc fputs fscanf

fseek fsetpos getc getchar printf

putc putchar puts remove rename

scanf setvbuf sprintf sscanf ungetc

vfprintf vprintf vsprintf

long ftell

unsigned long fread fwrite

Pointer

Type

char * fgets gets tmpnam

FILE * fopen freopen tmpfile

1 #define getc(x,...) stub_getc ();

2 ...

3 // getc returns integer

4 int stub_getc (){

5 int res;

6 SYM_int(res);

7 return res;

8 }

Figure 5.1: Stub Function that Returns Integer

• Character Pointer Type. For functions that return character pointer type, their stub functions

will declare a pointer that points to a symbolic array, and the length of the symbolic array is the

same with < n > (array size, the argument of CROWN2.0). Figure 5.2 shows an example.

• FILE Pointer Type. Like the character pointer type, the stub functions would use a symbolic

variable to return either a NULL pointer or a FILE pointer that points to a real file. Figure 5.3
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1 #define gets(x,...) stub_gets ();

2 ...

3 char stub_gets (){

4 char * res = malloc(N*sizeof(char)); // N is array size

5 for(int i=0; i< N; i++){

6 SYM_char(res[i]);

7 }

8 return res;

9 }

Figure 5.2: Stub Function that Returns Character Pointer

1 #define freopen(x,...) stub_freopen ();

2 ...

3 char stub_freopen (){

4 char tmp;

5 SYM_char(tmp);

6 FILE * res = fopen("dummy.txt", "a+");

7 return tmp >=0? res:NULL;

8 }

Figure 5.3: Stub Function that Returns FILE Pointer

shows an example.

5.3 Utilize Other Concolic Testing Tool (to solve NSSP, NSEF)

As it is shown in figure 4.2, CR2base has its weakness in exploring the branch whose branch condition

includes external library functions and symbolic pointers.

It is difficult to overcome this limitation because I have to check the source code of all the library

functions, which is a time-consuming task. But I found a concolic testing tool KLEE[1], which has two

very useful features1, i.e., supporting symbol pointers and some library functions. Hence, I use KLEE as

an auxiliary tool of CROWN2.0 to overcome the limitation on external library functions. The following

two parts will explain how KLEE supports the above two features.

5.3.1 Support Symbolic Pointer

If a conditional statement contains only symbolic pointers, KLEE will try to find a statement

with equivalent syntax that can help generate symbolic path formula to replace the original conditional

statement. Figure 5.4 shows how KLEE solves the NSSP examples mentioned at Figure 4.8.

Line 17: KLEE detects that statement pb! = pe is equivalent with size! = 0 (Ref: L15), so the new

statement size! = 0 will replace the original statement to generate test cases to cover the branches at

line 18.

1In the future, I will add these two features into the CROWN engine
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Figure 5.4: Example of Solving NSSP

(a) Code example in Figure4.2

(b) KLEE’s implementation of strcmp

Figure 5.5: Example of Solving NSEF

5.3.2 Support External Library Function

Suppose the target project executes a library function. In that case, KLEE will first check whether

the library function is in the list of library functions implemented separately by KLEE, e.g., all the

functions defined at “string.h”. If so, KLEE will use its implementation of the library function and

continue the process of test case generation. Figure 5.5 shows how KLEE solves the NSSP example

mentioned at Figure 4.2.

Line 14: KLEE detects that statement strcmp is a library function defined at “string.h” (belongs

to POSIX library), so KLEE would replace strcmp with the one implemented by KLEE to generate test

cases to cover line 15, e.g., assign symbolic variable s with “aaa”.
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Figure 5.6: Mechanism for Handling The Crash of First TC

5.4 Execute The First TC with Random Inputs (to solve FTCC)

The CR2base will terminate its test case generation process if the execution of the first test case

crashes. The default behavior of CROWN engine may cause the crash, i.e., all inputs of the first test

case are zero. I made CROWN2.0 generate a random input if the first test case crashes to handle such

a case. The detail is shown in Figure 5.6.

The revised version of CROWN2.0 would check the execution result of the first test case. If the

first test case crashes, CROWN2.0 would assign all symbolic input variables with non-zero values and

execute the new test case again until finding a non-crash test case. Then CROWN2.0 can continue its

test case generation process.

5.5 Execute The Target Function Multiple Times (to solve NSLS)

As explained in section 4.2.6, the driver only calls the target function once. If the target function has

a branch condition that uses static local variables, CR2base cannot guarantee to cover all the branches of

the target function. For this case, I slightly modified the driver and made it call the target function M

times, where the users decide the value of M . Figure 5.7 shows an updated version of the driver code.

The original driver code calls the target function only once (Lines 2 - 6).

The updated driver of func is displayed (lines 9 - 15), where the driver would execute the target

function M times (line 13). In this case, the “then” branch (line 24) can be covered if M is greater or

equal to 2.
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1 /* original driver

2 func_driver (){

3 int a;

4 SYM_int(a);

5 func(a);

6 }

7 */

8 // updated driver

9 func_driver (){

10 int a;

11 SYM_int(a);

12 for(int i=0; i<M; i++){ // M is decided by the users

13 func();

14 }

15 }

16 // target function

17 void func(int a){

18 static int i = 0;

19 if(i == 1){

20 ... // not covered

21 }

22 else{

23 ... // func is not called

24 }

25 i = i + 1;

26 }

Figure 5.7: Driver that Calls Target Function Multiple Times

5.6 Static Analysis for Pointer Types (to solve NSGP, NSFP)

CR2base cannot determine the actual type of what a global void pointer is cast to, and the function

pointer is not supported by CR2base. To solve these two limitations, I make CROWN2.0 analyze all

assignment statements (e.g., “a = b”) to determine the type that a void pointer should be casted to

and which function should be assigned to function pointers.

• Global Void Pointer

CROWN2.0 identifies the type that the void is first casted to and then allocates the corresponding

space for this void pointer. Then CROWN2.0 will set the symbolic environment for the given space.

Figure 5.8 shows an example of how this approach works. At line 1, glob is a global void pointer.

At line 3, glob is casted to a pointer to integer (int *). Hence, CROWN2.0 regards glob as “int *”

type and makes it points to an integer array (Line 10). Then, CROWN2.0 sets each element of the

integer array as symbolic variable (Line 12).

• Function Pointer For a function pointer fp, CROWN2.0 statically examines all the assignment

statements and identifies all the functions that are directly assigned2 to fp. Then CROWN2.0 uses

a symbolic variable choice and a “switch-case” statement to determine which function should be

assigned to fp.

For example, figure 5.9 has function pointer fp. After CROWN2.0 identifies that fp may point to

2I will add support for indirect (i.e., b = cand1; fp = b;) assignment in the future.
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Figure 5.8: Solutions for Global Void Pointer

Figure 5.9: Example of Symbolic Setting for Function Pointer fp

cand1 or cand2 at line 4 or line 5 respectively, it assigns cand1 or cand2 to fp depending on the

value of a symbolic variable choice (lines 14-19), as shown in the right part of figure 5.9.
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Chapter 6. Coverage Report and Crash Analysis

To evaluate the effectiveness of the proposed techniques, both branch coverage and bug detection ability

are used as metrics.

6.1 Coverage Achieved after Applying Solutions

To improve branch coverage, I developed CROWNimp that extends the CR2base by implementing

all the six features aforementioned in Chapter5. The arguments of CROWNimp are set as follows.

• For Timeout1 and Timeout2, I set them as 60s and 300s respectively (same with the one used by

CR2base).

• For searching strategy, I use combined strategy in the experiments. The combined strategy runs

five sub-strategies in order (dfs - rev dfs - random - cfg - KLEE). Each sub-strategy has a running

time of 60s (=300s/5)

• For array size, I use the default value used by CROWN2.0 (three).

• For the additional argument M (# of times a target function is called), I use its default value 2.

The experiments of CROWNimp are performed on eight machines, each of which is equipped with

an AMD 8-core Ryzen 7 3800XT (3.9 GHz) CPU and 16 GB RAM, running Ubuntu 18.04 64 bit version.

Table 6.1 shows the experimental results of CR2base and CROWNimp. The first column shows

subject names. The second column shows the number of branches for each subject. The third and fourth

columns show branch coverage achieved by CR2base and CROWNimp.

The experimental results in Table 6.1 show that CROWNimp outperforms CR2base on all 6 target

subjects in terms of branch coverage. The improvement is 77% on average for all six target subjects (up

to 188% for a subject).

In addition, to demonstrate that my solutions can improve branch coverage, I have provided

eight coverage improvement examples from the target projects. For each example, the lines with the

blue background are covered lines, and the lines within the red boxes are the not-covered lines.

Table 6.2 shows the number of covered branches after solving the eight limitations. The first column

shows the subject name. The second to tenth columns show the number of newly covered branches after

solving each limitation1.

6.1.1 Improvement by Solving FTCC

FTCC stands for “the execution of the First TC Crashes”. If the first test case crashes, then CR2base

cannot generate more than one test case because the execution path of the first test case is not available,

which is essential to generate the next test inputs. Hence, the coverage of the target function is 0%.

To tackle the above problem, CROWNimp assigns all input symbolic variables with random non-zero

values and executes the new test case again until finding a non-crash test case. Figure 6.3 shows how

CROWNimp solves FTCC in function add current of file “newbook.c” of subject “sjeng”.

1I am not sure the number of branches in the last column is covered by solving which limitation. I will analyze the

detailed reason in the future.
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Table 6.1: Experimental Results of CR2base and CROWNimp

Subject Name # of Branch
Branch Cov of

CR2base
Branch Cov of

CROWNimp

Average TC

Generation Time

flex 2.4.3 2021 22.6% 53.2% 122.7

grep 2.0 3416 22.7% 52.7% 56.7

gzip 1.0.7 1446 41.4% 50.1% 98.9

sed 1.17 2395 17.7% 51.1% 54.9

sjeng 11.2 6364 27.9% 50.4% 93.7

libquantum 0.2.4 724 41.6% 50.1% 9.8

Table 6.2: Coverage Improvement by Solving Eight Limitations

Subject Name
# Covered Branches

FTCC NSEF NSFF NSFP NSLS NSSP USV WDFS Unknown

flex 2.4.3 77 3 356 0 0 22 104 0 57

grep 2.0 29 98 1 0 4 537 223 75 57

gzip 1.0.7 18 20 0 1 0 0 85 0 1

sed 1.17 3 30 35 0 4 597 101 0 34

(a) Coverage of CR2base

(b) Coverage of CROWNimp

Figure 6.1: Function add current of file “newbook.c” of subject “sjeng”

Why CR2base Cannot Cover

Line 127: Symbolic global variable kksize is assigned with 0 (by the driver code) for the first test

case2. And division-by-zero crash happens, which prevents CR2base from generating more than one test

2SYM type(var) assigns var with 0 for the first test case
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cases.

Why CROWNimp Can Cover

Line 127: CROWNimp detects that the first TC crashes and tries to assign kksize with random

non-zero value ,e.g., one. Then the crash at line 127 can be avoided.

6.1.2 Improvement by Solving NSEF

NSEF stands for “No Support for External C Library Functions”. A branch condition B may use

POSIX library functions whose source code is not available for CROWN2.0. Besides, CR2base does not

replace POSIX library functions with stub functions. Therefore, CR2base may fail to cover both the

“then” and “else” branches of the branch condition B because CR2base cannot obtain the symbolic path

formula of B that cannot be negated to generate the next test case.

To solve this limitation, CROWNimp utilizes KLEE to replace some POSIX library functions, e.g., all

functions declared in “string.h”, with the ones that are implemented by KLEE. By doing so, CROWNimp

obtains the symbolic path formula of library functions for generating the next test case. Figure 6.2 shows

how CROWNimp solves NSEF in function regerror of file “sed.c” of subject “sed”.

Why CR2base Cannot Cover

Line 7102: msg is an array which has three elements and each of its element is assigned with zero,

which makes the external function strlen return zero. So msg size is assigned with one.

Line 7104: errbuf size is an symbolic unsigned integer, no value of errbuf size can satisfy both

condition errbuf size! = 0 (L7104) and errbuf size < 1 (L7106). Therefore, lines 7108-7109 cannot be

covered.

Why CROWNimp Can Cover

CROWNimp uses KLEE which detects that strlen (L7102) is a POSIX library function and uses

KLEE’s own implementation of strlen. So msg size (L7102) can be assigned with two ,e.g., msg=“aa”.

Then lines 7108-7109 can be covered, CROWN can output the value one to satisfy the condition

errbuf size! = 0 (L7104) and errbuf size < 2 (L7106) .

6.1.3 Improvement by Solving NSFF

NSFF stands for “No Support for External File-Handling Functions”. Similar to NSEF, if a branch

condition uses a variable whose value is assigned by the file-handling functions, then one of the “then”

and “else” branches of this branch condition may not be covered because file-handling functions cannot

return symbolic variables.

To solve this problem, CROWNimp replaces all file-handling functions with the stub functions. The

stub functions can return symbolic variables so that the not-covered branches can be covered. Figure

6.3 shows how CROWNimp solves NSFF in function read pattern space of file “sed.c” of subject “sed”.

Why CR2base Cannot Cover

The CR2base cannot make the external file-handling function feof returns non-zero value, which

makes line 1739 not-covered.
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(a) Coverage of CR2base

(b) Coverage of CROWNimp

Figure 6.2: Function regerror of file “sed.c” of subject “sed”

(a) Coverage of CR2base (b) Coverage of CROWNimp

Figure 6.3: Function read pattern space of file “sed.c” of subject “sed”

Why CROWNimp Can Cover

The CROWNimp replaces feof with stub function stub feof that returns a symbolic integer variable,

in this case, line 1739 can be covered.
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(a) Coverage of CR2base

(b) Coverage of CROWNimp

Figure 6.4: Function treat stdin of file allfile.c of subject gzip

6.1.4 Improvement by Solving NSFP

NSFP stands for “No Support for Function Pointers”. The driver code generated by CR2base cannot

determine which function should be assigned to function pointer fp. Instead, a NULL pointer is assigned

to fp, which can cause null-dereference crash.

CROWNimp solves this limitation by examining all the functions that are assigned to fp and using

a symbolic variable and a “switch-case” statement to decide which function should be assigned to fp.

Figure 6.4 shows an example of function treat stdin of file “allfile.c” of subject “gzip” to demonstrate

that this problem is solved by CROWNimp.
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(a) Coverage of baseline CR2base (b) Coverage of CROWNimp

Figure 6.5: Function init syntax once of file “grep.c” of Subject “grep”

Why CR2base Cannot Cover

The driver generates by CR2base just assigns the global function pointer work with NULL value,

which causes NULL-dereference crash at line 4840.

Why CROWNimp Can Cover

The CROWNimp detects that work has five candidate functions (L4538, L4756, L5372, L5286,

L5375), so it generates a driver which uses a symbolic variable to decide which candidate functions

should be assigned to work. In such case, work will never be NULL and line 4840 can be covered.

6.1.5 Improvement by Solving NSLS

NSLS stands for “No Support for Local Static Variables”. The CR2base cannot set local static

variables as symbolic, and the driver code generated by CR2base only calls the target function once. So

if a branch condition of a target function uses a local static variable, then CR2base cannot guarantee to

cover all branches of this branch condition because the local static variable is not a symbolic variable.

CROWNimp solves this limitation by calling the target function multiple times (twice by default).

Figure 6.5 shows an example of function init syntax once of file “grep.c” of subject “grep” to demonstrate

that the problem NSLS is solved by CROWNimp.

Why CR2base Cannot Cover

The driver generated by CR2base just calls the target function once, in such case, line 1713 cannot

be covered because the value of local static variable done is always zero (L1710: initialized with zero)

at line 1712.

Why CROWNimp Can Cover

The driver generated by CROWNimp calls the target function twice (by default)3. So for the first

execution of target function, done becomes one (L1728), and for the second execution, the not-covered

3The users can decide how many times a target function should be called

39



(a) Coverage of CR2base (b) Coverage of CROWNimp

Figure 6.6: Function regex compile of file “grep.c” of subject “grep”

line (L1713) can be covered.

6.1.6 Improvement by Solving NSSP

NSSP stands for “No Support for Symbolic Pointers”. CR2base cannot write symbolic path formula

for a branch condition that contains symbolic pointers only, not to mention negating the branch condition

to generate the next test case. Hence, the “then” or “else” branch cannot be covered by CR2base.

CROWNimp solves this weakness by using KLEE as a supporting tool. KLEE tracks the value of

each symbolic pointer in a branch condition and tries to replace the original branch condition with a

new one that contains symbolic primitive values while not changing the syntax. By doing so, the new

branch condition can be negated to generate the next test case. A concrete example is shown in Figure

6.6

Why CR2base Cannot Cover

In lines 2734-2735, symbolic parameter variable size is initialized with 0, so p and pend points to

the same address. p and pend are not altered by lines 2736-2826. The CR2base cannot generate symbolic

path formula for the condition p! = pend as both of them are symbolic pointer, not to mention negate

that condition to generate new test cases. Thus, line 2828 cannot be covered.

Why CROWNimp Can Cover

CROWNimp uses KLEE to support symbolic pointer. KLEE detects that p and pend are never

altered by lines 2736-2826, then it deduces that size == pend − p (L2826). After that, KLEE would

replace the statement p! = pend with a new one with the same syntax , i.e., size! = 0. Finally, KLEE

generates a new test case by negating the new condition size! = 0 to cover line 2828.

6.1.7 Improvement by Partially Solving USV

USV stands for ”Uncovered Branch Caused by Unrealistic Symbolic Values”. The CR2base possibly

outputs an unrealistic value for a symbolic variable and thus creates an execution crash. Therefore, the
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(a) Coverage of CR2base

(b) Coverage of CROWNimp

Figure 6.7: Function compress block of file “allfile.c” of subject “gzip”

coverage of such test cases are lost when using CR2base. Figure 6.7 shows an example from function

compress block of file “allfile.c” of subject “gzip” and explains this limitation and its solution.

Why CR2base Cannot Cover

CR2base generates a very large value for a symbolic variable. The variable is used to access an array,

and its assigned value is larger than the actual size of the array, which causes an out-of-bound memory

access error. The following content explains how the crash happens in detail.

Line 2949: last lit is a symbolic variable, to cover the “then” branch of the “if” statement of this

line, CR2base outputs a very large value ,i.e., 232 − 1, and assigns it to last lit.

Line 2951: l buf is an array with 32832 elements, and variable last lit indicates how many elements

of array l buf will be accessed. Thus, an out-of-bound memory access happens at this line (because

32832 << 232 − 1 ).
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Figure 6.8: Function nk attacked of file “attacks.c” of subject “sjeng”

Why CROWNimp Can Cover

The KLEE used by CROWNimp outputs 1 and assigns this value to last lit, in such case, the crash

at line 2951 can be avoided. The reason why CROWN engine and KLEE output different values even

though given the same input constraints is that they use different SMT solvers (Z3[25] and STP[26]

respectively). Thus, one of these two solvers may output a value that can avoid some crashes. So the

limitation of USV can be partially solved.

6.1.8 Improvement by Solving WDFS

WDFS stands for “Weakness of DFS”. CR2base uses DFS as its path exploration strategy, which

may spend all the timeout2 (test case generation time for each function) on exploring the loop statement.

As a result, the other statements are not covered. Figure 6.4 shows an example of function nk attacked of

file “attacks.c” of subject “sjeng” to demonstrate that the problem WDFS can be solved by CROWNimp.

Why CR2base Cannot Cover

Line 460: variable color is a symbolic integer (initialized with zero), the “else” branch (L501) is

explored first. Inside the “else” branch, these is a “while” loop statement (lines 510-515), which has

huge possible execution paths. The default dfs strategy (used by CR2base) has to explore all those

execution paths before covering lines 461-498 and timeout2 is reached. Thus, lines 461-498 remains

not-covered.
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Table 6.3: Crashes reported by address-sanitizer

Target Subject # of Branch # of Function Branch Coverage # of Crash TC

flex2.4.3 2021 144 53.20% 4341

grep2.0 3416 119 52.70% 9172

gzip1.0.7 1446 80 50.10% 10359

sed1.1.7 2395 64 51.10% 10315

libquantum0.2.4 724 111 50.10% 3392

sjeng11.2 6364 164 50.40% 19477

Why CROWNimp Can Cover

CROWNimp used combined strategy which utilizes different sub-strategies to cover lines 461-498,

e.g., cfg and random can cover these lines.

6.2 Crash Deduplication and Analysis

To know the bug detection ability of CROWNimp,I collected all the test cases that are generated

by CROWNimp for four SIR subjects, recompiled the driver code for each function with the address-

sanitizer4, and then collected all the crashes that are reported by the address-sanitizer.

Table 6.3 shows crash information of each SIR subject. The first to third columns show the name,

the number of functions, and the number of branches for each subject. The fourth column shows the

branch coverage achieved by CROWNimp. The fifth column shows the number of crashes reported by

CROWNimp.

6.2.1 Crash Deduplication Approach

The address-sanitizer reported more than 30-thousand crashes. Manually analyzing all the crashes is

time-consuming and ineffective, so how to reduce the human effort to analyze the crash is very important.

It is worth noting that the search strategy of CROWN2.0 includes cfg and random, which may generate

many duplicate test cases (the test cases that have the same execution path). With this feature, many

crashes may be redundant. So It is worthwhile to reduce the # of crashes and then analyze the unique

crashes only.

There exist many approaches to remove duplicate test cases. For example, the stack hashing tech-

nique accumulates the last N function calls leading to the crash cite, hashing these traces to distinguish

unique crashes[29]. The Clustering-based approach uses a clustering algorithm to put the crashes that

have similar crash traces together in the same group[30]. Both approaches are based on an observation:

if two crashes have exactly the same crash lines, then the two crashes are the same. Otherwise, they are

different.

Figure 6.9 shows the example of two different crashes. The left part shows the crash stacks and

function names in the call stacks. The right part shows the line numbers of the target subject in the

crash stack. The first test case crashes at line 2551, and the second test case crashes at line 2589. So two

crashes are regarded as different crashes. As it is shown in figure 6.9, we can distinguish two different

4I use address-sanitizer because it can detect more memory errors (e.g., out of bound access) than the default compilation

options of gcc
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Figure 6.9: Example of two different crashes

Algorithm 2 Working Mechanism of Crash Deduplication

Input: : C. lists of crashes of a subject, L. function list of a subject

Input: : K. # first crash lines to compare

Output: : S. a set of unique crashes

1: for each f ∈ L do

2: U ← {}
3: V ← {}
4: for each c ∈ C[f ] do

5: if first K lines of c not in V then

6: U ← U + c

7: V ← V + (first K lines of c)

8: end if

9: end for

10: S ← S + U

11: end for

12: return S

crashes by comparing the first crash line only. From this observation, we may need to compare the first

K lines (rather than all crash lines) to determine whether the two crashes are the same or not.

Algorithm 2 describes how to deduplicate crashes for each target subject. The algorithm accepts

lists of crashes and a function list of a target subject, and outputs a set of unique crashes S.

• At line 1, a function and its crashes are chosen.

• At line 2 and line 3, two sets (U and V ) are created. U contains the unique crashes for the function

chosen at line 1. V contains the first K lines of crashes in U .

• From line 4 to line 9, for each crash, if its first K lines are not in V , it is regarded as a unique

crash. The crash will be added into set U and the first K lines of this crash will be added into set

V .

• At line 10: Add all the unique crashes of the chosen function into set S. Then select another

function from the function list L until all the functions are chosen.

• At line 12: Return S that contains all the unique crashes.
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Table 6.4: Crash Deduplication Result

Target Subject # of Crash TC
# of Unique Crash TC

(K=3)

# of Unique Crash TC

(K=5)

flex2.4.3 4341 123 124

grep2.0 9172 241 248

gzip1.0.7 10359 56 56

sed1.1.7 10315 166 167

libquantum0.2.4 3392 289 289

sjeng11.2 19477 581 579

6.2.2 Crash Deduplication Result

After applying the crash deduplication approach using different values of K (number of crash lines

being compared), I obtained the results in table 6.4. The first column shows the subject name. The

second column shows the number of crashes reported by CROWNimp. The third and fourth columns

show the number of unique crashes obtained by using K as three and five respectively. We can note that

different values of K do have not much difference on the crash deduplication result.

6.2.3 False Alarm Example

After the crash deduplication process, there are still more than 500 crashes. And most of them are

false alarms, i.e., the crash cannot be reproduced by the system-level test cases. Figure 6.10 gives an

example of one false alarm reported by the unit-level test case.

The target function f has a parameter x which is used to get the xth element of an array (line 5).

Before the execution line 5, the assertion statement would be executed to check whether x is in a valid

range or not (between zero and six). And crash would happens if x is not in the valid range.

In unit-level concolic testing of function f , the parameter x would be replaced by a symbolic variable.

And the concolic testing engine would try to generate a value of x to violate the assertion at line 4, e.g.,

x = -1 . Hence, a crash would be reported by concolic testing tool.

It is worth noting that function f would be invoked by function main only, and function main has

a “sanity check” before calling function f to ensure that the value of the parameter of f is in a valid

range. Therefore, the error reported in the unit testing cannot be reproduced.

6.2.4 Crash Analysis

For the remaining crashes after the crash deduplication process, I manually analyzed their crash

traces one by one to discover true positive. I focus on analyzing the crashes on the four SIR subjects

because the two subjects from SPEC2006 benchmark generated too many crash test cases to analyze. I

will analyze the crashes of two SPEC2006 subjects in the future.

The criteria to whether a crash is true positive or not are to see if any system-level test cases can

reproduce the crash. If the system-level test cases can reproduce the crash, the crash is a true positive

(i.e., an existing bug makes the crash happen)

Figure 6.11 and Figure 6.12 show the system-level crash trace and the unit-level crash trace. The

first two lines show the crash address in the memory. The remaining lines show the crash stack, which

contains the function name, file name, line number, etc.
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1 // Target Function

2 int f(int x){

3 int arr[7] = {1,2,3,4,5,6,7};

4 assert (0<=x && x <= 6);

5 if(arr[x] == 1){

6 return 0;

7 }else{

8 ... // do other things

9 }

10 }

11 int main(){

12 int x;

13 scanf("%d", &x);

14 if(x < 0 || x >6){

15 return -1;

16 }else{

17 return f(x);

18 }

19 }

20 /*

21 f_driver (){

22 int x;

23 SYM_int(x);

24 f(x);

25 }

26 */

Figure 6.10: Example of False Alarm

==7078== ERROR: AddressSanitizer: SEGV on unknown address 0x000000000030

(pc 0x00000040ebe6 bp 0x7ffdea840c60 sp 0x7ffdea840bd0 T0)

#0 0x40ebe5 in execute_program ./sed.c:1274

#1 0x410167 in read_file ./sed.c:1205

#2 0x412529 in main ./sed.c:477

#3 0x7fc20a2ab82f in __libc_start_main (/lib/x86_64 -linux -gnu/libc.so.6+0 x2082f)

#4 0x401878 in _start (./sed.exe+0 x401878)

Figure 6.11: System-level crash trace

==21012== ERROR: AddressSanitizer: SEGV on unknown address 0x000000000030

(pc 0x000000411b2f bp 0x7ffea7185ed0 sp 0x7ffea7185e40 T0)

#0 0x411b2e in execute_program ./sed.c:1274

#1 0x413047 in read_file ./sed.c:1205

#2 0x41e5dc in read_file_driver ./sed.read_file.driver.c:773

#3 0x41e5f9 in main ./sed.read_file.driver.c:777

#4 0x7f4ddd9eb82f in __libc_start_main (/lib/x86_64 -linux -gnu/libc.so.6+0 x2082f)

#5 0x401ac8 in _start (./sed.read_file.driver_debug +0 x401ac8)

Figure 6.12: Unit-level crash trace

Both the system-level and unit-level test cases have the same crash trace (lines in the call stack:

1205->1274), so this crash (detected by CROWNimp) is a true positive.
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Figure 6.13: Example of USIV

6.2.5 Three Causes of False Alarms

I have found three causes of false alarms, and the following content explains these three causes with

concrete examples.

USIV. Unrealistic Symbolic Input Value

The value of symbolic input may not be in the valid range, thus causing the crash. For example, a

symbolic size represents the length (saying 10) of an array, and CROWN may output a value for size

which is larger than the actual length of the array. Then an out-of-bound memory access crash will

happen. The concrete example in Figure 6.13 shows this kind of false alarm found at function copy of

file “grep.c” of subject “grep”.

Line 7538: src− > nelem is a symbolic variable, to satisfy the condition i < (src− > nelem),

CROWN assigns 19 to this variable. Then crash happens at line 7539 because the two arrays at this line

only contains three (<< 19) elements.

USVI.Unrealistic Symbolic Variable Initialization

The driver code will reinitialize all the global variables, whether initialized by the target subject

or not. This feature may cause false alarms. Figure 6.14 explains a false alarm example in function

build tree of file “allfile.c” of subject gzip.

Sub-figure (a) of Figure 6.14 shows why crash will not happen at line 2551 during the system-level

execution.

• Line 2139: The dyn tree field of structure bl desc is initialized with an array of 39 elements (bl tree).

The elems field of structure bl desc is initialized with 19 (=macro BL CODES).

• Lines 2537-2539: dyn tree field is assigned to variable tree (L2537), elems field (19) is assigned to

variable elems (L2539). Now tree points to an array which contains 39 elements, and the value of

elems is 19.
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(a) Execution Path

(b) Driver Code

Figure 6.14: Example of USVI

• Line 2551: Crash would never happen at this line because n is less than elem, which is less than

the # of elements (=39) of the array that tree points to.

Sub-figure (b) of Figure 6.14 shows how the crash is caused by unrealistic variable initialization in the

driver code.

The driver code reinitialized the dyn tree field of structure bl desc by making it points to an array

with only three elements (the actual length should be 39). To cover line 2551, CROWN assigns four to

variable elem, and the out-of-bound memory access happens at line 2551 (because 3 < 4)

ICIO.Invalid Comparison Caused by Integer Overflow

An integer overflow may cause some branches to be covered under unexpected conditions, causing

crashes when executing that branch. Figure 6.15 shows this kind of false alarm found at function

inflate codes of file “allfile.c” of subject “gzip”.

• Line 1518: both w, d and e are unsigned variable, so (unsigned)(0-9136) =4294958160 ¿ 23632 and

the “then” branch is executed.

• Line 1520: memory overlap crash happens when executing memcpy.
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Figure 6.15: Example of ICIO
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Chapter 7. Related Works

7.1 Automated Test Case Generation

The automatic test case generation technique refers to the automatic construction of test cases that

meet certain conditions (e.g., assertions, constraints that are given by the users) based on the software

product and the related documents. The automatic test case generation technique can greatly reduce

the cost of software testing and shorten the software development cycle. At present, the automated test

case generation technique is one of the most important research areas of software testing.

7.1.1 Automated Test Case Generation in Research Community

Since people began to study software testing in the 1960s, automatic test case generation has become

an important research topic. Random testing is one of the earliest test case generation techniques. It

randomly generates test cases and then monitors the program execution process. It is a software testing

technology with a high degree of automation. In 1962, Remfer published a paper introducing automated

testing and believed that random testing was an important automated testing technique[31]. Although

random testing is simple, easy to implement, and highly automated, it has disadvantages such as low code

coverage and excessive redundant test cases. Later, people proposed improved random testing techniques

such as adaptive random testing, random testing with guidance information, and fuzzy testing.

Recently, there have been many papers on automated software testing. Among them, Stucki et

al. developed a software testing system named PET, which can record information about the state-

ment execution such as the number of executions, maximum value and minimum value of a variable,

etc[32]. Ramamoorthy et al. developed a system called ACES, which can detect unreliable structures

of programs[33]. Boyer et al. developed a system that generates test cases and verifies the program

assertions according to the paths of the target program[34]. This is the first software testing system that

has the ability to automatically generate test cases. It uses symbolic execution as its test case gener-

ation technique. The EFFIGY that is developed by IBM also adopts the idea of symbolic execution,

which replaces the specific values of variables with symbolic variables to simulate the execution of the

target program[35]. These tools are the earliest software testing or software verification tools. Clarke

systematically introduced the approach of using symbolic execution to generate test cases based on the

execution path[36]. This method generates an output corresponding to symbolic input according to the

path constraints and the constraints provided by the user.

7.1.2 Automated Test Case Generation in Industry

At present, the industry has issued multiple test case generation tools. The functional test gener-

ation tool SoftTest developed by Bender & Associates company can perform unit testing, integration

testing, system testing, and acceptance testing. The Panorama C/C++ tool developed by Internation

Software Automation company has many functionalities such as test case generation, test case replaying.

The CROWN2.0[23] developed by Vpluslab company can automatically generate driver/ stubs for each

function and perform automated test case generation using concolic testing. In addition, there are some

open-source test generation tools such as CUTE[19], CREST[24], KLEE[1] and JPathFinder[53] etc.
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These tools are based on symbolic execution and constraint solving technology. However, the symbolic

execution technique still faces some problems, such as path explosion problem and the solving nonlinear

path constraint condition problem, so the symbolic execution technology needs to be improved.

7.2 Concolic Testing/Dynamic Symbolic Execution

Recently, concolic testing technique has attracted lots of researchers again. The current research on

concolic testing mainly focuses on three directions:

• How to improve the concolic testing technique

• How to expand the application range of concolic testing

• Case studies applications based on concolic testing

To solve the path explosion problem of concolic testing technique, researchers mainly improve concolic

testing from three perspectives:

(1)Revising the traditional concolic testing technique by utilizing different kinds of technology e.g.,

using distributed, parallel technology or cloud computing technology to improve the efficiency of concolic

testing.

Yu et al. proposed a method to reduce the time cost of automated test generation by using parallel

technology and improve the scalability of concolic testing[37]. The SCORE system is a dynamic symbolic

execution tool that uses distributed technology and can be deployed on a large number of nodes. The

SCORE system also introduces the idea of cloud computing[38].

(2) Adopting an active path exploration strategy, focusing on how to quickly and directly reach the

target branch. Sun et al. used program slicing technology to find functions that affect path conditions,

avoid searching for irrelevant path spaces, and reduce analysis costs[39]. Prabhu et al. used a two-stage

learning and conflict avoidance strategy to improve the branch coverage of concolic testing[40]. In the

first stage, a conflict-driven learning mechanism was used to skip paths that may encounter conflicts.

In the second stage, a more intelligent conflict learning mechanism was used to avoid searching for

unreachable branches. Do et al. believe that many heuristic strategies have a large computational cost,

which makes the efficiency of concolic testing technology worse, so they proposed a method of alternately

using heuristic search and random search to reduce testing cost[41]. In addition, many researchers have

proposed a variety of methods to utilize the static structure of the target program to guide the searching

process, which can also improve the efficiency of concolic testing[42].

(3) Negative search strategy, it emphasizes how to avoid searching infeasible searching spaces and

how to quickly utilize backtrack. Krishnamoorthy et al. proposed a fallback strategy based on the

reachability graph and conflict analysis[43]. The reachability graph was used to determine the path

reachability based on the depth-first search, and only the paths related to the critical path were explored.

Extending the application range of concolic testing is a new research topic. Canini et al. applied

concolic testing technology to distributed systems to automatically detect whether the system is abnormal

and improve the reliability of the distributed system[44]. Taneja et al. applied concolic testing technology

to regression testing, using the PIE model to track which part of the target program is modified part

is tracked, and then use the concolic testing technology to generate test cases[45]. Papadakis et al.

combined concolic testing with mutation testing, inserted the constraints that can trigger mutations into
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the source program, and then used concolic testing technology to automatically generate test cases[46].

Kim et al. combined concolic testing and fuzzing technique and utilized these two techniques to generate

test cases in an adaptive way[52]. Artzi et al. applied concolic testing technology to fault localization,

using symbolic execution and concrete execution information to locate the fault location[47].

At present, there are not many research reports on the case study of concolic testing technology,

and the main case studies focus on software testing. Kim et al. used concolic testing technology to test

the large storage system that was developed by Samsung[48]. This approach overcomes the weakness of

traditional testing technology that cannot generate effective test cases, i.e., test cases with high coverage

achievement, and has a smaller time cost. In addition, they had also reported multiple detected vul-

nerabilities when using concolic testing technology to test the document management system developed

by Samsung, which proved the high efficiency of concolic testing[49]. Jang et al. reported a case study

of using concolic testing technology to detect malicious software and found that in combination with

reverse tracking technology, many hidden paths could be discovered[50].

7.3 Automated Unit-level Test Case Generation

System-level test case generation often faces the problems of low coverage and path explosion. In

order to solve the above problems, unit testing approach was proposed. The target of unit testing is the

unit/function rather than the entire project, so the search space for each unit is relatively small, and the

coverage achieved by unit testing is higher than the one of system-level testing.

Automated unit test generation techniques analyze a given function under test and generate input

values of the target function, i.e., value of parameters, global primitive variables, and variables with

structure/union type, automatically.

In order to generate test input for each function individually, a testing environment is essential, so

the testing tool needs to do the following two things:

• Driver Generation. Generate a test driver to build a test environment for each target function,

e.g., how to set the input values for the parameters of the target function and global variables and

how many times the target function should be called for each test case execution.

• Stub Generation. Generate test stubs to simulate the behavior of some library functions whose

source code is invisible to the users.

Table shows a list of realated work on authmated unit-level test case generation techniques.

CUTE[19] generates unit test drivers (stubs are not generated) to generate test input for the target

C programs. The unit test drivers set all the parameters used by the target function as symbolic

variables. CONBOL[21] generates test drivers, stubs, and test inputs for large embedded C programs

developed by Samsung. UC-KLEE[54] generates test drivers for the target function using lazy symbolic

input initialization, i.e., whenever an uninitialized variable is read during execution, UC-KLEE sets that

variable as symbolic variables and generates test inputs. Like CUTE, UC-KLEE cannot replace the

library functions with stub functions. CONBRIO generates both the driver and stubs for each target

function, moreover, the driver generated by CONBRIO contains extended unit, i.e., other functions

that have a direct or indirect callee-caller relationship with the target fictions to help improve the test

coverage and filter out the false alarms (crashes which are not infeasible in the system level test cases).

Intelligen[55] selects only the most potentially vulnerable functions, i.e., the function that contains more

pointer dereference statements and memory-related function calls, from the target subject, synthesizes
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Table 7.1: Related Works of Unit Testing

Tool Technique Driver Stub
Local

Static

Comb.

SS

Random

Value if

1st crash

FP

Stub for

File-

handling

Utilize

Other

Engine

CUTE[19] Concolic Testing O X X X X X X X

UC-KLEE[54] Symbolic Execution O X X O X X X X

CONBOL[21] Concolic Testing O O X X X X O X

CONBRIO[22] Concolic Testing O O X X X X O X

MAESTRO[52]
Concolic Testing,

Fuzzing
O O O O X O X O

CR2imp Concolic Testing O O O O O O O O

driver for the selected functions similar to the way CROWN2.0 does and generates test inputs using the

fuzzing technique. MAIST[51] generates both driver and stubs for each target function, in addition, it

adds support for function pointer type by obtaining the target functions that are assigned to function

pointer fp. MAESTRO[52] generates driver, stubs, and test inputs for each target function by utilizing

both the fuzzing and concolic testing techniques in an adaptive way. EvoSuite[56] automatically generates

unit-level test inputs for java language programs.

Table 7.1 shows a brief comparison of different unit testing techniques.

Although the unit-level test case generation technique can improve the coverage, it often generates

a large number of invalid test cases, i.e., the test case whose execution path cannot be reproduced from

the system level. Therefore, unit testing needs to study how to avoid generating these invalid test cases.

7.4 Obstacles of Automated Test Case Generation

The test cases generation plays an important role in the software testing process. The quality of

the test suite generated by test case generation tool directly affects the effectiveness of software testing.

In the past, many test case generation tools required the users to set the input variables, that is, the

users were responsible for being knowledgeable of the code of the software under test, which reduced the

efficiency of test generation. The current software structure is becoming more and more complex, making

it time-consuming to understand the software and set the input variables manually, further increasing the

difficulty of test case generation. Therefore, the automatic test case generation tool is getting more and

more attention. It does not require the tester to perform complicated operations, nor does it require the

tester to have an in-depth understanding of the code, which greatly improves the degree of automation

of the testing process. But the automatic test case generation tool is not perfect yet. There are mainly

three,i.e., random testing, search-based testing, constraint-solving based testing, types of automated test

case generation methods, each of which has its own weaknesses.

The random test case generation tool has a high degree of automation, but its test case generation

process is blind, resulting in a large number of invalid or redundant test cases, making it achieve low code

coverage and low test efficiency. The researchers have proposed approaches such as adaptive random

testing to improve random testing. But such techniques have a huge time cost and memory cost to provide

feedback to further test case generation process, making it hard to be put into industrial applications.

Search-based test case generation can overcome the shortcomings of low random test code coverage.

It is a highly potential test generation technology, but it also faces some problems. Search-based test

generation tools cannot obtain and process the execution environment of the software under test, for
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example, they cannot process the interactive information between the software under test and the un-

derlying operating system, network access, database access, etc. Moreover, the fitness function directly

affects the test case generation process, and sometimes the fitness function cannot provide sufficient

guidance for the search process if the designed fitness function is not effective enough.

Constraint-solving-based test case generation also has some problems. First of all, techniques such as

symbolic execution and static analysis cannot track the library functions and the dynamic data structures

in the program, e.g., pointers, classes in object-oriented programming languages, which severely limits

the capabilities of the test case generation technique based on constraint solving. Secondly, due to the

problem of path explosion, if an unreasonable strategy is adopted, a large number of redundant test cases

may be generated, which reduces the efficiency of testing. Finally, due to the limited ability of the SMT

solver, it cannot handle nonlinear constraints, e.g., 10 = x2 + ex. These above-mentioned characteristics

limit the development of constraint-solving-based test case generation.
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Chapter 8. Conclusion and Future Works

8.1 Conclusion

In this dissertation, I have studied a commercial automated testing software tool, CROWN2.0 ver

2020, and used this tool to perform experiments on six real-world projects. In the experiment, I found

that the branch coverage achieved by CROWN2.0 ver 2020 in the six real-world projects (four from SIR

and two from SPEC2006) was relatively low at the beginning, i.e., 28.9% on average for each subject. In

order to find the reason that causes low coverage achievement, I read each branch or even each line of the

source code of the six target projects. Then I got 324 groups of not-covered branches. After extensively

analyzing all these 324 groups of not-covered branches, I found that the CROWN2.0 ver 2020 has 13

common problems.

To solve the above 13 problems, I proposed six ideas for these 13 problems, applied the six ideas to

CROWN2.0 ver 2020, and re-performed experiments on the six target projects. The experimental results

show that the ideas give a 77% branch coverage improvement (up to 188%) on average for six subjects.

In addition, I wrote documents for each group of unexplored branches. The document contains the code

example and reason why each group cannot be covered by CROWN.

8.2 Future Work

In future work, I plan to improve the effectiveness of CROWN2.0 (branch coverage, bug detection

ability) through the following aspects.

8.2.1 More Analysis on The Detected Crashes

I analyzed the 595 crashes from four subjects of SIR benchmark. In the future, I will analyze the

remaining two subjects of SPEC2006 benchmark to check if the detected 868 crashes of two SPEC2006

subjects are true positive or not.

8.2.2 Performing Experiment on More Subjects

In this dissertation, I performed experiments on six target subjects and proposed five approaches to

improve the coverage achieved by CROWN2.0 on these six subjects. These approaches may be over-fitting

on these six subjects, i.e., the solutions may not effectively improve the coverage on other projects. In the

future, I plan to apply CROWN 2.0 to more large-scale projects and analyze the not-covered branches

in large projects to find more ways to improve the effectiveness of CROWN2.0.

8.2.3 Integrating Other Testing Tools

At present, CROWN2.0 uses two test case generation tools, i.e., CROWN and KLEE. These two

testing tools are developed based on symbolic execution, so they inevitably face path explosion problems.

So in the future, I want to integrate fuzzing tools into CROWN2.0. The fuzzing technique (e.g., AFL)

can help to detect some corner-case bugs in a short period of time.I want to make CROWN2.0 observe
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the coverage achieved by the concolic testing dynamically. When the coverage has not improved for a

long time, CROWN2.0 can switch to fuzzing to improve its coverage and bug detection ability.

8.2.4 Obtaining Seed TC from System Level TC to Guide Concolic Testing

A good test case can make concolic testing achieve a higher branch coverage in a short time. In the

future, I plan to use system-level test cases to automatically generate seed test cases to guide the process

of concolic testing. The basic idea is as follows.

First, observe the execution path of the system-level test cases, obtain a system-level test case

with the longest execution path , generate a unit-level test case according to the execution path of the

system-level test case , and then use the unit-level test case as a seed.
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